1
|
Gao H, Sun M, Li A, Gu Q, Kang D, Feng Z, Li X, Wang X, Chen L, Yang H, Cong Y, Liu Z. Microbiota-derived IPA alleviates intestinal mucosal inflammation through upregulating Th1/Th17 cell apoptosis in inflammatory bowel disease. Gut Microbes 2025; 17:2467235. [PMID: 39956891 PMCID: PMC11834480 DOI: 10.1080/19490976.2025.2467235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
The gut microbiota-derived metabolite indole-3-propionic acid (IPA) plays an important role in maintaining intestinal mucosal homeostasis, while the molecular mechanisms underlying IPA regulation on mucosal CD4+ T cell functions in inflammatory bowel disease (IBD) remain elusive. Here we investigated the roles of IPA in modulating mucosal CD4+ T cells and its therapeutic potential in treatment of human IBD. Leveraging metabolomics and microbial community analyses, we observed that the levels of IPA-producing microbiota (e.g. Peptostreptococcus, Clostridium, and Fournierella) and IPA were decreased, while the IPA-consuming microbiota (e.g. Parabacteroides, Erysipelatoclostridium, and Lachnoclostridium) were increased in the feces of IBD patients than those in healthy donors. Dextran sulfate sodium (DSS)-induced acute colitis and CD45RBhighCD4+ T cell transfer-induced chronic colitis models were then established in mice and treated orally with IPA to study its role in intestinal mucosal inflammation in vivo. We found that oral administration of IPA attenuated mucosal inflammation in both acute and chronic colitis models in mice, as characterized by increased body weight, and reduced levels of pro-inflammatory cytokines (e.g. TNF-α, IFN-γ, and IL-17A) and histological scores in the colon. We further utilized RNA sequencing, molecular docking simulations, and surface plasmon resonance analyses and identified that IPA exerts its biological effects by interacting with heat shock protein 70 (HSP70), leading to inducing Th1/Th17 cell apoptosis. Consistently, ectopic expression of HSP70 in CD4+ T cells conferred resistance to IPA-induced Th1/Th17 cell apoptosis. Therefore, these findings identify a previously unrecognized pathway by which IPA modulates intestinal inflammation and provide a promising avenue for the treatment of IBD.
Collapse
Affiliation(s)
- Han Gao
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Mingming Sun
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Ai Li
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qiaoyan Gu
- Department of Gastroenterology, Yanan University Affiliated Hospital, Yan’an, Shaanxi, China
| | - Dengfeng Kang
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhongsheng Feng
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xiaoyu Li
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Chen
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhanju Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
2
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
3
|
Wang J, Hao Y, Yang Y, Zhang Y, Xu C, Yang R. Gut microbiota derived indole-3-acetic acid ameliorates precancerous inflammatory intestinal milieu to inhibit tumorigenesis through IL-35. J Immunother Cancer 2025; 13:e011155. [PMID: 40274281 PMCID: PMC12020765 DOI: 10.1136/jitc-2024-011155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Gut microbiota can significantly alter the risk or progression of cancer by maintaining gut immune system homeostasis. However, the exact mechanism by which the gut microbiota and its metabolites influence colorectal tumorigenesis is unclear. METHODS The roles of tryptophan metabolite indole-3-acetic acid (IAA) in inflammation and tumor development were investigated in dextran sodium sulfate (DSS) and azoxymethane (AOM)-DSS mouse models with or without IAA supplementation and with or without Lactobacillus reuteri-produced IAA. Pregnane X receptor (PXR) knockout (KO) mice and aryl hydrocarbon receptor KO mice were used to explore the mechanism by which IAA regulates interleukin (IL)-35 expression. IL-35+ immune cells were stimulated in vitro and analyzed by flow cytometry. Additionally, metabolites were analyzed by liquid chromatography-mass spectrometry. RESULTS We found that IAA, a metabolite of tryptophan produced in the gut by L. reuteri, can inhibit the development of colitis by inducing IL-35 expression in immunosuppressant cells. HuREG3αIECtg mice had high levels of intestinal microbiota-derived IAA, and these mice were resistant to AOM-DSS-induced cancer. Patients with colorectal cancer also had low peripheral blood levels of IAA. Further studies revealed that IAA-producing L. reuteri alleviated colitis symptoms and inhibited colon tumors by inducing macrophages, T cells, and B cells to produce IL-35. Finally, PXR KO completely abolished the effects of IAA on immune cells. CONCLUSION We demonstrate that gut microbiota-derived IAA can improve the precancerous colon inflammatory environment through IL-35, thereby inhibiting tumorigenesis, suggesting that IAA may be a preventive factor for colitis-related cancers.
Collapse
Affiliation(s)
| | - Yang Hao
- Nankai University School of Medicine, Tianjin, China
| | - Yazheng Yang
- Nankai University School of Medicine, Tianjin, China
| | - Yuan Zhang
- Nankai University School of Medicine, Tianjin, China
| | - Chen Xu
- Nankai University, Tianjin, China
| | - Rongcun Yang
- Nankai University Medical School, Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
4
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous metabolites in metabolic diseases: pathophysiological roles and therapeutic implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention, and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids (BAs), as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids (SCFAs), as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| |
Collapse
|
5
|
Li J, Zou P, Xiao R, Wang Y. Indole-3-propionic acid alleviates DSS-induced colitis in mice through macrophage glycolipid metabolism. Int Immunopharmacol 2025; 152:114388. [PMID: 40086057 DOI: 10.1016/j.intimp.2025.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease for which current therapeutic approaches still face many dilemmas, and targeting macrophage polarization and metabolism for the treatment of this disease is a potentially effective strategy. The gut microbial metabolite indole-3-propionic acid (IPA) has favorable anti-inflammatory and antioxidant effects and plays a role in a variety of disease models. IPA is effective in the treatment of UC, but the underlying mechanisms have not been well explored. In the present study, we investigated the mechanisms by which IPA ameliorates colitis in mice from the perspective of macrophage polarization and metabolism. In this study, mice colitis was induced by sodium dextran sulfate and treated with oral IPA. RAW264.7 cells were induced by LPS to polarize into M1 macrophages and treated with IPA. The results showed that IPA could improve colitis by inhibiting M1 polarization of colonic macrophages and promoting M2 polarization. The inhibition of IPA on M1 macrophages was verified in vitro through JNK/MAPK pathway, which inhibited the glycolysis of macrophages. IPA promotes macrophage M2 polarization and enhances fatty acid oxidation through upregulating of CPT1A and ACSL1, which may be related to the activation of PPAR-γ. In summary, IPA can improve colitis by regulating macrophage glucose and lipid metabolism, and targeting intestinal macrophage metabolism may be an effective target for the treatment of UC.
Collapse
Affiliation(s)
- Jiahong Li
- Beijing Children Hospital, Capital Medical University, Beijing 100045, China
| | - Peicen Zou
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ruiqi Xiao
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yajuan Wang
- Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
6
|
Zhang Q, Xu F, Wang Z, Liu S, Zhu S, Zhang S, Wu S. Long-Term Risk of Inflammatory Bowel Disease With MASLD: A Large-Scale Prospective Cohort Study in UK Biobank. J Gastroenterol Hepatol 2025; 40:855-865. [PMID: 39828371 DOI: 10.1111/jgh.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Similar worsening epidemics globally have been showed in newly coined metabolic dysfunction-associated steatotic liver disease (MASLD) and inflammatory bowel disease (IBD). We aimed to investigate the prospective association of MASLD, MASLD types, and cardiometabolic risk factors (CMRFs) with long-term risk of incident IBD in a large-scale population cohort. METHODS Participants free of IBD at enrollment from UK Biobank were included. Baseline MASLD was measured by fatty liver index together with at least one CMRF, based on the latest AASLD/EASL criteria. MASLD type was classified as pure MASLD and MetALD (MASLD with increased alcohol intake). Primary outcome was incident IBD, including ulcerative colitis (UC) and Crohn's disease (CD). Multivariable Cox regression was conducted to examine the related associations. RESULTS Overall, 403 520 participants (aged 56.2 ± 8.1 years, 45.6% males) were included. Of whom, 151 578 (37.6%) were considered as MASLD at baseline. During a median of 13.0 years' follow-up, 2398 IBD cases were identified. Compared with normal population, individuals with MASLD showed significant higher associations of incident IBD (HR = 1.39, 95% CI: 1.21-1.60), UC (HR = 1.34, 95% CI: 1.13-1.58), and CD (HR = 1.51, 95% CI: 1.20-1.89). Meanwhile, results were consistent when assessing pure MASLD (HR = 1.43, 95% CI: 1.23-1.66) and MetALD (HR = 1.46, 95% CI: 1.15-1.86). The excess risk of incident IBD was more evident with the increase of CMRFs numbers (ptrend < 0.001). CONCLUSION MASLD, either pure MASLD or MetALD, and a combination of different CMRFs are all associated with increased risk of IBD, including both UC and CD. Additionally, there is greater risk of incident IBD as the number of CMRFs increase.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Diseases Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Fang Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Diseases Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Zuyao Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Diseases Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Diseases Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Diseases Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Diseases Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shanshan Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Diseases Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| |
Collapse
|
7
|
Li AP, Zhang XX, Zhang QY, Wang MJ, Ju Z, Zhang XY, Qin XM, Liu GZ. Metabolomic profiling of adenine-induced CKD: pathway interconnections and kidney injury. Toxicol Res (Camb) 2025; 14:tfaf035. [PMID: 40135063 PMCID: PMC11932014 DOI: 10.1093/toxres/tfaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Chronic kidney disease (CKD) is acknowledged as one of the largest public health problems in the world, characterized by a complex and diverse pathogenesis. Adenine-induced CKD, a classical model with multiple injury mechanisms, has been extensively employed in CKD research. However, the complete elucidation of the mechanisms underlying adenine-induced CKD remains elusive. In this study, the impacts of adenine (200 mg/kg/day) intake on the urine metabolome of rats were initially investigated using non-targeted metabolomics, and then targeted metabolomics was used to quantitatively verify key metabolites on crucial metabolic pathways. Interestingly, the interconnectedness of two significant pathways was discovered and validated through molecular biology techniques. The results found that adenine can cause significant perturbations in purine metabolism and the biosynthetic pathways of phenylalanine, tyrosine, and tryptophan. Subsequent targeted metabolomic analysis revealed a significant reduction in amino acid and hypoxanthine and creatinine levels in the kidneys of CKD rats, accompanied by an increase in xanthine level. Further analysis found that purine pathway can increase ROS production and affect the level of aromatic amino acid transporter SLC7A5, thus influencing the biosynthesis pathway of phenylalanine, tyrosine and tryptophan, ultimately contributing to kidney injury. This discovery provides offers novel insights into the underlying pathological mechanism of adenine-induced CKD. The development of chronic kidney disease is induced by multiple pathways of aromatic amino acid metabolism and purine metabolism.
