1
|
Tan B, Liu X, Chen S, Chen Y, He Z, Ling Z, Huang F, Hu R, Hu H, Zou X, Ai F. An injectable nano-hydroxyapatite-incorporated hydrogel with sustained release of Notoginsenoside R1 enhances bone regeneration by promoting angiogenesis through Notch1/Akt signaling. J Adv Res 2025:S2090-1232(25)00343-1. [PMID: 40373960 DOI: 10.1016/j.jare.2025.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025] Open
Abstract
INTRODUCTION Notoginsenoside R1 (NGR1), a bioactive compound, exhibits significant pro-angiogenic potential, making it a promising candidate for treating various diseases. Since angiogenesis and osteogenesis are synergistically coupled processes, NGR1's capacity to stimulate blood vessel formation may critically promote bone regeneration. However, the underlying molecular mechanisms through which NGR1 promotes angiogenesis in bone repair remain to be fully elucidated. OBJECTIVES To investigate the potential mechanism by which NGR1 promotes angiogenesis and to validate the therapeutic effect of NGR1-loaded biomaterials on bone defect regeneration. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured in complete medium containing the screened concentration of NGR1 to investigate its pro-angiogenic phenotype and potential mechanism in vitro. Subsequently, an injectable nano-hydroxyapatite-incorporated GelMA hydrogel was synthesized as an active drug-delivery delivery system for NGR1. The therapeutic effect of this fabricated NGR1-loaded biomaterial on bone defect regeneration was further evaluated in a rat cranial bone defect model. The key molecules in relevant signaling pathways was analyzed by immunohistochemistry. RESULTS In vitro experiments demonstrated that NGR1 exhibits good biocompatibility and angiogenic capacity, as it promoted cell proliferation, enhanced cell migration, upregulated the angiogenic-related gene expression, and increased the protein expression of VEGF and VEGFR-2. Furthermore, the implantation of the injectable nano-hydroxyapatite-incorporated GelMA hydrogel loaded with NGR1 significantly enhanced bone defect regeneration in a rat cranial bone defect model compared to hydrogel-only group. Additionally, NGR1 supplementation markedly upregulated CD31 expression during bone formation, suggesting its role in coupling of angiogenesis and osteogenesis. Mechanistically, both in vivo and in vitro experiments indicated that NGR1 likely promote angiogenesis via activating Notch1/Akt singling pathway during bone regeneration. CONCLUSIONS These findings indicate that NGR1 promotes angiogenesis through Notch1/Akt signaling activation during bone regeneration, which might offer potential therapeutic targets for bone-related diseases. Moreover, the application of NGR1-loaded biomaterials could represent a promising strategy to enhance bone regeneration.
Collapse
Affiliation(s)
- Bizhi Tan
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Spinal Cord Injury, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511338, China
| | - Shuai Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yan Chen
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhongyuan He
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zemin Ling
- Deparment of Orthopaedics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518106, China
| | - Fangli Huang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Rongcheng Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | - Fuzhi Ai
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Spinal Cord Injury, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
2
|
Zhang R, Wang Y, Jiang H, Aheniyazi A, Tao J, Li J, Yang Y. Therapeutic Angiogenesis Mediated by Traditional Chinese Medicine: Advances in Cardiovascular Disease Treatment. JOURNAL OF ETHNOPHARMACOLOGY 2025:119871. [PMID: 40345269 DOI: 10.1016/j.jep.2025.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) shows growing potential as an adjunct or alternative therapy for vascular occlusion diseases (e.g., stroke, peripheral artery disease) by promoting therapeutic angiogenesis to restore blood flow in ischemic regions while minimizing side effects. AIMS OF THE STUDY This review examines TCM-mediated angiogenesis mechanisms and therapeutic advances in vascular occlusion management, establishing a theoretical foundation for clinical translation and precision medicine development. MATERIALS AND METHODS We systematically analyzed PubMed articles on TCM-induced angiogenesis in vascular occlusion diseases, focusing on herbal formulations, single herbs, bioactive compounds, and their associated signaling pathways. Search PubMed for studies investigating the role of Chinese herbal medicine (TCM), natural compounds, and herbal medicine in angiogenesis, while excluding research related to cancer, tumor, or oncological contexts. RESULTS TCM formulas, individual herbs, and monomeric compounds enhance endothelial cell proliferation, migration, and tube formation via pathways such as HIF/VEGF, PI3K/AKT, NOTCH, BMP/ALK, and Apelin/APJ, improving ischemic blood flow. CONCLUSION This review highlights angiogenesis as a novel strategy for vascular occlusive diseases and underscores TCM's efficacy through multi-target angiogenic regulation mechanism.However, further research using modern medical technologies is needed to optimize clinical application and advance precision medicine.
Collapse
Affiliation(s)
- Rong Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Yunze Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Haoyan Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Aliyanmu Aheniyazi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Jin Tao
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China.
| | - Yining Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China.
| |
Collapse
|
3
|
Wilson HM, Buckles MA, Acevedo PK, Capobianco C, Nguyen DM, Kessell K, Bergin IL, Wagley Y, Kalajzic I, Hankenson KD. Notch signaling in osteoblast progenitor cells is required for BMP-induced bone formation. Bone 2025; 194:117425. [PMID: 39978612 PMCID: PMC11924958 DOI: 10.1016/j.bone.2025.117425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Notch signaling is active during bone formation and prior studies have shown that it is required for both robust intramembranous and endochondral bone regeneration. Particularly, the systemic blockade of Notch signaling has been shown to inhibit BMP-induced bone formation in a murine calvarial defect model. In this study, we genetically disrupted the expression of both the dominant Notch receptor, Jagged-1, and the essential Notch signaling transcription factor Rbpj in osteoblast progenitors during calvarial bone healing. We found that Jagged-1 (and Jagged-2) expression by alpha Smooth Muscle Actin (αSMA) expressing progenitors is required for bone formation. Similarly, we found that Notch transcriptional activity within the αSMA lineage is required for BMP-induced bone regeneration. Inhibition of Notch signaling in the αSMA lineage resulted in decreased osteoblast progenitors, reduced vascularization, and sustained inflammation 10 days post-injury, with enhanced inflammation still present 42 days post-injury. We conclude that Jagged ligand induced Notch signaling within the osteoblast progenitor lineage is therefore required for bone morphogenetic proteins (BMP) induced bone regeneration. Modulation of Notch signaling may represent a new approach to promote bone repair.
Collapse
Affiliation(s)
- Heather M Wilson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America; Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Madison A Buckles
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Parker K Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Christina Capobianco
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Danny M Nguyen
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Karen Kessell
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, United States of America
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor,Michigan and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|
4
|
Zou J, Du C, Liu S, Zhao P, Gao S, Chen B, Wu X, Huang W, Zhu Z, Liao J. Notch1 signaling regulates Sox9 and VEGFA expression and governs BMP2-induced endochondral ossification of mesenchymal stem cells. Genes Dis 2025; 12:101336. [PMID: 40083323 PMCID: PMC11905894 DOI: 10.1016/j.gendis.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 03/16/2025] Open
Abstract
Although bone morphogenetic protein 2 (BMP2) can induce chondrogenic differentiation of mesenchymal stem cells (MSCs), its induction of endochondral ossification limits the application of BMP2-based cartilage regeneration. Here, we clarified the mechanisms of BMP2-induced endochondral ossification of MSCs. In vitro and in vivo chondrogenic, osteogenic, and angiogenic differentiation models of MSCs were constructed. The expression of target genes was identified at both protein and mRNA levels. RNA sequencing, molecular docking, co-immunoprecipitation, and chromatin immunoprecipitation followed by sequencing were applied to investigate the molecular mechanisms. We found that BMP2 up-regulated the expression of Notch receptors and ligands in MSCs. Notch1 signaling activation was related to inhibition of chondrogenic differentiation, promotion of osteogenic and angiogenic differentiation. In vivo ectopic stem cell implantation identified that Notch1 signaling activation blocked BMP2-induced chondrogenesis and facilitated endochondral ossification of MSCs. Mechanistically, we elucidated Notch1 intracellular domain (NICD1)-RBPjk complex binding to SRY-box transcription factor 9 (Sox9) and vascular endothelial growth factor A (VEGFA) promoters to decrease Sox9 expression and increase VEGFA expression. These findings suggest that Notch1 signaling can regulate BMP2-induced endochondral ossification by promoting RBPjk-mediated Sox9 inactivation and VEGFA expression. It is conceivable that targeting Notch1 signaling mediated endochondral ossification would benefit BMP2-based cartilage regeneration.
Collapse
Affiliation(s)
- Jing Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shengqiang Gao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bowen Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Eraković M, Bekić M, Đokić J, Tomić S, Vučević D, Pavlović L, Duka M, Marković M, Bokonjić D, Čolić M. Biodentine Stimulates Calcium-Dependent Osteogenic Differentiation of Mesenchymal Stromal Cells from Periapical Lesions. Int J Mol Sci 2025; 26:4220. [PMID: 40362457 PMCID: PMC12072047 DOI: 10.3390/ijms26094220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Biodentine, a tricalcium silicate cement, has emerged as a retrograde root-end filling material to promote periapical lesion (PL) healing after apicoectomy. However, its underlying mechanisms remain unclear. This study tested the hypothesis that Biodentine stimulates the osteogenic differentiation of mesenchymal stromal cells (MSCs) derived from PLs. The Biodentine extract (B-Ex) was prepared by incubating polymerized Biodentine in RPMI medium (0.2 g/mL) for three days at 37 °C. B-Ex, containing both released microparticles and soluble components, was incubated with PL-MSCs cultured in either a basal MSC medium or suboptimal osteogenic medium. Osteogenic differentiation was assessed by Alizarin Red staining and the expression of 20 osteoblastogenesis-related genes. Non-cytotoxic concentrations of B-Ex stimulated the proliferation of PL-MSCs and induced their osteogenic differentiation in a dose-dependent manner, with a significantly enhanced effect in suboptimal osteogenic medium. B-Ex upregulated most early and late osteoblastic genes. However, the differentiation process was prolonged, as indicated by the delayed expression of wingless-type MMTV integration site family member 2 (WNT2), bone gamma-carboxyglutamate protein (BGLAP), bone morphogenic protein-2 (BMP-2), growth hormone receptor (GHR), and FOS-like 2, AP-1 transcription factor subunit (FOSL2), compared with their expression under optimal osteogenic conditions. The stimulatory effect of B-Ex was primarily calcium dependent, as it was reduced by 85% when B-Ex was treated with the calcium-chelating agent EGTA. In conclusion, Biodentine promotes the osteogenic differentiation of PL-MSCs in a calcium-dependent manner, supporting its stimulatory role in periapical healing.
