1
|
Ohuchi K, Watanabe K, Izutsu M, Mishima A, Murata J, Kurita H, Hozumi I, Hayashi Y, Inden M. Type III sodium-dependent inorganic phosphate transporters are required for the phenotypes in human brain microvascular endothelial cells. Exp Cell Res 2025; 448:114556. [PMID: 40221005 DOI: 10.1016/j.yexcr.2025.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Inorganic phosphate (Pi) homeostasis in the brain is critical for the development of primary brain calcification (PBC). In the brains of patients with PBC, calcification occurs in the cerebral small vessels, and it is primarily caused by mutated SLC20A2, a gene that encodes a type III Pi transporter. A previous study founded that the SLC20 family, which includes SLC20A1 and SLC20A2, contributes to Pi homeostasis in the central nervous system. However, the impact of these Pi transporters on the brain vessel phenotype remains unknown. Thus, in this study, we aimed to investigate the effect of SLC20A1 or SLC20A2 depletion on the phenotype of human brain microvascular endothelial cells (hBMECs). We assessed the primary phenotypes of vascular endothelial cells, such as proliferation, tube formation, and VE-cadherin expression. The results showed that hBMECs silenced for SLC20A1 or SLC20A2 had decreased proliferative and angiogenic ability, as well as VE-cadherin expression. The intracellular Pi concentration ([Pi]i) remained constant in SLC20A1-silenced hBMECs whereas it increased in SLC20A2-silenced cells. Tube formation ability was no change even at 3 mM, a concentration higher than [Pi]i which was increased in SLC20A2-silenced hBMECs. Thus, increased [Pi]i in SLC20A2-silenced hBMECs may have a small impact on phenotypic changes. In conclusion, abnormalities in Pi homeostasis caused by SLC20A2 depletion were suggested to play a minor role in PBC endothelial pathology.
Collapse
Affiliation(s)
- Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan.
| | - Ku Watanabe
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Mutsuko Izutsu
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Ayane Mishima
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Junya Murata
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Yuichi Hayashi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan; Department of Clinical Pathophysiology and Functional Morphology, Faculty of Nursing Science, Tsuruga Nursing University, 78-2-1 Kizaki, Tsuruga, 914-0814, Fukui, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan.
| |
Collapse
|
2
|
Hölter SM, Cacheiro P, Smedley D, Kent Lloyd KC. IMPC impact on preclinical mouse models. Mamm Genome 2025:10.1007/s00335-025-10104-4. [PMID: 39820486 DOI: 10.1007/s00335-025-10104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Affiliation(s)
- Sabine M Hölter
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Technical University Munich, Munich, Germany.
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany.
| | - Pilar Cacheiro
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Damian Smedley
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - K C Kent Lloyd
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
- Mouse Biology Program, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
Kavakli E, Gul N, Begentas OC, Kiris E. Astrocytes in Primary Familial Brain Calcification (PFBC): Emphasis on the Importance of Induced Pluripotent Stem Cell-Derived Human Astrocyte Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:19-38. [PMID: 39841380 DOI: 10.1007/5584_2024_840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies. There is a growing interest in the involvement of astrocytes in PFBC, as recent studies have suggested that astrocytes play a central role in the disease and that functional defects in these cells are critical for the development and progression of the disease. This review aims to discuss recent findings on the roles of astrocytes in PFBC pathophysiology, with a focus on known expression and roles of PFBC genes in astrocytes. Additionally, we discuss the importance of human astrocytes for PFBC disease modeling, and astrocytes as a potential therapeutic target in PFBC. Utilization of species-specific and physiologically relevant PFBC model systems can open new avenues for basic research, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Ebru Kavakli
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Nazli Gul
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Onur Can Begentas
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
4
|
Zhao M, Cheng X, Chen L, Zeng YH, Lin KJ, Li YL, Zheng ZH, Huang XJ, Zuo DD, Guo XX, Guo J, He D, Liu Y, Lin Y, Wang C, Lv WQ, Su HZ, Yao XP, Ye ZL, Chen XH, Lu YQ, Huang CW, Yang G, Zhang YX, Lin MT, Wang N, Xiong ZQ, Chen WJ. Antisense oligonucleotides enhance SLC20A2 expression and suppress brain calcification in a humanized mouse model. Neuron 2024; 112:3278-3294.e7. [PMID: 39121859 DOI: 10.1016/j.neuron.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Zeng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yun-Lu Li
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ze-Hong Zheng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xue-Jing Huang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Dan-Dan Zuo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xin-Xin Guo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yu Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chong Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Wen-Qi Lv
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui-Zhen Su
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xiang-Ping Yao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zi-Ling Ye
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiao-Hong Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying-Qian Lu
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chen-Wei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yu-Xian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Ting Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ning Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 201602, China.
