1
|
Sawalha K, Gautam N, Sivakumar K, Paydak H, Mehta JL. Metformin: Its salutary effects beyond diabetes mellitus. J Investig Med 2025:10815589251327511. [PMID: 40033492 DOI: 10.1177/10815589251327511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metformin, an oral hypoglycemic agent, is commonly used in patients with type II diabetes mellitus. Studies have shown its use is associated with a reduction in major cardiovascular events (MACE) in patients with type 2 diabetes such as hospitalization for acute myocardial infarction, stroke, transient ischemic attack, or cardiovascular death. There is also a suggestion that metformin may have effects beyond those relating to lowering of blood sugar. The goal of this review is to assess the effects of metformin in coronary artery disease (CAD), but more importantly, its effects on disease states other than CAD.
Collapse
Affiliation(s)
- Khalid Sawalha
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nitesh Gautam
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kalaivani Sivakumar
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hakan Paydak
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawaher L Mehta
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
2
|
Mulla IG, Anjankar A, Pratinidhi S, Agrawal SV, Gundpatil D, Lambe SD. Prediabetes: A Benign Intermediate Stage or a Risk Factor in Itself? Cureus 2024; 16:e63186. [PMID: 39070421 PMCID: PMC11273947 DOI: 10.7759/cureus.63186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Prediabetes is a condition when the blood glucose levels are above the normal range but below the threshold for defining diabetes. Previously considered benign, it is now recognized to be associated with various macrovascular and microvascular complications, with increases in the risk of cardiovascular events, nephropathy neuropathy, and retinopathy. Early identification of prediabetics may help detect the risk for these future complications at an earlier stage. Moreover, therapeutic options for prediabetes are available, which can retard its progression to diabetes and the subsequent development of complications. Hence, we make a case for the early identification of prediabetes through screening methods and appropriate institution of management strategies.
Collapse
Affiliation(s)
- Irfan G Mulla
- Biochemistry, Datta Meghe Institute of Higher Education & Research (DMIHER), Wardha, IND
| | | | - Shilpa Pratinidhi
- Biochemistry, Bharatratna Atalbihari Vajpayee Medical College, Pune, Pune, IND
| | - Sarita V Agrawal
- Biochemistry, Bharatratna Atalbihari Vajpayee Medical College, Pune, Pune, IND
| | - Deepak Gundpatil
- Biochemistry, Bharatratna Atalbihari Vajpayee Medical College, Pune, Pune, IND
| | - Sandip D Lambe
- Biochemistry, Smt Mathurabai Bhausaheb Thorat (SMBT) Institute of Medical Sciences and Research Centre, Nashik, IND
| |
Collapse
|
3
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
4
|
Rezaei S, Timani KA, He JJ. Metformin Treatment Leads to Increased HIV Transcription and Gene Expression through Increased CREB Phosphorylation and Recruitment to the HIV LTR Promoter. Aging Dis 2024; 15:831-850. [PMID: 37450926 PMCID: PMC10917544 DOI: 10.14336/ad.2023.0705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Antiretroviral therapy has effectively suppressed HIV infection and replication and prolonged the lifespan of HIV-infected individuals. In the meantime, various complications including type 2 diabetes associated with the long-term antiviral therapy have shown steady increases. Metformin has been the front-line anti-hyperglycemic drug of choice and the most widely prescribed medication for the treatment of type 2 diabetes. However, little is known about the effects of Metformin on HIV infection and replication. In this study, we showed that Metformin treatment enhanced HIV gene expression and transcription in HIV-transfected 293T and HIV-infected Jurkat and human PBMC. Moreover, we demonstrated that Metformin treatment resulted in increased CREB expression and phosphorylation, and TBP expression. Furthermore, we showed that Metformin treatment increased the recruitment of phosphorylated CREB and TBP to the HIV LTR promoter. Lastly, we showed that inhibition of CREB phosphorylation/activation significantly abrogated Metformin-enhanced HIV gene expression. Taken together, these results demonstrated that Metformin treatment increased HIV transcription, gene expression, and production through increased CREB phosphorylation and recruitment to the HIV LTR promoter. These findings may help design the clinical management plan and HIV cure strategy of using Metformin to treat type 2 diabetes, a comorbidity with an increasing prevalence, in people living with HIV.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Khalid A Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| |
Collapse
|
5
|
Fatima K, Jamil Z, Faheem S, Adnan A, Javaid SS, Naeem H, Mohiuddin N, Sajid A, Ochani S. Effects of myo-inositol vs. metformin on hormonal and metabolic parameters in women with PCOS: a meta-analysis. Ir J Med Sci 2023; 192:2801-2808. [PMID: 37148410 DOI: 10.1007/s11845-023-03388-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Polycystic Ovary Syndrome is the most prevalent hormonal disorder in females. Over the years, metformin (MET) has become the first-line choice of treatment; however, due to its gastrointestinal side effects, a more recent drug, myo-inositol (MI), has been introduced. We aim to conduct a systematic review and meta-analysis to compare the effects of MET and MI on hormonal and metabolic parameters. MATERIALS AND METHODS Authors extensively searched PubMed, Scopus, Cochrane Library, Google Scholar, and Web of Science for randomized clinical trials (RCTs) until August 2021. Eight (n = 8) articles were included, with a total sample size of 1088, of which 460 patients received MET, 436 received MI, and 192 received a combination of both. Standard mean differences (SMDs) and Confidence Intervals (CIs) were used for data synthesis, and forest plots were made using Review Manager 5.4 for Statistical Analysis using the random-effect model. RESULTS The meta-analysis indicates that there is no significant difference between MET and MI in terms of their effects on BMI (SMD = 0.16, 95% CI: - 0.11 to 0.43, p = 0.24), fasting insulin (SMD = 0.00, 95% CI: - 0.26 to 0.27, p = 0.97), fasting blood sugar (SMD = 0.11, 95% CI: - 0.31to 0.53, p = 0.60), HOMA index (SMD = 0.09, 95% CI: - 0.20 to 0.39, p = 0.50), and LH/FSH (SMD = 0.20, 95% CI: - 0.24 to 0.64, p = 0.37). BMI, fasting blood sugar, and LH/FSH ratio reported moderate heterogeneity because of the varying number of study participants. CONCLUSION Our meta-analysis comparing hormonal and metabolic parameters between MET and MI did not show much significant difference, indicating both drugs are equally beneficial in improving metabolic and hormonal parameters in patients with PCOS.
Collapse
Affiliation(s)
- Kaneez Fatima
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Zainab Jamil
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Samar Faheem
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Alishba Adnan
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Syed Sarmad Javaid
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Hafsa Naeem
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Neha Mohiuddin
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Anosha Sajid
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Sidhant Ochani
- Department of Medicine, Khairpur Medical College, Khairpur Mir's, Sindh, 66020, Pakistan.
| |
Collapse
|
6
|
Vajje J, Khan S, Kaur A, Kataria H, Sarpoolaki S, Goudel A, Bhatti AH, Allahwala D. Comparison of the Efficacy of Metformin and Lifestyle Modification for the Primary Prevention of Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Cureus 2023; 15:e47105. [PMID: 38021728 PMCID: PMC10646693 DOI: 10.7759/cureus.47105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
This meta-analysis aimed to compare the effectiveness of metformin versus lifestyle interventions in preventing diabetes in individuals with prediabetes. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and conducted a comprehensive search of databases (PubMed, Cochrane Library, EMBASE) up to September 1, 2023. Five eligible studies were included. The results showed that there was no significant difference in the risk of developing diabetes between the metformin and lifestyle intervention groups (RR: 1.14, 95% CI: 0.77-1.68). Similarly, when comparing metformin with lifestyle intervention, the risk of diabetes was slightly higher in the metformin group, but this difference was not statistically significant (RR: 1.31, 95% CI: 0.93-1.86). When comparing metformin with lifestyle intervention to lifestyle intervention alone, no significant difference was observed in the incidence of diabetes (RR: 0.88, 95% CI: 0.74-1.04). In conclusion, our analysis found that the incidence of type 2 diabetes was slightly higher in patients receiving metformin alone compared to lifestyle intervention, but this difference did not reach statistical significance. Further trials are necessary to better evaluate these interventions for preventing type 2 diabetes in high-risk individuals.
Collapse
Affiliation(s)
- Jaahnavi Vajje
- Internal Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| | - Saima Khan
- Internal Medicine, Sir Syed College of Medical Sciences for Girls, Waterbury, USA
| | - Avneet Kaur
- Internal Medicine, Government Medical College, Patiala, Patiala, IND
| | - Heemali Kataria
- Internal Medicine, Government Medical College, Surat, Surat, IND
| | | | - Aastha Goudel
- Medicine, Zainul Haque Sikder Women's Medical College and Hospital, Dhaka, NPL
| | | | | |
Collapse
|
7
|
Torunoglu ST, Zajda A, Tampio J, Markowicz-Piasecka M, Huttunen KM. Metformin derivatives - Researchers' friends or foes? Biochem Pharmacol 2023; 215:115743. [PMID: 37591450 DOI: 10.1016/j.bcp.2023.115743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Metformin has been used for ages to treat diabetes mellitus due to its safety profile and low cost. However, metformin has variable pharmacokinetics in patients, and due to its poor oral absorption, the therapeutic doses are relatively high, causing unpleasant gastrointestinal adverse effects. Therefore, novel derivatives of metformin have been synthesized during the past decades. Particularly, after the mid-2000 s, when organic cation transporters were identified as the main metformin carriers, metformin derivatives have been under intensive investigation. Nevertheless, due to the biguanide structure, derivatives of metformin have been challenging to synthesize. Moreover, the mechanisms of metformin's action are not fully understood to date, and since it has multifunctional properties, the interests have switched to re-purposing for other diseases. Indeed, metformin derivatives have been demonstrated in many cases to be more effective than metformin itself and have the potential to be used in different diseases, including several types of cancers and neurodegenerative diseases. On the other hand, the pleiotropic nature of metformin and its derivatives can also create challenges. Not all properties are fit for all diseases. In this review, the history of the development of metformin-like compounds is summarized, and insights into their potential for future drug discovery are discussed.