Collapse
Affiliation(s)
- Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
- Shanxi Traditional Chinese Medical Hospital, No. 46, Bingzhou West Street, Taiyuan 030012, China
| | - Xing-Xing Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Qing-Yu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Meng-Jiao Wang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Zheng Ju
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Xiao-Yu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China
| | - Guang-Zhen Liu
- Shanxi Traditional Chinese Medical Hospital, No. 46, Bingzhou West Street, Taiyuan 030012, China
| |
Collapse
|
8
|
Wu C, Diao M, Yu S, Xi S, Zheng Z, Cao Y, Wang S, Zhu Y, Zhang M, Hu W. Gut Microbial Tryptophan Metabolism Is Involved in Post-Cardiac Arrest Brain Injury via Pyroptosis Modulation. CNS Neurosci Ther 2025; 31:e70381. [PMID: 40260682 PMCID: PMC12012640 DOI: 10.1111/cns.70381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
AIMS Post-cardiac arrest brain injury (PCABI) is a leading cause of death in cardiac arrest/cardiopulmonary resuscitation (CA/CPR) victims and long-term disability in CA/CPR survivors. Despite previous evidence indicating that the microbiota-gut-brain axis is critically involved in many neurological disorders, no research has hitherto established a connection between the gut microbiota and PCABI through this axis. This study aims to explore the biological roles of microbial tryptophan metabolites in the progression of PCABI. METHODS To achieve this, we pretreated rats with a cocktail of broad-spectrum antibiotics (Abx) to eradicate the gut microbiota before establishing a 7-min asphyxia-CA/CPR model. RESULTS Remarkably, the 24-h survival rate and neurological outcomes improved in Abx/CPR rats. Fecal 16s rDNA sequencing and PICRUSt2 analysis revealed that Abx reshaped the microbial community and elevated the proportion of microbial tryptophan metabolism in rats. Metabolomic profiling suggested that Abx shifted the phenotype of microbial tryptophan metabolism from the indole pathway to the kynurenine pathway, thereby increasing the levels of the neuroprotective metabolite kynurenine in the feces, circulation, and ultimately the brain. Furthermore, the hippocampal expression of aryl hydrocarbon receptor (AhR), an endogenous receptor of kynurenine, was upregulated in Abx/CPR rats. In vitro experiments further demonstrated that the neuroprotective effects of kynurenine are AhR-dependent and that AhR activation could negatively regulate the NLRP3 protein expression. Supporting this, results from qRT-PCR, immunohistochemistry, and immunofluorescence in the rat cerebral cortex exhibited that L-kynurenine inhibited NLRP3-induced pyroptosis. CONCLUSIONS Our study provides a direct clue to the essential participation of the microbiota-gut-brain axis in the progression of PCABI. It demonstrates that kynurenine might attenuate PCABI by inhibiting NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Anesthesia Center of Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Mengyuan Diao
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Shuhang Yu
- Department of Intensive Care Unit, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shaosong Xi
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Zhipeng Zheng
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| |
Collapse
|
9
|
Liu J, Li F, Yang L, Luo S, Deng Y. Gut microbiota and its metabolites regulate insulin resistance: traditional Chinese medicine insights for T2DM. Front Microbiol 2025; 16:1554189. [PMID: 40177494 PMCID: PMC11963813 DOI: 10.3389/fmicb.2025.1554189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The gut microbiota is closely associated with the onset and development of type 2 diabetes mellitus (T2DM), characterized by insulin resistance (IR) and chronic low-grade inflammation. However, despite the widespread use of first-line antidiabetic drugs, IR in diabetes and its complications continue to rise. The gut microbiota and its metabolic products may promote the development of T2DM by exacerbating IR. Therefore, regulating the gut microbiota has become a promising therapeutic strategy, with particular attention given to probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. This review first examines the relationship between gut microbiota and IR in T2DM, summarizing the research progress of microbiota-based therapies in modulating IR. We then delve into how gut microbiota-related metabolic products contribute to IR. Finally, we summarize the research findings on the role of traditional Chinese medicine in regulating the gut microbiota and its metabolic products to improve IR. In conclusion, the gut microbiota and its metabolic products play a crucial role in the pathophysiological process of T2DM by modulating IR, offering new insights into potential therapeutic strategies for T2DM.
Collapse
Affiliation(s)
- Jing Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fuxing Li
- Ningxiang Traditional Chinese Medicine Hospital, Changsha, China
| | - Le Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengping Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Fan J, Wu Y, Wang X, Ullah H, Ling Z, Liu P, Wang Y, Feng P, Ji J, Li X. The probiotic enhances donor microbiota stability and improves the efficacy of fecal microbiota transplantation for treating colitis. J Adv Res 2025:S2090-1232(25)00177-8. [PMID: 40089059 DOI: 10.1016/j.jare.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
INTRODUCTION The stability and metabolic functionality of donor microbiota are critical determinants of fecal microbiota transplantation (FMT) efficacy in inflammatory bowel disease (IBD). While probiotics show potential to enhance microbiota resilience, their role in optimizing donor microbiota for FMT remains underexplored. OBJECTIVES This study investigated whether pretreatment of donor microbiota with L. plantarum GR-4 could improve FMT outcomes in a DSS-induced colitis model by modulating microbial stability, metabolic activity, and host-microbiome interactions. METHODS Donor mice received L. plantarum GR-4 for 3 weeks to generate modified FMT (MFMT). DSS-colitis mice were treated with MFMT, conventional FMT, or 5-aminosalicylic acid (5-ASA). Multi-omics analyses and functional assays (stress resistance, engraftment efficiency) were used to evaluate therapeutic mechanisms. RESULTS GR-4 pretreatment conferred three key advantages to donor microbiota: Ecological stabilization: 1. GR-4-driven acidification (pH 3.97 vs. 4.59 for LGG, p < 0.0001) enriched butyrogenic Butyricicoccus (73 % butyrate increase, p < 0.05) and improved stress resistance to bile acids/gastric conditions (1.25 × survival vs. FMT). 2. Metabolic reprogramming: GR-4 metabolized 25.3 % of tryptophan (vs. 10.3 % for LGG) to generate immunomodulatory indoles (ILA, IAA), activating aryl hydrocarbon receptor (AHR) signaling and upregulating anti-inflammatory IL-10/IL-22. 3. Bile acid remodeling: MFMT restored sulfolithocholic acid and β-MCA levels, outperforming FMT in resolving DSS-induced dysregulation. MFMT achieved an 83 % remission rate (vs. 50 % for FMT), enhanced gut barrier integrity, and reversed colitis-associated metabolic dysregulation (e.g., elevated spermidine, 7-sulfocholic acid). Probiotic preconditioning improved donor engraftment by 1.25 × and enriched success-associated taxa (Sporobacter, Butyricimonas), while suppressing pathogens (Clostridium papyrosolvens). CONCLUSIONS L. plantarum GR-4 optimizes donor microbiota via pH-driven niche engineering, immunometabolic reprogramming, and bile acid modulation, addressing key limitations of conventional FMT. The multi-targeted efficacy of MFMT, evidenced by superior remission rates and metabolic restoration, establishes this approach as a translatable strategy for IBD therapy. This study establishes probiotic-enhanced FMT as a paradigm for precision microbiome interventions.
Collapse
Affiliation(s)
- Jingjing Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ying Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xing Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Habib Ullah
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yu Wang
- Nutrition and Health Research Center, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Pengya Feng
- Department of Children Rehabilitation Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
11
|
de Luca Silva B, Cendoroglo MS, Colleoni GWB. Gut Microbiota and Metabolic Biomarkers Associated With Longevity. Nutr Rev 2025:nuaf027. [PMID: 40036950 DOI: 10.1093/nutrit/nuaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
The dynamic balance between pro- and anti-inflammatory networks decreases as individuals age, and intestinal dysbiosis can initiate and maintain low-grade systemic inflammation. Interactions between the microbiota and humans occur from the beginning of life and, in general, the diversity of microbiota decreases with aging. The microbiome produces different metabolites with systemic effects, including immune system regulation. This understanding will be useful in controlling inflammation and preventing metabolic changes. Therefore, this review aims to identify the main metabolites synthesized by the intestinal microbiota to be used as biomarkers associated with longevity. This is a narrative review using scientific articles published in the last 10 years in the following databases: PubMed, Scielo, and Lilacs, using the Boolean operators "and" or "or." For this review, we identified 5 articles. The main metabolites described in the literature to date are organic acids, bile acids (BAs), short-chain fatty acids, branched-chain amino acids, trimethylamine N-oxide (TMAO), and derivatives of tryptophan and indole. Among these, the only ones not yet well characterized in studies on longevity were BAs and TMAO. Glutamate and p-cresol were also highlighted in the literature, with a negative association with longevity. The others showed an association, mostly positive, and can be used as potential biomarkers correlated with healthy aging and, if better studied, as targets for intervention to promote health and well-being.
