1
|
Wang F, Xu X, Xu J, Li F, Zhang H, Wang L, Yu D. Exploring the value of multiparametric quantitative MRI in the assessment of pancreatic ductal adenocarcinoma fibrosis grading. Eur Radiol 2025; 35:3625-3637. [PMID: 39699670 DOI: 10.1007/s00330-024-11246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES To analyze the performance of multiparametric magnetic resonance imaging (MRI) in quantification of pancreatic ductal adenocarcinoma (PDAC) fibrosis grading. METHOD This prospective study enrolled 79 patients with PDAC confirmed by pathology. Multiparametric MRI including native T1 mapping, intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI), diffusion kurtosis imaging diffusion-weighted imaging (DKI-DWI), and enhanced T1 mapping were performed before surgery. Masson staining was used to evaluate intratumoral fibrosis content and classified into low- and high-fibrosis groups. MRI parameters were compared between the two groups using multivariable logistic regression analysis. The correlations between fibrosis content and MRI parameters were evaluated using Pearson's correlation. RESULTS D, f, mean diffusion (MD), and enhanced T1 mapping were lower in the high-fibrosis group than in the low-fibrosis group (p < 0.001, p < 0.001, p < 0.001, p = 0.026, respectively). Native T1 mapping and extracellular volume (ECV) were opposite (All p < 0.001). No significant differences in the rest. Multivariable logistic regression revealed that native T1 mapping, MD, and ECV were independent discriminators for PDAC fibrosis grading (p = 0.037, p = 0.031, p = 0.014, respectively); the area under the curve (AUC) of native T1 mapping, MD and ECV was 0.863, 0.798, and 0.929. Among them, ECV had an extremely strong positive correlation with intratumoral fibrosis content. Native T1 mapping and MD were correlated strongly with fibrosis content (positive and negative, respectively). CONCLUSIONS ECV had the highest assessing performance for grading fibrosis in PDAC compared to other MRI parameters, and has the potential to be an imaging biomarker for predicting the fibrosis content of PDAC. KEY POINTS Question The relationship between fibrosis grade of PDAC and quantitative MRI parameters based on T1 mapping and diffusion imaging has not been fully investigated. Findings ECV performed the best in distinguishing between fibrosis grade and increased as interstitial fibrosis increased; clinical indicators offered no added value. Clinical relevance Quantitative MRI parameters provide significant value in evaluating the fibrosis grade of PDAC, which bears significant implications for preoperative risk stratification and the selection of personalized treatment strategies for patients.
Collapse
Affiliation(s)
- Fangqing Wang
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Xinghua Xu
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Li
- Department of Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Lei Wang
- Department of Surgery, Qilu Hospital, Shandong University, Jinan, China.
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Jian Z, Pan T, Li R, Zhang W, Cheng T, Zhang H, Song J, Shi N, Zhang Z. Comprehensive analysis of UPK3B as a marker for prognosis and immunity in pancreatic adenocarcinoma. Sci Rep 2025; 15:12716. [PMID: 40223017 PMCID: PMC11994762 DOI: 10.1038/s41598-025-97213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
The low immunogenicity of pancreatic cancer inhibits effective antitumor immune responses, primarily due to the immune evasion mediated by low expression of the major histocompatibility complex (MHC). Through comprehensive analysis, our study identifies UPK3B as a gene closely associated with low MHC expression and low immunogenicity in pancreatic cancer. UPK3B has been reported as a marker of primary mesothelial cells, mature epicardium and promotes extracellular matrix signaling. However, the role of UPK3B in pancreatic cancer remain unclear. We found that UPK3B is highly predictive of overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC) and is significantly related to clinical features, immune cell infiltration, and response to immune checkpoint inhibitor (ICI) therapy. Gene enrichment analysis revealed significant downregulation of immune regulatory and BCR signaling pathways in the UPK3B high-expression group. Additionally, UPK3B is positively correlated with immunosuppressive cells, suggesting that high UPK3B expression may inhibit antitumor immune responses by promoting low MHC expression. UPK3B is also positively correlated with immune checkpoints, indicating that tumors with high UPK3B expression may not benefit from ICI therapy. Therefore, UPK3B may serve as a novel biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ziying Jian
- Department of Hematology, Zhong da Hospital of Southeast University, Nanjing, China
| | - Tao Pan
- Department of Radiology, Center of Interventional Radiology and Vascular Surgery, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| | - Renjie Li
- School of Medicine, Southeast University, Nanjing, China
| | - Weiyu Zhang
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Tao Cheng
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Hanzhe Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Jialin Song
- School of Medicine, Southeast University, Nanjing, China
| | - Naipeng Shi
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Zhiheng Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
3
|
Yao H, Ren Y, Wu F, Cao L, Liu J, Yan M, Li X. The Discovery of a Novel AXL/Triple Angiokinase Inhibitor Based on 6-Chloro-Substituted Indolinone and Side Chain Methyl Substitution Inhibiting Pancreatic Cancer Growth and Metastasis. J Med Chem 2025; 68:465-490. [PMID: 39711508 DOI: 10.1021/acs.jmedchem.4c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In this study, we discovered and identified a novel AXL/triple angiokinase inhibitor 11b by rational structural modification based on the structure of triple angiokinase inhibitor Nintedanib. We found that 11b potently inhibited AXL expression with the IC50 value of 3.75 nM and possessed similar inhibitory activity on KDR as Nintedanib. In the assay of antiproliferative activity on NIH/3T3, HUVEC, Bxpc-3, and MDA-MB-231, 11b showed better inhibitory ability than Nintedanib. In pancreatic cancer xenograft mouse models from Bxpc-3 cells, even when the dosage was halved, 11b exhibited better or comparable effects to Nintedanib (tumor growth inhibition (TGI) based on tumor volume change during the trial or tumor weight). Notably, we also found that 11b prohibited Bxpc-3 resulted lung metastasis by inhibiting its epithelial-mesenchymal transition (EMT) process. Another mechanism assay also proved that 11b inhibited the function of blood vessels and fibroblasts, promoted apoptosis of cancer and fibroblast cells, and exhibited low toxicity and good metabolic stability.
Collapse
Affiliation(s)
- Han Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Ren
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Longcai Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jiadai Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Dai H, Chen X, Yang J, Wang Y, Loiola RA, Lu A, Cheung KCP. Insights and therapeutic advances in pancreatic cancer: the role of electron microscopy in decoding the tumor microenvironment. Front Cell Dev Biol 2024; 12:1460544. [PMID: 39744013 PMCID: PMC11688199 DOI: 10.3389/fcell.2024.1460544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/23/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, with a 5-year overall survival rate of less than 10%. Despite the development of novel therapies in recent decades, current chemotherapeutic strategies offer limited clinical benefits due to the high heterogeneity and desmoplastic tumor microenvironment (TME) of pancreatic cancer as well as inefficient drug penetration. Antibody- and nucleic acid-based targeting therapies have emerged as strong contenders in pancreatic cancer drug discovery. Numerous studies have shown that these strategies can significantly enhance drug accumulation in tumors while reducing systemic toxicity. Additionally, electron microscopy (EM) has been a critical tool for high-resolution analysis of the TME, providing insights into the ultrastructural changes associated with pancreatic cancer progression and treatment responses. This review traces the current and technological advances in EM, particularly the development of ultramicrotomy and improvements in sample preparation that have facilitated the detailed visualization of cellular and extracellular components of the TME. This review highlights the contribution of EM in assessing the efficacy of therapeutic agents, from revealing apoptotic changes to characterizing the effects of novel compounds like ionophore antibiotic gramicidin A on cellular ultrastructures. Moreover, the review delves into the potential of EM in studying the interactions between the tumor microbiome and cancer cell migration, as well as in aiding the development of targeted therapies like antibody-drug conjugates (ADCs) and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xingxuan Chen
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Jiawen Yang
- School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuying Wang
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | | | - Aiping Lu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kenneth C. P. Cheung
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
6
|
Chen J, Sobecki M, Krzywinska E, Thierry K, Masmoudi M, Nagarajan S, Fan Z, He J, Ferapontova I, Nelius E, Seehusen F, Gotthardt D, Takeda N, Sommer L, Sexl V, Münz C, DeNardo D, Hennino A, Stockmann C. Fibrolytic vaccination against ADAM12 reduces desmoplasia in preclinical pancreatic adenocarcinomas. EMBO Mol Med 2024; 16:3033-3056. [PMID: 39478152 PMCID: PMC11628623 DOI: 10.1038/s44321-024-00157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024] Open
Abstract
A hallmark feature of pancreatic ductal adenocarcinoma (PDAC) is massive intratumoral fibrosis, designated as desmoplasia. Desmoplasia is characterized by the expansion of cancer-associated fibroblasts (CAFs) and a massive increase in extracellular matrix (ECM). During fibrogenesis, distinct genes become reactivated specifically in fibroblasts, e.g., the disintegrin metalloprotease, ADAM12. Previous studies have shown that immunotherapeutic ablation of ADAM12+ cells reduces fibrosis in various organs. In preclinical mouse models of PDAC, we observe ADAM12 expression in CAFs as well as in tumor cells but not in healthy mouse pancreas. Therefore, we tested prophylactic and therapeutic vaccination against ADAM12 in murine PDAC and observed delayed tumor growth along with a reduction in CAFs and tumor desmoplasia. This is furthermore associated with vascular normalization and alleviated tumor hypoxia. The ADAM12 vaccine induces a redistribution of CD8+ T cells within the tumor and cytotoxic responses against ADAM12+ cells. In summary, vaccination against the endogenous fibroblast target ADAM12 effectively depletes CAFs, reduces desmoplasia and delays the growth of murine PDACs. These results provide proof-of-principle for the development of vaccination-based immunotherapies to treat tumor desmoplasia.