Collapse
Affiliation(s)
- Mile Eraković
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia;
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Dragana Vučević
- Center for Medical Scientific Information, Faculty of Medicine of the Military Medical Academy, University of Defence, 11040 Belgrade, Serbia;
| | - Luka Pavlović
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Miloš Duka
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Milan Marković
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Dejan Bokonjić
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
7
|
Sodré LI, Gall MEC, Elias MDB, de Oliveira LO, Lobo FATF, Carias RBV, Teodoro AJ. Osteogenic Effects of Bioactive Compounds Found in Fruits on Mesenchymal Stem Cells: A Review. Nutr Rev 2025; 83:675-691. [PMID: 39862385 DOI: 10.1093/nutrit/nuae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Abstract
Phytochemicals, which are bioactive compounds contained in fruits, vegetables, and teas, have a positive effect on human health by having anti-inflammatory, antioxidant, and anticarcinogenic effects. Several studies have highlighted the ability of bioactive compounds to activate key cellular enzymes associated with important signaling pathways related to cell division and proliferation, as well as their role in inflammatory and immunological responses. Some phytochemicals are associated with increased proliferation, differentiation, and expression of markers related to osteogenesis, bone formation, and mineralization by activating various signaling pathways. The objective of this study was to clarify which bioactive compounds present in fruits have osteogenic effects on mesenchymal stem cells and the possible associated mechanisms. A literature search was conducted in the LILACS, MEDLINE, and PubMed databases for pertinent articles published between 2014 and 2024. This review included 34 articles that report the osteogenic effects of various bioactive compounds found in different fruits. All the articles reported that phytochemicals play a role in enhancing the regenerative properties of mesenchymal cells, such as proliferation, osteogenic differentiation, secretion of angiogenic factors, and extracellular matrix formation. This review highlights the potential of these phytochemicals in the prevention and treatment of bone diseases. However, more studies are recommended to identify and quantify the therapeutic dose of phytochemicals, investigate their mechanisms in humans, and ensure their safety and effectiveness for health, particularly for bone health.
Collapse
Affiliation(s)
- Lia Igel Sodré
- Graduate Program in Science of Nutrition, Fluminense Federal University, Niterói, RJ 24020-140, Brazil
| | - Maria Eduarda Cordebello Gall
- Graduate Program in Biotechnology, National Institute of Metrology Standardization and Industrial Quality, Xerém, RJ 25250-020, Brazil
| | - Monique de Barros Elias
- Graduate Program in Food and Nutrition Security, Fluminense Federal University/Faculty of Nutrition, Niterói, RJ 24020-140, Brazil
| | - Luana Oeby de Oliveira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde (PPG-CAPS)/Fluminense Federal University, Faculty of Nutrition, Niteroi, RJ 24020-140, Brazil
| | | | - Rosana Bizon Vieira Carias
- Regenerative Medicine Laboratory, Centro Universitário Arthur Sá Earp Neto, Petrópolis Medical School, Petrópolis, RJ 25680-120, Brazil
| | - Anderson Junger Teodoro
- Universidade Federal Fluminense (Fluminense Federal University), Nutrition and Dietetics Department, Food and Nutrition Integrated Center, Niterói, RJ CEP 24020-140, Brazil
| |
Collapse
|
8
|
Zhang Q, Zhang Y, Li B, Wang C, Yang Z, Guo B, Yue Z. Melatonin promotes the proliferation and differentiation of antler chondrocytes via RUNX2 dependent on the interaction between NOTCH1 and SHH signaling pathways. Cell Biol Int 2025; 49:329-342. [PMID: 39737592 DOI: 10.1002/cbin.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025]
Abstract
Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays. The results showed that MT promoted the proliferation of antler chondrocytes and induced the differentiation of chondrocytes into hypertrophic chondrocytes as evidenced by the significant increase of collagen type X (COL X), alkaline phosphatase (ALP) and matrix metalloproteinase 13 (MMP13) expression and ALP activity, the well-established markers for hypertrophic chondrocytes, but this effectiveness was neutralized by the addition of MT receptor antagonist. Further analysis indicated that MT activated the NOTCH1 and SHH signaling whose blockage abrogated the inducement of MT on the proliferation and differentiation of antler chondrocytes. SHH was identified as a downstream target of recombination signal binding protein for immunoglobulin kappa J region (RBPJ), a transcription factor of NOTCH1 signaling. Meanwhile, MT stimulated the expression of RUNX2 through activating the SHH signaling whose downstream transcription factor glioma-associated oncogene 1 (GLI1) directly controlled the transcription of RUNX2 through binding to its promoter region. Moreover, repression of GLI1 counteracted the proliferative effect of MT on antler chondrocytes and attenuated the advancement of MT on chondrocyte differentiation, while supplementation of recombinant RUNX2 protein recued above effects. Collectively, MT induced the proliferation and differentiation of antler chondrocytes via RUNX2 dependent on the interaction between NOTCH1 and SHH signaling pathways.
Collapse
Affiliation(s)
- Qiaoling Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Baiyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenhao Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhanqing Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhanpeng Yue
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
9
|
Resuela-González JL, González-Gómez MJ, Rodríguez-Cano MM, López-López S, Monsalve EM, Díaz-Guerra MJM, Laborda J, Nueda ML, Baladrón V. NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells. Differentiation 2025; 142:100837. [PMID: 39879823 DOI: 10.1016/j.diff.2025.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Osteoblastogenesis is governed by complex interplays among signaling pathways, which modulate the expression of specific markers at each differentiation stage. This process enables osteoblast precursor cells to adopt the morphological and biochemical characteristics of mature bone cells. Our study investigates the role of NOTCH signaling in osteogenesis in MC3T3-E1 and C3H10T1/2 cell lines. MC3T3-E1 cells are preosteoblast precursors widely recognized as a model for bone biology research, offering a convenient and physiologically relevant system to study osteoblast transcriptional regulation. Conversely, the mesenchymal C3H10T1/2 cells are multipotent, capable of differentiating into osteoblasts, adipocytes, and chondrocytes under specific extracellular cues. The core of this in vitro study is the comparative analysis of the impact of overexpressing each mammalian NOTCH receptor on osteoblastogenesis in two cell lines reflecting different cell differentiation stages. We generated stable transfectant pools of both cell lines for each of the four NOTCH receptors and characterized their effect on osteoblastogenesis. We successfully obtained transfectant pools that overexpress Notch1, Notch2 and Notch3 at both mRNA and protein levels. However, we were unable to obtain cells overexpressing Notch4 at protein level. Our findings reveal that the overexpression of NOTCH1, NOTCH2, and NOTCH3 receptors promotes osteoblast differentiation in mesenchymal C3H10T1/2 cells, while inhibiting it in preosteoblastic MC3T3-E1 cells. These results provide novel insights into the distinct roles of NOTCH receptors in osteoblastogenesis across two different precursor cell types, potentially guiding the development of new therapeutic approaches for bone diseases.
Collapse
Affiliation(s)
- Jose-Luis Resuela-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de MonteGancedo UPM, Pozuelo de Alarcón, 28223, Spain; Departamento de Biotecnología-Biotecnología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040, Madrid, Spain
| | - María-Julia González-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, ETSIAMB/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-Milagros Rodríguez-Cano
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - Susana López-López
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, ETSIAMB/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - Eva-María Monsalve
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-José M Díaz-Guerra
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - Jorge Laborda
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-Luisa Nueda
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain.
| | - Victoriano Baladrón
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain.
| |
Collapse
|
10
|
Hopkinson M, Pitsillides AA. Extracellular matrix: Dystroglycan interactions-Roles for the dystrophin-associated glycoprotein complex in skeletal tissue dynamics. Int J Exp Pathol 2025; 106:e12525. [PMID: 39923120 PMCID: PMC11807010 DOI: 10.1111/iep.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/10/2025] Open
Abstract
Contributions made by the dystrophin-associated glycoprotein complex (DGC) to cell-cell and cell-extracellular matrix (ECM) interactions are vital in development, homeostasis and pathobiology. This review explores how DGC functions may extend to skeletal pathophysiology by appraising the known roles of its major ECM ligands, and likely associated DGC signalling pathways, in regulating cartilage and bone cell behaviour and emergent skeletal phenotypes. These considerations will be contextualised by highlighting the potential of studies into the role of the DGC in isolated chondrocytes, osteoblasts and osteoclasts, and by fuller deliberation of skeletal phenotypes that may emerge in very young mice lacking vital, yet diverse core elements of the DGC. Our review points to roles for individual DGC components-including the glycosylation of dystroglycan itself-beyond the establishment of membrane stability which clearly accounts for severe muscle phenotypes in muscular dystrophy. It implies that the short stature, low bone mineral density, poor bone health and greater fracture risk in these patients, which has been attributed due to primary deficiencies in muscle-evoked skeletal loading, may instead arise due to primary roles for the DGC in controlling skeletal tissue (re)modelling.