Collapse
Affiliation(s)
- Beatriz de Luca Silva
- Geriatrics and Gerontology Discipline, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP 04025-002, Brazil
| | - Maysa Seabra Cendoroglo
- Geriatrics and Gerontology Discipline, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP 04025-002, Brazil
| | - Gisele W B Colleoni
- Geriatrics and Gerontology Discipline, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP 04025-002, Brazil
| |
Collapse
|
12
|
Koceva H, Amiratashani M, Akbarimoghaddam P, Hoffmann B, Zhurgenbayeva G, Gresnigt MS, Marcelino VR, Eggeling C, Figge MT, Amorim MJ, Mosig AS. Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut-lung axis. Open Biol 2025; 15:240231. [PMID: 40037530 PMCID: PMC11879621 DOI: 10.1098/rsob.240231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
The lung microbiome has recently gained attention for potentially affecting respiratory viral infections, including influenza A virus, respiratory syncytial virus (RSV) and SARS-CoV-2. We will discuss the complexities of the lung microenvironment in the context of viral infections and the use of organ-on-chip (OoC) models in replicating the respiratory tract milieu to aid in understanding the role of temporary microbial colonization. Leveraging the innovative capabilities of OoC, particularly through integrating gut and lung models, opens new avenues to understand the mechanisms linking inter-organ crosstalk and respiratory infections. We will discuss technical aspects of OoC lung models, ranging from the selection of cell substrates for extracellular matrix mimicry, mechanical strain, breathing mechanisms and air-liquid interface to the integration of immune cells and use of microscopy tools for algorithm-based image analysis and systems biology to study viral infection in vitro. OoC offers exciting new options to study viral infections across host species and to investigate human cellular physiology at a personalized level. This review bridges the gap between complex biological phenomena and the technical prowess of OoC models, providing a comprehensive roadmap for researchers in the field.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mona Amiratashani
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bianca Hoffmann
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Mark S. Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Australia
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Maria-João Amorim
- Católica Biomédical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Alexander S. Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Lu Z, Zhang C, Zhang J, Su W, Wang G, Wang Z. The Kynurenine Pathway and Indole Pathway in Tryptophan Metabolism Influence Tumor Progression. Cancer Med 2025; 14:e70703. [PMID: 40103267 PMCID: PMC11919716 DOI: 10.1002/cam4.70703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
Tryptophan (Trp), an essential amino acid, is solely acquired through dietary intake. It is vital for protein biosynthesis and acts as a precursor for numerous key bioactive compounds. The Kynurenine Pathway and the Indole Pathway are the main metabolic routes and are extensively involved in the occurrence and progression of diseases in the digestive, nervous, and urinary systems. In the Kynurenine Pathway, enzymes crucial to tryptophan metabolism, indoleamine-2,3-dioxygenase 1 (IDO1), IDO2, and Trp-2,3-dioxygenase (TDO), trigger tumor immune resistance within the tumor microenvironment and nearby lymph nodes by depleting Trp or by activating the Aromatic Hydrocarbon Receptor (AhR) through its metabolites. Furthermore, IDO1 can influence immune responses via non-enzymatic pathways. The Kynurenine Pathway exerts its effects on tumor growth through various mechanisms, including NAD+ regulation, angiogenesis promotion, tumor metastasis enhancement, and the inhibition of tumor ferroptosis. In the Indole Pathway, indole and its related metabolites are involved in gastrointestinal homeostasis, tumor immunity, and drug resistance. The gut microbiota related to indole metabolism plays a critical role in determining the effectiveness of tumor treatment strategies and can influence the efficacy of immunochemotherapy. It is worth noting that there are conflicting effects of the Kynurenine Pathway and the Indole Pathway on the same tumor phenotype. For example, different tryptophan metabolites affect the cell cycle differently, and indole metabolism has inconsistent protective effects on tumors in different regions. These differences may hold potential for enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Zhanhui Lu
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Zhang
- Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wan Su
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoying Wang
- Department of Critical Care Medicine, The Second People's Hospital of Dongying, Dongying, Shandong, China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Junyi L, Yueyang W, Bin L, Xiaohong D, Wenhui C, Ning Z, Hong Z. Gut Microbiota Mediates Neuroinflammation in Alzheimer's Disease: Unraveling Key Factors and Mechanistic Insights. Mol Neurobiol 2025; 62:3746-3763. [PMID: 39317889 DOI: 10.1007/s12035-024-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The gut microbiota, the complex community of microorganisms that inhabit the gastrointestinal tract, has emerged as a key player in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by progressive cognitive decline and neuronal loss, associated with the accumulation of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation in the brain. Increasing evidence suggests that alterations in the composition and function of the gut microbiota, known as dysbiosis, may contribute to the development and progression of AD by modulating neuroinflammation, a chronic and maladaptive immune response in the central nervous system. This review aims to comprehensively analyze the current role of the gut microbiota in regulating neuroinflammation and glial cell function in AD. Its objective is to deepen our understanding of the pathogenesis of AD and to discuss the potential advantages and challenges of using gut microbiota modulation as a novel approach for the diagnosis, treatment, and prevention of AD.
Collapse
Affiliation(s)
- Liang Junyi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Wang Yueyang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Liu Bin
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Dong Xiaohong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Cai Wenhui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Ning
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Hong
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
15
|
Ma C, Zheng X, Zhang Q, Renaud SJ, Yu H, Xu Y, Chen Y, Gong J, Cai Y, Hong Y, Li H, Liao Q, Guo Y, Kang L, Xie Z. A postbiotic exopolysaccharide synergizes with Lactobacillus acidophilus to reduce intestinal inflammation in a mouse model of colitis. Int J Biol Macromol 2025; 291:138931. [PMID: 39732236 DOI: 10.1016/j.ijbiomac.2024.138931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease marked by gut inflammation and microbial dysbiosis. Exopolysaccharides (EPS) from probiotic bacteria have been shown to regulate microbial composition and metabolism, but their role in promoting probiotic growth and alleviating inflammation in UC remains unclear. Here, we investigate BLEPS-1, a novel EPS derived from Bifidobacterium longum subsp. longum XZ01, for its ability to promote the growth of Lactobacillus strains. We then tested a synbiotic formulation of BLEPS-1 and L. acidophilus in a DSS-induced UC mouse model. The combination of BLEPS-1 and L. acidophilus alleviated DSS-induced intestinal inflammation, outperforming either component alone. Administration of BLEPS-1 decreased the proportion of M1 macrophages in the intestine, while M2 macrophages were more abundant following L. acidophilus treatment. Together, BLEPS-1 and L. acidophilus synergistically modulated macrophage polarization toward the M2-type. Administration of BLEPS-1 and L. acidophilus together modulated gut microbiota composition and altered the gut metabolic profile, with BLEPS-1 and L. acidophilus promoting metabolism of short-chain fatty acids and aromatic amino acids, respectively. Our study identified a novel synbiotic formulation with potent immunomodulatory and metabolic activity, laying the groundwork for a promising therapeutic strategy to treat intestinal inflammatory diseases such as colitis.
Collapse
Affiliation(s)
- Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Hansheng Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yonghua Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China.
| |
Collapse
|
16
|
Marangelo C, Marsiglia R, Nissen L, Scanu M, Toto F, Siroli L, Gottardi D, Braschi G, Chierico FD, Bordoni A, Gianotti A, Lanciotti R, Patrignani F, Putignani L, Vernocchi P. Functional foods acting on gut microbiota-related wellness: The multi-unit in vitro colon model to assess gut ecological and functional modulation. Food Res Int 2025; 202:115577. [PMID: 39967085 DOI: 10.1016/j.foodres.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
The aim of this study was to investigate the effect of a functional probiotic cheese (FPC) on gut microbiota (GM), after simulated digestion performed by a multi-unit in vitro colon model (MICODE). Squacquerone-like cheese was produced using the starter Streptococcus thermophilus (control, CTRL), and supplemented with the probiotic Lacticaseibacillus rhamnosus, which was either subjected to high pressure homogenization (LrH) or not (Lr). Samples were stratified by cheese type, storage time, and colonic fermentation phase. Samples were then digested with MICODE and digests were characterized for ecological and functional profiles. The lactobacilli detected in Lr and LrH cheeses (9.0 log CFU/g) were represented by the probiotic strain L. rhamnosus and remained unchanged after storage at 4 °C. Lactobacilli levels in CTRLs increased from 1.5 log CFU/g to 2.0 log CFU/g after six days at 4 °C, while total coliforms remained below 1.5 log CFU/g in all samples. Real-time qPCR indicated a positive GM response after FPC simulated digestion, highlighting an abundance of bifidobacteria, lactobacilli and Clostridium group IV in LrH samples. Metataxonomy revealed higher levels of Firmicutes and Proteobacteria (p ≤ 0.05) after simulated digestion, as well as Megasphaera, Escherichia, Prevotella and Dorea. Moreover, an increase of short and medium chain fatty acids were detected by metabolomics. Overexpression of inferred KEGG metabolic pathways showed mainly fatty acids, novobiocin and amino acid metabolism. Understanding how functional foods can modify the GM may lead to the development of targeted microbiome-based therapies and the exploitation of these foods for the benefit of human health.
Collapse
Affiliation(s)
- Chiara Marangelo
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Riccardo Marsiglia
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, 40100 Bologna, Italy
| | - Matteo Scanu
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Toto
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Federica Del Chierico
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, 40100 Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
17
|
Afzal H, Shaukat A, Ul Haq MZ, Khaliq N, Zahid M, Shakeel L, Wasay Zuberi MA, Akilimali A. Serum metabolic profiling analysis of chronic gastritis and gastric cancer by untargeted metabolomics. Ann Med Surg (Lond) 2025; 87:583-597. [PMID: 40110261 PMCID: PMC11918594 DOI: 10.1097/ms9.0000000000002977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/12/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic gastritis (CG), particularly when associated with Helicobacter pylori (H. pylori) infection, is a significant precursor to gastric cancer (GC), a leading cause of cancer-related deaths worldwide. The persistent inflammation in CG, driven by factors such as H. pylori, induces oxidative stress and DNA damage in gastric epithelial cells, which can lead to malignant transformation. Atrophic gastritis, a form of CG, can be categorized into autoimmune and H. pylori-associated types, both of which increase the risk of GC development, particularly when compounded by external factors like smoking and dietary habits. This manuscript explores the pathophysiological mechanisms underlying CG and its progression to GC, highlighting the critical role of metabolomics in advancing our understanding of these processes. Metabolomics, the comprehensive study of metabolites, offers a novel approach to identifying biomarkers that could facilitate early detection and improve the accuracy of GC diagnosis and prognosis. The analysis of metabolic alterations, particularly in glucose, lipid, and amino acid metabolism, reveals distinct biochemical pathways associated with the progression from benign gastritis to malignancy. Integrating metabolomic profiling with traditional diagnostic methods can revolutionize GC management, enabling more personalized treatment strategies and improving clinical outcomes. However, significant challenges remain, including the need to validate biomarkers across diverse populations and standardize metabolomic techniques. Future research should address these challenges to fully realize the potential of metabolomics in early GC detection and treatment, ultimately aiming to reduce the global burden of this deadly disease.