Collapse
Affiliation(s)
- Jing Chen
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Michal Sobecki
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Ewelina Krzywinska
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Kevin Thierry
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS, 5286, Lyon, France
| | - Mélissa Masmoudi
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS, 5286, Lyon, France
| | - Shunmugam Nagarajan
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Zheng Fan
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Jingyi He
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Irina Ferapontova
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Eric Nelius
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lukas Sommer
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland
| | - Veronika Sexl
- University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057, Zürich, Switzerland
| | - David DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS, 5286, Lyon, France
| | - Christian Stockmann
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH - 8057, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
7
|
Díaz-Flores L, Gutiérrez R, García-Suárez MP, González-Gómez M, Carrasco JL, Madrid JF, Díaz-Flores L. "Vascular tuft sign" in neuroendocrine tumors of the pancreas. Histol Histopathol 2024; 39:1457-1472. [PMID: 39026502 DOI: 10.14670/hh-18-787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The often well-developed microvasculature in pancreatic neuroendocrine tumors (PanNETs) has been studied from different perspectives. However, some detailed structural findings have received less attention. Our objective is to study an overlooked event in PanNETs: "enclosed vascular tufts" (EVTs). For this purpose, 39 cases of PanNETs were examined with conventional (including serial sections) and immunochemistry procedures. In typical EVTs, the results show: 1) an insulated terminal vascular area, with a globular (glomeruloid) aspect, formed by a cluster of coiled microvessels, presenting CD31-, CD34-positive endothelial cells, αSMA-positive pericytes, and perivascular CD34-positive stromal cells/telocytes, separated by a pseudoglandular space from the surrounding trabeculae of tumor neuroendocrine cells; and 2) a pedicle joining the insulated terminal vascular area, with connective tissue tracts around the enclosing tumor trabeculae. EVTs predominate in the trabecular and nested gyriform pattern of PanNETs, with tumor trabeculae that follow a ribbon coil (winding ribbon pattern) around small vessels, which acquire a tufted image. In EVTs, secondary modifications may occur (fibrosis, hyalinization, myxoid changes, and calcification), coinciding or not with those of the connective tracts. In conclusion, the typical characteristics of unnoticed EVTs allow them to be considered as a morphological sign of PanNETs (a vascular tuft sign). Further in-depth studies are required, mainly to assess the molecular pathways that participate in vascular tuft formation and its pathophysiological implications.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - R Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | | | - M González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, Tenerife, Spain
| | - J L Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - L Díaz-Flores
- Department of Physical Medicine and Pharmacology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| |
Collapse
|
8
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Thomas DL, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Semaphorin 3D promotes pancreatic ductal adenocarcinoma progression and metastasis through macrophage reprogramming. SCIENCE ADVANCES 2024; 10:eadp0684. [PMID: 39413197 PMCID: PMC11801256 DOI: 10.1126/sciadv.adp0684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Axon guidance molecules are frequently altered in pancreatic ductal adenocarcinoma (PDA) and influence PDA progression. However, the molecular mechanism remained unclear. Using genetically engineered mouse models to examine semaphorin 3D (SEMA3D), we identified a dual role for tumor- and nerve-derived SEMA3D in the malignant transformation of pancreatic epithelial cells and invasive PDA development. Pancreatic-specific knockout of the SEMA3D gene from the KRASG12D and TP53R172H mutation knock-in, PDX1-Cre(KPC) mouse model demonstrated delayed tumor initiation, prolonged survival, absence of metastasis, and reduced M2 macrophage expression. Mechanistically, tumor- and nerve-derived SEMA3D indirectly reprograms macrophages through KRASMUT-dependent ARF6 signaling in PDA cells, resulting in increased lactate production, which is sensed by GPCR132 on macrophages to stimulate protumorigenic M2 polarization. Multiplex immunohistochemistry demonstrated increased M2-polarized macrophages proximal to nerves in SEMA3D-expressing human PDA tissue. This study suggests that altered SEMA3D expression leads to an acquisition of cancer-promoting functions, and nerve-derived SEMA3D is "hijacked" by PDA cells to support growth and metastasis in a KRASMUT-dependent manner.
Collapse
Affiliation(s)
- Noelle R. J. Thielman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vanessa Funes
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjana Davuluri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21287, USA
| | - Hector E. Ibanez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wei-Chih Sun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keyu Li
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Stephen Muth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xingyi Pan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenji Fujiwara
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Kimura Hospital and Department of Surgery; Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dwayne L. Thomas
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - MacKenzie Henderson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Selina Shiqing Teh
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Thompson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alex Kolodkin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fengxi Meng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shanghai Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Adi W, Rubio Perez BE, Liu Y, Runkle S, Eliceiri KW, Yesilkoy F. Machine learning-assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:093511. [PMID: 39364328 PMCID: PMC11448345 DOI: 10.1117/1.jbo.29.9.093511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Significance Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues. Aim To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides an MIRSI method to detect fibrillar collagen based on its chemical signatures. Approach We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The other 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment. Results Compared with the SHG ground truth, the generated RF-MIRSI collagen images achieved a high average boundary F -score (0.8 at 4-pixel thresholds) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment. Conclusions We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.
Collapse
Affiliation(s)
- Wihan Adi
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Bryan E. Rubio Perez
- University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, Wisconsin, United States
| | - Yuming Liu
- University of Wisconsin-Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
| | - Sydney Runkle
- University of Wisconsin-Madison, Department of Computer Science, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Filiz Yesilkoy
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
10
|
Grisendi G, Dall'Ora M, Casari G, Spattini G, Farshchian M, Melandri A, Masciale V, Lepore F, Banchelli F, Costantini RC, D'Esposito A, Chiavelli C, Spano C, Spallanzani A, Petrachi T, Veronesi E, Ferracin M, Roncarati R, Vinet J, Magistri P, Catellani B, Candini O, Marra C, Eccher A, Bonetti LR, Horwtiz EM, Di Benedetto F, Dominici M. Combining gemcitabine and MSC delivering soluble TRAIL to target pancreatic adenocarcinoma and its stroma. Cell Rep Med 2024; 5:101685. [PMID: 39168103 PMCID: PMC11384958 DOI: 10.1016/j.xcrm.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) still has a poor response to therapies, partly due to their cancer-associated fibroblasts (CAFs). Here, we investigate the synergistic impact of a combinatory approach between a known chemotherapy agent, such as gemcitabine (GEM), and gene-modified human mesenchymal stromal/stem cells (MSCs) secreting the pro-apoptotic soluble (s)TRAIL (sTRAIL MSCs) on both PDAC cells and CAFs. The combo significantly impacts on PDAC survival in 2D and 3D models. In orthotopic xenograft models, GEM and sTRAIL MSCs induce tumor architecture shredding with a reduction of CK7- and CK8/18-positive cancer cells and the abrogation of spleen metastases. A cytotoxic effect on primary human CAFs is also observed along with an alteration of their transcriptome and a reduction of the related desmoplasia. Collectively, we demonstrate a promising therapeutic profile of combining GEM and sTRAIL MSCs to target both tumoral and stromal compartments in PDAC.
Collapse
Affiliation(s)
- Giulia Grisendi
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy.
| | | | - Giulia Casari
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona
| | | | - Moein Farshchian
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Aurora Melandri
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Fabio Lepore
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, UNIMORE, Modena, Italy
| | | | - Angela D'Esposito
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Carlotta Spano
- Department of Biomedical, Metabolic, and Neural Sciences, UNIMORE, Modena, Italy
| | | | | | | | - Manuela Ferracin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna; IRCCS AOU di Bologna, Policlinico S. Orsola-Malpighi, Bologna
| | | | | | - Paolo Magistri
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, UNIMORE, Modena, Italy
| | - Barbara Catellani
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, UNIMORE, Modena, Italy
| | | | - Caterina Marra
- Division of Plastic Surgery, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Edwin M Horwtiz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabrizio Di Benedetto
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, UNIMORE, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy; Division of Oncology, University-Hospital of Modena, Modena, Italy; Division of Medical Oncology, Residency School of Medical Oncology, Program in Cellular Therapy and Immuno-oncology, Laboratory of Cellular Therapy, University Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
11
|
Wang Y, Li HT, Liu G, Jiang CS, Ni YH, Zeng JH, Lin X, Wang QY, Li DZ, Wang W, Zeng XP. COMP promotes pancreatic fibrosis by activating pancreatic stellate cells through CD36-ERK/AKT signaling pathways. Cell Signal 2024; 118:111135. [PMID: 38479555 DOI: 10.1016/j.cellsig.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP) and pancreatic stellate cells (PSCs) are the key cells of fibrosis. As an extracellular matrix (ECM) glycoprotein, cartilage oligomeric matrix protein (COMP) is critical for collagen assembly and ECM stability and recent studies showed that COMP exert promoting fibrosis effect in the skin, lungs and liver. However, the role of COMP in activation of PSCs and pancreatic fibrosis remain unclear. We aimed to investigate the role and specific mechanisms of COMP in regulating the profibrotic phenotype of PSCs and pancreatic fibrosis. METHODS ELISA method was used to determine serum COMP in patients with CP. Mice model of CP was established by repeated intraperitoneal injection of cerulein and pancreatic fibrosis was evaluated by Hematoxylin-Eosin staining (H&E) and Sirius red staining. Immunohistochemical staining was used to detect the expression changes of COMP and fibrosis marker such as α-SMA and Fibronectin in pancreatic tissue of mice. Cell Counting Kit-8, Wound Healing and Transwell assessed the proliferation and migration of human pancreatic stellate cells (HPSCs). Western blotting, qRT-PCR and immunofluorescence staining were performed to detect the expression of fibrosis marker, AKT and MAPK family proteins in HPSCs. RNA-seq omics analysis as well as small interfering RNA of COMP, recombinant human COMP (rCOMP), MEK inhibitors and PI3K inhibitors were used to study the effect and mechanism of COMP on activation of HPSCs. RESULTS ELISA showed that the expression of COMP significantly increased in the serum of CP patients. H&E and Sirius red staining analysis showed that there was a large amount of collagen deposition in the mice in the CP model group and high expression of COMP, α-SMA, Fibronectin and Vimentin were observed in fibrotic tissues. TGF-β1 stimulates the activation of HPSCs and increases the expression of COMP. Knockdown of COMP inhibited proliferation and migration of HPSCs. Further, RNA-seq omics analysis and validation experiments in vitro showed that rCOMP could significantly promote the proliferation and activation of HPSCs, which may be due to promoting the phosphorylation of ERK and AKT through membrane protein receptor CD36. rCOMP simultaneously increased the expression of α-SMA, Fibronectin and Collagen I in HPSCs. CONCLUSION In conclusion, this study showed that COMP was up-regulated in CP fibrotic tissues and COMP induced the activation, proliferation and migration of PSCs through the CD36-ERK/AKT signaling pathway. COMP may be a potential therapeutic candidate for the treatment of CP. Interfering with the expression of COMP or the communication between COMP and CD36 on PSCs may be the next direction for therapeutic research.
Collapse
Affiliation(s)
- Yi Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hai-Tao Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Gang Liu
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Yan-Hong Ni
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing-Hui Zeng
- Department of Presbyatrics, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xia Lin
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qing-Yun Wang
- Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| | - Wen Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| | - Xiang-Peng Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| |
Collapse
|
12
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
13
|
Adi W, Perez BER, Liu Y, Runkle S, Eliceiri KW, Yesilkoy F. Machine learning assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595393. [PMID: 38826188 PMCID: PMC11142197 DOI: 10.1101/2024.05.22.595393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Significance Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues. Aim To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides a mid-infrared spectral imaging method to detect fibrillar collagen based on its chemical signatures. Approach We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The remaining 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment. Results Compared to the SHG ground truth, the generated MIRSI collagen images achieved a high average boundary F-score (0.8 at 4 pixels threshold) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment. Conclusions We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.