| | - Wan-Jin Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
5
|
Takeda S, Hoshiai R, Tanaka M, Izawa T, Yamate J, Kuramoto T, Kuwamura M. Myelin lesion in the aspartoacylase (Aspa) knockout rat, an animal model for Canavan disease. Exp Anim 2024; 73:347-356. [PMID: 38538326 PMCID: PMC11254489 DOI: 10.1538/expanim.23-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 07/12/2024] Open
Abstract
Canavan disease (CD) is a fatal hereditary neurological disorder caused by a mutation in the aspartoacylase (ASPA) gene and characterized by neurological signs and vacuolation in the central nervous system (CNS). The mutation inhibits the hydrolysis of N-acetyl-aspartate (NAA) resulting in accumulation of NAA in the CNS. A new Aspa-knockout rat was generated by transcription activator-like effector nuclease (TALEN) technology. Herein we describe the pathological and morphometrical findings in the brain and spinal cords of Aspa-knockout rats. Although Aspa-knockout rats did not show any neurological signs, vacuolation with swollen axons, hypomyelination, and activated swollen astrocytes were observed mainly in the brainstem reticular formation, ascending and descending motor neuron pathway, and in the olfactory tract. Morphometrical analysis revealed no obvious change in the number of neurons. These changes in the CNS are similar to human CD, suggesting that this animal model would be useful for further study of treatment and understanding the pathophysiology of human CD.
Collapse
Affiliation(s)
- Shuji Takeda
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Rika Hoshiai
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, 9 Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
6
|
Pierre-Ferrer S, Collins B, Lukacsovich D, Wen S, Cai Y, Winterer J, Yan J, Pedersen L, Földy C, Brown SA. A phosphate transporter in VIPergic neurons of the suprachiasmatic nucleus gates locomotor activity during the light/dark transition in mice. Cell Rep 2024; 43:114220. [PMID: 38735047 DOI: 10.1016/j.celrep.2024.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.
Collapse
Affiliation(s)
- Sara Pierre-Ferrer
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Ben Collins
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Biology, Sacred Heart University, 5151 Park Ave., Fairfield, CT 06825, USA
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Shao'Ang Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuchen Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lene Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Bandeira GA, Lucato LT. Toxic leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:455-486. [PMID: 39322394 DOI: 10.1016/b978-0-323-99209-1.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Toxic-metabolic encephalopathies are a group of disorders in which an exogenous or endogenous substance leads to transient or permanent neuronal damage. It is an important cause of potentially reversible acute encephalopathy syndrome. The signs and symptoms of toxic encephalopathies may be relatively nonspecific, and toxicologic tests are not always widely available. Imaging plays a key role in determining the most probable diagnosis, pointing to the next steps of investigation, and providing prognostic information. In this chapter, we review the main acquired toxic-metabolic leukoencephalopathies, commenting on their pathophysiology, imaging patterns, and rationale for an adequate diagnosis in detail.
Collapse
Affiliation(s)
- Gabriela Alencar Bandeira
- Neuroradiology Section, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil
| | - Leandro Tavares Lucato
- Neuroradiology Section, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil.
