1
|
Natal ACDC, de Paula Menezes R, de Brito Röder DVD. Role of maternal milk in providing a healthy intestinal microbiome for the preterm neonate. Pediatr Res 2024:10.1038/s41390-024-03751-x. [PMID: 39663425 DOI: 10.1038/s41390-024-03751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
The immature gastrointestinal tract of preterm neonates leads to a delayed and distinctive establishment of the gut microbiome, making them susceptible to potentially pathogenic bacteria and increasing the risk of infections. Maternal milk, recognized as the optimal source of nutrition, plays a multifaceted role in modulating the gut microbiome of premature newborns. Human milk oligosaccharides, acting as prebiotics, provide essential nourishment for key bacteria such as Bifidobacterium, contributing to the proliferation of beneficial bacterial populations. Additionally, maternal milk is rich in Immunoglobulins that stimulate immune cell responses, providing protective effects on the infant's gut mucosa. Moreover, bioactive proteins such as secretory immunoglobulin A (SIgA), lactoferrin, lysozyme, and mucins play a crucial role in defending against pathogens and regulating the immune system at the cellular level. These proteins contribute not only to infection prevention but also emphasize the impact of breast milk in fortifying the body's innate defenses. This multifaceted role of maternal milk, including essential nutrients, beneficial bacteria, and bioactive proteins, highlights the importance of promoting the mother's own milk feeding in the Neonatal Intensive Care Unit (NICU). It not only optimizes the long-term outcomes and well-being of preterm infants but also provides a holistic approach to their health and development. IMPACT: This article contributes to the current understanding of the relationship between breastfeeding and the intestinal microbiota. Fill gaps in existing literature about the subject. Provides new insights for future research.
Collapse
Affiliation(s)
- Ana Catarina de Castro Natal
- Undergraduate Nursing, Faculty of Medicine (FAMED), Federal University of Uberlandia UFU, Uberlandia, MG, Brazil.
| | | | | |
Collapse
|
2
|
Wurm J, Curtis N, Zimmermann P. The effect of antibiotics on the intestinal microbiota in children - a systematic review. FRONTIERS IN ALLERGY 2024; 5:1458688. [PMID: 39435363 PMCID: PMC11491438 DOI: 10.3389/falgy.2024.1458688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024] Open
Abstract
Background Children are the age group with the highest exposure to antibiotics (ABX). ABX treatment changes the composition of the intestinal microbiota. The first few years of life are crucial for the establishment of a healthy microbiota and consequently, disturbance of the microbiota during this critical period may have far-reaching consequences. In this review, we summarise studies that have investigated the effect of ABX on the composition of the intestinal microbiota in children. Methods According to the PRISMA guidelines, a systematic search was done using MEDLINE and Embase to identify original studies that have investigated the effect of systemic ABX on the composition of the intestinal microbiota in children. Results We identified 89 studies investigating a total of 9,712 children (including 4,574 controls) and 14,845 samples. All ABX investigated resulted in a reduction in alpha diversity, either when comparing samples before and after ABX or children with ABX and controls. Following treatment with penicillins, the decrease in alpha diversity persisted for up to 6-12 months and with macrolides, up to the latest follow-up at 12-24 months. After ABX in the neonatal period, a decrease in alpha diversity was still found at 36 months. Treatment with penicillins, penicillins plus gentamicin, cephalosporins, carbapenems, macrolides, and aminoglycosides, but not trimethoprim/sulfamethoxazole, was associated with decreased abundances of beneficial bacteria including Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, and/or Bifidobacterium, and Lactobacillus. The direction of change in the abundance of Enterobacteriaceae varied with ABX classes, but an increase in Enterobacteriaceae other than Escherichia coli was frequently observed. Conclusion ABX have profound effects on the intestinal microbiota of children, with notable differences between ABX classes. Macrolides have the most substantial impact while trimethoprim/sulfamethoxazole has the least pronounced effect.