Collapse
Affiliation(s)
- Wihan Adi
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Bryan E. Rubio Perez
- Department of Electrical and Computer Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sydney Runkle
- Department of Computer Science University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Filiz Yesilkoy
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
14
|
Tansi FL, Schrepper A, Schwarzer M, Teichgräber U, Hilger I. Identifying the Morphological and Molecular Features of a Cell-Based Orthotopic Pancreatic Cancer Mouse Model during Growth over Time. Int J Mol Sci 2024; 25:5619. [PMID: 38891809 PMCID: PMC11171605 DOI: 10.3390/ijms25115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by hypovascularity, hypoxia, and desmoplastic stroma is one of the deadliest malignancies in humans, with a 5-year survival rate of only 7%. The anatomical location of the pancreas and lack of symptoms in patients with early onset of disease accounts for late diagnosis. Consequently, 85% of patients present with non-resectable, locally advanced, or advanced metastatic disease at diagnosis and rely on alternative therapies such as chemotherapy, immunotherapy, and others. The response to these therapies highly depends on the stage of disease at the start of therapy. It is, therefore, vital to consider the stages of PDAC models in preclinical studies when testing new therapeutics and treatment modalities. We report a standardized induction of cell-based orthotopic pancreatic cancer models in mice and the identification of vital features of their progression by ultrasound imaging and histological analysis of the level of pancreatic stellate cells, mature fibroblasts, and collagen. The results highlight that early-stage primary tumors are secluded in the pancreas and advance towards infiltrating the omentum at week 5-7 post implantation of the BxPC-3 and Panc-1 models investigated. Late stages show extensive growth, the infiltration of the omentum and/or stomach wall, metastases, augmented fibroblasts, and collagen levels. The findings can serve as suggestions for defining growth parameter-based stages of orthotopic pancreatic cancer models for the preclinical testing of drug efficacy in the future.
Collapse
Affiliation(s)
- Felista L. Tansi
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Ingrid Hilger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
15
|
Li Y, Zheng Y, Xu S, Hu H, Peng L, Zhu J, Wu M. The nanobody targeting PD-L1 and CXCR4 counteracts pancreatic stellate cell-mediated tumour progression by disrupting tumour microenvironment. Int Immunopharmacol 2024; 132:111944. [PMID: 38581990 DOI: 10.1016/j.intimp.2024.111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy worldwide owing to its complex tumour microenvironment and dense physical barriers. Stromal-derived factor-1 (SDF-1), which is abundantly secreted by tumour stromal cells, plays a pivotal role in promoting PDAC growth and metastasis. In this study, we investigated the impact and molecular mechanisms of the anti-PD-L1&CXCR4 bispecific nanobody on the TME and their consequent interference with PDAC progression. We found that blocking the SDF-1/CXCR4 signalling pathway delayed the epithelial-mesenchymal transition in pancreatic cancer cells. Anti-PD-L1&CXCR4 bispecific nanobody effectively suppress the secretion of SDF-1 by pancreatic stellate cells and downregulate the expression of smooth muscle actin alpha(α-SMA), thereby preventing the activation of cancer-associated fibroblasts by downregulating the PI3K/AKT signaling pathway. This improves the pancreatic tumour microenvironment, favouring the infiltration of T cells into the tumour tissue. In conclusion, our results suggest that the anti-PD-L1&CXCR4 bispecific nanobody exerts an antitumor immune response by changing the pancreatic tumour microenvironment. Hence, the anti-PD-L1&CXCR4 bispecific nanobody is a potential candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yaxian Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Yuejiang Zheng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Shuyi Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Hai Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Liyun Peng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Mingyuan Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
16
|
Abraham T, Armold M, McGovern C, Harms JF, Darok MC, Gigliotti C, Adair B, Gray JL, Kelly DF, Adair JH, Matters GL. CCK Receptor Inhibition Reduces Pancreatic Tumor Fibrosis and Promotes Nanoparticle Delivery. Biomedicines 2024; 12:1024. [PMID: 38790986 PMCID: PMC11118934 DOI: 10.3390/biomedicines12051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The poor prognosis for pancreatic ductal adenocarcinoma (PDAC) patients is due in part to the highly fibrotic nature of the tumors that impedes delivery of therapeutics, including nanoparticles (NPs). Our prior studies demonstrated that proglumide, a cholecystokinin receptor (CCKR) antagonist, reduced fibrosis pervading PanIN lesions in mice. Here, we further detail how the reduced fibrosis elicited by proglumide achieves the normalization of the desmoplastic tumor microenvironment (TME) and improves nanoparticle uptake. One week following the orthotopic injection of PDAC cells, mice were randomized to normal or proglumide-treated water for 3-6 weeks. Tumors were analyzed ex vivo for fibrosis, vascularity, stellate cell activation, vascular patency, and nanoparticle distribution. The histological staining and three-dimensional imaging of tumors each indicated a reduction in stromal collagen in proglumide-treated mice. Proglumide treatment increased tumor vascularity and decreased the activation of cancer-associated fibroblasts (CAFs). Additionally, PANC-1 cells with the shRNA-mediated knockdown of the CCK2 receptor showed an even greater reduction in collagen, indicating the CCK2 receptors on tumor cells contribute to the desmoplastic TME. Proglumide-mediated reduction in fibrosis also led to functional changes in the TME as evidenced by the enhanced intra-tumoral distribution of small (<12 nm) Rhodamine-loaded nanoparticles. The documented in vivo, tumor cell-intrinsic anti-fibrotic effects of CCK2R blockade in both an immunocompetent syngeneic murine PDAC model as well as a human PDAC xenograft model demonstrates that CCK2R antagonists, such as proglumide, can improve the delivery of nano-encapsulated therapeutics or imaging agents to pancreatic tumors.
Collapse
Affiliation(s)
- Thomas Abraham
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - Michael Armold
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - Christopher McGovern
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| | - John F. Harms
- Department of Biological Sciences, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Matthew C. Darok
- Department of Biological Sciences, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Christopher Gigliotti
- Department of Materials Science & Engineering, Pennsylvania State University, 407 Steidle Building, University Park, PA 16802, USA
| | - Bernadette Adair
- Department of Materials Science & Engineering, Pennsylvania State University, 407 Steidle Building, University Park, PA 16802, USA
| | - Jennifer L. Gray
- N-022 Millennium Science Complex, Materials Research Institute, Pollock Road, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, The Center for Structural Oncology, 506 Chemical and Biomedical Engineering, Pennsylvania State University, University Park, PA 16803, USA
| | - James H. Adair
- Departments of Materials Science & Engineering, Biomedical Engineering, and Pharmacology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Gail L. Matters
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, P.O. Box 850, Hershey, PA 17036, USA
| |
Collapse
|
17
|
Abe S, Masuda A, Matsumoto T, Inoue J, Toyama H, Sakai A, Kobayashi T, Tanaka T, Tsujimae M, Yamakawa K, Gonda M, Masuda S, Uemura H, Kohashi S, Inomata N, Nagao K, Harada Y, Miki M, Irie Y, Juri N, Ko T, Yokotani Y, Oka Y, Ota S, Kanzawa M, Itoh T, Imai T, Fukumoto T, Hara E, Kodama Y. Impact of intratumoral microbiome on tumor immunity and prognosis in human pancreatic ductal adenocarcinoma. J Gastroenterol 2024; 59:250-262. [PMID: 38242997 PMCID: PMC10904450 DOI: 10.1007/s00535-023-02069-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Recent evidence suggests that the presence of microbiome within human pancreatic ductal adenocarcinoma (PDAC) tissue potentially influences cancer progression and prognosis. However, the significance of tumor-resident microbiome remains unclear. We aimed to elucidate the impact of intratumoral bacteria on the pathophysiology and prognosis of human PDAC. METHODS The presence of intratumoral bacteria was assessed in 162 surgically resected PDACs using quantitative polymerase chain reaction (qPCR) and in situ hybridization (ISH) targeting 16S rRNA. The intratumoral microbiome was explored by 16S metagenome sequencing using DNA extracted from formalin-fixed paraffin-embedded tissues. The profile of intratumoral bacteria was compared with clinical information, pathological findings including tumor-infiltrating T cells, tumor-associated macrophage, fibrosis, and alterations in four main driver genes (KRAS, TP53, CDKN2A/p16, SMAD4) in tumor genomes. RESULTS The presence of intratumoral bacteria was confirmed in 52 tumors (32%) using both qPCR and ISH. The 16S metagenome sequencing revealed characteristic bacterial profiles within these tumors, including phyla such as Proteobacteria and Firmicutes. Comparison of bacterial profiles between cases with good and poor prognosis revealed a significant positive correlation between a shorter survival time and the presence of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus. The abundance of these bacteria was correlated with a decrease in the number of tumor-infiltrating T cells positive for CD4, CD8, and CD45RO. CONCLUSIONS Intratumoral infection of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus is correlated with the suppressed anti-PDAC immunity and poor prognosis.
Collapse
Affiliation(s)
- Shohei Abe
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Tomonori Matsumoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hirochika Toyama
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Arata Sakai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Tanaka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masahiro Tsujimae
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamakawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Gonda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shigeto Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hisahiro Uemura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Kohashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Inomata
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kae Nagao
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yoshiyuki Harada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Mika Miki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yosuke Irie
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Juri
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Testuhisa Ko
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yusuke Yokotani
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yuki Oka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shogo Ota
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Maki Kanzawa
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Toshio Imai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
18
|
Tushoski-Alemán GW, Herremans KM, Underwood PW, Akki A, Riner AN, Trevino JG, Han S, Hughes SJ. Infiltration of CD3+ and CD8+ lymphocytes in association with inflammation and survival in pancreatic cancer. PLoS One 2024; 19:e0297325. [PMID: 38346068 PMCID: PMC10861089 DOI: 10.1371/journal.pone.0297325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinomas (PDAC) have heterogeneous tumor microenvironments relatively devoid of infiltrating immune cells. We aimed to quantitatively assess infiltrating CD3+ and CD8+ lymphocytes in a treatment-naïve patient cohort and assess associations with overall survival and microenvironment inflammatory proteins. METHODS Tissue microarrays were immunohistochemically stained for CD3+ and CD8+ lymphocytes and quantitatively assessed using QuPath. Levels of inflammation-associated proteins were quantified by multiplexed, enzyme-linked immunosorbent assay panels on matching tumor and tissue samples. RESULTS Our findings revealed a significant increase in both CD3+ and CD8+ lymphocytes populations in PDAC compared with non-PDAC tissue, except when comparing CD8+ percentages in PDAC versus intraductal papillary mucinous neoplasms (IPMN) (p = 0.5012). Patients with quantitatively assessed CD3+ low tumors (lower 50%) had shorter survival (median 273 days) compared to CD3+ high tumors (upper 50%) with a median overall survival of 642.5 days (p = 0.2184). Patients with quantitatively assessed CD8+ low tumors had significantly shorter survival (median 240 days) compared to CD8+ high tumors with a median overall survival of 1059 days (p = 0.0003). Of 41 proteins assessed in the inflammation assay, higher levels of IL-1B and IL-2 were significantly associated with decreased CD3+ infiltration (r = -0.3704, p = 0.0187, and r = -0.4275, p = 0.0074, respectively). Higher levels of IL-1B were also significantly associated with decreased CD8+ infiltration (r = -0.4299, p = 0.0045), but not IL-2 (r = -0.0078, p = 0.9616). Principal component analysis of the inflammatory analytes showed diverse inflammatory responses in PDAC. CONCLUSION In this work, we found a marked heterogeneity in infiltrating CD3+ and CD8+ lymphocytes and individual inflammatory responses in PDAC. Future mechanistic studies should explore personalized therapeutic strategies to target the immune and inflammatory components of the tumor microenvironment.