| |
Collapse
|
8
|
Riew TR, Hwang JW, Jin X, Kim HL, Jung SJ, Lee MY. Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia. Front Cell Neurosci 2023; 17:1308247. [PMID: 38188667 PMCID: PMC10766773 DOI: 10.3389/fncel.2023.1308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Maheshwari U, Mateos JM, Weber‐Stadlbauer U, Ni R, Tamatey V, Sridhar S, Restrepo A, de Jong PA, Huang S, Schaffenrath J, Stifter SA, Szeri F, Greter M, Koek HL, Keller A. Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol 2023; 33:e13189. [PMID: 37505935 PMCID: PMC10580014 DOI: 10.1111/bpa.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - José M. Mateos
- Center for Microscopy and Image analysisUniversity of ZurichZurichSwitzerland
| | - Ulrike Weber‐Stadlbauer
- Institute of Veterinary Pharmacology and ToxicologyUniversity of Zurich‐Vetsuisse, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Virgil Tamatey
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Doctoral School of BiologyELTE Eotvos Lorand UniversityBudapestHungary
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Alejandro Restrepo
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pim A. de Jong
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sheng‐Fu Huang
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Flora Szeri
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
| | - Melanie Greter
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Huiberdina L. Koek
- Department of Geriatric MedicineUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
10
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
11
|
Zhang H, Lu Y, Kramer PR, Benson MD, Cheng YSL, Qin C. Intracranial calcification in Fam20c-deficient mice recapitulates human Raine syndrome. Neurosci Lett 2023; 802:137176. [PMID: 36914045 PMCID: PMC11795667 DOI: 10.1016/j.neulet.2023.137176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
FAM20C (family with sequence similarity 20-member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. FAM20C loss-of-function mutations cause Raine syndrome in humans, characterized by generalized osteosclerosis, distinctive craniofacial dysmorphism, along with extensive intracranial calcification. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets. In this study, we examined the expression of Fam20c in the mouse brain and investigated brain calcification in Fam20c-deficient mice. Reverse transcription polymerase chain reaction (RT-PCR), Western-blotting and in situ hybridization analyses demonstrated the broad expression of Fam20c in the mouse brain tissue. X-ray and histological analyses showed that the global deletion of Fam20c (mediated by Sox2-cre) resulted in brain calcification in mice after postnatal 3 months and that the calcifications were bilaterally distributed within the brain. There was mild perifocal microgliosis as well as astrogliosis around calcospherites. The calcifications were first observed in the thalamus, and later in the forebrain and hindbrain. Furthermore, brain-specific deletion (mediated by Nestin-cre) of Fam20c in mice also led to cerebral calcification at an older age (postnatal 6 months), but no obvious skeletal or dental defects. Our results suggest that the local loss of FAM20C function in the brain may directly account for intracranial calcification. We propose that FAM20C plays an essential role in maintaining normal brain homeostasis and preventing ectopic brain calcification.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA.
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Yi-Shing L Cheng
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
12
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|
13
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
14
|
Zhao M, Lin XH, Zeng YH, Su HZ, Wang C, Yang K, Chen YK, Lin BW, Yao XP, Chen WJ. Knockdown of myorg leads to brain calcification in zebrafish. Mol Brain 2022; 15:65. [PMID: 35870928 PMCID: PMC9308368 DOI: 10.1186/s13041-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Primary familial brain calcification (PFBC) is a neurogenetic disorder characterized by bilateral calcified deposits in the brain. We previously identified that MYORG as the first pathogenic gene for autosomal recessive PFBC, and established a Myorg-KO mouse model. However, Myorg-KO mice developed brain calcifications until nine months of age, which limits their utility as a facile PFBC model system. Hence, whether there is another typical animal model for mimicking PFBC phenotypes in an early stage still remained unknown. In this study, we profiled the mRNA expression pattern of myorg in zebrafish, and used a morpholino-mediated blocking strategy to knockdown myorg mRNA at splicing and translation initiation levels. We observed multiple calcifications throughout the brain by calcein staining at 2–4 days post-fertilization in myorg-deficient zebrafish, and rescued the calcification phenotype by replenishing myorg cDNA. Overall, we built a novel model for PFBC via knockdown of myorg by antisense oligonucleotides in zebrafish, which could shorten the observation period and replenish the Myorg-KO mouse model phenotype in mechanistic and therapeutic studies.
Collapse
|
15
|
Elston MS, Elajnaf T, Hannan FM, Thakker RV. Autosomal dominant hypocalcemia type 1 (ADH1) associated with myoclonus and intracerebral calcifications. J Endocr Soc 2022; 6:bvac042. [PMID: 35402765 PMCID: PMC8989155 DOI: 10.1210/jendso/bvac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
Autosomal dominant hypocalcemia type 1 (ADH1) is a disorder of extracellular calcium homeostasis caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR). Over 35% of ADH1 patients have intracerebral calcifications predominantly affecting the basal ganglia. The clinical consequences of such calcifications remain to be fully characterized, although the majority of patients with these calcifications are considered to be asymptomatic. We report a 20-year-old female proband with a severe form of ADH1 associated with recurrent hypocalcemic and hypercalcemic episodes, persistent childhood hyperphosphatemia, and a low calcium/phosphate ratio. From the age of 18 years, she had experienced recurrent myoclonic jerks affecting the upper limbs that were not associated with epileptic seizures, extra-pyramidal features, cognitive impairment, or alterations in serum calcium concentrations. Computerised tomography (CT) scans revealed calcifications of the globus pallidus regions of the basal ganglia bilaterally, and also the frontal lobes at the grey-white matter junction, and posterior horn choroid plexuses. The patient’s myoclonus resolved following treatment with levetiracetam. CASR mutational analysis identified a reported germline gain-of-function heterozygous missense mutation, c.2363T>G; p.(Phe788Cys), which affects an evolutionarily conserved phenylalanine residue located in transmembrane domain helix 5 of the CaSR protein. Analysis of the cryo-electron microscopy CaSR structure predicted the wild-type Phe788 residue to form interactions with neighbouring phenylalanine residues, which likely maintain the CaSR in an inactive state. The p.(Phe788Cys) mutation was predicted to disrupt these interactions, thereby leading to CaSR activation. These findings reveal myoclonus as a novel finding in an ADH1 patient with intracerebral calcifications.