Collapse
Affiliation(s)
- Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| |
Collapse
|
11
|
Huang J, Zeng N, Xu S, Lv Y, Li X, Yang P, Liu Y. The study on bone marrow mesenchymal stem cell-derived extracellular matrix promoting the repair of damaged chondrocytes by regulating the Notch1/RBPJ pathway. Cytotechnology 2025; 77:35. [PMID: 39764424 PMCID: PMC11700074 DOI: 10.1007/s10616-024-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/25/2024] [Indexed: 03/08/2025] Open
Abstract
Cartilage and joint damage can lead to cartilage degeneration. Bone marrow mesenchymal stem cells (BMSCs) have the potential to address cartilage damage. Hence, this study probed the mechanism of BMSC-extracellular matrix (BMSC-ECM) in promoting damaged chondrocyte repair by regulating the Notch1/RBPJ pathway. Human immortalized chondrocytes were cultured in vitro and treated with Notch1 small interfering (si)RNA, pCDNA3.1-Notch1, RBPJ siRNA and their negative controls (NCs). Damaged chondrocytes were constructed. Damaged chondrocyte-BMSC co-culture system was established and treated with lentiviral vector carrying short hairpin-Notch1 and its NC. Cell viability and apoptosis were assessed by CCK-8 and flow cytometry assays. Levels of glycosaminoglycan (GAG), Notch1 and RBPJ mRNA, and Notch1, RBPJ, Col2α1, mmp3, Hes1 and Hey1 were determined by a kit, RT-qPCR and Western blot. NICD nuclear translocation was detected by immunofluorescence. Damaged chondrocytes exhibited down-regulated Notch1 expression, reduced cell viability, and enhanced apoptosis. Further Notch1 knockdown aggravated chondrocyte damage, whereas its overexpression enhanced chondrocyte viability and decreased apoptosis. NICD translocated into the nucleus and bound to RBPJ to activate the Notch1 pathway. RBPJ silencing partly annulled Notch1-regulated damaged chondrocyte apoptosis. BMSC-damaged chondrocyte co-culture up-regulated Notch1, RBPJ, Col2α1, mmp3, Hes1, Hey1 and GAG levels, enhanced cell viability, and reduced apoptosis in chondrocytes, which were partly negated by Notch1 suppression, indicating that BMSC-ECM facilitated damaged chondrocyte repair by activating the Notch1/RBPJ pathway. BMSC-ECM promoted the repair of damaged chondrocytes by promoting NICD translocation into the nucleus and binding to RBPJ to activate the Notch1 pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00702-6.
Collapse
Affiliation(s)
- Jiangfa Huang
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Datong Road, Yuexiu District, Guangzhou, 510105 Guangdong China
| | - Ningjing Zeng
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shuchai Xu
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Datong Road, Yuexiu District, Guangzhou, 510105 Guangdong China
| | - Yang Lv
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Datong Road, Yuexiu District, Guangzhou, 510105 Guangdong China
| | - Xing Li
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Datong Road, Yuexiu District, Guangzhou, 510105 Guangdong China
| | - Peng Yang
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Datong Road, Yuexiu District, Guangzhou, 510105 Guangdong China
| | - Yan Liu
- Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Datong Road, Yuexiu District, Guangzhou, 510105 Guangdong China
| |
Collapse
|
12
|
Stellpflug A, Caron J, Fasciano S, Wang B, Wang S. Bone-derived nanoparticles (BNPs) enhance osteogenic differentiation via Notch signaling. NANOSCALE ADVANCES 2025; 7:735-747. [PMID: 39823045 PMCID: PMC11734751 DOI: 10.1039/d4na00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones. The effects of internalization of BNPs on MSC viability, proliferation, and osteogenic differentiation were first investigated and compared at different time points. The phenotypic behaviors, including cell number, proliferation, and differentiation were characterized and compared. By incorporating a LNA/DNA nanobiosensor and MSC live cell imaging, we monitored and compared Notch ligand delta-like 4 (Dll4) expression dynamics in the cytoplasm and nucleus during osteogenic differentiation. Pharmacological interventions are used to inhibit Notch signaling to examine the mechanisms involved. The results suggest that Notch inhibition mediates the osteogenic process, with reduced expression of early and late stage differentiation markers (ALP and calcium mineralization). The internalization of BNPs led to an increase in Dll4 expression, exhibiting a time-dependent pattern that aligned with enhanced cell proliferation and differentiation. Our findings indicate that the observed changes in BNP-treated cells during osteogenic differentiation could be associated with elevated levels of Dll4 mRNA expression. In summary, this study provides new insights into MSC osteogenic differentiation and the molecular mechanisms through which BNPs stimulate this process. The results indicate that BNPs influence osteogenesis by modulating Notch ligand Dll4 expression, demonstrating a potential link between Notch signaling and the proteins present in BNPs.
Collapse
Affiliation(s)
- Austin Stellpflug
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Justin Caron
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| | - Samantha Fasciano
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| |
Collapse
|
13
|
Suresh N, Thomas NG, Mauramo M, Waltimo T, Sorsa T, Anil S. Phytonanoparticles as novel drug carriers for enhanced osteogenesis and osseointegration. DISCOVER NANO 2025; 20:11. [PMID: 39821381 PMCID: PMC11739449 DOI: 10.1186/s11671-024-04164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Phytonanoparticles have emerged as a promising class of biomaterials for enhancing bone regeneration and osseointegration, offering unique advantages in biocompatibility, multifunctionality, and sustainability. This comprehensive review explores the synthesis, characterization, and applications of phytonanoparticles in bone tissue engineering. The green synthesis approach, utilizing plant extracts as reducing and stabilizing agents, yields nanoparticles with intrinsic bioactive properties that can synergistically promote osteogenesis. We examine the mechanisms by which phytonanoparticles, particularly those derived from gold, silver, and zinc oxide, influence key molecular pathways in osteogenesis, including RUNX2 and Osterix signaling. The review discusses advanced strategies in phyto-nanoparticle design, such as surface functionalization and stimuli-responsive release mechanisms, which enhance their efficacy in bone regeneration applications. Preclinical studies demonstrating improved osteoblast proliferation, differentiation, and mineralization are critically analyzed, along with emerging clinical data. Despite promising results, scalability, standardization, and regulatory approval challenges persist. The review also addresses the economic and environmental implications of phyto-nanoparticle production. Looking ahead, we identify key research directions, including developing personalized therapies, combination approaches with stem cells or gene delivery, and long-term safety assessments. By harnessing the power of plant-derived nanomaterials, phytonanoparticles represent an innovative approach to addressing the complex challenges of bone regeneration, with potential applications spanning dental, orthopedic, and maxillofacial surgery.
Collapse
Affiliation(s)
- Nandita Suresh
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland.
- Pushpagiri Institute of Medical Sciences and Research Centre, Medicity, Perumthuruthy, Tiruvalla, Kerala, India.
| | - Nebu George Thomas
- Pushpagiri Institute of Medical Sciences and Research Centre, Medicity, Perumthuruthy, Tiruvalla, Kerala, India
| | - Matti Mauramo
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Waltimo
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, Doha, Qatar
- College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Du Y, Gao X, Chen J, Chen X, Liu H, He W, Liu L, Jiang Y, He B, Deng Z, Liang C, Guo F. OGT mediated HDAC5 O-GlcNAcylation promotes osteogenesis by regulating the homeostasis of epigenetic modifications and proteolysis. J Orthop Translat 2025; 50:14-29. [PMID: 39659899 PMCID: PMC11626777 DOI: 10.1016/j.jot.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Background O-GlcNAc transferase (OGT) is responsible for attaching O-linked N-acetylglucosamine (O-GlcNAc) to proteins, regulating diverse cellular processes ranging from transcription and translation to signaling and metabolism. This study focuses on the role and mechanisms of OGT in osteogenesis. Materials and methods We found that OGT is downregulated in osteoporosis by bioinformatics analysis, determined its role in osteogenic differentiation by using OGT inhibitors (or OGA inhibitors) as well as conditional knockout OGT mice in vitro and in vivo, and explored and specific mechanisms by quantitative proteomic analysis and RNA-seq, qRT-PCR, western blotting, immunofluorescence, H&E, ALP, ARS, Masson staining, IHC, micro CT, etc. Results we revealed that OGT positively influenced osteogenesis and osteoblast differentiation in vitro as well as ovariectomy (OVX) mice in vivo. Consistently, mice with conditionally depleted OGT exhibited a reduction in bone mass, while O-GlcNAcylation enhancer could partially recover bone mass in ovariectomy (OVX) mice. Mechanistically, quantitative proteomic analysis and high-throughput RNAseq further reveals that HDAC5 is one of the endogenous O-GlcNAcylation substrates, and O-GlcNAcylation of HDAC5 on Thr934 promotes its translocation to lysosomes and subsequent degradation, thus, elevating the O-GlcNAcylation level of HDAC5 leads to its cytoplasmic cleavage, consequently diminished its nuclear entry and enhanced DNA transcription. The OGT-mediated O-GlcNAcylation of HDAC5 modulates the balance between its cytoplasmic proteolysis and nuclear entry, thereby impacting the Notch signaling pathway and DNA epigenetic modifications then playing a role in osteogenesis. Conclusion OGT is a regulator that promotes osteoblast differentiation and bone regeneration. Additionally, it highlights the critical function of HDAC5 O-GlcNAcylation in controlling epigenetics. This study offers fresh perspectives on osteogenesis and O-GlcNAcylation, proposing that the OGT-mediated O-GlcNAcylation of HDAC5 could be a promising target for osteoporosis treatment. The translational potential of this article On one side, OGT might potentially be used as a new biomarker for clinical diagnosis of osteoporosis (OP) in the future. On the other side, small molecule inhibitors of HDAC5, a glycosylation substrate of OGT, or OGT agonists such as silymarin, could all potentially serve as therapeutic targets for the prevention or treatment of OP in the future.
Collapse
Affiliation(s)
- Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wenge He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fengjin Guo
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Lee J, Ryu B, Kim Y, Lee E. GMNN and DLL1 mutation-related spondylocarpotarsal synostosis: a case report. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:15. [PMID: 39659197 PMCID: PMC11812068 DOI: 10.12701/jyms.2024.01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Spondylocarpotarsal synostosis syndrome (SCTS) is a rare genetic disorder characterized by vertebral fusion, short stature, and skeletal anomalies. SCTS is primarily associated with mutations in filamin B. However, in this report, we present a unique case of SCTS in a 28-year-old male who complained of neck and shoulder pain persisting for 1 year. His clinical presentation included radioulnar synostosis, cervical spine anomalies (scoliosis and agenesis of the posterior arch of C1), and a history of polydactyly. Genetic analysis revealed mutations in GMNN and DLL1. To the best of our knowledge, this is the first report on the association of SCTS with these genes.