Collapse
Affiliation(s)
- Sema Tuna Torunoglu
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Agnieszka Zajda
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
8
|
Niranjan S, Phillips BE, Giannoukakis N. Uncoupling hepatic insulin resistance - hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1193373. [PMID: 37396181 PMCID: PMC10313404 DOI: 10.3389/fendo.2023.1193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.
Collapse
Affiliation(s)
- Sitara Niranjan
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
10
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1149239. [PMID: 37056675 PMCID: PMC10086443 DOI: 10.3389/fendo.2023.1149239] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Insulin resistance (IR) plays a crucial role in the development and progression of metabolism-related diseases such as diabetes, hypertension, tumors, and nonalcoholic fatty liver disease, and provides the basis for a common understanding of these chronic diseases. In this study, we provide a systematic review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any factor leading to abnormalities in the insulin signaling pathway leads to the development of IR in the host, including insulin receptor abnormalities, disturbances in the internal environment (regarding inflammation, hypoxia, lipotoxicity, and immunity), metabolic function of the liver and organelles, and other abnormalities. The available therapeutic strategies for IR are mainly exercise and dietary habit improvement, and chemotherapy based on biguanides and glucagon-like peptide-1, and traditional Chinese medicine treatments (e.g., herbs and acupuncture) can also be helpful. Based on the current understanding of IR mechanisms, there are still some vacancies to follow up and consider, and there is also a need to define more precise biomarkers for different chronic diseases and lifestyle interventions, and to explore natural or synthetic drugs targeting IR treatment. This could enable the treatment of patients with multiple combined metabolic diseases, with the aim of treating the disease holistically to reduce healthcare expenditures and to improve the quality of life of patients to some extent.
Collapse
Affiliation(s)
| | | | | | | | - Hangyu Ji
- *Correspondence: Fengmei Lian, ; Hangyu Ji,
| | | |
Collapse
|
12
|
Lal JC, Mao C, Zhou Y, Gore-Panter SR, Rennison JH, Lovano BS, Castel L, Shin J, Gillinov AM, Smith JD, Barnard J, Van Wagoner DR, Luo Y, Cheng F, Chung MK. Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Rep Med 2022; 3:100749. [PMID: 36223777 PMCID: PMC9588904 DOI: 10.1016/j.xcrm.2022.100749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Effective drugs for atrial fibrillation (AF) are lacking, resulting in significant morbidity and mortality. This study demonstrates that network proximity analysis of differentially expressed genes from atrial tissue to drug targets can help prioritize repurposed drugs for AF. Using enrichment analysis of drug-gene signatures and functional testing in human inducible pluripotent stem cell (iPSC)-derived atrial-like cardiomyocytes, we identify metformin as a top repurposed drug candidate for AF. Using the active compactor, a new design analysis of large-scale longitudinal electronic health record (EHR) data, we determine that metformin use is significantly associated with a reduced risk of AF (odds ratio = 0.48, 95%, confidence interval [CI] 0.36-0.64, p < 0.001) compared with standard treatments for diabetes. This study utilizes network medicine methodologies to identify repurposed drugs for AF treatment and identifies metformin as a candidate drug.
Collapse
Affiliation(s)
- Jessica C. Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA
| | - Shamone R. Gore-Panter
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Julie H. Rennison
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beth S. Lovano
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laurie Castel
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jiyoung Shin
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - A. Marc Gillinov
- Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan D. Smith
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - David R. Van Wagoner
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA,Corresponding author
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Corresponding author
| | - Mina K. Chung
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., J2-2, OH 44195, USA,Corresponding author
| |
Collapse
|
13
|
Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: a meta-analysis of randomized clinical trials. BMC Cardiovasc Disord 2022; 22:405. [PMID: 36088302 PMCID: PMC9464374 DOI: 10.1186/s12872-022-02845-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Left ventricular hypertrophy is a common finding in patients with ischemic heart disease and is associated with mortality in patients with cardiovascular disease (CVD). Metformin, an antidiabetic drug, has been shown to reduce oxidative stress and left ventricular mass index (LVMI) in animal hypertrophy models. We summarized evidence regarding the effect of metformin on LVMI and LVEF. METHODS Electronic databases were searched for randomized clinical trials (RCTs) that used metformin in non-diabetic patients with or without pre-existing CVD. The standardized mean change using change score standardization (SMCC) was calculated for each study. The random-effects model was used to pool the SMCC across studies. Meta-regression analysis was used to assess the association of heart failure (HF), metformin dose, and duration with the SMCC. RESULTS Data synthesis from nine RCTs (754 patients) showed that metformin use resulted in higher reduction in LVMI after 12 months (SMCC = -0.63, 95% CI - 1.23; - 0.04, p = 0.04) and an overall higher reduction in LVMI (SMCC = -0.5, 95% CI - 0.84; - 0.16, p < 0.01). These values equate to absolute values of 11.3 (95% CI 22.1-0.72) and 8.97 (95% CI 15.06-2.87) g/m2, respectively. The overall improvement in LVEF was also higher in metformin users after excluding one outlier (SMCC = 0.26, 95% CI 0.03-0.49, P = 0.03) which translates to a higher absolute improvement of 2.99% (95% CI 0.34; 5.63). Subgroup analysis revealed a favorable effect for metformin on LVEF in patients who received > 1000 mg/day (SMCC = 0.28, 95% CI 0.04; 0.52, P = 0.04), and patients with HF (SMCC = 0.23; 95% CI 0.1; 0.36; P = 0.004). These values translate to a higher increase of 2.64% and 3.21%, respectively. CONCLUSION Results suggest a favorable effect for metformin on LVMI and LVEF in patients with or without pre-existing CVD. Additional trials are needed to address the long-term effect of metformin. Registration The study was registered on the PROSPERO database with the registration number CRD42021239368 ( https://www.crd.york.ac.uk/prospero ).
Collapse
Affiliation(s)
- Ahmed M Kamel
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nirmeen Sabry
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Samar Farid
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
14
|
Naaman SC, Shen S, Zeytinoglu M, Iyengar NM. Obesity and Breast Cancer Risk: The Oncogenic Implications of Metabolic Dysregulation. J Clin Endocrinol Metab 2022; 107:2154-2166. [PMID: 35453151 PMCID: PMC9282365 DOI: 10.1210/clinem/dgac241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/18/2022]
Abstract
CONTEXT Breast cancer is increasing in prevalence in parallel with rising rates of obesity worldwide. Obesity is recognized as a leading modifiable risk factor for the development of breast cancer; however, this association varies considerably by clinicopathologic features, and the underlying mechanisms are complex. EVIDENCE ACQUISITION Pubmed literature search using combinations of "obesity," "breast cancer risk," "diet," "exercise," "weight gain," "weight loss," "adipose tissue inflammation," "crown-like structure," "immune markers," "metformin," "gliflozins," "SGLT-2i," "GLP1-RA," and related terms. EVIDENCE SYNTHESIS Elevated body mass index and weight gain are associated with increased risk of postmenopausal, hormone receptor-positive breast cancer. Emerging evidence suggests that adverse measures of body composition in individuals of any weight can also confer increased breast cancer risk. Mechanistically, various factors including altered adipokine balance, dysfunctional adipose tissue, dysregulated insulin signaling, and chronic inflammation contribute to tumorigenesis. Weight loss and more specifically fat mass loss through lifestyle and pharmacologic interventions improve serum metabolic and inflammatory markers, sex hormone levels, and measures of breast density, suggesting a link to decreased breast cancer risk. CONCLUSION Incorporating markers of metabolic health and body composition measures with body mass index can capture breast cancer risk more comprehensively. Further studies of interventions targeting body fat levels are needed to curb the growing prevalence of obesity-related cancer.
Collapse
Affiliation(s)
| | - Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Neil M Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Ali A, Unnikannan H, Shafarin J, Bajbouj K, Taneera J, Muhammad JS, Hasan H, Salehi A, Awadallah S, Hamad M. Metformin enhances LDL-cholesterol uptake by suppressing the expression of the pro-protein convertase subtilisin/kexin type 9 (PCSK9) in liver cells. Endocrine 2022; 76:543-557. [PMID: 35237909 DOI: 10.1007/s12020-022-03022-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Metformin (MF) intake associates with reduced levels of circulating low-density lipoprotein-cholesterol (LDL-C). This has been attributed to the activation of AMPK, which differentially regulates the expression of multiple genes involved in cholesterol synthesis and trafficking. However, the exact mechanism underlying the LDL-C lowering effect of MF remains ambiguous. METHODS MF-treated Hep-G2 and HuH7 cells were evaluated for cell viability and the expression status of key lipid metabolism-related genes along with LDL-C uptake efficiency. RESULTS MF treatment resulted in decreased expression and secretion of PCSK9, increased expression of LDLR and enhanced LDL-C uptake in hepatocytes. It also resulted in increased expression of activated AMPK (p-AMPK) and decreased expression of SREBP2 and HNF-1α proteins. Transcriptomic analysis of MF-treated Hep-G2 cells confirmed these findings and showed that other key lipid metabolism-related genes including those that encode apolipoproteins (APOB, APOC2, APOC3 and APOE), MTTP and LIPC are downregulated. Lastly, MF treatment associated with reduced HMG-CoA reductase expression and activity. CONCLUSIONS These findings suggest that MF treatment reduces circulating LDL-C levels by suppressing PCSK9 expression and enhancing LDLR expression; hence the potential therapeutic utility of MF in hypercholesterolemia.