Collapse
Affiliation(s)
- Gerik W. Tushoski-Alemán
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kelly M. Herremans
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Patrick W. Underwood
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ashwin Akki
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Andrea N. Riner
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jose G. Trevino
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
19
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Thomas D, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Tumor- and Nerve-Derived Axon Guidance Molecule Promotes Pancreatic Ductal Adenocarcinoma Progression and Metastasis through Macrophage Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563862. [PMID: 37961340 PMCID: PMC10634802 DOI: 10.1101/2023.10.24.563862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Axon guidance molecules were found to be the gene family most frequently altered in pancreatic ductal adenocarcinoma (PDA) through mutations and copy number changes. However, the exact molecular mechanism regarding PDA development remained unclear. Using genetically engineered mouse models to examine one of the axon guidance molecules, semaphorin 3D (SEMA3D), we found a dual role for tumor-derived SEMA3D in malignant transformation of pancreatic epithelial cells and a role for nerve-derived SEMA3D in PDA development. This was demonstrated by the pancreatic-specific knockout of the SEMA3D gene from the KRAS G12D and TP53 R 172 H mutation knock-in, PDX1-Cre (KPC) mouse model which demonstrated a delayed tumor initiation and growth comparing to the original KPC mouse model. Our results showed that SEMA3D knockout skews the macrophages in the pancreas away from M2 polarization, providing a potential mechanistic role of tumor-derived SEMA3D in PDA development. The KPC mice with the SEMA3D knockout remained metastasis-free, however, died from primary tumor growth. We then tested the hypothesis that a potential compensation mechanism could result from SEMA3D which is naturally expressed by the intratumoral nerves. Our study further revealed that nerve-derived SEMA3D does not reprogram macrophages directly, but reprograms macrophages indirectly through ARF6 signaling and lactate production in PDA tumor cells. SEMA3D increases tumor-secreted lactate which is sensed by GPCR132 on macrophages and subsequently stimulates pro-tumorigenic M2 polarization in vivo. Tumor intrinsic- and extrinsic-SEMA3D induced ARF6 signaling through its receptor Plexin D1 in a mutant KRAS-dependent manner. Consistently, RNA sequencing database analysis revealed an association of higher KRAS MUT expression with an increase in SEMA3D and ARF6 expression in human PDAs. Moreover, multiplex immunohistochemistry analysis showed an increased number of M2-polarized macrophages proximal to nerves in human PDA tissue expressing SEMA3D. Thus, this study suggests altered expression of SEMA3D in tumor cells lead to acquisition of cancer-promoting functions and the axon guidance signaling originating from nerves is "hijacked" by tumor cells to support their growth. Other axon guidance and neuronal development molecules may play a similar dual role which is worth further investigation. One sentence summary Tumor- and nerve-derived SEMA3D promotes tumor progression and metastasis through macrophage reprogramming in the tumor microenvironment. STATEMENT OF SIGNIFICANCE This study established the dual role of axon guidance molecule, SEMA3D, in the malignant transformation of pancreatic epithelial cells and of nerve-derived SEMA3D in PDA progression and metastasis. It revealed macrophage reprogramming as the mechanism underlying bothroles. Together, this research elucidated how inflammatory responses promote invasive PDA progression and metastasis through an oncogenic process.
Collapse
|
21
|
Li M, Wu B, Li L, Lv C, Tian Y. Reprogramming of cancer-associated fibroblasts combined with immune checkpoint inhibitors: A potential therapeutic strategy for cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188945. [PMID: 37356739 DOI: 10.1016/j.bbcan.2023.188945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Activated fibroblasts, namely cancer-associated fibroblasts (CAFs), are highly heterogeneous in phenotypes, functions, and origins. CAFs originated from varieties of cell types, including local resident fibroblasts, epithelial cells, mesenchymal stromal cells, or others. These cells participate in tumor angiogenesis, mechanics, drug access, and immune suppression, with the latter being particularly important. It was difficult to distinguish CAFs by subsets due to their complex origins until the use of scRNA-seq. Reprogramming CAFs with TGFβ-RI inhibitor, a CXCR4 blocker, or other methods increases T cells activation and infiltration, together with a decrease in CAFs recruitment, thus improving the prognosis. As depletion of CAFs can't bring clinical benefit, the combination of reprogramming CAFs and immune checkpoint inhibitors (ICIs) come into consideration. It has shown better outcomes compared with monotherapy respectively in basic/preclinical researches, and needs more data on clinical trials. Combination therapy may be a promising and expecting method for treatment of cancer.
Collapse
Affiliation(s)
- Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center(Group), No. 1 Dunhuang Road, Dalian 116000, Liaoning Province, China; Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
22
|
Chang M, Chen W, Xia R, Peng Y, Niu P, Fan H. Pancreatic Stellate Cells and the Targeted Therapeutic Strategies in Chronic Pancreatitis. Molecules 2023; 28:5586. [PMID: 37513458 PMCID: PMC10383437 DOI: 10.3390/molecules28145586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic pancreatitis (CP) is a disease characterized by inflammatory recurrence that accompanies the development of pancreatic fibrosis. As the mystery of CP pathogenesis is gradually revealed, accumulating evidence suggests that the activation of pancreatic stellate cells (PSCs) and the appearance of a myofibroblast-like phenotype are the key gatekeepers in the development of CP. Targeting PSCs to prevent their activation and conversion to a myofibroblast-like phenotype, as well as increasing antioxidant capacity to counteract ongoing oxidative stress, are effective strategies for preventing or treating CP. Therefore, we reviewed the crosstalk between CP and pancreatic fibrosis, summarized the activation mechanisms of PSCs, and investigated potential CP therapeutic strategies targeting PSCs, including, but not limited to, anti-fibrosis therapy, antioxidant therapy, and gene therapy. Meanwhile, the above therapeutic strategies are selected in order to update the available phytopharmaceuticals as novel complementary or alternative approaches for the prevention and treatment of CP to clarify their potential mechanisms of action and their relevant molecular targets, aiming to provide the most comprehensive therapeutic treatment direction for CP and to bring new hope to CP patients.
Collapse
Affiliation(s)
- Man Chang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjuan Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruting Xia
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yangyue Peng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pandi Niu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
23
|
Stouten I, van Montfoort N, Hawinkels LJAC. The Tango between Cancer-Associated Fibroblasts (CAFs) and Immune Cells in Affecting Immunotherapy Efficacy in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24108707. [PMID: 37240052 DOI: 10.3390/ijms24108707] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The lack of response to therapy in pancreatic ductal adenocarcinoma (PDAC) patients has contributed to PDAC having one of the lowest survival rates of all cancer types. The poor survival of PDAC patients urges the exploration of novel treatment strategies. Immunotherapy has shown promising results in several other cancer types, but it is still ineffective in PDAC. What sets PDAC apart from other cancer types is its tumour microenvironment (TME) with desmoplasia and low immune infiltration and activity. The most abundant cell type in the TME, cancer-associated fibroblasts (CAFs), could be instrumental in why low immunotherapy responses are observed. CAF heterogeneity and interactions with components of the TME is an emerging field of research, where many paths are to be explored. Understanding CAF-immune cell interactions in the TME might pave the way to optimize immunotherapy efficacy for PDAC and related cancers with stromal abundance. In this review, we discuss recent discoveries on the functions and interactions of CAFs and how targeting CAFs might improve immunotherapy.
Collapse
Affiliation(s)
- Imke Stouten
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
24
|
Liu Z, Hayashi H, Matsumura K, Uemura N, Shiraishi Y, Sato H, Baba H. Biological and Clinical Impacts of Glucose Metabolism in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15020498. [PMID: 36672448 PMCID: PMC9856866 DOI: 10.3390/cancers15020498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer type as it is prone to metastases and is difficult to diagnose at an early stage. Despite advances in molecular detection, its clinical prognosis remains poor and it is expected to become the second leading cause of cancer-related deaths. Approximately 85% of patients develop glucose metabolism disorders, most commonly diabetes mellitus, within three years prior to their pancreatic cancer diagnosis. Diabetes, or glucose metabolism disorders related to PDAC, are typically associated with insulin resistance, and beta cell damage, among other factors. From the perspective of molecular regulatory mechanisms, glucose metabolism disorders are closely related to PDAC initiation and development and to late invasion and metastasis. In particular, abnormal glucose metabolism impacts the nutritional status and prognosis of patients with PDAC. Meanwhile, preliminary research has shown that metformin and statins are effective for the prevention or treatment of malignancies; however, no such effect has been shown in clinical trials. Hence, the causes underlying these conflicting results require further exploration. This review focuses on the clinical significance of glucose metabolism disorders in PDAC and the mechanisms behind this relationship, while also summarizing therapeutic approaches that target glycolysis.