Collapse
Affiliation(s)
- Joonhwan Lee
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Seoul, Korea
| | - Byungju Ryu
- Department of Physical Medicine and Rehabilitation, Loving Care Clinic, Seongnam, Korea
| | - Yunhee Kim
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Seoul, Korea
| | - Eunyoung Lee
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Seoul, Korea
| |
Collapse
|
16
|
Liu Y, Gu X, Xuan M, Lou N, Fu L, Li J, Xue C. Notch signaling in digestive system cancers: Roles and therapeutic prospects. Cell Signal 2024; 124:111476. [PMID: 39428027 DOI: 10.1016/j.cellsig.2024.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Digestive system cancers rank among the most prevalent malignant tumors, maintaining persistently high incidence and mortality rates. Notch signaling activity, often aberrant in esophageal, gastric, hepatic, pancreatic, and colorectal cancers, plays a pivotal role in the initiation, progression, and therapy resistance of these malignancies. As a highly conserved pathway, Notch signaling is integral to cell differentiation, survival, proliferation, stem cell renewal, development, and morphogenesis. Its dysregulation has been increasingly linked to various diseases, particularly digestive system cancers. In these malignancies, altered Notch signaling influences multiple biological processes, including cell proliferation, invasion, cell cycle progression, immune evasion, drug resistance, and stemness maintenance. Understanding the mechanisms of Notch signaling in digestive system cancers is essential for the development of novel targeted therapies. Numerous Notch pathway-targeting drugs are currently in preclinical studies, demonstrating promising efficacy both as monotherapies and in combination with conventional anti-cancer treatments. This review summarizes recent high-quality findings on the involvement of Notch signaling in digestive system cancers, focusing on the expression changes and pathological mechanisms of its dysregulated components. Special emphasis is placed on the potential of translating Notch-targeted approaches into therapeutic strategies, which hold promise for overcoming the limitations of existing treatments and improving the poor prognosis associated with these cancers.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
17
|
Oryan A, Afzali SA, Maffulli N. Manipulation of signaling pathways in bone tissue engineering and regenerative medicine: Current knowledge, novel strategies, and future directions. Injury 2024; 55:111976. [PMID: 39454294 DOI: 10.1016/j.injury.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
During osteogenesis, a large number of bioactive molecules, macromolecules, cells, and cellular signals are activated to induce bone growth and development. The activation of molecular pathways leads to the occurrence of cellular events, ultimately resulting in observable changes. Therefore, in the studies of bone tissue engineering and regenerative medicine, it is essential to target fundamental events to exploit the mechanisms involved in osteogenesis. In this context, signaling pathways are activated during osteogenesis and trigger the activation of numerous other processes involved in osteogenesis. Direct influence of signaling pathways should allow to manipulate the signaling pathways themselves and impact osteogenesis. A combination of sequential cascades takes place to drive the progression of osteogenesis. Also, the occurrence of these processes and, more generally, cellular and molecular processes related to osteogenesis necessitate the presence of transcription factors and their activity. The present review focuses on outlining several signaling pathways and transcription factors influencing the development of osteogenesis, and describes various methods of their manipulation to induce and enhance bone formation.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Ali Afzali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nicola Maffulli
- Department of Orthopaedic and Trauma Surgery, Faculty of Medicine and Psychology, Sant'Andrea Hospital Sapienza University of Rome, Rome, Italy; Centre for Sport and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Stoke on Trent ST47QB, UK
| |
Collapse
|
18
|
Wang X, Wang Y, Li Y, Lu H, Mo D, Liu Z, Gao L, Zhao Y, Zhao L, Huang Y, Fan Y, Wang D. The initial implementation of the transverse bone transport technique in the post-radiation region of the mandible. A pre-clinical in vivo study. BMC Oral Health 2024; 24:1434. [PMID: 39587575 PMCID: PMC11587573 DOI: 10.1186/s12903-024-05175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND To link the treatment of radiation injury with angiogenesis, and to design and seek a new therapeutic technique for the prevention and treatment of radiation injury. METHODS The transverse bone transport device for rabbit mandible was designed and manufactured. Eighteen New Zealand white rabbits were randomly divided into a radiotherapy group and a normal group. The radiotherapy group received 18 Gy of radiation, and the device was implanted two weeks later. After a 7-day incubation period, transverse transportation was performed at a speed of 0.5 circles (0.4 mm) per day, with an 8-day cycle and a total traction distance of 3.2 mm. CBCT, Micro CT, and histological staining were employed to assess the dynamics of movement, osteogenesis, and angiogenesis. RESULTS The transverse bone transport model of rabbit mandible was successfully established. CBCT revealed that the transport height in the normal and radiotherapy groups were 3.24 ± 0.17 mm and 3.22 ± 0.19 mm respectively. Micro CT analysis showed an increase in BV/TV and Tb.N over time, while Tb.Sp decreased; differences in BV/TV existed at 2 weeks but disappeared thereafter; differences in Tb.N and Tb.Sp persisted at 2 and 4 weeks. Histological staining using HE, Masson, and IHC demonstrated good bone maturity accompanied by rich neovascularization, and this was also confirmed by ImageJ software analysis. CONCLUSIONS The transverse bone transport was employed for the first time in the radiation-induced mandibular damage, thereby establishing a basis for further investigation into its clinical efficacy, application value, and underlying mechanisms. This breakthrough offers novel prospects for clinical interventions.
Collapse
Affiliation(s)
- Xian Wang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yuetong Wang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yuetao Li
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Haoyu Lu
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Dongqin Mo
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Zhiqing Liu
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Linjing Gao
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yanfei Zhao
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Lixiang Zhao
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yude Huang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Yiyang Fan
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China
| | - Daiyou Wang
- College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, P.R. China.
| |
Collapse
|
19
|
Peng W, Yi X, Peng Y, Lu H, Liu H. Developmental toxicity and mechanism of dibutyl phthalate on the development of subintestinal vessels in zebrafish. Sci Rep 2024; 14:28464. [PMID: 39558027 PMCID: PMC11574295 DOI: 10.1038/s41598-024-80088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The dibutyl phthalate (DBP) is a member of the phthalate family and is widely used as a plasticizer in daily life and production. However, the influence of DBP on the vascular developmental remains unclear. METHODS In this study, we used zebrafish as a model organism to investigate the effects of DBP on vascular development in vivo. Death curves of zebrafish at different concentrations of DBP exposure and different times incubation were made firstly. Zebrafish embryos after fertilization for 5.5 h were exposed to different concentrations of DBP solution (0, 0.4, 0.8, 1.2 mg/L), the body length, yolk sac absorption area, mortality and heart rate of zebrafish were measured, and the number and area of sprouting of ventral vessels were quantified by transgenic fish system. Reactive oxygen species (ROS) in zebrafish embryos were observed by DCFH-DA staining. Super oxide dimutese (SOD) and catalase (CAT) were determined with ELISA kits. RESULTS We found that DBP increased the oxidative stress level of zebrafish exposed to DBP, and the genes related to vascular development also increased. Meanwhile, the activities of SOD and CAT were greatly decreased after DBP exposure. In the rescue experiment, we found that the antioxidant astaxanthin and the small molecule VEGF inhibitor ZM-306,416 can reverse the vascular dysplasia caused by DBP. CONCLUSIONS DBP induced vascular developmental toxicity by enhancing oxidative stress levels, activating HIF pathway, and interfering with the expression of vascular development-related pathways in zebrafish, results in the abnormal development of the subintestinal vessels in zebrafish.
Collapse
Affiliation(s)
- Wei Peng
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Clinical Research Center of Vascular Abnormalities of Jiangxi Province, Ganzhou, 341000, China
| | - Xiaokun Yi
- The First Hospital of Nanchang, Nanchang, 330000, China
| | - Yuyang Peng
- Ganzhou Cancer Hospital-Gannan Normal School Joint Research Center for Cancer Prevention and Treatment, Ganzhou, 341000, China
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, China.
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Haijin Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Department of Clinical Research Center of Vascular Abnormalities of Jiangxi Province, Ganzhou, 341000, China.
| |
Collapse
|
20
|
Tang Z, Zhang W, Liu A, Wei C, Bai M, Zhao J, Wang J. Circ_0104873 promotes osteoarthritis progression via miR-875-5p/NOTCH3/Notch signaling pathway. Int J Biol Macromol 2024; 281:136175. [PMID: 39357702 DOI: 10.1016/j.ijbiomac.2024.136175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Osteoarthritis (OA) is the most common joint disease with high prevalence and incidence. Increasing reports has indicated that circular RNAs (circRNAs) are implicated in OA progression. Nevertheless, the roles and functions of most circRNAs in OA remain to be elucidated. In this study, we emphatically discussed circ-IQGAP1 (circ_0104873) in OA. Firstly, we discovered that circ_0104873 was dramatically overexpressed during osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Several functional assays demonstrated that circ_0104873 inhibition repressed BMSCs proliferation and osteogenic differentiation. Moreover, mechanism assays also revealed that circ_0104873 sponged microRNA-875-5p (miR-875-5p) to up-regulate notch receptor 3 (NOTCH3), thereby activating the Notch signaling pathway. Rescue assays disclosed that circ_0104873 contributed to the development of OA via targeting miR-875-5p/NOTCH3 axis. In conclusion, circ_0104873 promoted the progression of OA by miR-875-5p/NOTCH3/Notch signaling pathway, which might provide a promising target for OA treatment.