Collapse
Affiliation(s)
- Marianne S Elston
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Taha Elajnaf
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Maheshwari U, Huang SF, Sridhar S, Keller A. The Interplay Between Brain Vascular Calcification and Microglia. Front Aging Neurosci 2022; 14:848495. [PMID: 35309892 PMCID: PMC8924545 DOI: 10.3389/fnagi.2022.848495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
- *Correspondence: Annika Keller,
| |
Collapse
|
17
|
Radvar E, Griffanti G, Tsolaki E, Bertazzo S, Nazhat SN, Addison O, Mata A, Shanahan CM, Elsharkawy S. Engineered In vitro Models for Pathological Calcification: Routes Toward Mechanistic Understanding. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Elham Radvar
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering Faculty of Engineering McGill University Montreal QC H3A 0C5 Canada
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering Faculty of Engineering McGill University Montreal QC H3A 0C5 Canada
| | - Owen Addison
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| | - Alvaro Mata
- School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Catherine M. Shanahan
- BHF Centre of Research Excellence Cardiovascular Division James Black Centre King's College London London SE1 1UL UK
| | - Sherif Elsharkawy
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| |
Collapse
|
18
|
Ren Y, Shen Y, Si N, Fan S, Zhang Y, Xu W, Shi L, Zhang X. Slc20a2-Deficient Mice Exhibit Multisystem Abnormalities and Impaired Spatial Learning Memory and Sensorimotor Gating but Normal Motor Coordination Abilities. Front Genet 2021; 12:639935. [PMID: 33889180 PMCID: PMC8056086 DOI: 10.3389/fgene.2021.639935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr's disease, is a rare autosomal dominant or recessive neurodegenerative disorder characterized by bilateral and symmetrical microvascular calcifications affecting multiple brain regions, particularly the basal ganglia (globus pallidus, caudate nucleus, and putamen) and thalamus. The most common clinical manifestations include cognitive impairment, neuropsychiatric signs, and movement disorders. Loss-of-function mutations in SLC20A2 are the major genetic causes of PFBC. OBJECTIVE This study aimed to investigate whether Slc20a2 knockout mice could recapitulate the dynamic processes and patterns of brain calcification and neurological symptoms in patients with PFBC. We comprehensively evaluated brain calcifications and PFBC-related behavioral abnormalities in Slc20a2-deficient mice. METHODS Brain calcifications were analyzed using classic calcium-phosphate staining methods. The Morris water maze, Y-maze, and fear conditioning paradigms were used to evaluate long-term spatial learning memory, working memory, and episodic memory, respectively. Sensorimotor gating was mainly assessed using the prepulse inhibition of the startle reflex program. Spontaneous locomotor activity and motor coordination abilities were evaluated using the spontaneous activity chamber, cylinder test, accelerating rotor-rod, and narrowing balance beam tests. RESULTS Slc20a2 homozygous knockout (Slc20a2-HO) mice showed congenital and global developmental delay, lean body mass, skeletal malformation, and a high proportion of unilateral or bilateral eye defects. Brain calcifications were detected in the hypothalamus, ventral thalamus, and midbrain early at postnatal day 80 in Slc20a2-HO mice, but were seldom found in Slc20a2 heterozygous knockout (Slc20a2-HE) mice, even at extremely old age. Slc20a2-HO mice exhibited spatial learning memory impairments and sensorimotor gating deficits while exhibiting normal working and episodic memories. The general locomotor activity, motor balance, and coordination abilities were not statistically different between Slc20a2-HO and wild-type mice after adjusting for body weight, which was a major confounding factor in our motor function evaluations. CONCLUSION The human PFBC-related phenotypes were highly similar to those in Slc20a2-HO mice. Therefore, Slc20a2-HO mice might be suitable for the future evaluation of neuropharmacological intervention strategies targeting cognitive and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Yaqiong Ren
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Lei Shi
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Sun H, Cao Z, Gao R, Li Y, Chen R, Du S, Ma T, Wang J, Xu X, Liu JY. Severe brain calcification and migraine headache caused by SLC20A2 and PDGFRB heterozygous mutations in a five-year-old Chinese girl. Mol Genet Genomic Med 2021; 9:e1670. [PMID: 33793087 PMCID: PMC8172206 DOI: 10.1002/mgg3.1670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
Background Primary familial brain calcification (PFBC) is a rare inheritable neurodegenerative disease characterized by bilateral calcification in different brain regions and by a range of neuropsychiatric symptoms. Six causative genes of PFBC (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified. Methods Sanger sequencing was used to identify the causative genes associated with PFBC in this study. Results We describe the first PFBC case with both SLC20A2 and PDGFRB heterozygous mutations. Notably, this patient with the digenic mutation (who was only 5 years old) showed severe brain calcification and migraine, whereas the patient's parents, who each carried a heterozygous mutation in SLC20A2 or PDGFRB, exhibited varying degrees of brain calcification but were clinically asymptomatic. Conclusion This case highlights the digenic influences on the characteristics of PFBC patients.