Collapse
Affiliation(s)
- Juliane Wurm
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Department of Health Science and Medicine, University Lucerne, Lucerne, Switzerland
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department for Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Heston SM, Lim CSE, Ong C, Chua MC, Kelly MS, Yeo KT. Strain-resolved metagenomic analysis of the gut as a reservoir for bloodstream infection pathogens among premature infants in Singapore. Gut Pathog 2023; 15:55. [PMID: 37974294 PMCID: PMC10652614 DOI: 10.1186/s13099-023-00583-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Gut dysbiosis contributes to the high risk of bloodstream infection (BSI) among premature infants. Most prior studies of the premature infant gut microbiota were conducted in Western countries and prior to development of current tools for strain-resolved analysis. METHODS We performed metagenomic sequencing of weekly fecal samples from 75 premature infants at a single hospital in Singapore. We evaluated associations between clinical factors and gut microbiota composition using PERMANOVA and mixed effects linear regression. We used inStrain to perform strain-level analyses evaluating for gut colonization by BSI-causing strains. RESULTS Median (interquartile range) gestation was 27 (25, 29) weeks, and 63% of infants were born via Cesarean section. Antibiotic exposures (PERMANOVA; R2 = 0.017, p = 0.001) and postnatal age (R2 = 0.015, p = 0.001) accounted for the largest amount of variability in gut microbiota composition. Increasing postnatal age was associated with higher relative abundances of several common pathogens (Enterococcus faecalis: p < 0.0001; Escherichia coli: p < 0.0001; Klebsiella aerogenes: p < 0.0001; Klebsiella pneumoniae: p < 0.0001). Antibiotic exposures were generally associated with lower relative abundances of both frequently beneficial bacteria (e.g., Bifidobacterium species) and common enteric pathogens (e.g., Enterobacter, Klebsiella species). We identified strains identical to the blood culture isolate in fecal samples from 12 of 16 (75%) infants who developed BSI, including all infections caused by typical enteric bacteria. CONCLUSIONS Antibiotic exposures were the dominant modifiable factor affecting gut microbiota composition in a large cohort of premature infants from South-East Asia. Strain-resolved analyses indicate that the gut is an important reservoir for organisms causing BSI among premature infants.
Collapse
Affiliation(s)
- Sarah M Heston
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Charis Shu En Lim
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chengsi Ong
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Nutrition and Dietetics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mei Chien Chua
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Kee Thai Yeo
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
5
|
Westaway JAF, Huerlimann R, Kandasamy Y, Miller CM, Norton R, Watson D, Infante-Vilamil S, Rudd D. To Probiotic or Not to Probiotic: A Metagenomic Comparison of the Discharge Gut Microbiome of Infants Supplemented With Probiotics in NICU and Those Who Are Not. Front Pediatr 2022; 10:838559. [PMID: 35345612 PMCID: PMC8957066 DOI: 10.3389/fped.2022.838559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Preterm birth is associated with the development of both acute and chronic disease, and the disruption of normal gut microbiome development. Recent studies have sought to both characterize and understand the links between disease and the microbiome. Probiotic treatment may correct for these microbial imbalances and, in turn, mitigate disease. However, the criteria for probiotic supplementation in NICU's in North Queensland, Australia limits its usage to the most premature (<32 weeks gestation) and small for gestational age infants (<1,500 g). Here we use a combination of amplicon and shotgun metagenomic sequencing to compare the gut microbiome of infants who fulfill the criteria for probiotic-treatment and those who do not. The aims of this study were to determine if probiotic-supplemented preterm infants have significantly different taxonomic and functional profiles when compared to non-supplemented preterm infants at discharge. METHODS Preterm infants were recruited in North Queensland, Australia, with fecal samples collected just prior to discharge (36 ± 0.5 weeks gestation), to capture potential changes that could be probiotic induced. All samples underwent 16S rRNA gene amplicon sequencing, with a subset also used for shotgun metagenomics. Mixed effects models were used to assess the effect of probiotics on alpha diversity, beta diversity and taxonomic abundance, whilst accounting for other known covariates. RESULTS Mixed effects modeling demonstrated that probiotic treatment had a significant effect on overall community composition (beta diversity), characterized by greater alpha diversity and differing abundances of several taxa, including Bifidobacterium and Lactobacillus, in supplemented infants. CONCLUSION Late preterm-infants who go without probiotic-supplementation may be missing out on stabilizing-effects provided through increased alpha diversity and the presence of commensal microbes, via the use of probiotic-treatment. These findings suggest that late-preterm infants may benefit from probiotic supplementation. More research is needed to both understand the consequences of the differences observed and the long-term effects of this probiotic-treatment.