Collapse
Affiliation(s)
- Hadiya Afzal
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ayesha Shaukat
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Zain Ul Haq
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Nawal Khaliq
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Maha Zahid
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Laiba Shakeel
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Aymar Akilimali
- Department of Research, Medical Research Circle (MedReC), Goma, Democratic Republic of the Congo
| |
Collapse
|
18
|
Zarei P, Sedeh PA, Vaez A, Keshteli AH. Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review. Res Pharm Sci 2025; 20:1-24. [PMID: 40190827 PMCID: PMC11972020 DOI: 10.4103/rps.rps_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025] Open
Abstract
Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi Sedeh
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
19
|
Shin HK, Bang YJ. Aromatic Amino Acid Metabolites: Molecular Messengers Bridging Immune-Microbiota Communication. Immune Netw 2025; 25:e10. [PMID: 40078785 PMCID: PMC11896664 DOI: 10.4110/in.2025.25.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Aromatic amino acid (AAA) metabolites, derived from tryptophan, phenylalanine, and tyrosine through coordinated host and microbial metabolism, have emerged as critical modulators of immune function. We examine the complex journey of AAAs from dietary intake through intestinal absorption and metabolic transformation, highlighting the crucial role of host-microbe metabolic networks in generating diverse immunomodulatory compounds. This review provides a unique integrative perspective by mapping the molecular mechanisms through which these metabolites orchestrate immune responses. Through detailed analysis of metabolite-receptor and metabolite-transporter interactions, we reveal how specific molecular recognition drives cell type-specific immune responses. Our comprehensive examination of signaling networks-from membrane receptor engagement to nuclear receptor activation to post-translational modifications- demonstrates how the same metabolite can elicit distinct functional outcomes in different immune cell populations. The context-dependent nature of these molecular interactions presents both challenges and opportunities for therapeutic development, particularly in inflammatory conditions where metabolite signaling pathways are dysregulated. Understanding the complexity of these regulatory networks and remaining knowledge gaps is fundamental for advancing metabolite-based therapeutic strategies in immune-mediated disorders.
Collapse
Affiliation(s)
- Hyun-Ki Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
20
|
Tan Q, Deng S, Xiong L. Role of Kynurenine and Its Derivatives in Liver Diseases: Recent Advances and Future Clinical Perspectives. Int J Mol Sci 2025; 26:968. [PMID: 39940736 PMCID: PMC11816720 DOI: 10.3390/ijms26030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Liver health is integral to overall human well-being and the pathogenesis of various diseases. In recent years, kynurenine and its derivatives have gradually been recognized for their involvement in various pathophysiological processes, especially in the regulation of liver diseases, such as acute liver injury, non-alcoholic fatty liver disease, cirrhosis, and liver cancer. Kynurenine and its derivatives are derived from tryptophan, which is broken down by the enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), converting the essential amino acid tryptophan into kynurenine (KYN) and other downstream metabolites, such as kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), and quinolinic acid (QA). In liver diseases, kynurenine and its derivatives can promote the activity of the transcription factor aryl hydrocarbon receptor (AhR), suppress T cell activity for immune modulation, inhibit the activation of inflammatory signaling pathways, such as NF-κB for anti-inflammatory effects, and inhibit the activation of hepatic stellate cells to slow down fibrosis progression. Additionally, kynurenine and other downstream metabolites can influence the progression of liver diseases by modulating the gut microbiota. Therefore, in this review, we summarize and explore the mechanisms by which kynurenine and its derivatives regulate liver diseases to help develop new diagnostic or prognostic biomarkers and effective therapies targeting the kynurenine pathway for liver disease treatment.
Collapse
Affiliation(s)
- Qiwen Tan
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Xiong
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Nosocomial Infection Management, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
21
|
Brahmachary PP, Erdogan AE, Myers EP, June RK. Metabolomic Profiling and Characterization of a Novel 3D Culture System for Studying Chondrocyte Mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.10.598340. [PMID: 38915493 PMCID: PMC11195103 DOI: 10.1101/2024.06.10.598340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background/Objective Articular chondrocytes synthesize and maintain the avascular and aneural articular cartilage. In vivo these cells are surrounded by a 3D pericellular matrix (PCM) containing predominantly collagen VI. The PCM protects chondrocytes and facilitates mechanotransduction. PCM stiffness is critical in transmitting biomechanical signals to chondrocytes. Various culture systems with different hydrogels are used to encapsulate chondrocytes for 3D culture, but many lack either the PCM or the in vivo stiffness of the cartilage matrix. This study aimed at establishing a culture system to investigate a) if chondrocytes cultured in alginate will develop a PCM and b) study mechanotransduction via metabolic changes induced in 3D agarose-embedded chondrocytes upon mechanical stimulation. Methods We cultured primary human and bovine chondrocytes in monolayers or as alginate encapsulated cells in media containing sodium L-ascorbate. PCM expression was analyzed by immunofluorescence and western blots. We further characterized the response of chondrocytes embedded in physiologically stiff agarose to dynamic compression through metabolomic profiling. Results We found that primary human and bovine chondrocytes, when cultured in alginate beads with addition of sodium L-ascorbate for 7 days, had a pronounced PCM, retained their phenotype, and synthesized both collagens VI and II. This novel culture system enables alginate-encapsulated chondrocytes to develop a robust PCM thereby creating a model system to study mechanotransduction in the presence of an endogenous PCM. We also observed distinct compression-induced changes in metabolomic profiles between the monolayer-agarose and alginate-released agarose-embedded chondrocytes indicating physiological changes in cell metabolism. Conclusion/Significance These data show that 3D preculture of chondrocytes in alginate before encapsulation in physiologically stiff agarose leads to pronounced development of pericellular matrix that is sustained in the presence of ascorbate. This model can be useful in studying the mechanism by which chondrocytes respond to cyclical compression and other types of loading simulating in vivo physiological conditions.
Collapse
Affiliation(s)
- Priyanka P Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Ayten E Erdogan
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Erik P Myers
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
22
|
Liu M, Fan G, Meng L, Yang K, Liu H. New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside. J Zhejiang Univ Sci B 2025; 26:1-25. [PMID: 39428337 PMCID: PMC11735910 DOI: 10.1631/jzus.b2300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2024]
Abstract
Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population, but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms, and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract, and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review, we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function, and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
Collapse
Affiliation(s)
- Menglin Liu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Brain Disease Regional Diagnosis and Treatment Center, Zhengzhou 450000, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Genhao Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- The First Affiliated Hospital of Zhengzhou University, Department of Geriatrics, Zhengzhou 450052, China
| | - Lingkai Meng
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Kuo Yang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Huayi Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China.
| |
Collapse
|
23
|
Sun S, Hu F, Sang Y, Wang S, Liu X, Shi J, Cao H, Tao F, Liu K. Dysregulated tryptophan metabolism contributes to metabolic syndrome in Chinese community-dwelling older adults. BMC Endocr Disord 2025; 25:7. [PMID: 39780122 PMCID: PMC11708088 DOI: 10.1186/s12902-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults. METHODS Ultra-performance liquid chromatography tandem mass spectrometry was used to detect TRP and its seven metabolites in a study involving 986 participants. Physical examination included the following indicators: blood pressure, body mass index, triglyceride levels, and high-density lipoprotein cholesterol (HDL-C) levels. Multiple linear regression, restricted cubic spline curve, binary logistic analysis, and sex-stratified analysis were used to explore the relationship between the metabolites and the risk of MetS in older adults. RESULTS The results indicated that, after adjusting for covariates, higher levels of TRP, KYN, kynurenic acid (KA), and xanthurenic acid (XA) were risk factors for MetS (P for trend < 0.05). By contrast, higher ratios of 5-hydroxytryptamine to TRP and indole-3-propionic acid to TRP were protective factors against MetS (P for trend < 0.05). CONCLUSIONS TRP and its metabolites may serve as potential indicators for assessing and managing MetS in older adults, complementing existing biomarkers. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Shujing Sun
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Fangting Hu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yanru Sang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Sheng Wang
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xuechun Liu
- Hefei Hospital affiliated to Anhui Medical University (Hefei Second People's Hospital), Hefei, Anhui, 230011, China
| | - Jiafeng Shi
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui, 237000, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Center for Big Data and Population Health, Institute of Health and Medicine, Hefei, Anhui, 230032, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- Center for Big Data and Population Health, Institute of Health and Medicine, Hefei, Anhui, 230032, China.
| |
Collapse
|
24
|
Song P, Peng Z, Guo X. Gut microbial metabolites in cancer therapy. Trends Endocrinol Metab 2025; 36:55-69. [PMID: 39004537 DOI: 10.1016/j.tem.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.
Collapse
Affiliation(s)
- Panwei Song
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| |
Collapse
|
25
|
Nissen L, Addazii D, Casciano F, Danesi F, Rodriguez-Estrada MT, Mercatante D, Ben Ayache S, Lotfi A, Argiriou A, Ayfantopoulou G, Gianotti A. Carob Syrup: Prebiotic Potential of a Neglected Functional Beverage of Mediterranean Countries. Foods 2024; 13:4172. [PMID: 39767114 PMCID: PMC11675682 DOI: 10.3390/foods13244172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Carob syrup, a traditional Mediterranean functional beverage obtained from Ceratonia siliqua (L.) pods, has been historically valued for its nutritional properties but is currently underutilized. This study compared the prebiotic potential of three handmade carob syrups produced by Tunisian women with commercial benchmarks from Italy, Greece and Cyprus. The prebiotic activity was evaluated by prebiotic scores, bifidogenic activity and volatilome characterization (SPME GC/MS) together with physicochemical and nutritional parameters. The results showed that Tunisian handmade products exhibited lower growth of pathogenic Escherichia coli compared to commercial samples. The prebiotic activity, tested against probiotic lactobacilli and bifidobacteria mixtures, showed a hierarchy of efficacy: fructo-oligosaccharides (FOSs) > Tunisian handmade products > Greek and Cypriot benchmarks > Italian benchmark. Volatilome analysis revealed about 40 compounds, mainly organic acids and aldehydes, with higher concentrations in handmade products. Positive correlations were found between prebiotic activity and short-chain fatty acids and n-hexadecanoic acid, while furfural showed negative correlations. The Tunisian artisanal products showed a higher prebiotic potential compared to the commercial counterparts, due to their higher content and diversity of organic acids. However, the presence of furfural in Tunisian products needs to be monitored due to potential toxicity concerns.