Collapse
Affiliation(s)
- Amjad Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hema Unnikannan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Haydar Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Albert Salehi
- Department of Clinical science, UMAS, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Gothenburg, Sweden
| | - Samir Awadallah
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
16
|
Green CJ, Marjot T, Walsby-Tickle J, Charlton C, Cornfield T, Westcott F, Pinnick KE, Moolla A, Hazlehurst JM, McCullagh J, Tomlinson JW, Hodson L. Metformin maintains intrahepatic triglyceride content through increased hepatic de novo lipogenesis. Eur J Endocrinol 2022; 186:367-377. [PMID: 35038311 PMCID: PMC8859923 DOI: 10.1530/eje-21-0850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/17/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Metformin is a first-line pharmacotherapy in the treatment of type 2 diabetes, a condition closely associated with non-alcoholic fatty liver disease (NAFLD). Although metformin promotes weight loss and improves insulin sensitivity, its effect on intrahepatic triglyceride (IHTG) remains unclear. We investigated the effect of metformin on IHTG, hepatic de novo lipogenesis (DNL), and fatty acid (FA) oxidation in vivo in humans. DESIGN AND METHODS Metabolic investigations, using stable-isotope tracers, were performed in ten insulin-resistant, overweight/obese human participants with NAFLD who were treatment naïve before and after 12 weeks of metformin treatment. The effect of metformin on markers of s.c. adipose tissue FA metabolism and function, along with the plasma metabolome, was investigated. RESULTS Twelve weeks of treatment with metformin resulted in a significant reduction in body weight and improved insulin sensitivity, but IHTG content and FA oxidation remained unchanged. Metformin treatment was associated with a significant decrease in VLDL-triglyceride (TG) concentrations and a significant increase in the relative contribution of DNL-derived FAs to VLDL-TG. There were subtle and relatively few changes in s.c. adipose tissue FA metabolism and the plasma metabolome with metformin treatment. CONCLUSIONS We demonstrate the mechanisms of action of metformin whereby it improves insulin sensitivity and promotes weight loss, without improvement in IHTG; these observations are partly explained through increased hepatic DNL and a lack of change in FA oxidation.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Catriona Charlton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Felix Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jonathan M Hazlehurst
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - James McCullagh
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
- Correspondence should be addressed to L Hodson;
| |
Collapse
|
17
|
Mastrototaro L, Roden M. Insulin resistance and insulin sensitizing agents. Metabolism 2021; 125:154892. [PMID: 34563556 DOI: 10.1016/j.metabol.2021.154892] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of obesity and type 2 diabetes, but novel approaches of diabetes subtyping (clustering) revealed variable degrees of insulin resistance in people with diabetes. Specifically, the severe insulin resistant diabetes (SIRD) subtype not only exhibits metabolic abnormalities, but also bears a higher risk for cardiovascular, renal and hepatic comorbidities. In humans, insulin resistance comprises dysfunctional adipose tissue, lipotoxic insulin signaling followed by glucotoxicity, oxidative stress and low-grade inflammation. Recent studies show that aside from metabolites (free fatty acids, amino acids) and signaling proteins (myokines, adipokines, hepatokines) also exosomes with their cargo (proteins, mRNA and microRNA) contribute to altered crosstalk between skeletal muscle, liver and adipose tissue during the development of insulin resistance. Reduction of fat mass mainly, but not exclusively, explains the success of lifestyle modification and bariatric surgery to improve insulin sensitivity. Moreover, some older antihyperglycemic drugs (metformin, thiazolidinediones), but also novel therapeutic concepts (new peroxisome proliferator-activated receptor agonists, incretin mimetics, sodium glucose cotransporter inhibitors, modulators of energy metabolism) can directly or indirectly reduce insulin resistance. This review summarizes molecular mechanisms underlying insulin resistance including the roles of exosomes and microRNAs, as well as strategies for the management of insulin resistance in humans.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
18
|
Abstract
Obesity is a treatable chronic disease. Primary care providers play an essential role in diagnosis, treatment, and comprehensive care of patients with obesity. In recent years, treatment approaches have rapidly evolved, increasing effective and safe therapies. In this review, we provide practical information on the care of patients with obesity with a focus on antiobesity pharmacotherapy within the context of currently available therapeutic modalities such as intensive lifestyle interventions and bariatric surgery.
Collapse
Affiliation(s)
- Mona Gossmann
- Department of Internal Medicine (Endocrinology & Metabolism), Yale University School of Medicine, New Haven, CT, USA
| | - W Scott Butsch
- Department of Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Internal Medicine and Geriatrics, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ania M Jastreboff
- Department of Internal Medicine (Endocrinology & Metabolism), Yale University School of Medicine, New Haven, CT, USA; Department of Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
20
|
Efficacy and safety of the metformin-mazindol anorectic combination in rat. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:279-291. [PMID: 33151165 DOI: 10.2478/acph-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2020] [Indexed: 01/19/2023]
Abstract
The current study investigates the anorectic interaction and safety of the mazindol-metformin combination in rats. Isobologram and interaction index were used to determine anorectic interaction between mazindol and metformin in the sweetened milk model. The safety profile of the mazindol-metformin combination was determined by measuring anxiety, blood pressure, hematic biometry and blood chemistry. An acute dose of mazindol and metformin administered per os, individually or as a mixture, has reduced the milk consumption in rats in a dose-dependent manner. Theoretical effective dose 40 (ED40t) did not differ from the experimental effective dose 40 (ED40e) obtained with the mazindol-metformin mixture in the anorexia experiments, by Student's t-test. In addition, the interaction index confirmed the additive anorectic effect between both drugs. A single oral dose of ED40e mazindol-metformin mixture induced anxiolysis in the elevated plus-maze test. Moreover, oral administration of mazindol-metformin combination for 3 months significantly decreased glycemia, but not blood pressure nor other parameters of hematic biometry and blood chemistry. Results suggest that mazindol-metformin combination exerts an additive anorectic effect, as well as anxiolytic and hypoglycemic properties. Mazindol-metformin combination might be useful in obese patients with anxiety disorders or diabetes risk factors.
Collapse
|
21
|
Bulsara J, Patel P, Soni A, Acharya S. A review: Brief insight into Polycystic Ovarian syndrome. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Rajjoub Al-Mahdi EA, Barrios V, Zamorano JL. Metformin in the era of new antidiabetics. Future Cardiol 2021; 17:475-485. [PMID: 33754810 DOI: 10.2217/fca-2020-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type II diabetes mellitus is a known cardiovascular risk factor and its prevalence continues to increase. A revolution in the Type II diabetes mellitus treatment has occurred with the arrival of new antidiabetic drugs, which are thought to compromise metformin place. We aim to review the pharmacology, available evidence and clinical aspects of metformin use in the era of new antidiabetics.
Collapse
Affiliation(s)
| | - Vivencio Barrios
- Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain.,Faculty of Medicine & Health Sciences, University of Alcalá, Madrid, Spain
| | - Jose L Zamorano
- Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain.,Faculty of Medicine & Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
23
|
Abstract
Polycystic ovarian syndrome is the most common endocrinopathy in reproductive-aged women and has a vast array of clinical manifestations. Common clinical presentations of the disorder include anovulatory infertility, menstrual disorders, cutaneous symptoms secondary to androgen excess, metabolic abnormalities and mental health issues. If the condition is left unaddressed or inadequately treated, long-term sequelae such as endometrial hyperplasia, diabetes mellitus and dyslipidemia may ensue, therefore it is imperative for clinicians to address each component of the syndrome. When initial lifestyle changes and dietary modifications do not suffice or fail, pharmacologic therapy should be considered, and when deemed appropriate treatment should be initiated. This review describes the pharmacologic options available to combat the various sequelae commonly seen in women with polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Samantha Kodama
- MedStar Washington Hospital Center, Washington, District of Columbia
| | - Saioa Torrealday
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
24
|
Alvarez CA, Halm EA, Pugh MJV, McGuire DK, Hennessy S, Miller RT, Lingvay I, Vouri SM, Zullo AR, Yang H, Chansard M, Mortensen EM. Lactic acidosis incidence with metformin in patients with type 2 diabetes and chronic kidney disease: A retrospective nested case-control study. Endocrinol Diabetes Metab 2021; 4:e00170. [PMID: 33532612 PMCID: PMC7831229 DOI: 10.1002/edm2.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/28/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Compare rates of lactic acidosis (LA) among metformin-exposed and unexposed patients with type 2 diabetes mellitus and varying degrees of chronic kidney disease (CKD). Research Design and Methods Retrospective, nested case-control study using data from national VA Corporate Data Warehouse. All adult patients with type 2 diabetes and CKD newly dispensed any antihyperglycaemic medication during FY 2003-13 were included. The outcome was LA hospitalization or serum lactate >5 mEq/L. Exposure to metformin was evaluated in the three months prior to event. Estimates were adjusted for 31 covariates, including demographics, comorbidities and medications. Results Overall, 320 882 patients were included, contributing a total of 1 331 784 person-years of follow-up. LA occurred in 2 665 patients, generating an overall incidence rate of 2.00 (95% CI 1.93-2.08) per 1000 person-years. Metformin exposure in the prior 3 months was associated with an elevated adjusted hazard of LA (HR 1.97, 95% CI 1.69-2.29). No association was evident in patients with CKD stage 1 or 2 (HR 1.05, 95% CI 0.71-1.57), but associations were present and progressively greater in patients with CKD stage 3a through 5: HR 3.09, 95% CI 2.19-4.35 in CKD 3a, HR 3.34, 95% CI 1.95-5.72 in CKD 3b, HR 7.87, 95% CI 3.51-17.61 in CKD stage 4&5. Conclusion Metformin was not associated with an elevated risk of LA in persons with stage 1-2 CKD, but was associated with a progressively higher risk at more advanced stages of CKD.