Collapse
Affiliation(s)
- Jacob A F Westaway
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - Roger Huerlimann
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Yoga Kandasamy
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia.,Neonatology, Townsville University Hospital, Townsville, QLD, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia
| | - Robert Norton
- Microbiology, Pathology Queensland, Herston, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David Watson
- Maternal-Fetal Medicine, Townsville University Hospital, Townsville, QLD, Australia
| | - Sandra Infante-Vilamil
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
6
|
Westaway JAF, Huerlimann R, Kandasamy Y, Miller CM, Norton R, Staunton KM, Watson D, Rudd D. The bacterial gut microbiome of probiotic-treated very-preterm infants: changes from admission to discharge. Pediatr Res 2022; 92:142-150. [PMID: 34621029 PMCID: PMC9411061 DOI: 10.1038/s41390-021-01738-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preterm birth is associated with the development of acute and chronic disease, potentially, through the disruption of normal gut microbiome development. Probiotics may correct for microbial imbalances and mitigate disease risk. Here, we used amplicon sequencing to characterise the gut microbiome of probiotic-treated premature infants. We aimed to identify and understand variation in bacterial gut flora from admission to discharge and in association with clinical variables. METHODS Infants born <32 weeks gestation and <1500 g, and who received probiotic treatment, were recruited in North Queensland Australia. Meconium and faecal samples were collected at admission and discharge. All samples underwent 16S rRNA short amplicon sequencing, and subsequently, a combination of univariate and multivariate analyses. RESULTS 71 admission and 63 discharge samples were collected. Univariate analyses showed significant changes in the gut flora from admission to discharge. Mixed-effects modelling showed significantly lower alpha diversity in infants diagnosed with either sepsis or retinopathy of prematurity (ROP) and those fed formula. In addition, chorioamnionitis, preeclampsia, sepsis, necrotising enterocolitis and ROP were also all associated with the differential abundance of several taxa. CONCLUSIONS The lower microbial diversity seen in infants with diagnosed disorders or formula-fed, as well as differing abundances of several taxa across multiple variables, highlights the role of the microbiome in the development of health and disease. This study supports the need for promoting healthy microbiome development in preterm neonates. IMPACT Low diversity and differing taxonomic abundances in preterm gut microbiota demonstrated in formula-fed infants and those identified with postnatal conditions, as well as differences in taxonomy associated with preeclampsia and chorioamnionitis, reinforcing the association of the microbiome composition changes due to maternal and infant disease. The largest study exploring an association between the preterm infant microbiome and ROP. A novel association between the preterm infant gut microbiome and preeclampsia in a unique cohort of very-premature probiotic-supplemented infants.