Collapse
Affiliation(s)
- Zhao Tang
- Department of orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei Zhang
- Department of orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
| | - Anlong Liu
- Department of orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
| | - Changhui Wei
- Department of orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
| | - Maosheng Bai
- Department of orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
| | - Jianning Zhao
- Department of orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China.
| | - Jun Wang
- Department of orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
21
|
Gu C, Tang Q, Li L, Chen Y. Optimization and Implication of Adipose-Derived Stem Cells in Craniofacial Bone Regeneration and Repair. Bioengineering (Basel) 2024; 11:1100. [PMID: 39593759 PMCID: PMC11592193 DOI: 10.3390/bioengineering11111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) have emerged as a promising resource for craniofacial bone regeneration due to their high abundance and easy accessibility, significant osteogenic potential, versatile applications, and potential for personalized medicine, which underscore their importance in this field. This article reviews the current progress of preclinical studies that describe the careful selection of specific ADSC subpopulations, key signaling pathways involved, and usage of various strategies to enhance the osteogenic potential of ADSCs. Additionally, clinical case reports regarding the application of ADSCs in the repair of calvarial defects, cranio-maxillofacial defects, and alveolar bone defects are also discussed.
Collapse
Affiliation(s)
- Cong Gu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
| |
Collapse
|
22
|
Ma J, Yang L, Wu J, Huang Z, Zhang J, Liu M, Li M, Luo J, Wang H. Unraveling the Molecular Mechanisms of SIRT7 in Angiogenesis: Insights from Substrate Clues. Int J Mol Sci 2024; 25:11578. [PMID: 39519130 PMCID: PMC11546391 DOI: 10.3390/ijms252111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Angiogenesis, a vital physiological or pathological process regulated by complex molecular networks, is widely implicated in organismal development and the pathogenesis of various diseases. SIRT7, a member of the Sirtuin family of nicotinamide adenine dinucleotide + (NAD+) dependent deacetylases, plays crucial roles in cellular processes such as transcriptional regulation, cell metabolism, cell proliferation, and genome stability maintenance. Characterized by its enzymatic activities, SIRT7 targets an array of substrates, several of which exert regulatory effects on angiogenesis. Experimental evidence from in vitro and in vivo studies consistently demonstrates the effects of SIRT7 in modulating angiogenesis, mediated through various molecular mechanisms. Consequently, understanding the regulatory role of SIRT7 in angiogenesis holds significant promise, offering novel avenues for therapeutic interventions targeting either SIRT7 or angiogenesis. This review delineates the putative molecular mechanisms by which SIRT7 regulates angiogenesis, taking its substrates as a clue, endeavoring to elucidate experimental observations by integrating knowledge of SIRT7 substrates and established angiogenenic mechanisms.
Collapse
Affiliation(s)
- Junjie Ma
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| |
Collapse
|
23
|
Oliveira BA, Levy D, Paz JL, de Freitas FA, Reichert CO, Rodrigues A, Bydlowski SP. 7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:11380. [PMID: 39518932 PMCID: PMC11545361 DOI: 10.3390/ijms252111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in osteogenic or adipogenic media. Osteogenic and adipogenic differentiation was evaluated by Alizarin red and Oil Red O staining, respectively. Osteogenic (ALPL, RUNX2, BGLAP) and adipogenic markers (PPARƔ, C/EBPα) were determined by RT-PCR. Differentiation signaling pathways (SHh, Smo, Gli-3, β-catenin) were determined by indirect immunofluorescence. ATMSCs treated with 7-KC in osteogenic media stained positively for Alizarin Red. 7-KC in adipogenic media decreased the number of adipocytes. 7-KC increased ALPL and RUNX2 but not BGLAP expressions. 7-KC decreased expression of PPARƔ and C/EBPα, did not change SHh, Smo, and Gli-3 expression, and increased the expression of β-catenin. In conclusion, 7-KC favors osteogenic differentiation of ATMSCs through the expression of early osteogenic genes (matrix maturation phase) by activating the Wnt/β-catenin signaling pathway, while inhibiting adipogenic differentiation. This knowledge can be potentially useful in regenerative medicine, in treatments for bone diseases.
Collapse
Affiliation(s)
- Beatriz Araújo Oliveira
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Jessica Liliane Paz
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Fabio Alessandro de Freitas
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Alessandro Rodrigues
- Department of Earth and Exact Sciences, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
24
|
Kamalakar A, Tobin B, Kaimari S, Robinson MH, Toma AI, Cha T, Chihab S, Moriarity I, Gautam S, Bhattaram P, Abramowicz S, Drissi H, Garcia A, Wood L, Goudy SL. Delivery of a Jagged1-PEG-MAL hydrogel with pediatric human bone cells regenerates critically sized craniofacial bone defects. eLife 2024; 13:RP92925. [PMID: 39401071 PMCID: PMC11473100 DOI: 10.7554/elife.92925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Current treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and costly. Conventional methods involve surgical correction, short-term stabilization, and long-term bone grafting, which may include problematic allografts and limited autografts. While bone morphogenetic protein 2 (BMP2) has been used for bone regeneration, it can cause bone overgrowth and life-threatening inflammation. Bone marrow-derived mesenchymal stem cell therapies, though promising, are not Food and Drug Administration approved and are resource intensive. Thus, there is a need for effective, affordable, and less side-effect-prone bone regenerative therapies. Previous research demonstrated that JAGGED1 induces osteoblast commitment in murine cranial neural crest cells through a NOTCH-dependent non-canonical pathway involving JAK2-STAT5. We hypothesize that delivery of JAGGED1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitutes an effective bone regenerative treatment. Delivering pediatric human bone-derived osteoblast-like cells to an in vivo murine bone loss model of a critically sized cranial defect, we identified that JAGGED1 promotes human pediatric osteoblast commitment and bone formation through p70 S6K phosphorylation. This approach highlights the potential of JAGGED1 and its downstream activators as innovative treatments for pediatric CF bone loss.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
| | - Brendan Tobin
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemistry and Biomolecular Engineering, Georgia Tech College of EngineeringAtlantaUnited States
| | - Sundus Kaimari
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - M Hope Robinson
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
| | - Afra I Toma
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Timothy Cha
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
| | - Samir Chihab
- Department of Orthopedics, Emory UniversityAtlantaUnited States
| | - Irica Moriarity
- Neuroscience Program in College of Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Surabhi Gautam
- Department of Orthopedics, Emory UniversityAtlantaUnited States
| | - Pallavi Bhattaram
- Department of Orthopedics, Emory UniversityAtlantaUnited States
- The Atlanta Veterans Affairs Medical Center AtlantaAtlantaUnited States
| | - Shelly Abramowicz
- Department of Pediatric Otolaryngology, Emory UniversityAtlantaUnited States
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Emory UniversityAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopedics, Emory UniversityAtlantaUnited States
- The Atlanta Veterans Affairs Medical Center AtlantaAtlantaUnited States
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Andres Garcia
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of EngineeringAtlantaUnited States
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of EngineeringAtlantaUnited States
| | - Steven L Goudy
- Department of Pediatric Otolaryngology, Children’s Healthcare of AtlantaAtlantaUnited States
| |
Collapse
|
25
|
Adhish M, Manjubala I. An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. J Biomol Struct Dyn 2024; 42:9002-9017. [PMID: 37608541 DOI: 10.1080/07391102.2023.2249103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
The cysteine-knot containing negative regulator of the Wnt (Wingless-related integration site) signaling pathway, sclerostin (SOST) is an emerging therapeutic target for osteoporosis. Its inhibition is responsible for the promotion of osteoblastogenesis. In this study, taurine, an amino sulfonic acid was used to study its mechanism of action for the inhibition of the SOST protein. Molecular docking and dynamic studies were performed as a part of the study whereby, it was observed that taurine binds to a probable allosteric pocket which allows it to modulate the structure of the SOST protein affecting all of the loops - loops 1, loop 2, and loop 3 - as well as the cysteine residues forming the cysteine-knot. The study also identified a set of seven taurine analogues that have better pharmacological activity than their parent compound using screening techniques. The conclusions derived from the study support that taurine has a probable antagonistic effect on the SOST protein directly through the modulation of HNQS motif and loops 2 and 3 and indirectly through its influence on the cysteine residues - 134, 165 and 167 C. Based on the results, it can be assumed that the binding of taurine with SOST protein probably reduces its binding affinity to the LRP6 protein greatly, while also inhibiting the target protein from anchoring to LRP4. Furthermore, it was noted that probable additional binding with any small molecule inhibitor (SMI) at the active site (PNAIG motif), in the presence of an already allosterically bound taurine, of the SOST protein would result in a complete potential antagonism of the target protein. Additionally, the study also uncovers the possible role of the GKWWRPS motif in providing stability to the PNAIG motif for the purpose of binding with LRP6.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
26
|
Adhish M, Manjubala I. Probing the effects of single point mutations in the GKWWRPS motif on the PNAIG motif within Loop 2 of sclerostin (SOST) using in-silico techniques. Comput Biol Chem 2024; 112:108173. [PMID: 39182248 DOI: 10.1016/j.compbiolchem.2024.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Sclerostin (SOST), a Wnt signaling pathway inhibitor, is involved in the pathogenesis of skeletal disorders. This study investigated the impact of the GKWWRPS motif on the PNAIG motif in Loop 2 of SOST, which is accountable for the interactions with the LRP6 protein that triggers the down-regulation of the Wnt signaling pathway. Single amino acid mutations on the GKWWRPS motif, hypothesized to have a probable stabilization effect towards the PNAIG motif, led to a significant reduction in the primary interactions between the SOST and LRP6 proteins. Protein-protein docking and molecular dynamic studies were conducted to investigate the role of the motif. The study found that a solitary mutation in the GKWWRPS motif significantly reduced the primary interactions between SOST and LRP6 proteins, except for probable cold-spot residues. The study's findings establish the GKWWRPS motif as a promising target for therapeutic interventions. Based on the obtained results, it can be inferred that alterations implemented within the GKWWRPS motif could lead to the destabilization of the PNAIG motif, which would directly modulate the interactions between the SOST and LRP6 proteins. The present investigation thus presents novel opportunities in the field of anti-sclerostin interventions.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
27
|
García-Guerrero CA, Fuentes P, Araya MJ, Djouad F, Luz-Crawford P, Vega-Letter AM, Altamirano C. How to enhance MSCs therapeutic properties? An insight on potentiation methods. Stem Cell Res Ther 2024; 15:331. [PMID: 39334487 PMCID: PMC11438163 DOI: 10.1186/s13287-024-03935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have emerged as a promising tool in the field of regenerative medicine due to their unique therapeutic properties as they can differentiate into multiple cell types and exert paracrine effects. However, despite encouraging results obtained in preclinical studies, clinical trials have not achieved the same levels of efficacy. To improve the therapeutic properties of MSCs, several strategies have been explored. Therefore, in this review, the therapeutic properties of MSCs will be analyzed, and an update and overview of the most prominent approaches used to enhance their therapeutic capabilities will be provided. These approaches include using drugs, molecules, strategies based on biomaterials, and modification parameters in culture. The strategy described shows several common factors among those affected by these strategies that lead to an enhancement of the MSCs therapeutic properties such as the activation of the PI3K/AKT pathway and the increased expression of Heat Shock Proteins and Hypoxia-Inducible Factor. The combined effect of these elements shift MSCs towards a glycolytic state, suggesting this shift is essential for their enhancement.