Collapse
Affiliation(s)
- Carlos A. Alvarez
- Texas Tech University Health Sciences CenterSchool of PharmacyDallasTXUSA
- University of Texas Southwestern Medical CenterDallasTXUSA
- Veterans Affairs North Texas Health Care SystemDallasTXUSA
| | - Ethan A. Halm
- University of Texas Southwestern Medical CenterDallasTXUSA
| | | | | | - Sean Hennessy
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Richard T. Miller
- University of Texas Southwestern Medical CenterDallasTXUSA
- Veterans Affairs North Texas Health Care SystemDallasTXUSA
| | - Ildiko Lingvay
- University of Texas Southwestern Medical CenterDallasTXUSA
| | - Scott M. Vouri
- University of Florida College of PharmacyGainesvilleFLUSA
| | - Andrew R. Zullo
- Brown University School of Public Health and Providence Veterans Affairs Medical CenterProvidenceRIUSA
| | - Hui Yang
- Texas Tech University Health Sciences CenterSchool of PharmacyDallasTXUSA
| | - Matt Chansard
- University of Texas Southwestern Medical CenterDallasTXUSA
| | - Eric M. Mortensen
- University of Texas Southwestern Medical CenterDallasTXUSA
- Veterans Affairs North Texas Health Care SystemDallasTXUSA
- University of Connecticut School of MedicineFarmingtonCTUSA
| |
Collapse
|
25
|
Previate C, Malta A, Miranda RA, Martins IP, Pavanello A, de Oliveira JC, Prates KV, Alves VS, Francisco FA, Moreira VM, Matiusso CCI, de Moraes AMP, Mathias PCDF, Franco CCDS. Early metformin treatment improves pancreatic function and prevents metabolic dysfunction in early overfeeding male rats at adulthood. Exp Physiol 2020; 105:2051-2060. [PMID: 33074581 DOI: 10.1113/ep088846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Studies reported the efficacy of metformin as a promising drug for preventing or treating of metabolic diseases. Nutrient stresses during neonatal life increase long-term risk for cardiometabolic diseases. Can early metformin treatment prevent the malprogramming effects of early overfeeding? What is the main finding and its importance? Neonatal metformin treatment prevented early overfeeding-induced metabolic dysfunction in adult rats. Inhibition of early hyperinsulinaemia and adult hyperphagia might be associated with decreased metabolic disease risk in these animals. Therefore, interventions during infant development offer a key area for future research to identify potential strategies to prevent the long-term metabolic diseases. We suggest that metformin is a potential tool for intervention. ABSTRACT Given the need for studies investigating the possible long-term effects of metformin use at crucial stages of development, and taking into account the concept of metabolic programming, the present work aimed to evaluate whether early metformin treatment might program rats to resist the development of adult metabolic dysfunctions caused by overnutrition during the neonatal suckling phase. Wistar rats raised in small litters (SLs, three pups per dam) and normal litters (NLs, nine pups per dam) were used as models of early overfeeding and normal feeding, respectively. During the first 12 days of suckling, animals from SL and NL groups received metformin, whereas the controls received saline injections. Food intake and body weight were monitored from weaning until 90 days of age, when biometric and biochemical parameters were assessed. The metformin treatment decreased insulin concentrations in pups from SL groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, body weight gain, white fat pad stores and food intake. Low-glucose insulinotrophic effects were observed in pancreatic islets from both NL and SL groups. These results indicate that early postnatal treatment with metformin inhibits early overfeeding-induced metabolic dysfunctions in adult rats.
Collapse
Affiliation(s)
- Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Rosiane Aparecida Miranda
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | | | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Vander Silva Alves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Veridiana Mota Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil.,Department of Physiology, Federal University of Sergipe, Aracaju, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Ana Maria Praxedes de Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| | - Claudinéia Conationi da Silva Franco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, Paraná, Brazil
| |
Collapse
|
26
|
Mohan M, Al-Talabany S, McKinnie A, Mordi IR, Singh JSS, Gandy SJ, Baig F, Hussain MS, Bhalraam U, Khan F, Choy AM, Matthew S, Houston JG, Struthers AD, George J, Lang CC. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J 2020; 40:3409-3417. [PMID: 30993313 PMCID: PMC6823615 DOI: 10.1093/eurheartj/ehz203] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Aim We tested the hypothesis that metformin may regress left ventricular hypertrophy (LVH) in patients who have coronary artery disease (CAD), with insulin resistance (IR) and/or pre-diabetes. Methods and results We randomly assigned 68 patients (mean age 65 ± 8 years) without diabetes who have CAD with IR and/or pre-diabetes to receive either metformin XL (2000 mg daily dose) or placebo for 12 months. Primary endpoint was change in left ventricular mass indexed to height1.7 (LVMI), assessed by magnetic resonance imaging. In the modified intention-to-treat analysis (n = 63), metformin treatment significantly reduced LVMI compared with placebo group (absolute mean difference −1.37 (95% confidence interval: −2.63 to −0.12, P = 0.033). Metformin also significantly reduced other secondary study endpoints such as: LVM (P = 0.032), body weight (P = 0.001), subcutaneous adipose tissue (P = 0.024), office systolic blood pressure (BP, P = 0.022) and concentration of thiobarbituric acid reactive substances, a biomarker for oxidative stress (P = 0.04). The glycated haemoglobin A1C concentration and fasting IR index did not differ between study groups at the end of the study. Conclusion Metformin treatment significantly reduced LVMI, LVM, office systolic BP, body weight, and oxidative stress. Although LVH is a good surrogate marker of cardiovascular (CV) outcome, conclusive evidence for the cardio-protective role of metformin is required from large CV outcomes trials. ![]()
Collapse
Affiliation(s)
- Mohapradeep Mohan
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Shaween Al-Talabany
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Angela McKinnie
- NHS Tayside Clinical Radiology, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | - Ify R Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jagdeep S S Singh
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Stephen J Gandy
- Department of Medical Physics, NHS Tayside, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | - Fatima Baig
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Muhammad S Hussain
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - U Bhalraam
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Faisel Khan
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Anna-Maria Choy
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Shona Matthew
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - John Graeme Houston
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Allan D Struthers
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jacob George
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
27
|
Xue L, Chen F, Yue F, Camacho L, Kothapalli S, Wei G, Huang S, Mo Q, Ma F, Li Y, Jiralerspong S. Metformin and an insulin/IGF-1 receptor inhibitor are synergistic in blocking growth of triple-negative breast cancer. Breast Cancer Res Treat 2020; 185:73-84. [PMID: 32940848 DOI: 10.1007/s10549-020-05927-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor survival outcomes. Metformin has been shown to have antitumor effects by lowering serum levels of the mitogen insulin and having pleiotropic effects on cancer cell signaling pathways. BMS-754807 is a potent and reversible inhibitor of both insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR). Both drugs have been reported to have some efficacy in TNBC. However, it is unclear whether the combination of the two drugs is more effective than single drug treatment in TNBC. METHODS We treated a panel of TNBC cell lines with metformin and BMS-754807 alone and in combination and tested cell viability using MTS assays. We used the CompuSyn software to analyze for additivity, synergism, or antagonism. We also examined the molecular mechanism by performing reverse phase protein assay (RPPA) to detect the candidate pathways altered by single drugs and the drug combination and used Western blotting to verify and expand the findings. RESULTS The combination of metformin and BMS-754807 showed synergy in 11 out of 13 TNBC cell lines tested (85%). RPPA analysis detected significant alterations by the drug combination of multiple proteins known to regulate cell cycle and tumor growth. In particular, the drug combination significantly increased levels of total and phosphorylated forms of the cell cycle inhibitor p27Kip1 and decreased the level of the p27Kip1 E3 ligase SCFSkp2. CONCLUSIONS We conclude that the combination of metformin and BMS-754807 is more effective than either drug alone in inhibiting cell proliferation in the majority of TNBC cell lines, and that one important mechanism may be suppression of SCFSkp2 and subsequent stabilization of the cell cycle inhibitor p27Kip1. This combination treatment may represent an effective targeted therapy for a significant subset of TNBC cases and should be further evaluated.
Collapse
Affiliation(s)
- Lei Xue
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China.,Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Yue
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Laura Camacho
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Sushma Kothapalli
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Guanyun Wei
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Sao Jiralerspong
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Section of Breast Medical Oncology, Division of Hematology and Oncology, University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
28
|
Abstract
Diabetes mellitus (DM) is a complication of chronic pancreatitis (CP). Whether pancreatogenic diabetes associated with CP-DM represents a discrete pathophysiologic entity from type 2 DM (T2DM) remains uncertain. Addressing this question is needed for development of specific measures to manage CP-DM. We approached this question from a unique standpoint, hypothesizing that if CP-DM and T2DM are separate disorders, they should be genetically distinct. To test this hypothesis, we sought to determine whether a genetic risk score (GRS) based on validated single nucleotide polymorphisms for T2DM could distinguish between groups with CP-DM and T2DM.
Collapse
|
29
|
The Use of Metformin to Increase the Human Healthspan. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:319-332. [PMID: 32304040 DOI: 10.1007/978-3-030-42667-5_13] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metformin is a safe, effective and useful drug for glucose management in patients with diabetes. However in recent years, more attention has been paid to the possibility of using metformin as an anti-aging drug. It was shown to significantly increase the lifespan in some model organisms and delay the onset of age-associated declines. The current review summarizes advances in clinical research on the potential role of metformin in the field of lifespan and healthspan extension. Growing amounts of evidence from clinical trials suggest that metformin can effectively reduce the risk of many age-related diseases and conditions, including cardiometabolic disorders, neurodegeneration, chronic inflammation and frailty. Metformin also holds promise as a drug that could be repurposed for chemoprevention or adjuvant therapy for certain types of cancer. Moreover, metformin induces autophagy by activation of AMPK and can thus be potentially used to promote heathspan by hormesis-like mechanisms. Although long-term intake of metformin is associated with low risk of adverse events, well-designed clinical trials are still required to uncover the potential use of this drug as a geroprotector.