Collapse
Affiliation(s)
- Jacob A. F. Westaway
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia ,grid.1011.10000 0004 0474 1797Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| | - Roger Huerlimann
- grid.1011.10000 0004 0474 1797Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia ,grid.250464.10000 0000 9805 2626Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son Okinawa, 904-0495 Japan ,grid.1011.10000 0004 0474 1797College of Science and Engineering, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| | - Yoga Kandasamy
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia ,grid.417216.70000 0000 9237 0383Department of neonatology, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD 4814 Australia
| | - Catherine M. Miller
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia ,grid.1011.10000 0004 0474 1797Australian Institute for Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia
| | - Robert Norton
- Department of Microbiology, Pathology Queensland, 100 Angus Smith Drive, Douglas, QLD 4814 Australia
| | - Kyran M. Staunton
- grid.1011.10000 0004 0474 1797Australian Institute for Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia
| | - David Watson
- grid.417216.70000 0000 9237 0383Department of Maternal-Fetal Medicine, Townsville University Hospital, 100 Angus Smith Drive, Douglas, 4814 Australia
| | - Donna Rudd
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| |
Collapse
|
7
|
Administration of β-lactam antibiotics and delivery method correlate with intestinal abundances of Bifidobacteria and Bacteroides in early infancy, in Japan. Sci Rep 2021; 11:6231. [PMID: 33737648 PMCID: PMC7973812 DOI: 10.1038/s41598-021-85670-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiome changes dynamically in early infancy. Colonisation by Bifidobacterium and Bacteroides and development of intestinal immunity is interconnected. We performed a prospective observational cohort study to determine the influence of antibiotics taken by the mother immediately before delivery on the intestinal microbiome of 130 healthy Japanese infants. Faecal samples (383) were collected at 1, 3, and 6 months and analysed using next-generation sequencing. Cefazolin was administered before caesarean sections, whereas ampicillin was administered in cases with premature rupture of the membranes and in Group B Streptococcus-positive cases. Bifidobacterium and Bacteroides were dominant (60–70% mean combined occupancy) at all ages. A low abundance of Bifidobacterium was observed in infants exposed to antibiotics at delivery and at 1 and 3 months, with no difference between delivery methods. A lower abundance of Bacteroides was observed after caesarean section than vaginal delivery, irrespective of antibiotic exposure. Additionally, occupancy by Bifidobacterium at 1 and 3 months and by Bacteroides at 3 months differed between infants with and without siblings. All these differences disappeared at 6 months. Infants exposed to intrapartum antibiotics displayed altered Bifidobacterium abundance, whereas abundance of Bacteroides was largely associated with the delivery method. Existence of siblings also significantly influenced the microbiota composition of infants.
Collapse
|
8
|
Westaway JAF, Huerlimann R, Miller CM, Kandasamy Y, Norton R, Rudd D. Methods for exploring the faecal microbiome of premature infants: a review. Matern Health Neonatol Perinatol 2021; 7:11. [PMID: 33685524 PMCID: PMC7941982 DOI: 10.1186/s40748-021-00131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The premature infant gut microbiome plays an important part in infant health and development, and recognition of the implications of microbial dysbiosis in premature infants has prompted significant research into these issues. The approaches to designing investigations into microbial populations are many and varied, each with its own benefits and limitations. The technique used can influence results, contributing to heterogeneity across studies. This review aimed to describe the most common techniques used in researching the preterm infant microbiome, detailing their various limitations. The objective was to provide those entering the field with a broad understanding of available methodologies, so that the likely effects of their use can be factored into literature interpretation and future study design. We found that although many techniques are used for characterising the premature infant microbiome, 16S rRNA short amplicon sequencing is the most common. 16S rRNA short amplicon sequencing has several benefits, including high accuracy, discoverability and high throughput capacity. However, this technique has limitations. Each stage of the protocol offers opportunities for the injection of bias. Bias can contribute to variability between studies using 16S rRNA high throughout sequencing. Thus, we recommend that the interpretation of previous results and future study design be given careful consideration.