Collapse
|
25
|
Pecqueux M, Wende B, Sommer U, Baenke F, Oehme F, Hempel S, Aust D, Distler M, Weitz J, Kahlert C. RAB27B expression in pancreatic cancer is predictive of poor survival but good response to chemotherapy. Cancer Biomark 2023; 37:207-215. [PMID: 37248891 PMCID: PMC10473075 DOI: 10.3233/cbm-220460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pancreatic cancer is the 4th leading cause of cancer-related death with poor survival even after curative resection. RAB27A and RAB27B are key players in the exosome pathway where they play important roles in exosome secretion. Evidence suggests that RAB27A and RAB27B expression not only leads to tumor proliferation and invasion, but also plays an important role in antigen transfer necessary for anticancer immunity. OBJECTIVE In this study, we analyze the expression of RAB27A and RAB27B in patients after pancreatic cancer surgery with or without adjuvant chemotherapy and its influence on overall survival. METHODS We analyzed a total of 167 patients with pancreatic cancer for their RAB27A and RAB27B expression. We dichotomized the patients along the median and compared survival in patients with high and low RAB27A and RAB27B expression with or without adjuvant chemotherapy treatment. RESULTS We found a significant improvement in overall survival in patients with a negative resection margin (p= 0.037) and in patients who received adjuvant chemotherapy (p= 0.039). The survival benefit after chemotherapy was dependent on RAB27B expression status: only the subgroup of patients with high RAB27B expression benefited from adjuvant chemotherapy (p= 0.006), but not the subgroup with low RAB27B expression (p= 0.59). Patients with high RAB27B expression who did not receive adjuvant chemotherapy showed a trend towards worse survival compared to the other subgroups. This difference was abolished after treatment with adjuvant chemotherapy. CONCLUSION These results suggest that RAB27B expression in pancreatic cancer might identify a subgroup of patients with poor survival who might respond well to adjuvant chemotherapy. If resectable, these patients could be considered for neoadjuvant chemotherapy to minimize the risk of not receiving adjuvant chemotherapy. Further prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mathieu Pecqueux
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Beate Wende
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ulrich Sommer
- Department of Pathology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Florian Oehme
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Sebastian Hempel
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Daniela Aust
- Department of Pathology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
26
|
Lefler JE, MarElia-Bennett CB, Thies KA, Hildreth BE, Sharma SM, Pitarresi JR, Han L, Everett C, Koivisto C, Cuitino MC, Timmers CD, O'Quinn E, Parrish M, Romeo MJ, Linke AJ, Hobbs GA, Leone G, Guttridge DC, Zimmers TA, Lesinski GB, Ostrowski MC. STAT3 in tumor fibroblasts promotes an immunosuppressive microenvironment in pancreatic cancer. Life Sci Alliance 2022; 5:e202201460. [PMID: 35803738 PMCID: PMC9270499 DOI: 10.26508/lsa.202201460] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with an incredibly dense stroma, which contributes to its recalcitrance to therapy. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types within the PDAC stroma and have context-dependent regulation of tumor progression in the tumor microenvironment (TME). Therefore, understanding tumor-promoting pathways in CAFs is essential for developing better stromal targeting therapies. Here, we show that disruption of the STAT3 signaling axis via genetic ablation of Stat3 in stromal fibroblasts in a Kras G12D PDAC mouse model not only slows tumor progression and increases survival, but re-shapes the characteristic immune-suppressive TME by decreasing M2 macrophages (F480+CD206+) and increasing CD8+ T cells. Mechanistically, we show that loss of the tumor suppressor PTEN in pancreatic CAFs leads to an increase in STAT3 phosphorylation. In addition, increased STAT3 phosphorylation in pancreatic CAFs promotes secretion of CXCL1. Inhibition of CXCL1 signaling inhibits M2 polarization in vitro. The results provide a potential mechanism by which CAFs promote an immune-suppressive TME and promote tumor progression in a spontaneous model of PDAC.
Collapse
Affiliation(s)
- Julia E Lefler
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Catherine B MarElia-Bennett
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Katie A Thies
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Blake E Hildreth
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sudarshana M Sharma
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Han
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Caroline Everett
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher Koivisto
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Maria C Cuitino
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Cynthia D Timmers
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth O'Quinn
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Melodie Parrish
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J Romeo
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda J Linke
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - G Aaron Hobbs
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Denis C Guttridge
- Department of Pediatrics and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Teresa A Zimmers
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Michael C Ostrowski
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
27
|
Dai M, Chen S, Teng X, Chen K, Cheng W. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer 2022; 13:3209-3220. [PMID: 36118526 PMCID: PMC9475360 DOI: 10.7150/jca.76695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors, with a 5-year survival rate of less than 10%. At present, the comprehensive treatment based on surgery, radiotherapy and chemotherapy has encountered a bottleneck, and targeted immunotherapy turns to be the direction of future development. About 90% of PDAC patients have KRAS mutations, and KRAS has been widely used in the diagnosis, treatment, and prognosis of PDAC in recent years. With the development of liquid biopsy and gene testing, KRAS is expected to become a new biomarker to assist the stratification and prognosis of PDAC patients. An increasing number of small molecule inhibitors acting on the KRAS pathway are being developed and put into the clinic, providing more options for PDAC patients.
Collapse
Affiliation(s)
- Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Shaofeng Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, National Clinical Center for Schistosomiasis Treatment, Yueyang 414000, Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| |
Collapse
|
28
|
Heterogeneity of Cancer-Associated Fibroblasts and the Tumor Immune Microenvironment in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14163994. [PMID: 36010986 PMCID: PMC9406547 DOI: 10.3390/cancers14163994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Stroma-targeting therapy in pancreatic ductal adenocarcinoma (PDAC) has been extensively investigated, but no candidates have shown efficacy at the clinical trial stage. Studies of cancer-associated fibroblast (CAF) depletion in a mouse model suggested that CAFs have not only tumor-promoting function but also tumor-suppressive activity. Recently, single-cell RNA sequencing (scRNA-seq) has revealed the complex tumor microenvironment within PDAC, and subpopulations of functionally distinct CAFs and their association with tumor immunity have been reported. However, the existence of tumor suppressive CAFs and CAFs involved in the maintenance of PDAC differentiation has also been reported. In the future, therapeutic strategies should be developed considering these CAF subpopulations, with the hope of improving the prognosis of PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a 5-year survival rate of 9%. Cancer-associated fibroblasts (CAFs) have historically been considered tumor-promoting. However, multiple studies reporting that suppression of CAFs in PDAC mouse models resulted in more aggressive tumors and worse prognosis have suggested the existence of a tumor-suppressive population within CAFs, leading to further research on heterogeneity within CAFs. In recent years, the benefits of cancer immunotherapy have been reported in various carcinomas. Unfortunately, the efficacy of immunotherapies in PDAC has been limited, and the CAF-driven cancer immunosuppressive microenvironment has been suggested as the cause. Thus, clarification of heterogeneity within the tumor microenvironment, including CAFs and tumor immunity, is urgently needed to establish effective therapeutic strategies for PDAC. In this review, we report the latest findings on the heterogeneity of CAFs and the functions of each major CAF subtype, which have been revealed by single-cell RNA sequencing in recent years. We also describe reports of tumor-suppressive CAF subtypes and the existence of CAFs that maintain a differentiated PDAC phenotype and review the potential for targeted therapy.
Collapse
|
29
|
Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, Tan EL, Ng SH, Masamune A, Ghafar SAA, Ismail N, Ho KL. Conditioned media of pancreatic cancer cells and pancreatic stellate cells induce myeloid-derived suppressor cells differentiation and lymphocytes suppression. Sci Rep 2022; 12:12315. [PMID: 35853996 PMCID: PMC9296552 DOI: 10.1038/s41598-022-16671-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
Collapse
Affiliation(s)
- Yuen Ping Chong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Evelyn Priya Peter
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Feon Jia Ming Lee
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chu Mun Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Shereen Chai
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lorni Poh Chou Ling
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sook Han Ng
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Seremban, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ket Li Ho
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Masugi Y. The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14133293. [PMID: 35805064 PMCID: PMC9265767 DOI: 10.3390/cancers14133293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic cancer is a highly malignant disease with treatment resistance to standardized chemotherapies. In addition, only a small fraction of patients with pancreatic cancer has, to date, actionable genetic aberrations, leading to a narrow therapeutic window for molecularly targeted therapies or immunotherapies. A lot of preclinical and translational studies are ongoing to discover potential vulnerabilities to treat pancreatic cancer. Histologically, human pancreatic cancer is characterized by abundant cancer-associated fibrotic stroma, called “desmoplastic stroma”. Recent technological advances have revealed that desmoplastic stroma in pancreatic cancer is much more complicated than previously thought, playing pleiotropic roles in manipulating tumor cell fate and anti-tumor immunity. Moreover, real-world specimen-based analyses of pancreatic cancer stroma have also uncovered spatial heterogeneity and an intertumoral variety associated with molecular alterations, clinicopathological factors, and patient outcomes. This review describes an overview of the current efforts in the field of pancreatic cancer stromal biology and discusses treatment opportunities of stroma-modifying therapies against this hard-to-treat cancer. Abstract Pancreatic cancer remains one of the most lethal malignancies and is becoming a dramatically increasing cause of cancer-related mortality worldwide. Abundant desmoplastic stroma is a histological hallmark of pancreatic ductal adenocarcinoma. Emerging evidence suggests a promising therapeutic effect of several stroma-modifying therapies that target desmoplastic stromal elements in the pancreatic cancer microenvironment. The evidence also unveils multifaceted roles of cancer-associated fibroblasts (CAFs) in manipulating pancreatic cancer progression, immunity, and chemotherapeutic response. Current state-of-the-art technologies, including single-cell transcriptomics and multiplexed tissue imaging techniques, have provided a more profound knowledge of CAF heterogeneity in real-world specimens from pancreatic cancer patients, as well as in genetically engineered mouse models. In this review, we describe recent advances in the understanding of the molecular pathology bases of pancreatic cancer desmoplastic stroma at multilayered levels of heterogeneity, namely, (1) variations in cellular and non-cellular members, including CAF subtypes and extracellular matrix (ECM) proteins; (2) geographical heterogeneity in relation to cell–cell interactions and signaling pathways at niche levels and spatial heterogeneity at locoregional levels or organ levels; and (3) intertumoral stromal heterogeneity at individual levels. This review further discusses the clinicopathological significance of desmoplastic stroma and the potential opportunities for stroma-targeted therapies against this lethal malignancy.