Collapse
|
30
|
Bell K, Shaw JE, Maple-Brown L, Ferris W, Gray S, Murfet G, Flavel R, Maynard B, Ryrie H, Pritchard B, Freeman R, Gordon BA. A position statement on screening and management of prediabetes in adults in primary care in Australia. Diabetes Res Clin Pract 2020; 164:108188. [PMID: 32360708 DOI: 10.1016/j.diabres.2020.108188] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
Prediabetes has a high prevalence, with early detection essential to facilitate optimal management to prevent the development of conditions such as type 2 diabetes and cardiovascular disease. Prediabetes can include impaired fasting glucose, impaired glucose tolerance and elevated HbA1c. This position statement outlines the approaches to screening and management of prediabetes in primary care. There is good evidence to implement intensive, structured lifestyle interventions for individuals with impaired glucose tolerance. The evidence for those with impaired fasting glucose or elevated HbA1c is less clear, but individuals should still be provided with generalised healthy lifestyle strategies. A multidisciplinary approach is recommended to implement healthy lifestyle changes through education, nutrition and physical activity. Individuals should aim to lose weight (5-10% of body mass) using realistic and sustainable dietary approaches supported by an accredited practising dietitian, where possible. Physical activity and exercise should be used to facilitate weight maintenance and reduce blood glucose. Moderate-vigorous intensity aerobic exercise and resistance training should be prescribed by an accredited exercise physiologist, where possible. When indicated, pharmacotherapy, metabolic surgery and psychosocial care should be considered, in order to enhance the outcomes associated with lifestyle change. Individuals with prediabetes should generally be evaluated annually for their diabetes status.
Collapse
Affiliation(s)
- Kirstine Bell
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | - Louise Maple-Brown
- Menzies School of Health Research, NT, Australia; Department of Endocrinology, Royal Darwin Hospital, Australia
| | - Wendy Ferris
- Diabetes Service, Hunter New England Local Health District, NSW, Australia
| | - Susan Gray
- Pharmaceutical Society of Australia & University of Queensland, QLD, Australia
| | - Giuliana Murfet
- Diabetes Centre, Tasmanian Health Service - North West, TAS, Australia; Deakin University, VIC, Australia
| | | | | | - Hannah Ryrie
- Dietitians Association of Australia, ACT, Australia
| | | | - Rachel Freeman
- Australian Diabetes Educators Association, ACT, Australia
| | - Brett A Gordon
- Holsworth Research Initiative, La Trobe University, VIC, Australia.
| |
Collapse
|
31
|
Streeper RT, Louden C, Izbicka E. Oral Azelaic Acid Ester Decreases Markers of Insulin Resistance in Overweight Human Male Subjects. In Vivo 2020; 34:1173-1186. [PMID: 32354907 DOI: 10.21873/invivo.11890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Insulin resistance (IR) is linked to increased risk of cardiovascular disease and cancer. We examined safety and efficacy of the natural product diethyl azelate (DEA) in overweight males with a varying degree of IR. PATIENTS AND METHODS Seventeen subjects [age 18-42, hemoglobin A1c (A1c) of 5.2-6.2%] received orally 1 mg/kg DEA daily for 21 days. Blood plasma glucose, insulin and lipid levels were assessed before and after treatment. RESULTS DEA was well tolerated without hypoglycemia or adverse effects except transient diarrhea (n=1). DEA significantly reduced fasting glucose by 6.06 mg/dl (n=8) and insulin by 37.8% (n=8) in subjects with IR and/or A1c ≥5.6%. Furthermore, it improved cholesterol/HDL, LDL/HDL, and non-cholesterol HDL/HDL by 5.4, 6.5, and 6.6%, respectively in all subjects, and by 8.0, 9.8, and 9.8%, respectively in 9 subjects with A1c ≥5.6%. CONCLUSION DEA efficacy correlates with the degree of IR. DEA holds promise as a novel treatment for the management of IR.
Collapse
|
32
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 728] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Alawadi F, Abusnana S, Afandi B, Aldahmani K, Alhajeri O, Aljaberi K, Alkaabi J, Almadani A, Bashier A, Beshyah S, bin Belaila B, Fargaly M, Farooqi M, Hafidh K, Hassanein M, Hassoun A, Jabbar A, Ksseiry I, Mustafa H, Saadi H, Suliman S. Emirates Diabetes Society Consensus Guidelines for the Management of Type 2 Diabetes Mellitus – 2020. DUBAI DIABETES AND ENDOCRINOLOGY JOURNAL 2020. [DOI: 10.1159/000506508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rapid urbanisation and socioeconomic development in the United Arab Emirates (UAE) have led to the widespread adoption of a sedentary lifestyle and Westernised diet in the local population and consequently a high prevalence of obesity and diabetes. In 2019, International Diabetes Federation statistics reported a diabetes prevalence rate of 16.3% for the adult population in the UAE. In view of the wealth of recent literature on diabetes care and new pharmacotherapeutics, the Emirates Diabetes Society convened a panel of experts to update existing local guidelines with international management recommendations. The goal is to improve the standard of care for people with diabetes through increased awareness of these management practices among healthcare providers licensed by national health authorities. These consensus guidelines address the screening, diagnosis and management of type 2 diabetes mellitus in adults including individuals at risk of developing the disease.
Collapse
|
34
|
Weng S, Luo Y, Zhang Z, Su X, Peng D. Effects of metformin on blood lipid profiles in nondiabetic adults: a meta-analysis of randomized controlled trials. Endocrine 2020; 67:305-317. [PMID: 31950354 DOI: 10.1007/s12020-020-02190-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the effects of metformin on serum lipid profiles in nondiabetic adults through a comprehensive meta-analysis. METHODS In the present meta-analysis, randomized and controlled trials were collected by searching PubMed, Embase, and Cochrane Libraries from inception to April 2019. Compared with placebos, the effects of metformin treatment on lipid profiles in nondiabetic adults were evaluated. RESULTS Forty-seven studies from 45 articles including 5731 participants were enrolled. Pooled results showed that metformin had significant effects on total cholesterol (mean change -6.57 mg/dl; 95% CI -9.66, -3.47; P = 0.000) and LDL-c (mean change -4.69 mg/dl; 95% CI -7.38, -2.00; P = 0.001), but insignificant effects on HDL-c (mean change -4.33 mg/dl; 95% CI -9.62, 0.96; P = 0.109) and triglyceride (mean change -0.85 mg/dl; 95% CI -0.36, 2.06; P = 0.169). Significant heterogeneities were found for all lipid profiles (HDL-c = 85.5%; LDL-c = 59.9%; total cholesterol = 75.3% and triglyceride = 67.1%). Different from the pooled data, in a subgroup analysis, the effect of metformin on triglyceride in patients with polycystic ovarian syndrome (PCOS) was significant with a mean reduction of 8.15 mg/dl. In addition, sensitivity analysis showed that the pooled effects of metformin on serum lipid profiles were stable. Publication bias derived from funnel plots or Begg's tests (P = 0.933, 0.860, 0.904, and 0.567 for HDL-c, LDL-c, total cholesterol, and triglyceride, respectively) was not significant. CONCLUSION This meta-analysis revealed that metformin could reduce total cholesterol and LDL-c in nondiabetic adults. In addition, metformin might exert a triglyceride-lowering effect in nondiabetics with PCOS status.
Collapse
Affiliation(s)
- Shuwei Weng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yonghong Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: A randomized placebo-controlled study. J Cell Mol Med 2020; 24:2832-2846. [PMID: 31975558 PMCID: PMC7077543 DOI: 10.1111/jcmm.14834] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 11/02/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired mitochondrial autophagy (mitophagy) and NLRP3 inflammasome activation have been incriminated in the pathogenesis of T2DM. Metformin besides being an insulin sensitizer also induces autophagy; however, its effect on mitophagy and NLRP3 activation in patients with T2DM still remains elusive. Forty-five drug-naïve T2DM patients with HbA1C 7%-9% (53-75 mmol/mol) were randomly assigned to receive either metformin, voglibose, or placebo for 3 months, and were also recommended for lifestyle intervention programme (n = 15 each). Mitochondrial oxidative stress (MOS) parameters, qPCR and immunoblotting of mitophagy-related markers (PINK1, PARKIN, MFN2, NIX, LC3-II, LAMP2), p-AMPKα (T172), and NLRP3 proteins, as well as transmission electron microscopy (TEM) for assessing mitochondrial morphology were performed in the mononuclear cells of study patients. Both metformin and voglibose showed a similar efficacy towards the reduction in HbA1c and MOS indices. However, multivariate ANCOVA divulged that mRNA and protein expression of mitophagy markers, NLRP3 and p-AMPKα (T172), were significantly increased only with metformin therapy. Moreover, PINK1 expression displayed a significant positive association with HOMA-β indices, and TEM studies further confirmed reduced distortions in mitochondrial morphology in the metformin group only. Our observations underscore that metformin upregulates mitophagy and subsequently ameliorates the altered mitochondrial morphology and function, independent of its glucose-lowering effect. Further, restoration of normal mitochondrial phenotype may improve cellular function, including β-cells, which may prevent further worsening of hyperglycaemia in patients with T2DM.