Collapse
Affiliation(s)
- Cynthia Aylín García-Guerrero
- Doctorado en Biomedicina, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Paloma Fuentes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María Jesús Araya
- Doctorado en Biomedicina, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de La Santé Et de La Recherche Médicale, Montpellier, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Claudia Altamirano
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile.
| |
Collapse
|
28
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
30
|
Yuan L, Wei J, Xiao S, Jin S, Xia X, Liu H, Liu J, Hu J, Zuo Y, Li Y, Yang F, Li J. Nano-laponite encapsulated coaxial fiber scaffold promotes endochondral osteogenesis. Regen Biomater 2024; 11:rbae080. [PMID: 39055302 PMCID: PMC11269679 DOI: 10.1093/rb/rbae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Osteoinductive supplements without side effects stand out from the growth factors and drugs widely used in bone tissue engineering. Lithium magnesium sodium silicate hydrate (laponite) nanoflake is a promising bioactive component for bone regeneration, attributed to its inherent biosafety and effective osteoinductivity. Up to now, the in vivo osteogenic potential and mechanisms of laponite-encapsulated fibrous membranes remain largely unexplored. This study presents a unique method for homogeneously integrating high concentrations of laponite RDS into a polycaprolactone (PCL) matrix by dispersing laponite RDS sol into the polymer solution. Subsequently, a core-shell fibrous membrane (10RP-PG), embedding laponite-loaded PCL in its core, was crafted using coaxial electrospinning. The PCL core's slow degradation and the shell's gradient degradation enabled the sustained release of bioactive ions (Si and Mg) from laponite. In vivo studies on a critical-sized calvarial bone defect model demonstrated that the 10RP-PG membrane markedly enhanced bone formation and remodeling by accelerating the process of endochondral ossification. Further transcriptome analysis suggested that osteogenesis in the 10RP-PG membrane is driven by Mg and Si from endocytosed laponite, activating pathways related to ossification and endochondral ossification, including Hippo, Wnt and Notch. The fabricated nanocomposite fibrous membranes hold great promise in the fields of critical-sized bone defect repair.
Collapse
Affiliation(s)
- Li Yuan
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Huan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiangshan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiaxin Hu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Fang Yang
- Department of Dentistry—Regenerative Biomaterials, Research Institute for Medical Innovation, Nijmegen, 6525EX, The Netherlands
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
31
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
32
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
33
|
Kamalakar A, Tobin B, Kaimari S, Robinson MH, Toma AI, Cha T, Chihab S, Moriarity I, Gautam S, Bhattaram P, Abramowicz S, Drissi H, García AJ, Wood LB, Goudy SL. Delivery of A Jagged1-PEG-MAL hydrogel with Pediatric Human Bone Cells Regenerates Critically-Sized Craniofacial Bone Defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561291. [PMID: 37873448 PMCID: PMC10592619 DOI: 10.1101/2023.10.06.561291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and expensive. Current reconstructive methods include surgical correction of injuries, short-term bone stabilization, and long-term use of bone grafting solutions, including implantation of (i) allografts which are prone to implant failure or infection, (ii) autografts which are limited in supply. Current bone regenerative approaches have consistently relied on BMP2 application with or without addition of stem cells. BMP2 treatment can lead to severe bony overgrowth or uncontrolled inflammation, which can accelerate further bone loss. Bone marrow-derived mesenchymal stem cell-based treatments, which do not have the side effects of BMP2, are not currently FDA approved, and are time and resource intensive. There is a critical need for novel bone regenerative therapies to treat CF bone loss that have minimal side effects, are easily available, and are affordable. In this study we investigated novel bone regenerative therapies downstream of JAGGED1 (JAG1). We previously demonstrated that JAG1 induces murine cranial neural crest (CNC) cells towards osteoblast commitment via a NOTCH non-canonical pathway involving JAK2-STAT5 (1) and that JAG1 delivery with CNC cells elicits bone regeneration in vivo. In this study, we hypothesize that delivery of JAG1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitute an effective bone regenerative treatment in an in vivo murine bone loss model of a critically-sized cranial defect. Using this CF defect model in vivo, we delivered JAG1 with pediatric human bone-derived osteoblast-like (HBO) cells to demonstrate the osteo-inductive properties of JAG1 in human cells and in vitro we utilized the HBO cells to identify the downstream non-canonical JAG1 signaling intermediates as effective bone regenerative treatments. In vitro, we identified an important mechanism by which JAG1 induces pediatric osteoblast commitment and bone formation involving the phosphorylation of p70 S6K. This discovery enables potential new treatment avenues involving the delivery of tethered JAG1 and the downstream activators of p70 S6K as powerful bone regenerative therapies in pediatric CF bone loss.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
| | - Brendan Tobin
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biomolecular Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA
| | - Sundus Kaimari
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - M. Hope Robinson
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
| | - Afra I. Toma
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Timothy Cha
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
| | - Samir Chihab
- Department of Orthopedics, Emory University, Atlanta, GA, USA
| | - Irica Moriarity
- Neuroscience Program in College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Surabhi Gautam
- Department of Orthopedics, Emory University, Atlanta, GA, USA
| | - Pallavi Bhattaram
- Department of Orthopedics, Emory University, Atlanta, GA, USA
- The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA
| | - Shelly Abramowicz
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Emory University, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Cell biology, Emory University, Atlanta, GA, USA
- Department of Orthopedics, Emory University, Atlanta, GA, USA
- The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA
| | - Andrés J. García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA
| | - Steven L. Goudy
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, USA
- Department of Pediatric Otolaryngology, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
34
|
Wang YT, Zhou JY, Chen K, Yu X, Dong ZY, Liu YS, Meng XT. Electrical stimulation induced pre-vascularization of engineered dental pulp tissue. Regen Ther 2024; 26:354-365. [PMID: 39040711 PMCID: PMC11262115 DOI: 10.1016/j.reth.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Vascularization is a key step to achieve pulp tissue regeneration and in vitro pre-vascularized dental pulp tissue could be applied as a graft substitute for dental pulp tissue repair. In this study, human dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (hUVECs) were co-cultured in 3D Matrigel and 150 mV/mm electric fields (EFs) were used to promote the construction of pre-vascularized dental pulp tissue. After optimizing co-cultured ratio of two cell types, immunofluorescence staining, and live/dead detection were used to investigate the effect of EFs on cell survival, differentiation and vessel formation in 3D engineered dental pulp tissue. RNA sequencing was used to investigate the potential molecular mechanisms by which EF regulates vessel formation in 3D engineered dental pulp tissue. Here we identified that EF-induced pre-vascularized engineered dental pulp tissue not only had odontoblasts, but also had a rich vascular network, and smooth muscle-like cells appeared around the blood vessels. The GO enrichment analysis showed that these genes were significantly enriched in regulation of angiogenesis, cell migration and motility. The most significant term of the KEGG pathway analysis were NOTCH signaling pathway and Calcium signaling pathway etc. The PPI network revealed that NOTCH1 and IL-6 were central hub genes. Our study indicated that EFs significantly promoted the maturation and stable of blood vessel in 3D engineered pulp tissue and provided an experimental basis for the application of EF in dental pulp angiogenesis and regeneration.
Collapse
Affiliation(s)
- Ying-tong Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jia-ying Zhou
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kai Chen
- Norman Bethune Stomatological School of Jilin University, Changchun 130021, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhi-yong Dong
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu-shan Liu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao-ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
35
|
Wang J, Yang L, Mei J, Li Z, Huang Y, Sun H, Zheng K, Kuang H, Luo W. Knockdown of Notch Suppresses Epithelial-mesenchymal Transition and Induces Angiogenesis in Oral Submucous Fibrosis by Regulating TGF-β1. Biochem Genet 2024; 62:1055-1069. [PMID: 37526864 DOI: 10.1007/s10528-023-10452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Oral submucous fibrosis (OSF) is a chronic disorder with a high malignant transformation rate. Epithelial-mesenchymal transition (EMT) and angiogenesis are key events in OSF. The Notch signaling plays an essential role in the pathogenesis of various fibrotic diseases, including OSF. Our study aimed to explore the effects of Notch on the EMT and angiogenesis processes during the development of OSF. The expression of Notch in OSF tissues versus normal buccal mucosa samples was compared. Arecoline was used to induce myofibroblast transdifferentiation of buccal mucosal fibroblasts (BMFs). Short hairpin RNA technique was used to knockdown Notch in BMFs. Pirfenidone and SRI-011381 were used to inhibit and activate the TGF-β1 signaling pathway in BMFs, respectively. The expression of Notch was markedly upregulated in OSF tissues and fibrotic BMFs. Knockdown of Notch significantly decreased the viability and promoted apoptosis in BMFs subjected to arecoline stimulation. Downregulation of Notch also significantly suppressed the EMT process, as shown by the reduction of N-cadherin and vimentin with concomitant upregulation of E-cadherin. In addition, knockdown of Notch upregulated VEGF and enhanced the angiogenic activity of fBMFs. Moreover, inhibition of TGF-β1 suppressed viability and EMT, promoted apoptosis, and induced angiogenesis of fBMFs, while activation of TGF-β1 significantly diminished the effects of Notch knockdown on fBMFs. Knockdown of Notch suppressed EMT and induced angiogenesis in OSF by regulating TGF-β1, suggesting that the Notch-TGF-β1 pathway may serve as a therapeutic intervention target for OSF.