Collapse
Affiliation(s)
- Hao Sun
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhijian Cao
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ruixi Gao
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yulei Li
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Rui Chen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shiyue Du
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Tingbin Ma
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory, Hospital of HUST, Wuhan, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Rutsch F, Buers I, Nitschke Y. Hereditary Disorders of Cardiovascular Calcification. Arterioscler Thromb Vasc Biol 2020; 41:35-47. [PMID: 33176451 DOI: 10.1161/atvbaha.120.315577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arterial calcification is a common phenomenon in the elderly, in patients with atherosclerosis or renal failure and in diabetes. However, when present in very young individuals, it is likely to be associated with an underlying hereditary disorder of arterial calcification. Here, we present an overview of the few monogenic disorders presenting with early-onset cardiovascular calcification. These disorders can be classified according to the function of the respective disease gene into (1) disorders caused by an altered purine and phosphate/pyrophosphate metabolism, (2) interferonopathies, and (3) Gaucher disease. The finding of arterial calcification in early life should alert the clinician and prompt further genetic work-up to define the underlying genetic defect, to establish the correct diagnosis, and to enable appropriate therapy.
Collapse
Affiliation(s)
- Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Insa Buers
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| |
Collapse
|
21
|
Cen Z, Chen Y, Chen S, Wang H, Yang D, Zhang H, Wu H, Wang L, Tang S, Ye J, Shen J, Wang H, Fu F, Chen X, Xie F, Liu P, Xu X, Cao J, Cai P, Pan Q, Li J, Yang W, Shan PF, Li Y, Liu JY, Zhang B, Luo W. Biallelic loss-of-function mutations in JAM2 cause primary familial brain calcification. Brain 2020; 143:491-502. [PMID: 31851307 DOI: 10.1093/brain/awz392] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
Primary familial brain calcification is a monogenic disease characterized by bilateral calcifications in the basal ganglia and other brain regions, and commonly presents motor, psychiatric, and cognitive symptoms. Currently, four autosomal dominant (SLC20A2, PDGFRB, PDGFB, XPR1) and one autosomal recessive (MYORG) causative genes have been identified. Compared with patients with autosomal dominant primary familial brain calcification, patients with the recessive form of the disease present with more severe clinical and imaging phenotypes, and deserve more clinical and research attention. Biallelic mutations in MYORG cannot explain all autosomal recessive primary familial brain calcification cases, indicating the existence of novel autosomal recessive genes. Using homozygosity mapping and whole genome sequencing, we detected a homozygous frameshift mutation (c.140delT, p.L48*) in the JAM2 gene in a consanguineous family with two affected siblings diagnosed with primary familial brain calcification. Further genetic screening in a cohort of 398 probands detected a homozygous start codon mutation (c.1A>G, p.M1?) and compound heterozygous mutations [c.504G>C, p.W168C and c.(67+1_68-1)_(394+1_395-1), p.Y23_V131delinsL], respectively, in two unrelated families. The clinical phenotypes of the four patients included parkinsonism (3/4), dysarthria (3/4), seizures (1/4), and probable asymptomatic (1/4), with diverse onset ages. All patients presented with severe calcifications in the cortex in addition to extensive calcifications in multiple brain areas (lenticular nuclei, caudate nuclei, thalamus, cerebellar hemispheres, ± brainstem; total calcification scores: 43-77). JAM2 encodes junctional adhesion molecule 2, which is highly expressed in neurovascular unit-related cell types (endothelial cells and astrocytes) and is predominantly localized on the plasma membrane. It may be important in cell-cell adhesion and maintaining homeostasis in the CNS. In Chinese hamster ovary cells, truncated His-tagged JAM2 proteins were detected by western blot following transfection of p.Y23_V131delinsL mutant plasmid, while no protein was detected following transfection of p.L48* or p.1M? mutant plasmids. In immunofluorescence experiments, the p.W168C mutant JAM2 protein failed to translocate to the plasma membrane. We speculated that mutant JAM2 protein resulted in impaired cell-cell adhesion functions and reduced integrity of the neurovascular unit. This is similar to the mechanisms of other causative genes for primary familial brain calcification or brain calcification syndromes (e.g. PDGFRB, PDGFB, MYORG, JAM3, and OCLN), all of which are highly expressed and functionally important in the neurovascular unit. Our study identifies a novel causative gene for primary familial brain calcification, whose vital function and high expression in the neurovascular unit further supports impairment of the neurovascular unit as the root of primary familial brain calcification pathogenesis.