Collapse
Affiliation(s)
- Shipra Bhansali
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rama Walia
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
36
|
Madsen KS, Chi Y, Metzendorf M, Richter B, Hemmingsen B. Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2019; 12:CD008558. [PMID: 31794067 PMCID: PMC6889926 DOI: 10.1002/14651858.cd008558.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The projected rise in the incidence of type 2 diabetes mellitus (T2DM) could develop into a substantial health problem worldwide. Whether metformin can prevent or delay T2DM and its complications in people with increased risk of developing T2DM is unknown. OBJECTIVES To assess the effects of metformin for the prevention or delay of T2DM and its associated complications in persons at increased risk for the T2DM. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Scopus, ClinicalTrials.gov, the World Health Organization (WHO) International Clinical Trials Registry Platform and the reference lists of systematic reviews, articles and health technology assessment reports. We asked investigators of the included trials for information about additional trials. The date of the last search of all databases was March 2019. SELECTION CRITERIA We included randomised controlled trials (RCTs) with a duration of one year or more comparing metformin with any pharmacological glucose-lowering intervention, behaviour-changing intervention, placebo or standard care in people with impaired glucose tolerance, impaired fasting glucose, moderately elevated glycosylated haemoglobin A1c (HbA1c) or combinations of these. DATA COLLECTION AND ANALYSIS Two review authors read all abstracts and full-text articles and records, assessed risk of bias and extracted outcome data independently. We used a random-effects model to perform meta-analysis and calculated risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, using 95% confidence intervals (CIs) for effect estimates. We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 20 RCTs randomising 6774 participants. One trial contributed 48% of all participants. The duration of intervention in the trials varied from one to five years. We judged none of the trials to be at low risk of bias in all 'Risk of bias' domains. Our main outcome measures were all-cause mortality, incidence of T2DM, serious adverse events (SAEs), cardiovascular mortality, non-fatal myocardial infarction or stroke, health-related quality of life and socioeconomic effects.The following comparisons mostly reported only a fraction of our main outcome set. Fifteen RCTs compared metformin with diet and exercise with or without placebo: all-cause mortality was 7/1353 versus 7/1480 (RR 1.11, 95% CI 0.41 to 3.01; P = 0.83; 2833 participants, 5 trials; very low-quality evidence); incidence of T2DM was 324/1751 versus 529/1881 participants (RR 0.50, 95% CI 0.38 to 0.65; P < 0.001; 3632 participants, 12 trials; moderate-quality evidence); the reporting of SAEs was insufficient and diverse and meta-analysis could not be performed (reported numbers were 4/118 versus 2/191; 309 participants; 4 trials; very low-quality evidence); cardiovascular mortality was 1/1073 versus 4/1082 (2416 participants; 2 trials; very low-quality evidence). One trial reported no clear difference in health-related quality of life after 3.2 years of follow-up (very low-quality evidence). Two trials estimated the direct medical costs (DMC) per participant for metformin varying from $220 to $1177 versus $61 to $184 in the comparator group (2416 participants; 2 trials; low-quality evidence). Eight RCTs compared metformin with intensive diet and exercise: all-cause mortality was 7/1278 versus 4/1272 (RR 1.61, 95% CI 0.50 to 5.23; P = 0.43; 2550 participants, 4 trials; very low-quality evidence); incidence of T2DM was 304/1455 versus 251/1505 (RR 0.80, 95% CI 0.47 to 1.37; P = 0.42; 2960 participants, 7 trials; moderate-quality evidence); the reporting of SAEs was sparse and meta-analysis could not be performed (one trial reported 1/44 in the metformin group versus 0/36 in the intensive exercise and diet group with SAEs). One trial reported that 1/1073 participants in the metformin group compared with 2/1079 participants in the comparator group died from cardiovascular causes. One trial reported that no participant died due to cardiovascular causes (very low-quality evidence). Two trials estimated the DMC per participant for metformin varying from $220 to $1177 versus $225 to $3628 in the comparator group (2400 participants; 2 trials; very low-quality evidence). Three RCTs compared metformin with acarbose: all-cause mortality was 1/44 versus 0/45 (89 participants; 1 trial; very low-quality evidence); incidence of T2DM was 12/147 versus 7/148 (RR 1.72, 95% CI 0.72 to 4.14; P = 0.22; 295 participants; 3 trials; low-quality evidence); SAEs were 1/51 versus 2/50 (101 participants; 1 trial; very low-quality evidence). Three RCTs compared metformin with thiazolidinediones: incidence of T2DM was 9/161 versus 9/159 (RR 0.99, 95% CI 0.41 to 2.40; P = 0.98; 320 participants; 3 trials; low-quality evidence). SAEs were 3/45 versus 0/41 (86 participants; 1 trial; very low-quality evidence). Three RCTs compared metformin plus intensive diet and exercise with identical intensive diet and exercise: all-cause mortality was 1/121 versus 1/120 participants (450 participants; 2 trials; very low-quality evidence); incidence of T2DM was 48/166 versus 53/166 (RR 0.55, 95% CI 0.10 to 2.92; P = 0.49; 332 participants; 2 trials; very low-quality evidence). One trial estimated the DMC of metformin plus intensive diet and exercise to be $270 per participant compared with $225 in the comparator group (94 participants; 1 trial; very-low quality evidence). One trial in 45 participants compared metformin with a sulphonylurea. The trial reported no patient-important outcomes. For all comparisons there were no data on non-fatal myocardial infarction, non-fatal stroke or microvascular complications. We identified 11 ongoing trials which potentially could provide data of interest for this review. These trials will add a total of 17,853 participants in future updates of this review. AUTHORS' CONCLUSIONS Metformin compared with placebo or diet and exercise reduced or delayed the risk of T2DM in people at increased risk for the development of T2DM (moderate-quality evidence). However, metformin compared to intensive diet and exercise did not reduce or delay the risk of T2DM (moderate-quality evidence). Likewise, the combination of metformin and intensive diet and exercise compared to intensive diet and exercise only neither showed an advantage or disadvantage regarding the development of T2DM (very low-quality evidence). Data on patient-important outcomes such as mortality, macrovascular and microvascular diabetic complications and health-related quality of life were sparse or missing.
Collapse
Affiliation(s)
- Kasper S Madsen
- University of CopenhagenFaculty of Health and Medical SciencesBlegdamsvej 3BCopenhagen NDenmark2200
| | - Yuan Chi
- University Hospital Zurich and University of ZurichInstitute for Complementary and Integrative MedicineSonneggstrasse 6ZurichBeijingSwitzerland8006
| | - Maria‐Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | - Bernd Richter
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | - Bianca Hemmingsen
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | | |
Collapse
|
37
|
Barthem CS, Rossetti CL, Carvalho DP, da-Silva WS. Metformin ameliorates body mass gain and early metabolic changes in ovariectomized rats. Endocr Connect 2019; 8:1568-1578. [PMID: 31751310 PMCID: PMC6933833 DOI: 10.1530/ec-19-0470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023]
Abstract
Estradiol has been used to prevent metabolic diseases, bone loss and menopausal symptoms, even though it might raise the risk of cancer. Metformin is usually prescribed for type 2 diabetes mellitus and lowers food intake and body mass while improving insulin resistance and the lipid profile. Ovariectomized rats show increased body mass, insulin resistance and changes in the lipid profile. Thus, the aim of this work was to evaluate whether metformin could prevent the early metabolic dysfunction that occurs early after ovariectomy. Female Wistar rats were divided into the following groups: SHAM-operated (SHAM), ovariectomized (OVX), ovariectomized + estradiol (OVX + E2) and ovariectomized + metformin (OVX + M). Treatment with metformin diminished approximately 50% of the mass gain observed in ovariectomized animals and reduced both the serum and hepatic triglyceride levels. The hepatic levels of phosphorylated AMP-activated protein kinase (pAMPK) decreased after OVX, and the expression of the inactive form of hepatic acetyl-CoA carboxylase (ACC) was also reduced. Metformin was able to increase the levels of pAMPK in the liver of OVX animals, sustaining the balance between the inactive and total forms of ACC. Estradiol effects were similar to those of metformin but with different proportions. Our results suggest that metformin ameliorates the early alterations of metabolic parameters and rescues hepatic AMPK phosphorylation and ACC inactivation observed in ovariectomized rats.
Collapse
Affiliation(s)
- Clarissa Souza Barthem
- Laboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Lüdke Rossetti
- Laboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise P Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Correspondence should be addressed to D P Carvalho or W S da-Silva: or
| | - Wagner Seixas da-Silva
- Laboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Correspondence should be addressed to D P Carvalho or W S da-Silva: or
| |
Collapse
|
38
|
Abstract
Patients with diabetes mellitus have >2× the risk for developing heart failure (HF; HF with reduced ejection fraction and HF with preserved ejection fraction). Cardiovascular outcomes, hospitalization, and prognosis are worse for patients with diabetes mellitus relative to those without. Beyond the structural and functional changes that characterize diabetic cardiomyopathy, a complex underlying, and interrelated pathophysiology exists. Despite the success of many commonly used antihyperglycemic therapies to lower hyperglycemia in type 2 diabetes mellitus the high prevalence of HF persists. This, therefore, raises the possibility that additional factors beyond glycemia might contribute to the increased HF risk in diabetes mellitus. This review summarizes the state of knowledge about the impact of existing antihyperglycemic therapies on HF and discusses potential mechanisms for beneficial or deleterious effects. Second, we review currently approved pharmacological therapies for HF and review evidence that addresses their efficacy in the context of diabetes mellitus. Dysregulation of many cellular mechanisms in multiple models of diabetic cardiomyopathy and in human hearts have been described. These include oxidative stress, inflammation, endoplasmic reticulum stress, aberrant insulin signaling, accumulation of advanced glycated end-products, altered autophagy, changes in myocardial substrate metabolism and mitochondrial bioenergetics, lipotoxicity, and altered signal transduction such as GRK (g-protein receptor kinase) signaling, renin angiotensin aldosterone signaling and β-2 adrenergic receptor signaling. These pathophysiological pathways might be amenable to pharmacological therapy to reduce the risk of HF in the context of type 2 diabetes mellitus. Successful targeting of these pathways could alter the prognosis and risk of HF beyond what is currently achieved using existing antihyperglycemic and HF therapeutics.
Collapse
Affiliation(s)
- Helena C Kenny
- From the Fraternal Order of Eagles Diabetes Research Center, and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - E Dale Abel
- From the Fraternal Order of Eagles Diabetes Research Center, and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| |
Collapse
|
39
|
Glossmann HH, Lutz OMD. Metformin and Aging: A Review. Gerontology 2019; 65:581-590. [PMID: 31522175 DOI: 10.1159/000502257] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023] Open
Abstract
Metformin is sometimes proposed to be an "anti-aging" drug, based on preclinical experiments with lower-order organisms and numerous retrospective data on beneficial health outcomes for type 2 diabetics. Large prospective, placebo-controlled trials are planned, in pilot stage or running, to find a new use (or indication) for an aging population. As one of the metformin trials has "frailty" as its endpoint, similar to a trial with a plant-derived senolytic, the latter class of novel anti-aging drugs is briefly discussed. Concerns exist not only for vitamin B12 and B6 deficiencies, but also about whether there are adverse effects of metformin on individuals who try to remain healthy by maintaining cardiovascular fitness via exercise.