Collapse
Affiliation(s)
- Lorenzo Nissen
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (D.A.); (F.D.); (M.T.R.-E.); (D.M.); (A.G.)
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena, Italy
| | - Davide Addazii
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (D.A.); (F.D.); (M.T.R.-E.); (D.M.); (A.G.)
| | - Flavia Casciano
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (D.A.); (F.D.); (M.T.R.-E.); (D.M.); (A.G.)
| | - Francesca Danesi
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (D.A.); (F.D.); (M.T.R.-E.); (D.M.); (A.G.)
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena, Italy
| | - Maria Teresa Rodriguez-Estrada
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (D.A.); (F.D.); (M.T.R.-E.); (D.M.); (A.G.)
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena, Italy
| | - Dario Mercatante
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (D.A.); (F.D.); (M.T.R.-E.); (D.M.); (A.G.)
| | - Siwar Ben Ayache
- BIOLIVAL—Bioresources: Biologie Integrative & Valorisation, Institut Supérieur de Biotechnologie de Monastir (ISBM), Av. Taher El Hadded BP74, Monastir 5000, Tunisia; (S.B.A.); (A.L.)
| | - Achour Lotfi
- BIOLIVAL—Bioresources: Biologie Integrative & Valorisation, Institut Supérieur de Biotechnologie de Monastir (ISBM), Av. Taher El Hadded BP74, Monastir 5000, Tunisia; (S.B.A.); (A.L.)
| | - Anagnostis Argiriou
- UOA-FNS—Department of Food Science and Nutrition, University of the Aegean, University Hill, 81100 Mytilene, Greece;
| | - Georgia Ayfantopoulou
- CERTH/HIT—Centre for Research and Technology Hellas—Hellenic Institute of Transport, 6th km Charilaou—Thermi Rd., Thermi, 57001 Thessaloniki, Greece;
| | - Andrea Gianotti
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (D.A.); (F.D.); (M.T.R.-E.); (D.M.); (A.G.)
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena, Italy
| |
Collapse
|
26
|
Wang D, Song J, Wang J, Quan R. Serum metabolic alterations in chickens upon infectious bursal disease virus infection. BMC Vet Res 2024; 20:569. [PMID: 39696379 DOI: 10.1186/s12917-024-04402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a highly contagious immunosuppressive virus of chickens. Chickens acquire infection by the oral route under natural conditions. Although the histological and pathological changes after IBDV infection are well described, the alterations in serum metabolome have not been reported. In this study, SPF chickens were infected with attenuated IBDV (atIBDV) strain LM and very virulent IBDV (vvIBDV) strain LX, respectively. On the seventh day after oral infection, serum samples of experimental chickens were identified using ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS). The serum metabolic profiles were analyzed by multivariate statistical methods. KEGG enrichment analysis was performed to evaluate the dysregulated biological pathways. RESULTS We identified 368 significantly altered metabolites in response to both atIBDV and vvIBDV infection. The metabolic disorder of amino acid and lipid was associated with IBDV infection, especially tryptophan, glycerophospholipid, lysine, and tyrosine metabolism. The differential metabolites enriched in the four metabolic pathways were PC(20:4(5Z,8Z,11Z,14Z)/18:0), PE(16:0/18:2(9Z,12Z)), PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(18:0/20:4(5Z,8Z,11Z,14Z)), PE(18:0/20:4(8Z,11Z,14Z,17Z)), PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(20:3(8Z,11Z,14Z)/16:0), PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/18:0), PS(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)), 2-aminobenzoic acid, 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylserotonin, 5-hydroxyindoleacetate, indole-3-acetaldehyde, indole-3-acetate, p-coumaric acid, L-tyrosine, homovanillin, and S-glutaryldihydrolipoamide. CONCLUSION The atIBDV and vvIBDV infection causes metabolic changes in chicken serum. The differential metabolites and dysregulated metabolic pathways reflect the host response to the IBDV infection.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China.
| |
Collapse
|
27
|
Xu X, Wei S, Lin M, Chen F, Zhang X, Zhu Y. The relationship between acrylamide and neurodegenerative diseases: gut microbiota as a new intermediate cue. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 39668759 DOI: 10.1080/10408398.2024.2440602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Acrylamide (AA), a compound formed during the thermal processing of high-carbohydrate foods, has been implicated in the onset and progression of neurodegenerative diseases. An increasing number of reports support that gut microbiota plays a significant role in brain function and diseases, suggesting it may act as a mediator between AA exposure and the development of neurodegenerative diseases. Available studies have shown that AA intake affects the composition of the gut microbiota and the integrity of the intestinal barrier, both of which are often thought to be associated with the pathogenesis of neurodegenerative diseases, given the numerous evidences linking gut microbiota with the brain. Based on the current understanding, this paper discusses that AA induces the onset and progression of neurodegenerative diseases by disrupting the composition of the gut microbiota and the structure of the intestinal barrier. Furthermore, it explores the interaction between probiotics and AA exposure, as well as the potential for polysaccharides and polyphenols to improve the gut microenvironment, which provides novel perspectives on modulating the neurodegenerative diseases caused by AA exposure through diet.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
28
|
Pei Z, Qian L, Miao T, Wang H, Lu W, Chen Y, Zhuang Q. Uncovering the mechanisms underlying the efficacy of probiotic strains in mitigating food allergies: an emphasis on gut microbiota and indoleacrylic acid. Front Nutr 2024; 11:1523842. [PMID: 39726866 PMCID: PMC11670748 DOI: 10.3389/fnut.2024.1523842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Food allergies manifest as systemic or digestive allergic responses induced by food allergens, and their progression has been demonstrated to be intimately associated with the host's gut microbiota. Our preceding investigation has revealed that the probiotic strains Lactiplantibacillus plantarum CCFM1189 and Limosilactobacillus reuteri CCFM1190 possess the capability to mitigate the symptoms of food allergy in mice. However, the underlying mechanisms and material foundations through which these probiotic strains exert their effects remain enigmatic. Here, we initially compared the ameliorative effects of these two probiotic strains on food allergy mice subjected to antibiotic cocktail (ABX) treatment. It is indicated that ABX treatment was ineffective in alleviating weight loss, diarrhea, and allergic symptoms in mice, and it also inhibited the reduction of histamine and T helper cell 2 (Th2) cytokines mediated by effective strains, suggesting that effective strains must operate through the gut microbiota. Then, building upon the outcomes of prior non-targeted metabolomics studies, by quantifying the content of indoleacrylic acid (IA) in single-strain fermentation of probiotic strains and mouse feces, it was ascertained that effective strains do not synthesize IA themselves but can augment the concentration of IA in the gut by modulating the gut microbiota. Ultimately, we discovered that direct intervention with IA could mitigate diarrhea, allergic symptoms, and intestinal damage by modulating immunoglobulin E (IgE) levels, histamine, Th2 cytokines, and tight junction proteins, thereby corroborating that IA is a pivotal metabolite for the alleviation of food allergies. These observations underscore the significance of gut microbiota and metabolites like IA in the management of food allergies and hold potential implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Taolin Miao
- Children's ENT Department, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuqing Chen
- Children's ENT Department, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternal and Child Healthcare Hospital), Wuxi, China
| | - Qianger Zhuang
- Children's ENT Department, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, China
| |
Collapse
|
29
|
Yu LE, Yang WC, Liang YC. Crosstalk Within the Intestinal Epithelium: Aspects of Intestinal Absorption, Homeostasis, and Immunity. Biomedicines 2024; 12:2771. [PMID: 39767678 PMCID: PMC11673925 DOI: 10.3390/biomedicines12122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs). There are various types of IECs, including enterocytes, Paneth cells, enteroendocrine cells (EECs), goblet cells, tuft cells, M cells, and intestinal epithelial stem cells (IESCs), each with unique 3D structures and IEC distributions. Although the communication between IECs and other cell types, such as immune cells and neurons, has been intensively reviewed, communication between different IECs has rarely been addressed. The present paper overviews the networks among IECs that influence intestinal functions. Intestinal absorption is regulated by incretins derived from EECs that induce nutrient transporter activity in enterocytes. EECs, Paneth cells, tuft cells, and enterocytes release signals to activate Notch signaling, which modulates IESC activity and intestinal homeostasis, including proliferation and differentiation. Intestinal immunity can be altered via EECs, goblet cells, tuft cells, and cytokines derived from IECs. Finally, tools for investigating IEC communication have been discussed, including the novel 3D intestinal cell model utilizing enteroids that can be considered a powerful tool for IEC communication research. Overall, the importance of IEC communication, especially EECs and Paneth cells, which cover most intestinal functional regulating pathways, are overviewed in this paper. Such a compilation will be helpful in developing strategies for maintaining gut health.