Collapse
Affiliation(s)
- Yohei Masugi
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo 1608582, Japan; ; Tel.: +81-3-5363-3764; Fax: +81-3-3353-3290
- Department of Pathology, Keio University School of Medicine, Tokyo 1608582, Japan
| |
Collapse
|
31
|
Zhu L, Mao H, Yang L. Advanced iron oxide nanotheranostics for multimodal and precision treatment of pancreatic ductal adenocarcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1793. [PMID: 35396932 PMCID: PMC9373845 DOI: 10.1002/wnan.1793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite current advances in new approaches for cancer detection and treatment, pancreatic cancer remains one of the most lethal cancer types. Difficult to detect early, aggressive tumor biology, and resistance to chemotherapy, radiotherapy, and immunotherapy result in a poor prognosis of pancreatic cancer patients with a 5-year survival of 10%. With advances in cancer nanotechnology, new imaging and drug delivery approaches that allow the development of multifunctional nanotheranostic agents offer opportunities for improving pancreatic cancer treatment using precision oncology. In this review, we will introduce potential applications of innovative theranostic strategies to address major challenges in the treatment of pancreatic cancer at different disease stages. Several important issues concerning targeted delivery of theranostic nanoparticles and tumor stromal barriers are discussed. We then focus on the development of a magnetic iron oxide nanoparticle platform for multimodal therapy of pancreatic cancer, including MRI monitoring targeted nanoparticle/drug delivery, therapeutic response, and tumor re-staging, activation of tumor immune response by immunoactivating nanoparticle and magnetic hyperthermia therapy, and intraoperative interventions for improving the outcome of targeted therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Jiang W, He R, Lu Y, Zhou W. The relationships between antihypertensive medications and the overall survival of patients with pancreatic cancer: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2022; 16:547-553. [PMID: 35686669 DOI: 10.1080/17474124.2022.2088506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Antihypertensive medications may have some impacts on cancer. The influence of antihypertensive medications, including angiotensin converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs), beta-blockers, calcium channel blockers (CCBs) and diuretics, on patients with pancreatic cancer (PC) remains controversial. This meta-analysis was conducted to investigate whether antihypertensive medications had a negative effect on the prognosis of patients with PC. METHODS The PubMed, Embase, Web of Science and the Cochrane Library databases were searched up to 30 November 2021. The Newcastle-Ottawa scale was used to evaluate the quality of each study. This meta-analysis was registered with PROSPERO (CRD42021279169) and was carried out by using RevMan 5.3. RESULTS Twelve studies with 120,549 patients were included in this study. ACEIs/ARBs [HR = 0.89, 95% CI (0.70-1.14)], CCB (HR = 0.69, 95% CI (0.47-0.99)], beta-blockers [HR = 0.95, 95% CI (0.84-1.07)] and diuretics [HR = 1.08, 95% CI (0.91-1.29)] use had no effects on overall survival among patients with PC (all P ≥ 0.05). CONCLUSION Antihypertensive medication will not have a negative effect on overall survival in patients with PC. PC patients with hypertension should continue to use antihypertensive medications to reduce the morbidity and mortality of cardiovascular events.
Collapse
Affiliation(s)
- Wenkai Jiang
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Ru He
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yongyan Lu
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Wence Zhou
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, China.,Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| |
Collapse
|
33
|
Gao G, Wang L, Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res 2022; 12:1934-1959. [PMID: 35693076 PMCID: PMC9185628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023] Open
Abstract
Extracellular vesicles, particularly exosomes, play a vital role via their cargoes. Their potential in pancreatic ductal adenocarcinoma (PDAC), one of the leading causes of cancer-related mortality worldwide is attracting interests. However, the roles and underlying mechanisms of exosomal circular RNAs (circRNAs) in the development of PDAC remain unclear yet. We aimed to illuminate the mechanisms of exosomal hsa_circ_0006790 (thereafter termed circ_6790) released by exosomes (Exo) derived from bone marrow mesenchymal stem cell (BM-MSC) during immune escape in PDAC in this study. BM-MSC-derived Exo inhibited growth, metastasis, and immune escape in PDAC. Exo enhanced circ_6790 expression in PDAC cells. Knockdown of circ_6790 in Exo significantly attenuated the anti-tumor effect of Exo. Circ_6790 facilitated the nuclear translocation of chromobox 7 (CBX7). CBX7 increased the DNA methylation of S100A11 by recruiting DNA methyltransferases to its promoter region, thereby inhibiting the transcription of S100A11. Inhibition of CBX7 or overexpression of S100A11 annulled the inhibitory effects of Exo on PDAC growth, metastasis, and immune escape. In conclusion, our results suggest that MSC-derived exosomal circ_6790 could downregulate S100A11 in PDAC cells and hamper immune escape via CBX7-catalyzed DNA hypermethylation.
Collapse
Affiliation(s)
- Ge Gao
- Department of Pathology, The China-Japan Union Hospital of Jilin University, Jilin UniversityChangchun 130022, Jilin, P. R. China
| | - Liqiang Wang
- Department of Endoscopy Center, The China-Japan Union Hospital of Jilin University, Jilin UniversityChangchun 130022, Jilin, P. R. China
| | - Changfeng Li
- Department of Endoscopy Center, The China-Japan Union Hospital of Jilin University, Jilin UniversityChangchun 130022, Jilin, P. R. China
| |
Collapse
|
34
|
Kamposioras K, Papaxoinis G, Dawood M, Appleyard J, Collinson F, Lamarca A, Ahmad U, Hubner RA, Wright F, Pihlak R, Damyanova I, Razzaq B, Valle JW, McNamara MG, Anthoney A. Markers of tumor inflammation as prognostic factors for overall survival in patients with advanced pancreatic cancer receiving first-line FOLFIRINOX chemotherapy. Acta Oncol 2022; 61:583-590. [PMID: 35392758 DOI: 10.1080/0284186x.2022.2053198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Identifying pretreatment blood markers that distinguish prognostic groups of patients with advanced pancreatic ductal adenocarcinoma (PDAC) under first-line FOLFIRINOX chemotherapy has the potential to improve management of this condition. Aim of this study was to determine the prognostic utility of a range of pretreatment, inflammation-related, blood cell markers in this group of patients. MATERIAL AND METHODS Data from a training cohort were analyzed to identify potential pretreatment blood markers correlating to survival outcomes. The most informative markers were further analyzed in a validation cohort comprised patients from a geographically separate cancer center undergoing the same treatment. RESULTS A total of 138 consecutive patients receiving FOLFIRINOX chemotherapy between 2010 and 2019, constituted the training cohort. Neutrophil/lymphocyte (NLR), monocyte/lymphocyte (MLR), and platelet/lymphocyte ratio (PLR) as well as the systemic inflammatory response index (SIRI) and CA19.9 showed prognostic significance in addition to tumor stage. A pretreatment SIRI score cutoff of 2.35 differentiated between a poor prognostic group with median overall survival (mOS) 5.1 months and a better prognostic group, mOS 12.5 months. SIRI ≤/> 2.35 was predictive of mOS in patients with locally advanced and metastatic PDAC. SIRI was confirmed as a prognostic marker in a validation cohort of 67 patients with mOS of 13.4 months and 6.3 months for those with SIRI ≤ 2.35 and >2.35, respectively. Additional analysis revealed baseline SIRI as being prognostic within additional subgroups of patients in both cohorts. CONCLUSIONS This large, retrospective, analysis of real-world patients receiving first-line FOLFIRINOX chemotherapy for advanced PDAC has identified the pretreatment blood SIRI as a strong prognostic marker for survival. This will allow better counseling of patients with regards to the benefits of treatment, improved stratification within clinical trials, and potentially identify groups of patients for novel therapy trials as first-line treatment.
Collapse
Affiliation(s)
| | - George Papaxoinis
- Second Department of Oncology, Agios Savvas Anticancer Hospital, Athens, Greece
| | - Mohamed Dawood
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Jordan Appleyard
- Barts and The London School of Medicine and Dentistry, London, UK
| | - Fiona Collinson
- Department of Medical Oncology, Leeds Institute for Medical Research, St James' Institute of Oncology, St James' University Hospital, University of Leeds, Leeds, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Usman Ahmad
- Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, UK
| | - Richard A Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Francesca Wright
- Department of Medical Oncology, Leeds Institute for Medical Research, St James' Institute of Oncology, St James' University Hospital, University of Leeds, Leeds, UK
| | - Rille Pihlak
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Iva Damyanova
- Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, UK
| | - Bilal Razzaq
- Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, UK
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester/The Christie NHS Foundation Trust, Manchester, UK
| | - Mairéad G McNamara
- Division of Cancer Sciences, University of Manchester/The Christie NHS Foundation Trust, Manchester, UK
| | - Alan Anthoney
- Department of Medical Oncology, Leeds Institute for Medical Research, St James' Institute of Oncology, St James' University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
35
|
Microfluidics Formulated Liposomes of Hypoxia Activated Prodrug for Treatment of Pancreatic Cancer. Pharmaceutics 2022; 14:pharmaceutics14040713. [PMID: 35456547 PMCID: PMC9031349 DOI: 10.3390/pharmaceutics14040713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents as an unmet clinical challenge for drug delivery due to its unique hypoxic biology. Vinblastine-N-Oxide (CPD100) is a hypoxia-activated prodrug (HAP) that selectively converts to its parent compound, vinblastine, a potent cytotoxic agent, under oxygen gradient. The study evaluates the efficacy of microfluidics formulated liposomal CPD100 (CPD100Li) in PDAC. CPD100Li were formulated with a size of 95 nm and a polydispersity index of 0.2. CPD100Li was stable for a period of 18 months when freeze-dried at a concentration of 3.55 mg/mL. CPD100 and CPD100Li confirmed selective activation at low oxygen levels in pancreatic cancer cell lines. Moreover, in 3D spheroids, CPD100Li displayed higher penetration and disruption compared to CPD100. In patient-derived 3D organoids, CPD100Li exhibited higher cell inhibition in the organoids that displayed higher expression of hypoxia-inducible factor 1 alpha (HIF1A) compared to CPD100. In the orthotopic model, the combination of CPD100Li with gemcitabine (GEM) (standard of care for PDAC) showed higher efficacy than CPD100Li alone for a period of 90 days. In summary, the evaluation of CPD100Li in multiple cellular models provides a strong foundation for its clinical application in PDAC.
Collapse
|
36
|
Parte S, Nimmakayala RK, Batra SK, Ponnusamy MP. Acinar to ductal cell trans-differentiation: A prelude to dysplasia and pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188669. [PMID: 34915061 DOI: 10.1016/j.bbcan.2021.188669] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer (PC) is the deadliest neoplastic epithelial malignancies and is projected to be the second leading cause of cancer-related mortality by 2024. Five years overall survival being ~10%, mortality and incidence rates are disturbing. Acinar to ductal cell metaplasia (ADM) encompasses cellular reprogramming and phenotypic switch-over, making it a cardinal event in tumor initiation. Differential cues and varied regulatory factors drive synchronous functions of metaplastic cell populations leading to multiple cell fates and physiological outcomes. ADM is a precursor for developing early pre-neoplastic lesions further progressing into PC due to oncogenic signaling. Hence delineating molecular events guiding tumor initiation may provide cues for regenerative medicine and precision onco-medicine. Therefore, understanding PC pathogenesis and early diagnosis are crucial. We hereby provide a timely overview of the current progress in this direction and future perspectives we foresee unfolding in the best interest of patient well-being and better clinical management of PC.