Collapse
Affiliation(s)
- Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - You Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongmei Zhang
- Department of Neurology, Ningbo Fourth Hospital, Ningbo, Zhejiang, China
| | - Hongwei Wu
- Department of Neurology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyang Tang
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia Ye
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haotian Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Fu
- Department of Neurology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhi Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Cai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qinqing Pan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Neurology, Wuyi First People's Hospital, Jinhua, Zhejiang, China
| | - Jieying Li
- Department of Neurology, Guiyang Second People's Hospital, Guiyang, Guizhou, China
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng-Fei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuezhou Li
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Cassinari K, Rovelet-Lecrux A, Tury S, Quenez O, Richard AC, Charbonnier C, Olaso R, Boland A, Deleuze JF, Besancenot JF, Delpont B, Pouliquen D, Lecoquierre F, Chambon P, Thauvin-Robinet C, Campion D, Frebourg T, Battini JL, Nicolas G. Haploinsufficiency of the Primary Familial Brain Calcification Gene SLC20A2 Mediated by Disruption of a Regulatory Element. Mov Disord 2020; 35:1336-1345. [PMID: 32506582 DOI: 10.1002/mds.28090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS After the identification of a deletion upstream of SLC20A2, we assessed its consequences on gene function by reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), an ex vivo inorganic phosphate uptake assay, and introduced the deletion of a putative SLC20A2 enhancer mapping to this region in human embryonic kidney 293 (HEK293) cells by clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9). RESULTS The 8p11.21 deletion, segregating with PFBC in a family, mapped 35 kb upstream of SLC20A2. The deletion carriers/normal controls ratio of relative SLC20A2 mRNA levels was 60.2% (P < 0.001). This was comparable with that of patients carrying an SLC20A2 premature stop codon (63.4%; P < 0.001). The proband exhibited a 39.3% decrease of inorganic phosphate uptake in blood (P = 0.015). In HEK293 cells, we observed a 39.8% decrease in relative SLC20A2 mRNA levels after normalization on DNA copy number (P < 0.001). DISCUSSION We identified a deletion of an enhancer of SLC20A2 expression, with carriers showing haploinsufficiency in similar ranges to loss-of-function alleles, and we observed reduced mRNA levels after deleting this element in a cellular model. We propose a 3-step strategy to identify and easily assess the effect of such events. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kévin Cassinari
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Anne Rovelet-Lecrux
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Anne-Claire Richard
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Benoit Delpont
- Department of Internal Medicine and Systemic Diseases, Dijon University Hospital, Dijon, France
| | - Dorothée Pouliquen
- Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - François Lecoquierre
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Pascal Chambon
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- CHU Dijon Bourgogne, Unité Fonctionnelle "Innovation diagnostique dans les maladies rares," laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, Dijon, France
- Centre de Référence Maladies Rares "Déficiences Intellectuelles de causes rares," FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Dominique Campion
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
- Department of Research, Rouvray Psychiatric Hospital, Sotteville-les-Rouen, France
| | - Thierry Frebourg
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW In the last 7 years, changes in five genes [SLC20A2, PDGFRB, PDGFB, XPR1, and MYORG] have been implicated in the pathogenesis of primary familial brain calcification (PFBC), allowing for genetic delineation of this phenotypically complex neurodegenerative disorder. This review explores how the ensuing plethora of reported PFBC patients and their disease-causing variants improved our understanding of disease, pathogenesis, clinical manifestation, and penetrance. RECENT FINDINGS In PFBC patients, pathogenic changes have been most frequently described in SLC20A2, accounting for approximately the same number of patients as the variants in the other four PFBC genes combined. There is no appreciable relationship between any combination of the following three variables: the type of disease-causing change, the pattern or extent of calcifications, and the presence or nature of clinical manifestation in PFBC patients. Nevertheless, elucidation of underlying genetic factors provided important recent insights into the pathogenic mechanisms of PFBC, which collectively point toward a compromised neurovascular unit. SUMMARY The ongoing clinical and molecular research increases our understanding of PFBC facilitating diagnosis and identifying potential therapeutic targets for this multifaceted and likely underdiagnosed condition.