Collapse
Affiliation(s)
- Jinrong Wang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Liyan Yang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Jie Mei
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Zhixin Li
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Yuqi Huang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Honglan Sun
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Kaiyue Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Huifang Kuang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
- School of Stomatology, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
36
|
Lin H, Wei Y, Li S, Mao X, Qin J, Su S, He T. Changes in transcriptome regulations of a marine rotifer Brachionus plicatilis under methylmercury stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101177. [PMID: 38104474 DOI: 10.1016/j.cbd.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg), a heavy metal pollutant worldwide, can be transformed into methylmercury (MeHg) by various aquatic microorganisms in water, thus accumulating along the aquatic food chain and posing a particular challenge to human health. Zooplankton plays a crucial role in aquatic ecosystems and serves as a major component of the food chain. To evaluate the effects of MeHg on the rotifer Brachionus plicatilis and reveal the underlying mechanism of these effects, we exposed B. plicatilis to MeHg by either direct immersion or by feeding with MeHg-poisoned Chlorella pyrenoidesa, respectively, and conducted a transcriptomic analysis. The results showed that B. plicatilis directly exposed to MeHg by immersion showed significant enrichment of the glutathione metabolism pathway for detoxification of MeHg. In addition, the exposure to MeHg by feeding induced a significant enrichment of lysosome and notch signaling pathways of rotifers, supporting the hypothesis that MeHg can induce autophagy dysfunction in cells and disturb the nervous system of rotifers. In two different routes of MeHg exposure, the pathway of cytochrome P450 in rotifers showed significant enrichment for resisting MeHg toxicity. Our results suggest further studies on the potential mechanism and biological responses of MeHg toxicity in other links of the aquatic food chain.
Collapse
Affiliation(s)
- Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Yanlin Wei
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Songzhang Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| | - Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| |
Collapse
|
37
|
Zhong X, Wang H. LncRNA JHDM1D-AS1 promotes osteogenic differentiation of periodontal ligament cells by targeting miR-532-5p to activate IGF1R signaling. J Periodontal Res 2024; 59:220-230. [PMID: 37950511 DOI: 10.1111/jre.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim of this study was to explore the mechanism underlying periodontal ligament cells (PDLCs) osteogenic differentiation. BACKGROUND Periodontitis causes damage to tooth-supporting apparatus and eventually leads to tooth loss. PDLCs hold great promise in periodontal regeneration due to their osteogenic features. METHODS The expression of osteogenic markers, lncRNA JHDM1D-AS1, miR-532-5p and IGF1R was examined. For osteogenic differentiation, primary human PDLCs (hPDLCs) were cultured in an osteogenic medium, and it was assessed by ALP activity and Alizarin Red staining. The interaction between JHDM1D-AS1, miR-532-5p and IGF1R was analyzed via dual luciferase, RIP and RNA pull-down assays. RESULTS JHDM1D-AS1 was up-regulated during osteogenic differentiation and its silencing inhibited hPDLC osteogenic differentiation. JHDM1D-AS1 worked as a miR-532-5p sponge in hPDLCs. miR-532-5p directly targeted IGF1R to suppress its expression, and miR-532-5p knockdown facilitated osteogenic differentiation of hPDLCs. Overexpression of IGF1R promoted osteogenic differentiation of hPDLCs via activating Notch/HES1 signaling in hPDLCs. CONCLUSION JHDM1D-AS1 promotes osteogenic differentiation of hPDLCs via sponging miR-532-5p to facilitate IGF1R expression and activate Notch/HES1 signaling.
Collapse
Affiliation(s)
- Xiaohuan Zhong
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Huixin Wang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
38
|
Wang B, Zhao Y, Li Y, Tang C, He P, Liu X, Yao J, Chu C, Xu B. NIR-responsive injectable magnesium phosphate bone cement loaded with icariin promotes osteogenesis. J Mech Behav Biomed Mater 2024; 150:106256. [PMID: 38048713 DOI: 10.1016/j.jmbbm.2023.106256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
There were defects like limited osteogenesis and fast drug release in traditional magnesium phosphate bone cement (MPC). In this study, we loaded icariin in a mesoporous nano silica container modified by polydopamine and then added it and citric acid into MPC (IHP-CA MPCs). The results indicate that IHP-CA MPCs have a long curing time, almost neutral pH value, excellent injectability, and compressive strength. In vitro experiments have shown that IHP-CA MPCs have good biocompatibility and bone promoting ability. These improvements provide feasible solutions and references for the clinical application of MPCs as implants.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yangyang Li
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chengliang Tang
- Huadong Medical Institute of Biotechniques, Nanjing, 210002, Jiangsu, China
| | - Peng He
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaowei Liu
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.
| | - Bin Xu
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
39
|
Zhong J, Zhang X, Ruan Y, Huang Y. Photobiomodulation therapy's impact on angiogenesis and osteogenesis in orthodontic tooth movement: in vitro and in vivo study. BMC Oral Health 2024; 24:147. [PMID: 38297232 PMCID: PMC10832110 DOI: 10.1186/s12903-023-03824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND This study explores the effectiveness of Photobiomodulation Therapy (PBMT) in enhancing orthodontic tooth movement (OTM), osteogenesis, and angiogenesis through a comprehensive series of in vitro and in vivo investigations. The in vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells to assess PBMT's impact on cell proliferation, osteogenesis, angiogenesis, and associated gene expression. Simultaneously, an in vivo experiment utilized an OTM rat model subjected to laser irradiation at specific energy densities. METHODS In vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells treated with PBMT, enabling a comprehensive assessment of cell proliferation, osteogenesis, angiogenesis, and gene expression. In vivo, an OTM rat model was subjected to laser irradiation at specified energy densities. Statistical analyses were performed to evaluate the significance of observed differences. RESULTS The results revealed a significant increase in blood vessel formation and new bone generation within the PBMT-treated group compared to the control group. In vitro, PBMT demonstrated positive effects on cell proliferation, osteogenesis, angiogenesis, and gene expression in the co-culture model. In vivo, laser irradiation at specific energy densities significantly enhanced OTM, angiogenesis, and osteogenesis. CONCLUSIONS This study highlights the substantial potential of PBMT in improving post-orthodontic bone quality. The observed enhancements in angiogenesis and osteogenesis suggest a pivotal role for PBMT in optimizing treatment outcomes in orthodontic practices. The findings position PBMT as a promising therapeutic intervention that could be seamlessly integrated into orthodontic protocols, offering a novel dimension to enhance overall treatment efficacy. Beyond the laboratory, these results suggest practical significance for PBMT in clinical scenarios, emphasizing its potential to contribute to the advancement of orthodontic treatments. Further exploration of PBMT in orthodontic practices is warranted to unlock its full therapeutic potential.
Collapse
Affiliation(s)
- Jietong Zhong
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China
| | - Xinyu Zhang
- The Second People's Hospital of Yibin, Yibin, Sichuang, China
| | - Yaru Ruan
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| | - Yue Huang
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China.
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Wang YM, Shen JT. Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects. J Appl Biomater Funct Mater 2024; 22:22808000241266487. [PMID: 39129376 DOI: 10.1177/22808000241266487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
Collapse
Affiliation(s)
- Ya-Ming Wang
- Department of Endocrine, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| | - Jiang-Tao Shen
- Department of Orthopedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| |
Collapse
|
41
|
Zhou YK, Han CS, Zhu ZL, Chen P, Wang YM, Lin S, Chen LJ, Zhuang ZM, Zhou YH, Yang RL. M2 exosomes modified by hydrogen sulfide promoted bone regeneration by moesin mediated endocytosis. Bioact Mater 2024; 31:192-205. [PMID: 37593496 PMCID: PMC10429289 DOI: 10.1016/j.bioactmat.2023.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
Bone defects caused by trauma or tumor led to high medical costs and poor life quality for patients. The exosomes, micro vesicles of 30-150 nm in diameter, derived from macrophages manipulated bone regeneration. However, the role of hydrogen sulfide (H2S) in the biogenesis and function of exosomes and its effects on bone regeneration remains elusive. In this study, we used H2S slow releasing donor GYY4137 to stimulate macrophages and found that H2S promoted the polarization of M2 macrophages to increase bone regeneration of MSCs in vitro and in vivo. Moreover, we developed the H2S pre-treated M2 macrophage exosomes and found these exosomes displayed significantly higher capacity to promote bone regeneration in calvarial bone defects by re-establishing the local immune microenvironment. Mechanically, H2S treatment altered the protein profile of exosomes derived from M2 macrophages. One of the significantly enriched exosomal proteins stimulated by H2S, moesin protein, facilitated the exosomes endocytosis into MSCs, leading to activated the β-catenin signaling pathway to promote osteogenic differentiation of MSCs. In summary, H2S pretreated M2 exosomes promoted the bone regeneration of MSCs via facilitating exosomes uptake by MSCs and activate β-catenin signaling pathway. This study not only provides new strategies for promoting bone regeneration, but also provides new insights for the effect and mechanism of exosomes internalization.