Collapse
Affiliation(s)
- Seema Parte
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
Ma E, Shimazu T, Song M, Charvat H, Sawada N, Yamaji T, Inoue M, Camargo MC, Kemp TJ, Pfeiffer RM, Pinto LA, Rabkin CS, Tsugane S. Circulating Inflammation Markers and Pancreatic Cancer Risk: A Prospective Case-Cohort Study in Japan. Cancer Epidemiol Biomarkers Prev 2022; 31:236-241. [PMID: 34697062 PMCID: PMC8755613 DOI: 10.1158/1055-9965.epi-21-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous prospective studies of associations between circulating inflammation-related molecules and pancreatic cancer risk have included limited numbers of markers. METHODS We conducted a case-cohort study nested within the Japan Public Health Center-based Prospective Study Cohort II. We selected a random subcohort (n = 774) from a total of 23,335 participants aged 40 to 69 years who returned a questionnaire and provided blood samples at baseline. During the follow-up period from 1993 to 2010, we identified 111 newly diagnosed pancreatic cancer cases, including one case within the subcohort. Plasma concentrations of 62 inflammatory markers of chemokines, cytokines, and growth factors were measured by a Luminex fluorescent bead-based assay. Cox regression models were applied to estimate HR and 95% confidence intervals (CI) for pancreatic cancer risk for quartiles of marker levels adjusted for potential confounders. RESULTS The HR (95% CI) for the highest versus the lowest category of C-C motif ligand chemokine 8/monocyte chemoattractant protein 2 (CCL8/MCP2) was 2.03 (1.05-3.93; P trend = 0.048). After we corrected for multiple comparisons, none of the examined biomarkers were associated with pancreatic cancer risk at P-value <0.05. CONCLUSIONS We found no significant associations between 62 inflammatory markers and pancreatic cancer risk. IMPACT The suggestive association with circulating levels of leukocyte recruiting cytokine CCL8/MCP2 may warrant further investigation.
Collapse
Affiliation(s)
- Enbo Ma
- Health Promotion Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
- Department of Epidemiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Taichi Shimazu
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadrien Charvat
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Troy J Kemp
- HPV Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ligia A Pinto
- HPV Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
38
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
39
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
40
|
Role of non-coding RNAs in tumor progression and metastasis in pancreatic cancer. Cancer Metastasis Rev 2021; 40:761-776. [PMID: 34591242 PMCID: PMC8556175 DOI: 10.1007/s10555-021-09995-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer with an overall 5-year survival rate of less than 10%. The 1-year survival rate of patients with locally advanced or metastatic disease is abysmal. The aggressive nature of cancer cells, hypovascularization, extensive desmoplastic stroma, and immunosuppressive tumor microenvironment (TME) endows PDAC tumors with multiple mechanisms of drug resistance. With no obvious genetic mutation(s) driving tumor progression or metastatic transition, the challenges for understanding the biological mechanism(s) of these processes are paramount. A better understanding of the molecular and cellular mechanisms of these processes could lead to new diagnostic tools for patient management and new targets for therapeutic intervention. microRNAs (miRNAs) are an evolutionarily conserved gene class of short non-coding regulatory RNAs. miRNAs are an extensive regulatory layer that controls gene expression at the posttranscriptional level. This review focuses on preclinical models that functionally dissect miRNA activity in tumor progression or metastatic processes in PDAC. Collectively, these studies suggest an influence of miRNAs and RNA-RNA networks in the processes of epithelial to mesenchymal cell transition and cancer cell stemness. At a cell-type level, some miRNAs mainly influence cancer cell–intrinsic processes and pathways, whereas other miRNAs predominantly act in distinct cellular compartments of the TME to regulate fibroblast and immune cell functions and/or influence other cell types’ function via cell-to-cell communications by transfer of extracellular vesicles. At a molecular level, the influence of miRNA-mediated regulation often converges in core signaling pathways, including TGF-β, JAK/STAT, PI3K/AKT, and NF-κB.
Collapse
|
41
|
Dall’Ora M, Rovesti G, Reggiani Bonetti L, Casari G, Banchelli F, Fabbiani L, Veronesi E, Petrachi T, Magistri P, Di Benedetto F, Spallanzani A, Chiavelli C, Spano MC, Maiorana A, Dominici M, Grisendi G. TRAIL receptors are expressed in both malignant and stromal cells in pancreatic ductal adenocarcinoma. Am J Cancer Res 2021; 11:4500-4514. [PMID: 34659901 PMCID: PMC8493377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023] Open
Abstract
This study assesses the expression of all TNF-related apoptosis-inducing ligand (TRAIL) receptors in pancreatic ductal adenocarcinoma (PDAC) tumor tissue. We aimed to include TRAIL receptor expression as an inclusion parameter in a future clinical study using a TRAIL-based therapy approach for PDAC patients. Considering the emerging influence of PDAC desmoplastic stroma on the efficacy of anti-PDAC therapies, this analysis was extended to tumor stromal cells. Additionally, we performed PDAC stroma characterization. Our retrospective cohort study (N=50) included patients with histologically confirmed PDAC who underwent surgery. The expression of TRAIL receptors (DR4, DR5, DcR1, DcR2, and OPG) in tumor and stromal cells was evaluated by immunohistochemistry (IHC). The amount of tumor stroma was assessed by anti-vimentin IHC and Mallory's trichrome staining. The prognostic impact was determined by the univariate Cox proportional hazards regression model. An extensive expression of functional receptors DR4 and DR5 and a variable expression of decoy receptors were detected in PDAC tumor and stromal cells. Functional receptors were detected also in metastatic tumor and stromal cells. A poor prognosis was associated with low or absent expression of decoy receptors in tumor cells of primary PDAC. After assessing that almost 80% of tumor mass was composed of stroma, we correlated a cellular-dense stroma in primary PDAC with reduced relapse-free survival. We demonstrated that TRAIL functional receptors are widely expressed in PDAC, representing a promising target for TRAIL-based therapies. Further, we demonstrated that a low expression of DcR1 and the absence of OPG in tumor cells, as well as a cellular-dense tumor stroma, could negatively impact the prognosis of PDAC patients.
Collapse
Affiliation(s)
| | - Giulia Rovesti
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Giulia Casari
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Federico Banchelli
- Department of Medical and Surgical Sciences of Children & Adults, Statistics Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Luca Fabbiani
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Elena Veronesi
- Scientific and Technological Park of Medicine “Mario Veronesi”Mirandola 41037, Italy
| | - Tiziana Petrachi
- Scientific and Technological Park of Medicine “Mario Veronesi”Mirandola 41037, Italy
| | - Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Andrea Spallanzani
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Chiara Chiavelli
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | | | - Antonino Maiorana
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| |
Collapse
|
42
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
43
|
[The microarchitecture of pancreatic cancer from the point of view of the pathologist and the radiologist]. DER PATHOLOGE 2021; 42:524-529. [PMID: 33956172 PMCID: PMC8390414 DOI: 10.1007/s00292-021-00949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
Die diagnostische Radiologie ist gemeinsam mit der diagnostischen Pathologie eines der klinisch-morphologischen Fächer, welche in unterschiedlicher makroskopischer bzw. mikroskopischer Auflösung zur Detektion, Charakterisierung sowie zum Ausbreitungsmuster eines Tumors führen. Die klinischen Disziplinen sind oft voneinander getrennt, wenngleich es vor allem in klinischen Tumorboards immer stärkere Verzahnungen gibt. Am Beispiel des Pankreaskarzinoms sind die Korrelationen radiologischer und pathologischer Diagnostik dargestellt.
Collapse
|
44
|
Fan F, Jin L, Yang L. pH-Sensitive Nanoparticles Composed Solely of Membrane-Disruptive Macromolecules for Treating Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12824-12835. [PMID: 33689289 DOI: 10.1021/acsami.0c16576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pancreatic tumor is extremely lethal because its cancerous structures are sheltered by dense stromal barriers that hinder the infiltration of therapeutics. To facilitate the infiltration of therapeutics through the stromal barrier, remodeling the stroma with an adjuvant prior to or together with gemcitabine-the current chemotherapeutic standard for pancreatic cancer-is a widely studied strategy; nevertheless, the intrinsic nonuniformity in distribution (spatial and/or temporal) of the adjuvant and gemcitabine has raised the increased risk of tumor metastasis as a major concern. In this work, we propose long-circulating, pH-sensitive nanoparticles composed solely of cellular membrane-disruptive molecules as a new approach for treating pancreatic cancer. Using a micelle of a polymeric mimetic of host defense peptides as the model for such nanoparticles, we showed that this nanoparticle exhibited acid-activated cytotoxicity indiscriminately to both cancerous and fibroblast cells, and the underlying activity mode was acid-activatable disruption of cellular membrane integrity. As a result, our acid-activatable nanoparticle effectively permeabilized the stromal barrier and eradicated the otherwise sheltered pancreatic cancer cells, as demonstrated with a three-dimensional spheroid in which a shell of fibroblast NIH-3T3 cells was cultured over a core of pancreatic BxPC-3 cells. When administered intravenously into mouse models bearing xenograft pancreatic BxPC-3 tumors, our acid-activatable nanoparticle efficiently inhibited tumor growth without causing noticeable off-target adverse effects or promoting tumor metastasis. Notably, this nanoparticle permeabilized the otherwise dense pancreatic tumor tissue while significantly suppressing the expression of extracellular matrix components and activated cancer-associated fibroblasts. Although the feasibility of our approach was demonstrated with a micelle of a polymeric molecule, we trust that future research efforts in this pathway may eventually offer translational formulations for improving the therapeutic efficacy of pancreatic cancer.
Collapse
Affiliation(s)
- Feng Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijun Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lihua Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
45
|
Vetvicka D, Sivak L, Jogdeo CM, Kumar R, Khan R, Hang Y, Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next? J Control Release 2021; 331:246-259. [PMID: 33482273 DOI: 10.1016/j.jconrel.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Despite intensive research efforts and development of numerous new anticancer drugs and treatment strategies over the past decades, there has been only very limited improvement in overall patient survival and in effective treatment options for pancreatic cancer. Current chemotherapy improves survival in terms of months and death rates in pancreatic cancer patients are almost equivalent to incidence rates. It is imperative to develop new therapeutic approaches. Among them, gene silencing shows promise of effectiveness in both tumor cells and stromal cells by inhibiting tumor-promoting genes. This review summarizes potential targets for gene silencing in both pancreatic cancer cells and abundant stromal cells focusing on non-viral delivery systems for small RNAs and discusses the potential immunological implications. The review concludes with the importance of multifactorial therapy of pancreatic cancer.