Collapse
|
24
|
Schottlaender LV, Abeti R, Jaunmuktane Z, Macmillan C, Chelban V, O'Callaghan B, McKinley J, Maroofian R, Efthymiou S, Athanasiou-Fragkouli A, Forbes R, Soutar MPM, Livingston JH, Kalmar B, Swayne O, Hotton G, Pittman A, Mendes de Oliveira JR, de Grandis M, Richard-Loendt A, Launchbury F, Althonayan J, McDonnell G, Carr A, Khan S, Beetz C, Bisgin A, Tug Bozdogan S, Begtrup A, Torti E, Greensmith L, Giunti P, Morrison PJ, Brandner S, Aurrand-Lions M, Houlden H. Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification. Am J Hum Genet 2020; 106:412-421. [PMID: 32142645 PMCID: PMC7058839 DOI: 10.1016/j.ajhg.2020.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 01/30/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification.
Collapse
Affiliation(s)
- Lucia V Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK; Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, WC1N 1EH London, UK; Argentine National Scientific and Technological Research Council (CONICET), C1425FQB Buenos Aires, Argentina; FLENI Neurological Research Institute, C1428 AQK Buenos Aires, Argentina
| | - Rosella Abeti
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N3BG London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N3BG London, UK; Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Carol Macmillan
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK
| | - Benjamin O'Callaghan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK
| | - John McKinley
- Department of Neurology, Dublin Neurological Institute at the Mater Misericordiae University Hospital, 57 Eccles St, Dublin 7 DO7W7XF, Ireland; Regional Neurosciences Centre, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK
| | | | - Raeburn Forbes
- Neurology Centre, Southern HSC Trust, Craigavon Area Hospital, Portadown BT63 5QQ, UK
| | - Marc P M Soutar
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John H Livingston
- Paediatric Neurology, The Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Bernardett Kalmar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK
| | - Orlando Swayne
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N3BG London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Gary Hotton
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N3BG London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Alan Pittman
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK
| | | | - Maria de Grandis
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Francesca Launchbury
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Juri Althonayan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N3BG London, UK
| | - Gavin McDonnell
- Regional Neurosciences Centre, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Aisling Carr
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | | - Atil Bisgin
- Medical Genetics Department of Medical Faculty & AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Çukurova University, Adana 01330, Turkey
| | - Sevcan Tug Bozdogan
- Medical Genetics Department of Medical Faculty & AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Çukurova University, Adana 01330, Turkey
| | - Amber Begtrup
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Erin Torti
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK
| | - Paola Giunti
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N3BG London, UK
| | - Patrick J Morrison
- Centre for Cancer Research and Cell Biology, Queens University, Belfast BT9 7AE, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Michel Aurrand-Lions
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N3BG London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; Neurogenetics Laboratory and Clinical Service, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
25
|
Primary familial brain calcification presenting as paroxysmal kinesigenic dyskinesia: Genetic and functional analyses. Neurosci Lett 2020; 714:134543. [DOI: 10.1016/j.neulet.2019.134543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
|
26
|
Zarb Y, Weber-Stadlbauer U, Kirschenbaum D, Kindler DR, Richetto J, Keller D, Rademakers R, Dickson DW, Pasch A, Byzova T, Nahar K, Voigt FF, Helmchen F, Boss A, Aguzzi A, Klohs J, Keller A. Ossified blood vessels in primary familial brain calcification elicit a neurotoxic astrocyte response. Brain 2019; 142:885-902. [PMID: 30805583 PMCID: PMC6439320 DOI: 10.1093/brain/awz032] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022] Open
Abstract