Collapse
Affiliation(s)
- Hartmut H Glossmann
- Institute for Biochemical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria,
| | | |
Collapse
|
40
|
Can metformin stabilize PCSK9 level in stable coronary artery disease patients treated with statins? ACTA ACUST UNITED AC 2019; 4:e144-e150. [PMID: 31448346 PMCID: PMC6704763 DOI: 10.5114/amsad.2019.86752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
Introduction Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as an important marker of cardiovascular risk and a new target for therapeutic interventions. We aimed to study the influence of metformin on the level of circulating PCSK9 in patients with stable coronary artery disease (SCAD) and type 2 diabetes (T2DM) or metabolic syndrome (MetS), receiving moderate doses of statins used in routine clinical practice. Material and methods The study included 80 patients with T2DM or MetS receiving rosuvastatin for at least three months prior the study. MetS was diagnosed based on the Global Consensus Definition of the International Diabetes Federation (IDF). Serum level of PCSK9 was measured with an ELISA kit. Results Patients with T2DM or MetS, who took part in the research, were divided into 2 groups - those who received metformin prior the main study (21 patients - 1st group) and patients who did not (59 patients - 2nd group). Addition of metformin to the 3-month statin therapy of the 2nd group patients, divided into subgroup A (n = 27) with the addition of metformin and subgroup B (n = 29) without one, did not significantly affect the level of lipids. However, the level of circulating PCSK9 in subgroup A patients decreased, compared to subgroup B (p < 0.01). At the same time, ongoing metformin and rosuvastatin therapy in the 1st group patients was not accompanied by a further decrease of the PCSK9 level. Conclusions The addition of metformin to ongoing rosuvastatin therapy did not significantly affect serum lipid levels, but stabilized the level of circulating PCSK9, compared with the group without metformin treatment.
Collapse
|
41
|
Abstract
Type 2 diabetes mellitus (T2DM) is a common chronic metabolic condition. Before receiving this diagnosis, persons typically have a long period of prediabetes. There is good evidence that T2DM can often be prevented or delayed by means of lifestyle interventions (39%-71%), medications (28%-79%), or metabolic surgery (75%). However, despite consistent data demonstrating their efficacy, these tools are underused, and knowledge about them among primary care physicians is limited. In an effort to engage physicians in addressing this public health crisis more effectively, the authors reviewed the evidence that T2DM can be prevented or delayed in persons at risk.
Collapse
|
42
|
Alnasrallah B, Goh TL, Chan LW, Manley P, Pilmore H. Transplantation and diabetes (Transdiab): a pilot randomised controlled trial of metformin in impaired glucose tolerance after kidney transplantation. BMC Nephrol 2019; 20:147. [PMID: 31035960 PMCID: PMC6489311 DOI: 10.1186/s12882-019-1321-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/31/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Post transplantation diabetes mellitus (PTDM) is a common and serious complication after renal transplantation with significant morbidity and mortality. Metformin has proven benefits in the general population and might be advantageous in the prevention and management of PTDM. METHODS Transplantation and Diabetes (Transdiab) is a single-centre, unblinded, pilot randomised controlled trial assessing the feasibility, tolerability and efficacy of metformin after renal transplantation in patients with impaired glucose tolerance (IGT). Participants had an oral glucose tolerance test (OGTT) in the 4-12 weeks post-transplantation; those with IGT were randomised to standard care or standard care and metformin 500 mg twice daily and followed up for 12 months. RESULTS Seventy eight patients had an OGTT over 24 months, 25 of them had IGT, of those, 19 patients were randomised, giving a feasibility of recruitment of 24.4%. Ten patients were randomised to metformin and 9 patients to standard care. Tolerability and efficacy was similar between the 2 groups with no serious adverse events. There was no difference in secondary outcomes relating to the metabolic profile. CONCLUSIONS The use of metformin post renal transplantation appeared feasible and safe. Larger randomised controlled trials (RCTs) are needed to establish and confirm the efficacy and safety of metformin post renal transplantation. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12614001171606 . Date of registration 7/11/2014.
Collapse
Affiliation(s)
- Basil Alnasrallah
- Department of Nephrology, Auckland City Hospital, Auckland, 1023, New Zealand.
| | - Tze Liang Goh
- Department of Nephrology, Auckland City Hospital, Auckland, 1023, New Zealand
| | - Lai Wan Chan
- Department of Nephrology, Auckland City Hospital, Auckland, 1023, New Zealand
| | - Paul Manley
- Department of Nephrology, Auckland City Hospital, Auckland, 1023, New Zealand
| | - Helen Pilmore
- Department of Nephrology, Auckland City Hospital, Auckland, 1023, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Abstract
A clear link between cardiovascular disease and prediabetes has emerged over the past few years. Recent studies have shown that patients with prediabetes can suffer from coronary artery disease and diastolic heart failure even before progressing to overt diabetes. With this knowledge, physicians must identify prediabetes and take appropriate measures to optimize glycemic control. The pathophysiological defect seen in prediabetes can be managed with lifestyle modifications; thus, it is essential that physicians have a clear understanding of the current recommendations regarding diet and exercise. This review outlines the complications associated with prediabetes, presents an overview of the available pharmacological and surgical therapies that are effective in treating it, and provides a stepwise, multipronged approach for management.
Collapse
|
44
|
Facchinetti F, Orrù B, Grandi G, Unfer V. Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. Gynecol Endocrinol 2019; 35:198-206. [PMID: 30614282 DOI: 10.1080/09513590.2018.1540578] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metformin (MET), the most commonly used insulin sensitizer, is the reference off-label drug for the treatment of polycystic ovary syndrome (PCOS), worldwide. However, its use may be limited mainly by gastrointestinal adverse effects. Myo-inositol (MI), a well-recognized food supplement, also represents an evidence-based treatment for PCOS women, popular in many countries. Our aim is to provide a systematic review of the literature and a meta-analysis which compares these two treatments, for their short-term efficacy and safety in PCOS patients. Systematic review and meta-analysis of randomized clinical trials (RCTs). RCTs were identified from 1994 through 2017 using MEDLINE, Cochrane Library, PubMed, and ResearchGate. Included studies were limited to those one directly comparing MET to MI on several hormones changes. Standardized mean difference (SMD) or risk ratios (RRs) with 95% CIs were calculated. Changes in fasting insulin was the main outcome of measure. Six trials with a total of 355 patients were included. At the end of treatment, no difference between MET and MI was found on fasting insulin (SMD=0.08 µU/ml, 95% CI: -0.31-0.46, p=.697), HOMA index (SMD =0.17, 95% CI: -0.53-0.88, p=.635), testosterone (SMD= -0.01, 95% CI: -0.24-0.21, p=.922), SHBG levels (SMD= -0.50 nmol/l, 95% CI: -1.39-0.38, p=.263) and body mass index (BMI) (SMD= -0.22, 95% CI: -0.60-0.16, p=.265). There was strong evidence of an increased risk of adverse events among women receiving MET compared to those receiving MI (RR =5.17, 95% CI: 2.91-9.17, p<.001). No differences were found in the effect of MET and MI on short-term hormone changes. The better tolerability of MI makes it more acceptable for the recovery of androgenic and metabolic profile in PCOS women.
Collapse
Affiliation(s)
- Fabio Facchinetti
- a Department of Medical and Surgical Sciences for Mother, Child and Adult , Azienda Ospedaliero Universitaria Policlinico, University of Modena and Reggio Emilia , Modena , Italy
| | - Beatrice Orrù
- b Department of Medical Affairs , Lo.Li. Pharma , Rome , Italy
| | - Giovanni Grandi
- a Department of Medical and Surgical Sciences for Mother, Child and Adult , Azienda Ospedaliero Universitaria Policlinico, University of Modena and Reggio Emilia , Modena , Italy
| | - Vittorio Unfer
- c Department of Developmental and Social Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
45
|
Kim SH, Abbasi F. Myths about Insulin Resistance: Tribute to Gerald Reaven. Endocrinol Metab (Seoul) 2019; 34:47-52. [PMID: 30912338 PMCID: PMC6435844 DOI: 10.3803/enm.2019.34.1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Gerald Reaven was often called the "father of insulin resistance." On the 1-year anniversary of his death in 2018, we challenge three myths associated with insulin resistance: metformin improves insulin resistance; measurement of waist circumference predicts insulin resistance better than body mass index; and insulin resistance causes weight gain. In this review, we highlight Reaven's relevant research that helped to dispel these myths associated with insulin resistance.
Collapse
Affiliation(s)
- Sun H Kim
- Division of Endocrinology, Gerontology, and Metabolism, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Fahim Abbasi
- Division of Cardiovascular Medicine, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes Metab Syndr Obes 2019; 12:1543-1553. [PMID: 31686875 PMCID: PMC6709517 DOI: 10.2147/dmso.s219013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol homeostasis is critical and necessary for the body's functions. Hypercholesterolemia can lead to significant clinical problems, such as cardiovascular disease (CVD). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and low-density lipoprotein cholesterol receptor (LDLR) are major points of control in cholesterol homeostasis. We summarize the regulatory mechanisms of HMGCR and LDLR, which may provide insight for new drug design and development.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian271000, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
- Correspondence: Ling GaoScientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong Province250021, People’s Republic of ChinaTel +86 531 6877 6910Email
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan250013, People’s Republic of China
- Shudong LiuDepartment of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, Shandong Province250013, People’s Republic of ChinaTel +86 531 8238 2351Email
| |
Collapse
|
47
|
Abstract
Schizophrenia and diabetes have been known to be linked disorders for decades. One reason is due to the fact that a major side effect of antipsychotic medication treatment is metabolic syndrome, which increases the risk of the patients developing type 2 diabetes and cardiovascular disorders. However, signs of metabolic syndrome in schizophrenia patients were identified more than 100 years ago, even before the development of antipsychotic drugs. This suggests that schizophrenia itself predisposes towards diabetes and, in turn, insulin resistance may be a risk factor for the development of schizophrenia. This review summarizes the findings surrounding this issue and places them into context with regards to increasing our understanding of the aetiology of schizophrenia and in support of biomarker and drug discovery efforts.