Collapse
Affiliation(s)
| | | | - Yu-Chaun Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan; (L.-E.Y.); (W.-C.Y.)
| |
Collapse
|
30
|
Airola C, Severino A, Spinelli I, Gasbarrini A, Cammarota G, Ianiro G, Ponziani FR. "Pleiotropic" Effects of Antibiotics: New Modulators in Human Diseases. Antibiotics (Basel) 2024; 13:1176. [PMID: 39766566 PMCID: PMC11727521 DOI: 10.3390/antibiotics13121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Antibiotics, widely used medications that have significantly increased life expectancy, possess a broad range of effects beyond their primary antibacterial activity. While some are recognized as adverse events, others have demonstrated unexpected benefits. These adjunctive effects, which have been defined as "pleiotropic" in the case of other pharmacological classes, include immunomodulatory properties and the modulation of the microbiota. Specifically, macrolides, tetracyclines, and fluoroquinolones have been shown to modulate the immune system in both acute and chronic conditions, including autoimmune disorders (e.g., rheumatoid arthritis, spondyloarthritis) and chronic inflammatory pulmonary diseases (e.g., asthma, chronic obstructive pulmonary disease). Azithromycin, in particular, is recommended for the long-term treatment of chronic inflammatory pulmonary diseases due to its well-established immunomodulatory effects. Furthermore, antibiotics influence the human microbiota. Rifaximin, for example, exerts a eubiotic effect that enhances the balance between the gut microbiota and the host immune cells and epithelial cells. These pleiotropic effects offer new therapeutic opportunities by interacting with human cells, signaling molecules, and bacteria involved in non-infectious diseases like spondyloarthritis and inflammatory bowel diseases. The aim of this review is to explore the pleiotropic potential of antibiotics, from molecular and cellular evidence to their clinical application, in order to optimize their use. Understanding these effects is essential to ensure careful use, particularly in consideration of the threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Irene Spinelli
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
31
|
Song Y, Li M, Liu J, Wang J, Zhou A, Cao Y, Duan S, Wang Q. Screening study of hydroxytyrosol metabolites from in vitro fecal fermentation and their interaction with intestinal barrier repair receptor AhR. J Food Sci 2024; 89:10134-10151. [PMID: 39686652 DOI: 10.1111/1750-3841.17609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Olive oil polyphenol hydroxytyrosol (HT) significantly repairs intestinal barrier function, but its absorption in the stomach and small intestine is limited. The metabolites of unabsorbed HT that reach the colon are crucial, yet their effects on colonic microbiota and intestinal barrier repair remain unclear. This study utilized in vitro simulated digestion and colonic fecal fermentation to investigate HT's digestion and fermentation. Results indicated that 79.25% of HT potentially reached the colon intact. Further 16S rDNA, targeted, and untargeted metabolomics analyses showed that HT can be decomposed by colonic microbiota, producing aromatic hydrocarbon metabolites and regulating gut microbiota structure. It promotes the growth of gut microbiota, such as Bacteroides, Faecalibacterium, Klebsiella, and Lachnospira, which degrade HT. Additionally, HT's intervention conversely affected the production of tryptophan-derived metabolites and short-chain fatty acids (SCFAs). Subsequently, computer-simulated molecular docking technology was used to simulate the binding affinity between HT metabolites and derived metabolites and the intestinal barrier repair-related receptor aryl hydrocarbon receptor (AhR). Indole-3-acetic acid, indole-3-acetaldehyde, skatole, kynurenine, and homovanillic acid could tightly bind to the amino acid residues of the AhR receptor, with binding energies all ˂-6.0 kcal/mol, suggesting that these metabolites may enhance the intestinal barrier function through the AhR signaling pathway.
Collapse
Affiliation(s)
- Yuqing Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mengting Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jingle Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
33
|
Wu Y, Wang Y, Lin Y, Zhong X, Liu Y, Cai Y, Xue J. Metabolomics reveals the metabolic disturbance caused by arsenic in the mouse model of inflammatory bowel disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117305. [PMID: 39515204 DOI: 10.1016/j.ecoenv.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Arsenic exposure has long been a significant global health concern due to its association with various human diseases. The adverse health effects of arsenic can be influenced by multiple factors, resulting in considerable individual variability. Individuals with inflammatory bowel disease (IBD) are particularly vulnerable to the effects of toxin exposure, yet the specific impact of arsenic in the context of IBD remains unclear. In this study, we employed a non-targeted metabolomics approach to investigate how arsenic exposure affects metabolic homeostasis in an IBD model using Helicobacter trogontum-infected interleukin-10 deficient mice. Our results demonstrated that arsenic exposure disrupted the balance of various metabolites, including tryptophan, polyunsaturated fatty acids, purine and pyrimidine metabolites, and branched-chain amino acids, in mice with colitis but not in those without colitis. Notably, several crucial metabolites involved in anti-inflammatory responses, oxidative stress, and energy metabolism were significantly altered in mice with colitis. These results indicate that arsenic exposure in an IBD context can lead to extensive metabolic disturbances, potentially exacerbating disease severity and impacting overall health. This study underscores the necessity of evaluating arsenic toxicity in relation to IBD to better understand and mitigate associated health risks.
Collapse
Affiliation(s)
- Yanmei Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yin Wang
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yiling Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiang Zhong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
34
|
Khan IM, Nassar N, Chang H, Khan S, Cheng M, Wang Z, Xiang X. The microbiota: a key regulator of health, productivity, and reproductive success in mammals. Front Microbiol 2024; 15:1480811. [PMID: 39633815 PMCID: PMC11616035 DOI: 10.3389/fmicb.2024.1480811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The microbiota, intensely intertwined with mammalian physiology, significantly impacts health, productivity, and reproductive functions. The normal microbiota interacts with the host through the following key mechanisms: acting as a protective barrier against pathogens, maintain mucosal barrier integrity, assisting in nutrient metabolism, and modulating of the immune response. Therefore, supporting growth and development of host, and providing protection against pathogens and toxic substances. The microbiota significantly influences brain development and behavior, as demonstrated by comprehensive findings from controlled laboratory experiments and human clinical studies. The prospects suggested that gut microbiome influence neurodevelopmental processes, modulate stress responses, and affect cognitive function through the gut-brain axis. Microbiota in the gastrointestinal tract of farm animals break down and ferment the ingested feed into nutrients, utilize to produce meat and milk. Among the beneficial by-products of gut microbiota, short-chain fatty acids (SCFAs) are particularly noteworthy for their substantial role in disease prevention and the promotion of various productive aspects in mammals. The microbiota plays a pivotal role in the reproductive hormonal systems of mammals, boosting reproductive performance in both sexes and fostering the maternal-infant connection, thereby becoming a crucial factor in sustaining mammalian existence. The microbiota is a critical factor influencing reproductive success and production traits in mammals. A well-balanced microbiome improves nutrient absorption and metabolic efficiency, leading to better growth rates, increased milk production, and enhanced overall health. Additionally, it regulates key reproductive hormones like estrogen and progesterone, which are essential for successful conception and pregnancy. Understanding the role of gut microbiota offers valuable insights for optimizing breeding and improving production outcomes, contributing to advancements in agriculture and veterinary medicine. This study emphasizes the critical ecological roles of mammalian microbiota, highlighting their essential contributions to health, productivity, and reproductive success. By integrating human and veterinary perspectives, it demonstrates how microbial communities enhance immune function, metabolic processes, and hormonal regulation across species, offering insights that benefit both clinical and agricultural advancements.
Collapse
Affiliation(s)
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Hua Chang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maoji Cheng
- Fisugarpeptide Biology Engineering Co. Ltd., Lu’an, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
35
|
Lu J, Qin H, Liang L, Fang J, Hao K, Song Y, Sun T, Hui G, Xie Y, Zhao Y. Yam protein ameliorates cyclophosphamide-induced intestinal immunosuppression by regulating gut microbiota and its metabolites. Int J Biol Macromol 2024; 279:135415. [PMID: 39245119 DOI: 10.1016/j.ijbiomac.2024.135415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Yam is a dual-purpose crop used in both medicine and food that is commonly used as a dietary supplement in food processing. Since yam proteins are often lost during the production of yam starch, elucidating the functionally active value of yam proteins is an important guideline for fully utilizing yam in industrial production processes. This study aimed to explore the potential protective effect of yam protein (YP) on cyclophosphamide (CTX)-induced immunosuppression in mice. The results showed that YP can reduce immune damage caused by CTX by reversing immunoglobulins (IgA, IgG and IgM), cytokines (TNF-α, IL-6, etc.) in the intestines of mice. Moreover, YPs were found to prevent CTX-induced microbiota dysbiosis by enhancing the levels of beneficial bacteria within the microbiome, such as Lactobacillus, and lowering those of Desulfovibrio_R and Helicobacter_A. Metabolomics analyses showed that YP significantly altered differential metabolites (tryptophan, etc.) and metabolic pathways (ABC transporter protein, etc.) associated with immune responses in the gut. Furthermore, important connections were noted between particular microbiomes and metabolites, shedding light on the immunoprotective effects of YPs by regulating gut flora and metabolism. These findings deepen our understanding of the functional properties of YPs and lay a solid foundation for the utilization of yam.
Collapse
Affiliation(s)
- Jiahong Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Huacong Qin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lili Liang
- Obstetrics and Gynecology Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130031, China
| | - Jiaqi Fang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Kaiwen Hao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuting Song
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianxia Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ge Hui
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
36
|
Li A, Gao S, Li B, Zheng Y, Zhang L, Li K, Liu Y, Qin X. Characterization of physical and chemical properties of dietary fiber from grain bran and its regulation of gut microbiota and metabolite to prevent colitis. Food Chem 2024; 456:140043. [PMID: 38878544 DOI: 10.1016/j.foodchem.2024.140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
Grain bran dietary fiber (DF) has the effect of promoting intestinal health and is worth being studied. In the present study, the physicochemical properties and prevention effect of DF on ulcerative colitis (UC) were investigated. The results showed that the optimal extraction conditions were determined as α-amylase (350 U/g, 70 °C, pH 7.0, 2.5 h) and papain (100 U/g, 60 °C, pH 7.0, 1.5 h), resulting in a yield of 83.81% for DF. Moreover, DF exhibited unique physicochemical properties contributing to its preventive effects, as evidenced by its ability to mitigate symptoms such as hematochezia, immune inflammation, and impaired intestinal barrier in UC mice. The underlying mechanism can be attributed to the regulation of phenylalanine, tyrosine and tryptophan biosynthesis pathway and maintenance of intestinal microbial homeostasis. Therefore, our study suggests that grain bran DF holds potential for the prevention of UC, providing a basis for the development and utilization of grain bran.