Brain calcifications are commonly detected in aged individuals and accompany numerous brain diseases, but their functional importance is not understood. In cases of primary familial brain calcification, an autosomally inherited neuropsychiatric disorder, the presence of bilateral brain calcifications in the absence of secondary causes of brain calcification is a diagnostic criterion. To date, mutations in five genes including solute carrier 20 member 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), myogenesis regulating glycosidase (MYORG), platelet-derived growth factor B (PDGFB) and platelet-derived growth factor receptor β (PDGFRB), are considered causal. Previously, we have reported that mutations in PDGFB in humans are associated with primary familial brain calcification, and mice hypomorphic for PDGFB (Pdgfbret/ret) present with brain vessel calcifications in the deep regions of the brain that increase with age, mimicking the pathology observed in human mutation carriers. In this study, we characterize the cellular environment surrounding calcifications in Pdgfbret/ret animals and show that cells around vessel-associated calcifications express markers for osteoblasts, osteoclasts and osteocytes, and that bone matrix proteins are present in vessel-associated calcifications. Additionally, we also demonstrate the osteogenic environment around brain calcifications in genetically confirmed primary familial brain calcification cases. We show that calcifications cause oxidative stress in astrocytes and evoke expression of neurotoxic astrocyte markers. Similar to previously reported human primary familial brain calcification cases, we describe high interindividual variation in calcification load in Pdgfbret/ret animals, as assessed by ex vivo and in vivo quantification of calcifications. We also report that serum of Pdgfbret/ret animals does not differ in calcification propensity from control animals and that vessel calcification occurs only in the brains of Pdgfbret/ret animals. Notably, ossification of vessels and astrocytic neurotoxic response is associated with specific behavioural and cognitive alterations, some of which are associated with primary familial brain calcification in a subset of patients.
Collapse
Affiliation(s)
- Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich University, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Diana Rita Kindler
- Institute of Neuropathology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich University, Zurich, Switzerland
| | - Daniel Keller
- Department of Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Rosa Rademakers
- Institute of Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Dennis W Dickson
- Institute of Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Andreas Pasch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Khayrun Nahar
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Fabian F Voigt
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Brain Research Institute, Zurich University, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Brain Research Institute, Zurich University, Zurich, Switzerland
| | - Andreas Boss
- Department of Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Jan Klohs
- Institute of Neuropathology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Nahar K, Lebouvier T, Andaloussi Mäe M, Konzer A, Bergquist J, Zarb Y, Johansson B, Betsholtz C, Vanlandewijck M. Astrocyte-microglial association and matrix composition are common events in the natural history of primary familial brain calcification. Brain Pathol 2019; 30:446-464. [PMID: 31561281 PMCID: PMC7317599 DOI: 10.1111/bpa.12787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfbret/ret and Slc20a2-/- mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfbret/ret mice were large, solitary and smooth surfaced, the nodules in Slc20a2-/- mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfbret/ret mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2-/- mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.
Collapse
Affiliation(s)
- Khayrun Nahar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Neurology, CHRU Lille, Lille, France.,Inserm U1171, Lille, France
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne Konzer
- Scientific Service Group Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Bergquist
- Department of Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Bengt Johansson
- Electron Microscopy Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
28
|
Pericytes in Primary Familial Brain Calcification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:247-264. [PMID: 31147881 DOI: 10.1007/978-3-030-16908-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells along capillaries that are critical for the development of a functional vascular bed in the central nervous system and other organs. Pericyte functions in the adult brain are less well understood. Pericytes have been suggested to mediate functional hyperemia at the capillary level, regulate the blood-brain barrier and to give rise to scar tissue after spinal cord injury. Furthermore, pericyte loss has been suggested to precede cognitive decline in mouse models of Alzheimer's disease. Despite this observation, there is no convincing causality between pericyte loss and the pathogenesis of Alzheimer's disease. However, recent loss-of-function mutations in PDGFB and PDGFRB genes have implicated pericytes as the principle cell type affected in primary familiar brain calcification (PFBC), a neuropsychiatric disorder with dominant inheritance. Here we review the role of the PDGFB/PDGFRB signaling pathway in pericyte development and briefly discuss homeostatic functions of pericytes in the brain. We provide an overview of recent studies with mouse models of PFBC and discuss suggested pathogenic mechanisms for PFBC with special reference to pericytes.
Collapse
|
29
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|