Collapse
Affiliation(s)
- Paul C Guest
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
48
|
Zhang F, Sun W, Chen J, Jiang L, Yang P, Huang Y, Gong A, Liu S, Ma S. SREBP-2, a new target of metformin? DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4163-4170. [PMID: 30584280 PMCID: PMC6287532 DOI: 10.2147/dddt.s190094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Metformin, as the first-line treatment anti-diabetic drug, represents increasing evidence of a potential efficacy in improving dyslipidemia. However, the exact molecular mechanism(s) by which metformin influences lipid metabolism remains incompletely understood. Methods The HepG2 cells were treated with metformin and the AMP-activated protein kinase (AMPK) inhibitor compound C or a dominant-negative form of AMPK plasmid. ELISA assay was employed to measure AMPK activity, and cellular cholesterol content was determined by enzymatic colorimetric method. RT-PCR and western blotting were used to detect SREBP-2 mRNA levels and its target protein levels. Results We found that metformin significantly stimulated AMPK activity and decreased intracellular total cholesterol contents in HepG2 cells. Metformin reduced the sterol regulatory element-binding protein-2 (SREBP-2) and its downstream target proteins and increased low-density lipoprotein receptor (LDLR) levels. Conclusion Our preliminary results demonstrate that metformin as a first-line and initial medication suppresses the synthesis of SREBP-2 and upregulates LDLR, and consequently decreases cholesterol production via activation of AMPK, at least partly. These findings suggest a therapeutic target and potential beneficial effects of metformin on the prevention of dyslipidemia or related diseases.
Collapse
Affiliation(s)
- Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan 250011, China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian 271000, China
| | - Jianbo Chen
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan 250013, China,
| | - Lusheng Jiang
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan 250013, China,
| | - Ping Yang
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan 250013, China,
| | - Yufang Huang
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan 250013, China,
| | - Aihua Gong
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan 250013, China,
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan 250013, China,
| | - Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China,
| |
Collapse
|
49
|
Gormsen LC, Søndergaard E, Christensen NL, Jakobsen S, Nielsen EHT, Munk OL, Tolbod LP, Jessen N, Nielsen S. Metformin does not affect postabsorptive hepatic free fatty acid uptake, oxidation or resecretion in humans: A 3-month placebo-controlled clinical trial in patients with type 2 diabetes and healthy controls. Diabetes Obes Metab 2018; 20:1435-1444. [PMID: 29405635 DOI: 10.1111/dom.13244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 12/31/2022]
Abstract
AIMS To explore whether the pre-clinical findings that metformin improves lipid metabolism, possibly through modulation of intrahepatic partitioning of fatty acids towards oxidation and away from re-esterification and resecretion as triglycerides (TGs), can be translated to a human setting. MATERIALS AND METHODS We performed a 3-month randomized, placebo-controlled, parallel-group clinical trial in patients with type 2 diabetes (T2D; n = 24) and healthy controls (n = 12). Patients with T2D received either placebo (placebo group) or 1000 mg metformin twice daily (metformin group), while healthy subjects were all treated with metformin (control group). Hepatic fatty acid metabolism was measured by [11 C]palmitate positron-emission tomography, hepatic TG secretion and peripheral oxidation by ex vivo labelled [1-14 C]VLDL-TG and VLDL particle size by TG/apolipoprotein B ratio. Body composition was assessed by dual-energy X-ray and whole-body lipid oxidation by indirect calorimetry. RESULTS Metformin treatment for 3 months produced the anticipated decrease in fasting plasma glucose (FPG) in the metformin group (FPG 7.9 ± 1.8 mM [study day 1] vs 6.4 ± 1.1 mM [study day 2]), whereas patients in the placebo group and healthy controls had similar FPG levels before and after the trial (mixed model group vs time interaction; P = .003); however, contrary to our hypothesis, metformin treatment did not affect hepatic lipid metabolism or peripheral oxidation. CONCLUSION The observed beneficial effects on lipid metabolism during metformin treatment in humans appear to be secondary to long-term alterations in body composition or glucose homeostasis.
Collapse
Affiliation(s)
- Lars C Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Esben Søndergaard
- Department of Endocrinology, Aarhus University Hospital, Aarhus C, Denmark
| | - Nana L Christensen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Erik H T Nielsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Lars P Tolbod
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Søren Nielsen
- Department of Endocrinology, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
50
|
Griffin SJ, Bethel MA, Holman RR, Khunti K, Wareham N, Brierley G, Davies M, Dymond A, Eichenberger R, Evans P, Gray A, Greaves C, Harrington K, Hitman G, Irving G, Lessels S, Millward A, Petrie JR, Rutter M, Sampson M, Sattar N, Sharp S. Metformin in non-diabetic hyperglycaemia: the GLINT feasibility RCT. Health Technol Assess 2018; 22:1-64. [PMID: 29652246 PMCID: PMC5925436 DOI: 10.3310/hta22180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The treatment of people with diabetes with metformin can reduce cardiovascular disease (CVD) and may reduce the risk of cancer. However, it is unknown whether or not metformin can reduce the risk of these outcomes in people with elevated blood glucose levels below the threshold for diabetes [i.e. non-diabetic hyperglycaemia (NDH)]. OBJECTIVE To assess the feasibility of the Glucose Lowering In Non-diabetic hyperglycaemia Trial (GLINT) and to estimate the key parameters to inform the design of the full trial. These parameters include the recruitment strategy, randomisation, electronic data capture, postal drug distribution, retention, study medication adherence, safety monitoring and remote collection of outcome data. DESIGN A multicentre, individually randomised, double-blind, parallel-group, pragmatic, primary prevention trial. Participants were individually randomised on a 1 : 1 basis, blocked within each site. SETTING General practices and clinical research facilities in Cambridgeshire, Norfolk and Leicestershire. PARTICIPANTS Males and females aged ≥ 40 years with NDH who had a high risk of CVD. INTERVENTIONS Prolonged-release metformin (500 mg) (Glucophage® SR, Merck KGaA, Bedfont Cross, Middlesex, UK) or the matched placebo, up to three tablets per day, distributed by post. MAIN OUTCOME MEASURES Recruitment rates; adherence to study medication; laboratory results at baseline and 3 and 6 months; reliability and acceptability of study drug delivery; questionnaire return rates; and quality of life. RESULTS We sent 5251 invitations, with 511 individuals consenting to participate. Of these, 249 were eligible and were randomised between March and November 2015 (125 to the metformin group and 124 to the placebo group). Participants were followed up for 0.99 years [standard deviation (SD) 0.30 years]. The use of electronic medical records to identify potentially eligible individuals in individual practices was resource intensive. Participants were generally elderly [mean age 70 years (SD 6.7 years)], overweight [mean body mass index 30.1 kg/m2 (SD 4.5 kg/m2)] and male (88%), and the mean modelled 10-year CVD risk was 28.8% (SD 8.5%). Randomisation, postal delivery of the study drug and outcome assessment using registers/medical records were feasible and acceptable to participants. Most participants were able to take three tablets per day, but premature discontinuation of the study drug was common (≈30% of participants by 6 months), although there were no differences between the groups. All randomised participants returned questionnaires at baseline and 67% of participants returned questionnaires by the end of the study. There was no between-group difference in Short Form questionnaire-8 items or EuroQol-5 Dimensions scores. Compared with placebo, metformin was associated with small improvements in the mean glycated haemoglobin level [-0.82 mmol/mol, 95% confidence interval (CI) -1.39 to -0.24 mmol/mol], mean estimated glomerular filtration rate (2.31 ml/minute/1.73 m2, 95% CI -0.2 to 4.81 ml/minute/1.73 m2) and mean low-density lipoprotein cholesterol level (-0.11 mmol/l, 95% CI -0.25 to 0.02 mmol/l) and a reduction in mean plasma vitamin B12 level (-16.4 ng/l, 95% CI -32.9 to -0.01 ng/l). There were 35 serious adverse events (13 in the placebo group, 22 in the metformin group), with none deemed to be treatment related. LIMITATIONS Changes to sponsorship reduced the study duration, the limited availability of information in medical records reduced recruitment efficiency and discontinuation of study medication exceeded forecasts. CONCLUSIONS A large, pragmatic trial comparing the effects of prolonged-release metformin and placebo on the risk of CVD events is potentially feasible. However, changes to the study design and conduct are recommended to enable an efficient scaling up of the trial. Recommendations include changing the inclusion criteria to recruit people with pre-existing CVD to increase the recruitment and event rates, using large primary/secondary care databases to increase recruitment rates, conducting follow-up remotely to improve efficiency and including a run-in period prior to randomisation to optimise trial adherence. TRIAL REGISTRATION Current Controlled Trials ISRCTN34875079. FUNDING The project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 18. See the NIHR Journals Library website for further project information. Merck KGaA provided metformin and matching placebo.
Collapse
Affiliation(s)
- Simon J Griffin
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | | | - Rury R Holman
- Diabetes Trials Unit, University of Oxford, Oxford, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Nicholas Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Gwen Brierley
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Melanie Davies
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Andrew Dymond
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Rose Eichenberger
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Alastair Gray
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Kyla Harrington
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Graham Hitman
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Greg Irving
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Sarah Lessels
- Diabetes Trials Unit, University of Oxford, Oxford, UK
| | | | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Martin Rutter
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Mike Sampson
- Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Diabetes, Endocrinology and General Medicine, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Sharp
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|