Collapse
Affiliation(s)
- Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Academy of Traditional Chinese Medicine, Taiyuan 030012, China.
| | - Shuxiao Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ben Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yuhe Zheng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Lichao Zhang
- Institutes of Biomedical sciences of Shanxi University, Taiyuan 030006, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
37
|
Lin J, Yang J, Cui L, Nagpal R, Singh P, Salazar G, Rao Q, Peng Y, Sun Q. Sturgeon-derived peptide LLLE alleviates colitis via regulating gut microbiota and its metabolites. Curr Res Food Sci 2024; 9:100898. [PMID: 39569007 PMCID: PMC11577126 DOI: 10.1016/j.crfs.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease, entails chronic inflammation of the gastrointestinal tract. The pathogenesis of IBD implicates genetic factors, gut microbiome alterations, and immune dysregulation, contributing to its increasing global prevalence. The sturgeon-derived peptide, which exhibits promising anti-inflammatory effects, provides potential therapeutic insights for managing IBD symptoms. This study aims to elucidate the therapeutic mechanisms of novel sturgeon-derived peptide (LLLE, Leu-Leu-Leu-Glu) by investigating their effects on intestinal inflammation, gut microbiota composition, and fecal metabolites in a mouse model of IBD. LLLE administration alleviated weight loss and disease activity index (DAI) scores in dextran sulfate sodium salt (DSS)-induced colitis in mice. Histopathological examination showed LLLE pretreatment improved colon morphology and histopathological condition and decreased serum interleukin-6 (IL-6) levels. 16S rRNA sequencing indicated LLLE-modulation of gut microbiota, especially alleviated DSS-elevated Bacteroidetes. Fecal metabolomic analysis unveiled that LLLE restores critical metabolites such as indole-3-propionic acid, which is pivotal in anti-inflammatory responses. Altogether, sturgeon peptide exhibits considerable promise as a therapeutic agent for colitis, owing to its anti-inflammatory effects, modulation of gut microbiota, and restoration of essential fecal metabolites.
Collapse
Affiliation(s)
- Jie Lin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| | - Jiani Yang
- School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu Province, China
| | - Leqi Cui
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| | - Prashant Singh
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| | - Qinchun Rao
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| | - Ye Peng
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| | - Quancai Sun
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
38
|
Gong Q, Qu X, Zhao Y, Zhang X, Cao S, Wang X, Song Y, Mackay CR, Wang Q. Indole-3-Acetic Acid Esterified with Waxy, Normal, and High-Amylose Maize Starches: Comparative Study on Colon-Targeted Delivery and Intestinal Health Impact. Nutrients 2024; 16:3446. [PMID: 39458442 PMCID: PMC11510046 DOI: 10.3390/nu16203446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Accumulating research suggests that metabolites produced by gut microbiota are essential for maintaining a balanced gut and immune system. Indole-3-acetic acid (IAA), one of tryptophan metabolites from gut microbiota, is critical for gut health through mechanisms such as activating aryl hydrocarbon receptor. Delivery of IAA to colon is beneficial for treatment of gastrointestinal diseases, and one promising strategy is IAA esterified starch, which is digested by gut microbes in colon and releases loaded IAA. Amylose content is a key structural characteristic that controls the physicochemical properties and digestibility of starch. METHODS In the current study, IAA was esterified with three typical starches with distinct amylose content to obtain indolyl acetylated waxy maize starch (WMSIAA), indolyl acetylated normal maize starch (NMSIAA), and indolyl acetylated high-amylose maize starch (HAMSIAA). The study comparatively analyzed their respective physicochemical properties, how they behave under in vitro digestion conditions, their ability to deliver IAA directly to the colon, and their effects on the properties of the gut microbiota. RESULTS The new characteristic peak of 1H NMR at 10.83 ppm, as well as the new characteristic peak of FTIR spectra at 1729 cm-1, represented the successful esterification of IAA on starch backbone. The following in vitro digestion study further revealed that treatment with indolyl acetylation significantly elevated the resistant starch content in the starch samples. In vivo experimental results demonstrated that WMSIAA exhibited the most significant increase in IAA levels in the stomach, whereas HAMSIAA and NMSIAA demonstrated the most remarkable increases in IAA levels in the small intestine and colon, respectively. The elevated IAA levels in the colon are conducive to promoting the growth of beneficial intestinal bacteria and significantly alleviating DSS-induced colitis. CONCLUSIONS This research presents innovative insights and options for the advancement of colon-specific drug delivery systems aimed at preventing and curing gastrointestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingying Song
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (Y.Z.); (X.W.)
| | - Charles R. Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (Y.Z.); (X.W.)
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (Y.Z.); (X.W.)
| |
Collapse
|
39
|
Nie HY, Ge J, Huang GX, Liu KG, Yue Y, Li H, Lin HG, Zhang T, Yan HF, Xu BX, Sun HW, Yang JW, Si SY, Zhou JL, Cui Y. New insights into the intestinal barrier through "gut-organ" axes and a glimpse of the microgravity's effects on intestinal barrier. Front Physiol 2024; 15:1465649. [PMID: 39450142 PMCID: PMC11499591 DOI: 10.3389/fphys.2024.1465649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024] Open
Abstract
Gut serves as the largest interface between humans and the environment, playing a crucial role in nutrient absorption and protection against harmful substances. The intestinal barrier acts as the initial defense mechanism against non-specific infections, with its integrity directly impacting the homeostasis and health of the human body. The primary factor attributed to the impairment of the intestinal barrier in previous studies has always centered on the gastrointestinal tract itself. In recent years, the concept of the "gut-organ" axis has gained significant popularity, revealing a profound interconnection between the gut and other organs. It speculates that disruption of these axes plays a crucial role in the pathogenesis and progression of intestinal barrier damage. The evaluation of intestinal barrier function and detection of enterogenic endotoxins can serve as "detecting agents" for identifying early functional alterations in the heart, kidney, and liver, thereby facilitating timely intervention in the disorders. Simultaneously, consolidating intestinal barrier integrity may also present a potential therapeutic approach to attenuate damage in other organs. Studies have demonstrated that diverse signaling pathways and their corresponding key molecules are extensively involved in the pathophysiological regulation of the intestinal barrier. Aberrant activation of these signaling pathways and dysregulated expression of key molecules play a pivotal role in the process of intestinal barrier impairment. Microgravity, being the predominant characteristic of space, can potentially exert a significant influence on diverse intestinal barriers. We will discuss the interaction between the "gut-organ" axes and intestinal barrier damage, further elucidate the signaling pathways underlying intestinal barrier damage, and summarize alterations in various components of the intestinal barrier under microgravity. This review aims to offer a novel perspective for comprehending the etiology and molecular mechanisms of intestinal barrier injury as well as the prevention and management of intestinal barrier injury under microgravity environment.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Ge
- Clinical laboratory, The Ninth Medical Center of the PLA General Hospital, Beijing, China
| | - Guo-Xing Huang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
| | - Kai-Ge Liu
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Yue
- Department of Disease Control and Prevention, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Li
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hai-Guan Lin
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Zhang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Feng Yan
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Bing-Xin Xu
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Wei Sun
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jian-Wu Yang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Shao-Yan Si
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jin-Lian Zhou
- Department of Pathology, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cui
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Li X, Hu S, Shen X, Zhang R, Liu C, Xiao L, Lin J, Huang L, He W, Wang X, Huang L, Zheng Q, Wu L, Sun C, Peng Z, Chen M, Li Z, Feng R, Zhu Y, Wang Y, Li Z, Mao R, Feng ST. Multiomics reveals microbial metabolites as key actors in intestinal fibrosis in Crohn's disease. EMBO Mol Med 2024; 16:2427-2449. [PMID: 39271960 PMCID: PMC11473649 DOI: 10.1038/s44321-024-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Intestinal fibrosis is the primary cause of disability in patients with Crohn's disease (CD), yet effective therapeutic strategies are currently lacking. Here, we report a multiomics analysis of gut microbiota and fecal/blood metabolites of 278 CD patients and 28 healthy controls, identifying characteristic alterations in gut microbiota (e.g., Lachnospiraceae, Ruminococcaceae, Muribaculaceae, Saccharimonadales) and metabolites (e.g., L-aspartic acid, glutamine, ethylmethylacetic acid) in moderate-severe intestinal fibrosis. By integrating multiomics data with magnetic resonance enterography features, putative links between microbial metabolites and intestinal fibrosis-associated morphological alterations were established. These potential associations were mediated by specific combinations of amino acids (e.g., L-aspartic acid), primary bile acids, and glutamine. Finally, we provided causal evidence that L-aspartic acid aggravated intestinal fibrosis both in vitro and in vivo. Overall, we offer a biologically plausible explanation for the hypothesis that gut microbiota and its metabolites promote intestinal fibrosis in CD while also identifying potential targets for therapeutic trials.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Xiaodi Shen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ruonan Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lin Xiao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Jinjiang Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Weitao He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Xinyue Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lili Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Qingzhu Zheng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Luyao Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Canhui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ziping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Yijun Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Yangdi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Zhoulei Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
42
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
43
|
Ling EM, Lemos JRN, Hirani K, von Herrath M. Type 1 diabetes: immune pathology and novel therapeutic approaches. Diabetol Int 2024; 15:761-776. [PMID: 39469552 PMCID: PMC11512973 DOI: 10.1007/s13340-024-00748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the progressive destruction of insulin-producing beta cells in the pancreas. Despite improvements in insulin monitoring techniques, there remains no cure for T1D. Individuals with T1D require lifelong insulin therapy and some develop life-threatening complications. T1D is a complex, multifactorial, autoimmune condition. Understanding why people get T1D and how it progresses has advanced our knowledge of the disease and led to the discovery of specific targets that can be therapeutically manipulated to halt or reverse the course of T1D. Scientists investigating the potential of immunotherapy treatment for the treatment have recently had some encouraging results. Teplizumab, an anti-CD3 monoclonal antibody that has been approved by the FDA, delays the onset of clinical T1D in patients ≥ 8 years of age with preclinical T1D and improves beta cell function. Therapies targeting beta cell health, vitality, and function are now thought to be an essential component of successful combination therapy for T1D. The idea that the beta cells themselves may influence their own destruction during the development of T1D is a notion that has recently been gaining acceptance in the field. Researchers have recently made remarkable strides in beta cell replacement therapy and beta cell regeneration techniques. This review offers a detailed exploration of the pathophysiological mechanisms of T1D. It discusses the intricate interplay of factors leading to T1D development and the innovative approaches being explored to discover new treatments and a cure for the millions of people living with T1D worldwide.