Collapse
Affiliation(s)
- David Vetvicka
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, Prague 2 12000, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-61300, Czech Republic
| | - Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
46
|
Sadozai H, Acharjee A, Eppenberger-Castori S, Gloor B, Gruber T, Schenk M, Karamitopoulou E. Distinct Stromal and Immune Features Collectively Contribute to Long-Term Survival in Pancreatic Cancer. Front Immunol 2021; 12:643529. [PMID: 33679807 PMCID: PMC7933000 DOI: 10.3389/fimmu.2021.643529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The aggressive biology and treatment refractory nature of pancreatic ductal adenocarcinoma (PDAC) significantly limits long-term survival. Examining the tumor microenvironment (TME) of long-term survivors (LTS) of PDAC offers the potential of unveiling novel biological insights and therapeutic targets. Methods: We performed an integrated approach involving immunophenotyping, stromal scoring and histomorphological profiling of a cohort of 112 PDAC-cases, including 25 long-term survivors (LTSs, OS ≥ 60 months). Mutational frequencies were assessed using targeted next generation sequencing. Finally, we validated our findings in silico using an external cohort of microarray data from PDAC patients. Results: LTS cases exhibit a largely quiescent population of cancer-associated fibroblasts (CAFs). Immune profiling revealed key differences between LTS and NON-LTS cases in the intratumoral and stromal compartments. In both compartments, LTS cases exhibit a T cell inflamed profile with higher density of CD3+ T cells, CD4+ T cells, iNOS+ leukocytes and strikingly diminished numbers of CD68+ total macrophages, CD163+ (M2) macrophages and FOXP3+ Tregs. A large proportion of LTS cases exhibited tertiary lymphoid tissue (TLT) formation, which has been observed to be a positive prognostic marker in a number of tumor types. Using a Random-Forest variable selection approach, we identified the density of stromal iNOS+ cells and CD68+ cells as strong positive and negative prognostic variables, respectively. In an external cohort, computational cell-type deconvolution revealed a higher abundance of T cells, B lymphocytes and dendritic cells (DCs) in patients with long-term OS compared to short-term survivors. Thus, in silico profiling of long-term survivors in an external cohort, strongly corroborated the T cell-inflamed TME observed in our LTS group. Conclusions: Collectively, our findings highlight the prognostic importance of TME profiles in PDAC, underlining the crucial role of tumor associated macrophages (TAMs) and the potential interdependence between immunosuppressive TAMs and activated CAFs in pancreatic cancer. Additionally, our data has potential for precision medicine and patient stratification. Patients with a T cell inflamed TME might derive benefit from agonistic T cell antibodies (e.g., OX40 or CD137 agonists). Alternately, patients with activated CAFs and high infiltration of immunosuppressive TAMs are highly likely to exhibit therapeutic responses to macrophage targeted drugs (e.g., anti-CSF1R) and anti-CAF agents.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Institute of Translational Medicine, University Hospitals Birmingham National Health Service, Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom
| | | | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mirjam Schenk
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
47
|
Mayer P, Giannakis A, Klauß M, Gaida MM, Bergmann F, Kauczor HU, Feisst M, Hackert T, Loos M. Radiological evaluation of pancreatic cancer: What is the significance of arterial encasement >180° after neoadjuvant treatment? Eur J Radiol 2021; 137:109603. [PMID: 33618209 DOI: 10.1016/j.ejrad.2021.109603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE This study aimed to evaluate contrast-enhanced computed tomography (CE-CT) features for prediction of arterial tumor invasion in pancreatic cancer (PDAC) patients in the event of arterial encasement >180° after neoadjuvant (radio-)chemotherapy (NAT). METHODS Seventy PDAC patients with seventy-five arteries showing encasement >180° after completion of NAT were analyzed. All patients underwent surgical exploration with either tumor resection including arterial resection, periadventitial dissection (arterial divestment) or confirmation of locally irresectable disease. CE-CT scans were assessed regarding tumor extent and artery-specific imaging features. The results were analyzed on a per-artery basis. Based on the intraoperative and histopathological findings, encased arteries were classified as either invaded or non-invaded. RESULTS Eighteen radiologically encased arteries were resected; of these, nine had pathologic evidence for tumor invasion. In 42 encased arteries, the tumor could be removed by arterial divestment. In 13 patients with 15 encased arteries, the tumor was deemed technically irresectable. Median tumor size, length of solid soft tissue contact, and degree of circumferential contiguity by solid soft tissue along the artery in CE-CT were significantly lower in the non-invaded than in the invaded artery group (p ≤ 0.017). Imaging features showed moderate accuracies for prediction of arterial invasion (≤72.0 %). The thresholds ≤26 mm for post-NAT solid soft tissue contact and ≤270° for circumferential contiguity by solid soft tissue had high negative predictive values (≥87.5 %). CONCLUSION Although post-NAT prediction of arterial invasion remains difficult, arteries with ≤270° contiguity by soft tissue and arteries with ≤26 mm length of solid soft tissue contact are unlikely to be invaded, with possible implications for surgical planning.
Collapse
Affiliation(s)
- P Mayer
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany.
| | - A Giannakis
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Klauß
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M M Gaida
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - F Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - H U Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Feisst
- Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - T Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - M Loos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
48
|
Phan T, Nguyen VH, Buettner R, Morales C, Yang L, Wong P, Tsai W, Salazar MD, Gil Z, Diamond DJ, Rabinowitz JD, Rosen S, Melstrom LG. Inhibition of de novo pyrimidine synthesis augments Gemcitabine induced growth inhibition in an immunocompetent model of pancreatic cancer. Int J Biol Sci 2021; 17:2240-2251. [PMID: 34239352 PMCID: PMC8241727 DOI: 10.7150/ijbs.60473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. De Novo pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer. Methods: MTS proliferation assays were conducted to assess growth inhibition by Gem (0-20 nM), Lef (0-40 uM) and Gem+Lef in KPC (KrasLSL.G12D/+;p53R172H/+; PdxCretg/+) cells in vitro. An in vivo heterotopic KPC model was used and cohorts were treated with: PBS (control), Gem (75 mg/kg/q3d), Lef (40 mg/kg/d), or Gem+Lef. At d28 post-treatment, tumor burden, proliferation index (Ki67), and vascularity (CD31) were measured. Changes in the frequency of peripheral and intratumoral immune cell subsets were evaluated via FACS. Liquid chromatography-mass spectrometry was used for metabolomics profiling. Results: Lef inhibits KPC cell growth and synergizes with Gem in vitro (P<0.05; Combination Index 0.44 (<1 indicates synergy). In vivo, Lef alone and in combination with Gem delays KPC tumor progression (P<0.001). CTLA-4+T cells are also significantly decreased in tumors treated with Lef, Gem or in combination (Gem+Lef) compared to controls (P<0.05). Combination therapy also decreased the Ki67 and vascularity (P<0.01). Leflunomide inhibits de novo pyrimidine synthesis both in vitro (p<0.0001) and in vivo (p<0.05). Conclusions: In this study, we demonstrated that Gem+Lef inhibits pancreatic cancer growth, decrease T cell exhaustion, vascularity and as proof of principle inhibits de novo pyrimidine synthesis. Further characterization of changes in adaptive immunity are necessary to characterize the mechanism of tumor growth inhibition and facilitate translation to a clinical trial.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Vu H. Nguyen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Ralf Buettner
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Corey Morales
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Lifeng Yang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul Wong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Weiman Tsai
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | | | - Ziv Gil
- Rambam Medical Center, Israel
| | - Don J Diamond
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Steven Rosen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Laleh G. Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
- ✉ Corresponding author: Laleh Melstrom MD, City of Hope National Medical Center, Department of Surgery and Immuno-oncology, 1500 E Duarte Road, Duarte, CA 91010. E-mail: ; Phone: 626 218 0282; Fax: 626 218 1113
| |
Collapse
|
49
|
Smith PL, Yogaratnam Y, Samad M, Kasow S, Dalgleish AG. Effect of Gemcitabine based chemotherapy on the immunogenicity of pancreatic tumour cells and T-cells. Clin Transl Oncol 2021; 23:110-121. [PMID: 32661823 PMCID: PMC7820186 DOI: 10.1007/s12094-020-02429-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Chemotherapy for advanced pancreatic cancer has limited efficacy due to the difficultly of treating established tumours and the evolution of tumour resistance. Chemotherapies for pancreatic cancer are typically studied for their cytotoxic properties rather than for their ability to increase the immunogenicity of pancreatic tumour cells. In this study Gemcitabine in combination with immune modulatory chemotherapies Oxaliplatin, zoledronic acid and pomalidomide was studied to determine how combination therapy alters the immunogenicity of pancreatic tumour cell lines and subsequent T-cell responses. METHODS Pancreatic tumour cell lines were stimulated with the chemotherapeutic agents and markers of immune recognition were assessed. The effect of chemotherapeutic agents on DC function was measured using uptake of CFSE-stained PANC-1 cells, changes in markers of maturation and their ability to activate CD8+ T-cells. The effect of chemotherapeutic agents on T-cell priming prior to activation using anti-CD3 and anti-CD28 antibodies was determined by measuring IFN-γ expression and Annexin V staining using flow cytometry. RESULTS These agents demonstrate both additive and inhibitory properties on a range of markers of immunogenicity. Gemcitabine was notable for its ability to induce the upregulation of human leukocyte antigen and checkpoints on pancreatic tumour cell lines whilst inhibiting T-cell activation. Pomalidomide demonstrated immune modulatory properties on dendritic cells and T-cells, even in the presence of gemcitabine. DISCUSSION These data highlight the complex interactions of different agents in the modulation of tumour immunogenicity and immune cell activation and emphasise the complexity in rationally designing chemo immunogenic combinations for use with immunotherapy.
Collapse
Affiliation(s)
- P L Smith
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK.
| | - Y Yogaratnam
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| | - M Samad
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| | - S Kasow
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| | - A G Dalgleish
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
50
|
Azizian NG, Sullivan DK, Nie L, Pardo S, Molleur D, Chen J, Weintraub ST, Li Y. Selective Labeling and Identification of the Tumor Cell Proteome of Pancreatic Cancer In Vivo. J Proteome Res 2020; 20:858-866. [PMID: 33289385 DOI: 10.1021/acs.jproteome.0c00666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers. Dissecting the tumor cell proteome from that of the non-tumor cells in the PDAC tumor bulk is critical for tumorigenesis studies, biomarker discovery, and development of therapeutics. However, investigating the tumor cell proteome has proven evasive due to the tumor's extremely complex cellular composition. To circumvent this technical barrier, we have combined bioorthogonal noncanonical amino acid tagging (BONCAT) and data-independent acquisition mass spectrometry (DIA-MS) in an orthotopic PDAC model to specifically identify the tumor cell proteome in vivo. Utilizing the tumor cell-specific expression of a mutant tRNA synthetase transgene, this approach provides tumor cells with the exclusive ability to incorporate an azide-bearing methionine analogue into newly synthesized proteins. The azide-tagged tumor cell proteome is subsequently enriched and purified via a bioorthogonal reaction and then identified and quantified using DIA-MS. Applying this workflow to the orthotopic PDAC model, we have identified thousands of proteins expressed by the tumor cells. Furthermore, by comparing the tumor cell and tumor bulk proteomes, we showed that the approach can distinctly differentiate proteins produced by tumor cells from those of non-tumor cells within the tumor microenvironment. Our study, for the first time, reveals the tumor cell proteome of PDAC under physiological conditions, providing broad applications for tumorigenesis, therapeutics, and biomarker studies in various human cancers.
Collapse
Affiliation(s)
- Nancy G Azizian
- Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas 77030, United States.,Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Delaney K Sullivan
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Litong Nie
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Sammy Pardo
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Dana Molleur
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Junjie Chen
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Yulin Li
- Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas 77030, United States.,Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|