Collapse
Affiliation(s)
- Yi-kun Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Chun-shan Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Zi-lu Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Peng Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yi-ming Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Shuai Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Liu-jing Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Zi-meng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yan-heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Rui-li Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| |
Collapse
|
42
|
Li C, Lin X, Lin Q, Lin Y, Lin H. Jiangu granules ameliorate postmenopausal osteoporosis via rectifying bone homeostasis imbalance: A network pharmacology analysis based on multi-omics validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155137. [PMID: 37856991 DOI: 10.1016/j.phymed.2023.155137] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a series of reactions to bone homeostasis dysregulation mediated by estrogen deficiency in elderly women. Jiangu granules, a traditional Chinese medicine formula, has been proven as an effective treatment approach for PMOP, which still needs more research iin its complex regulatory mechanisms. PURPOSE Our study aimed to identify the putative targets and regulatory mechanisms of Jiangu granules in PMOP treating. METHODS We utilized the NHANES database to compare the clinical information of normal population and PMOP patients. Associated with transcriptomics and proteomic data, we identified the PMOP-related genes, and further studied them with bioinformatic methods including and prognosis model. Network pharmacology was applied for confirming the action targets of Jiangu granules in PMOP. We verified the safety and effectiveness in PMOP treatments of Jiangu granules, and also demonstrated our hypothesis in rats. RESULTS We discovered that the PMOP patients had higher monocytes than the normal women. Moreover, the transcriptomics and proteomic analysis suggested that the dysregulation of PMOP-related genes expression was associated with monocytes, and the Notch pathway were the critical targets representing bone homeostasis imbalance highly involved in the occurrence of PMOP. We also ascertained network pharmacology results further revealing that Jiangu granules might treat PMOP via recovering the bone homeostasis imbalance identified above. In vivo experiments, we confirmed the high efficacy which mainly resulted from function in mitigating the imbalance in bone homeostasis by recovering the normal expression of PMOP-related genes associated with monocytes, Notch, and steroid pathway in the rat models. CONCLUSION Our finding underscored the clinical potential of Jiangu granules in treating PMOP, and enriched the comprehension of the related pathogenic and therapeutic mechanisms.
Collapse
Affiliation(s)
- Chaoxiong Li
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qin Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanping Lin
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haiming Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, 1st Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, Fujian, China.
| |
Collapse
|
43
|
Zhang F, Wang B, Zhang W, Xu Y, Zhang C, Xue X. Transcription Factor MAZ Potentiates the Upregulated NEIL3-mediated Aerobic Glycolysis, thereby Promoting Angiogenesis in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2024; 24:1235-1249. [PMID: 38347781 DOI: 10.2174/0115680096265896231226062212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by high vascularity and notable abnormality of blood vessels, where angiogenesis is a key process in tumorigenesis and metastasis. The main functions of Nei Like DNA Glycosylase 3 (NEIL3) include DNA alcoholization repair, immune response regulation, nervous system development and function, and DNA damage signal transduction. However, the underlying mechanism of high expression NEIL3 in the development and progression of HCC and whether the absence or silencing of NEIL3 inhibits the development of cancer remain unclear. Therefore, a deeper understanding of the mechanisms by which increased NEIL3 expression promotes cancer development is needed. METHODS Expression of NEIL3 and its upstream transcription factor MAZ in HCC tumor tissues was analyzed in bioinformatics efforts, while validation was done by qRT-PCR and western blot in HCC cell lines. The migration and tube formation capacity of HUVEC cells were analyzed by Transwell and tube formation assays. Glycolytic capacity was analyzed by extracellular acidification rate, glucose uptake, and lactate production levels. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter gene assays were utilized to investigate specific interactions between MAZ and NEIL3. RESULTS NEIL3 and MAZ were substantially upregulated in HCC tissues and cells. NEIL3 was involved in modulating the glycolysis pathway, suppression of which reversed the stimulative impact of NEIL3 overexpression on migration and angiogenesis in HUVEC cells. MAZ bound to the promoter of NEIL3 to facilitate NEIL3 transcription. Silencing MAZ reduced NEIL3 expression and suppressed the glycolysis pathway, HUVEC cell migration, and angiogenesis. CONCLUSION MAZ potentiated the upregulated NEIL3-mediated glycolysis pathway and HCC angiogenesis. This study provided a rationale for the MAZ/NEIL3/glycolysis pathway as a possible option for anti-angiogenesis therapy in HCC.
Collapse
Affiliation(s)
- Fabiao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Binfeng Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Wenlong Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yongfu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Caiming Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xiangyang Xue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
44
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
45
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
46
|
Zhu Z, Wang Z, Ma C, Zhou J, Zhang W. Isopsoralen promotes osteogenic differentiation of human jawbone marrow mesenchymal cells through Notch signaling pathway. Ann Anat 2023; 250:152156. [PMID: 37678499 DOI: 10.1016/j.aanat.2023.152156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effect of isopsoralen on osteogenic differentiation of human jawbone marrow mesenchymal cells and its possible mechanism. METHOD The cytotoxicity and proliferation of cells were measured by a cell counting kit 8. Alkaline phosphatase activity analysis was then used to determine the optimal concentration of isopsoralen to promote the differentiation. Western blot, qRT-PCR and Alizarin Red S staining were used to evaluate the role of Notch signaling pathway in isopsoralen-induced osteogenic differentiation. This study also investigated the anti-osteoporotic effects of ISO using in vivo osteoporosis models. RESULTS Our results showed that 1 × 10-6 mol / L isopsoralen can effectively promote the proliferation and osteogenic differentiation of cells. Moreover, we found that activation of notch signaling pathway inhibited isopsoralen-induced osteogenesis and inhibition of Notch signal promoted the differentiation of osteoblasts induced by isopsoralen. In vivo experiments revealed that ISO significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. CONCLUSION Our findings demonstrated that isopsoralen induced osteogenic differentiation by inhibiting Notch signaling and it might be a potential therapeutic agent for treating or preventing osteoporosis.
Collapse
Affiliation(s)
- Zhu Zhu
- Stomatology outpatient of the Air Force From Eastern Theater of PLA, Nanjing, Jiangsu, China
| | - Zitian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changyan Ma
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
47
|
Szybiak W, Kujawa B, Miedziaszczyk M, Lacka K. Effect of Growth Hormone and Estrogen Replacement Therapy on Bone Mineral Density in Women with Turner Syndrome: A Meta-Analysis and Systematic Review. Pharmaceuticals (Basel) 2023; 16:1320. [PMID: 37765128 PMCID: PMC10536543 DOI: 10.3390/ph16091320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoporosis is a serious implication of Turner syndrome (TS). Common methods for the treatment of TS are growth hormone (GHT) and estrogen replacement therapy (ERT). We examined the relationship between the treatment of TS and bone mineral density (BMD) of the lumbar spine. The purpose of our study was to show the currency of BMD states among patients with TS for treatment with GHT and ERT. We searched databases for studies published from inception to April 2023. The articles were related to TS, osteoporosis, ERT, GHT, BMD and treatment patients with TS. We applied the selection criteria: lumbar spine values at L1-L4; dual-energy X-ray absorptiometry (DXA); treatment which was applied: one group of articles: ERT and two group of articles: GHT; results performed as means ± SD. In total, 79 articles were analyzed, of which 20 studies were included and 5 were considered for meta-analysis. The total number of women in the articles selected was 71. Based on the results of the meta-analysis, the effect of ERT on BMD demonstrated a significant increase in BMD (the standardized mean difference in the random model was 0.593 g/cm2, 95% CI: 0.0705 to 1.116; p = 0.026), which showed that treatment with estrogen particularly increases bone mass during treatment, which contributes to reducing the risk of fractures. The effect of GHT on BMD demonstrated a non-significant decrease in BMD in patients with TS. The results for growth hormone show that this therapy does not improve bone density. However, our review emphasizes the beneficial effect of supplementing growth hormone (GH) on the clinical presentation of TS.
Collapse
Affiliation(s)
- Weronika Szybiak
- Students’ Scientific Section at the Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Science, 60-355 Poznan, Poland; (W.S.); (B.K.)
| | - Barbara Kujawa
- Students’ Scientific Section at the Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Science, 60-355 Poznan, Poland; (W.S.); (B.K.)
| | - Miłosz Miedziaszczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Science, 60-355 Poznan, Poland;
| | - Katarzyna Lacka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Science, 60-355 Poznan, Poland
| |
Collapse
|
48
|
Martin V, Bettencourt AF, Santos C, Fernandes MH, Gomes PS. Unveiling the Osteogenic Potential of Tetracyclines: A Comparative Study in Human Mesenchymal Stem Cells. Cells 2023; 12:2244. [PMID: 37759467 PMCID: PMC10526833 DOI: 10.3390/cells12182244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibiotics with diverse pharmacotherapeutic properties due to their various functional groups being attached to a common core structure. Beyond their antibacterial activity, TCs trigger pleiotropic effects on eukaryotic cells, including anti-inflammatory and potentially osteogenic capabilities. Consequently, TCs hold promise for repurposing in various clinical applications, including bone-related conditions. This study presents the first comprehensive comparison of the in vitro osteogenic potential of four TCs-tetracycline, doxycycline, minocycline, and sarecycline, within human mesenchymal stem cells. Cultures were characterized for metabolic activity, cell morphology and cytoskeleton organization, osteogenic gene expression, alkaline phosphatase (ALP) activity, and the activation of relevant signaling pathways. TCs stimulated actin remodeling processes, inducing morphological shifts consistent with osteogenic differentiation. Osteogenic gene expression and ALP activity supported the osteoinduction by TCs, demonstrating significant increases in ALP levels and the upregulation of RUNX2, SP7, and SPARC genes. Minocycline and sarecycline exhibited the most potent osteogenic induction, comparable to conventional osteogenic inducers. Signaling pathway analysis revealed that tetracycline and doxycycline activate the Wnt pathway, while minocycline and sarecycline upregulated Hedgehog signaling. Overall, the present findings suggest that TCs promote osteogenic differentiation through distinct pathways, making them promising candidates for targeted therapy in specific bone-related disorders.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| |
Collapse
|
49
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
50
|
Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC. Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function - A multi-omics study. Matrix Biol 2023; 121:127-148. [PMID: 37348683 PMCID: PMC10634967 DOI: 10.1016/j.matbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Ka Wai Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alberta Derkyi
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.
| |
Collapse
|