Collapse
Affiliation(s)
- Eleanor M. Ling
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
| | - Joana R. N. Lemos
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Khemraj Hirani
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
44
|
Wang Z, Qi J, Yang Y, Li C. Insufficient and excessive Ca 2+ intake negatively impact the life history performance and disrupt the hemolymph metabolism of Spodoptera litura. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116921. [PMID: 39182284 DOI: 10.1016/j.ecoenv.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Calcium ions (Ca2+), essential as second messengers in all cells, play a pivotal role as micronutrients in insects. However, few studies have explored the effects of both insufficient and excessive Ca2+ intake on life history performance and population parameters. This study examines the impact of varying Ca2+ intake levels-insufficient (0 mg/kg), appropriate (100 mg/kg), and excessive (250 mg/kg)-on the life history performance and population parameters of Spodoptera litura using two-sex life tables. Insufficient and excessive Ca2+ intakes significantly extended the preadult development period and decreased the preadult survival rates of S. litura, compared to those on an appropriate Ca2+ intake. The population parameters (Intrinsic rate of increase (r), Finite rate of increase (λ), and Net reproductive rate (R0)) of S. litura on a 100 mg/kg diet (r = 0.1364, λ = 1.1462, R0 = 390) were significantly higher than those on a 0 mg/kg diet (r = 0.1091, λ = 1.1153, R0 = 130.52). Additionally, untargeted metabolomics analysis revealed that inappropriate Ca2+ levels (either insufficient or excessive) triggered significant up-regulation of 71.1 % and 92.8 % of the metabolites in the hemolymph, respectively, compared to the appropriate Ca2+ intake. Notably, disruptions in metabolite balance affected critical components such as melatonin and melanin within the tryptophan and tyrosine metabolism pathways. These findings underscore that both insufficient and excessive Ca2+ intakes adversely affect the life history performance and disrupt hemolymph metabolic balance in S. litura.
Collapse
Affiliation(s)
- Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Jingwei Qi
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yang Yang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Chuanren Li
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
45
|
Yang J, Liang J, Hu N, He N, Liu B, Liu G, Qin Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer's Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci Ther 2024; 30:e70091. [PMID: 39460538 PMCID: PMC11512114 DOI: 10.1111/cns.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuronal loss, commonly linked to amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Recent research highlights the gut microbiota as a key player in modulating neuroinflammation, a critical pathological feature of AD. Understanding the role of the gut microbiota in this process is essential for uncovering new therapeutic avenues and gaining deeper insights into AD pathogenesis. METHODS This review provides a comprehensive analysis of how gut microbiota influences neuroinflammation and glial cell function in AD. A systematic literature search was conducted, covering studies from 2014 to 2024, including reviews, clinical trials, and animal studies. Keywords such as "gut microbiota," "Alzheimer's disease," "neuroinflammation," and "blood-brain barrier" were used. RESULTS Dysbiosis, or the imbalance in gut microbiota composition, has been implicated in the modulation of key AD-related mechanisms, including neuroinflammation, blood-brain barrier integrity, and neurotransmitter regulation. These disruptions may accelerate the onset and progression of AD. Additionally, therapeutic strategies targeting gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation, show promise in modulating AD pathology. CONCLUSIONS The gut microbiota is a pivotal factor in AD pathogenesis, influencing neuroinflammation and disease progression. Understanding the role of gut microbiota in AD opens avenues for innovative diagnostic, preventive, and therapeutic strategies.
Collapse
Affiliation(s)
- Jianshe Yang
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Niyuan Hu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ningjuan He
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Guoliang Liu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ying Qin
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| |
Collapse
|
46
|
Chen Y, Li Y, Li X, Fang Q, Li F, Chen S, Chen W. Indole‑3‑propionic acid alleviates intestinal epithelial cell injury via regulation of the TLR4/NF‑κB pathway to improve intestinal barrier function. Mol Med Rep 2024; 30:189. [PMID: 39219265 PMCID: PMC11350629 DOI: 10.3892/mmr.2024.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Indole‑3‑propionic acid (IPA), a product of Clostridium sporogenes metabolism, has been shown to improve intestinal barrier function. In the present study, in vitro experiments using NCM460 human colonic epithelial cells were performed to investigate how IPA alleviates lipopolysaccharide (LPS)‑induced intestinal epithelial cell injury, with the aim of improving intestinal barrier function. In addition, the underlying mechanism was explored. NCM460 cell viability and apoptosis were measured using the Cell Counting Kit‑8 assay and flow cytometry, respectively. The integrity of the intestinal epithelial barrier was evaluated by measuring transepithelial electrical resistance (TEER). The underlying molecular mechanism was explored using western blotting, immunofluorescence staining, a dual luciferase reporter gene assay and quantitative PCR. The results showed that 10 µg/ml LPS induced the most prominent decrease in cell viability after 24 h of treatment. By contrast, IPA effectively inhibited LPS‑induced apoptosis in the intestinal epithelial cells. Additionally, >0.5 mM IPA improved intestinal barrier function by increasing TEER and upregulating the expression of tight junction proteins (zonula occludens‑1, claudin‑1 and occludin). Furthermore, IPA inhibited the release of pro‑inflammatory cytokines (IL‑1β, IL‑6 and TNF‑α) in a dose‑dependent manner and this was achieved via regulation of the Toll‑like receptor 4 (TLR4)/myeloid differentiation factor 88/NF‑κB and TLR4/TRIF/NF‑κB pathways. In conclusion, IPA may alleviate LPS‑induced inflammatory injury in human colonic epithelial cells. Taken together, these results suggest that IPA may be a potential therapeutic approach for the management of diseases characterized by LPS‑induced intestinal epithelial cell injury and intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Ying Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Yu Li
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Xiaojuan Li
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Qingqing Fang
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Feng Li
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
47
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and beneficial metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:367-409. [PMID: 39396841 DOI: 10.1016/bs.adgen.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. In recent years, the impact of the gut microbiota on the development of CRC has become clear. The gut microbiota is the community of microorganisms living in the gut symbiotic relationship with the host. These microorganisms contribute to the development of CRC through various mechanisms that are not yet fully understood. Increasing scientific evidence suggests that metabolites produced by the gut microbiota may influence CRC development by exerting protective and deleterious effects. This article reviews the metabolites produced by the gut microbiota, which are derived from the intake of complex carbohydrates, proteins, dairy products, and phytochemicals from plant foods and are associated with a reduced risk of CRC. These metabolites include short-chain fatty acids (SCFAs), indole and its derivatives, conjugated linoleic acid (CLA) and polyphenols. Each metabolite, its association with CRC risk, the possible mechanisms by which they exert anti-tumour functions and their relationship with the gut microbiota are described. In addition, other gut microbiota-derived metabolites that are gaining importance for their role as CRC suppressors are included.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
48
|
Badawy AAB, Dawood S. Molecular Insights into the Interaction of Tryptophan Metabolites with the Human Aryl Hydrocarbon Receptor in Silico: Tryptophan as Antagonist and no Direct Involvement of Kynurenine. FRONT BIOSCI-LANDMRK 2024; 29:333. [PMID: 39344334 DOI: 10.31083/j.fbl2909333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND A direct link between the tryptophan (Trp) metabolite kynurenine (Kyn) and the aryl hydrocarbon receptor (AhR) is not supported by metabolic considerations and by studies demonstrating the failure of Kyn concentrations of up to 100 μM to activate the receptor in cell culture systems using the proxy system of cytochrome P-450-dependent metabolism. The Kyn metabolite kynurenic acid (KA) activates the AhR and may mediate the Kyn link. Recent studies demonstrated down regulation and antagonism of activation of the AhR by Trp. We have addressed the link between Kyn and the AhR by looking at their direct molecular interaction in silico. METHODS Molecular docking of Kyn, KA, Trp and a range of Trp metabolites to the crystal structure of the human AhR was performed under appropriate docking conditions. RESULTS Trp and 30 of its metabolites docked to the AhR to various degrees, whereas Kyn and 3-hydroxykynurenine did not. The strongest docking was observed with the Trp metabolite and photooxidation product 6-Formylindolo[3,2-b]carbazole (FICZ), cinnabarinic acid, 5-hydroxytryptophan, N-acetyl serotonin and indol-3-yllactic acid. Strong docking was also observed with other 5-hydroxyindoles. CONCLUSIONS We propose that the Kyn-AhR link is mediated by KA. The strong docking of Trp and its recently reported down regulation of the receptor suggest that Trp is an AhR antagonist and may thus play important roles in body homeostasis beyond known properties or simply being the precursor of biologically active metabolites. Differences in AhR activation reported in the literature are discussed.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, CF5 2YB Wales, UK
| | - Shazia Dawood
- Pharmacy and Allied Health Sciences, Iqra University, 7580 Karachi, Pakistan
| |
Collapse
|
49
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
50
|
Zakerska-Banaszak O, Zuraszek-Szymanska J, Eder P, Ladziak K, Slomski R, Skrzypczak-Zielinska M. The Role of Host Genetics and Intestinal Microbiota and Metabolome as a New Insight into IBD Pathogenesis. Int J Mol Sci 2024; 25:9589. [PMID: 39273536 PMCID: PMC11394875 DOI: 10.3390/ijms25179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable, chronic disorder of the gastrointestinal tract whose incidence increases every year. Scientific research constantly delivers new information about the disease and its multivariate, complex etiology. Nevertheless, full discovery and understanding of the complete mechanism of IBD pathogenesis still pose a significant challenge to today's science. Recent studies have unanimously confirmed the association of gut microbial dysbiosis with IBD and its contribution to the regulation of the inflammatory process. It transpires that the altered composition of pathogenic and commensal bacteria is not only characteristic of disturbed intestinal homeostasis in IBD, but also of viruses, parasites, and fungi, which are active in the intestine. The crucial function of the microbial metabolome in the human body is altered, which causes a wide range of effects on the host, thus providing a basis for the disease. On the other hand, human genomic and functional research has revealed more loci that play an essential role in gut homeostasis regulation, the immune response, and intestinal epithelial function. This review aims to organize and summarize the currently available knowledge concerning the role and interaction of crucial factors associated with IBD pathogenesis, notably, host genetic composition, intestinal microbiota and metabolome, and immune regulation.
Collapse
Affiliation(s)
| | | | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Karolina Ladziak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | | |
Collapse
|