Collapse
Affiliation(s)
- Jacob A F Westaway
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Roger Huerlimann
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| | - Catherine M Miller
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia
| | - Yoga Kandasamy
- Townsville University Hospital, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Robert Norton
- Pathology Queensland, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Donna Rudd
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| |
Collapse
|
9
|
The Impact of Age and Pathogens Type on the Gut Microbiota in Infants with Diarrhea in Dalian, China. ACTA ACUST UNITED AC 2020; 2020:8837156. [PMID: 33312314 PMCID: PMC7721492 DOI: 10.1155/2020/8837156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Objective Diarrhea in infants is a serious gastrointestinal dysfunction characterized by vomiting and watery bowel movements. Without proper treatment, infants will develop a dangerous electrolyte imbalance. Diarrhea is accompanied by intestinal dysbiosis. This study compared the gut microbiota between healthy infants and diarrheic infants. It also investigated the effects of age and pathogen type on the gut microbiota of infants with diarrhea, providing data for the proper treatment for diarrhea in infants. Materials and Methods DNA was collected from the fecal samples of 42 Chinese infants with diarrhea and 37 healthy infants. The healthy infants and infants with diarrhea were divided into four age groups: 0-120, 120-180, 180-270, and 270-365 days. Using PCR and 16S rRNA high-throughput sequencing, the diarrhea-causing pathogens in these infants were identified and then categorized into four groups: Salmonella infection, Staphylococcus aureus infection, combined Salmonella and Staphylococcus aureus infection, and others (neither Salmonella nor Staphylococcus aureus). Results The species diversity of gut microbiota in diarrheic infants was significantly reduced compared with that in healthy infants. Infants with diarrhea had a lower abundance of Lactobacillus spp. and Bacillus spp. (P < 0.001) and a significant richness of Klebsiella spp. and Enterobacter spp. (P < 0.001). Similar gut microbiota patterns were found in diarrheic infants in all four age groups. However, different pathogenic infections have significant effects on the gut microbiota of diarrheic infants. For instance, the relative abundance of Klebsiella spp. and Streptococcus spp. was significantly increased (P < 0.001) in infants infected with Staphylococcus aureus; meanwhile, the richness of bacteria such as Enterobacter spp. was significantly increased in the Salmonella infection group (P < 0.001). Conclusion The microbiota in infants with diarrhea has changed significantly, characterized by decreased species diversity and abundance of beneficial bacteria and significant increase in the proportion of conditional pathogens. Meanwhile, the gut microbiota of infants with diarrhea at different ages was similar, but different pathogenic infections affect the gut microbiota characteristics. Therefore, early identification of changes in gut microbiota in infants with diarrhea and the adoption of appropriate pathogen type-specific interventions may effectively alleviate the disease and reduce adverse reactions.
Collapse
|
10
|
Meconium microbiome and its relation to neonatal growth and head circumference catch-up in preterm infants. PLoS One 2020; 15:e0238632. [PMID: 32956415 PMCID: PMC7505439 DOI: 10.1371/journal.pone.0238632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
The purpose was identify an association between meconium microbiome, extra-uterine growth restriction, and head circumference catch-up. MATERIALS AND METHODS Prospective study with preterm infants born <33 weeks gestational age (GA), admitted at Neonatal Unit and attending the Follow-Up Preterm Program of a tertiary hospital. Excluded out born infants; presence of congenital malformations or genetic syndromes; congenital infections; HIV-positive mothers; and newborns whose parents or legal guardians did not authorize participation. Approved by the institution's ethics committee. Conducted 16S rRNA sequencing using PGM Ion Torrent meconium samples for microbiota analysis. RESULTS Included 63 newborns, GA 30±2.3 weeks, mean weight 1375.80±462.6 grams, 68.3% adequate weight for GA at birth. Polynucleobacter (p = 0.0163), Gp1 (p = 0.018), and Prevotella (p = 0.038) appeared in greater abundance in meconium of preterm infants with adequate birth weight for GA. Thirty (47.6%) children reached head circumference catch-up before 6 months CA and 33 (52.4%) after 6 months CA. Salmonella (p<0.001), Flavobacterium (p = 0.026), and Burkholderia (p = 0.026) were found to be more abundant in meconium in the group of newborns who achieved catch-up prior to 6th month CA. CONCLUSION Meconium microbiome abundance was related to adequacy of weight for GA. Meconium microbiome differs between children who achieve head circumference catch-up by the 6th month of corrected age or after this period.
Collapse
|
11
|
Sarron E, Pérot M, Barbezier N, Delayre-Orthez C, Gay-Quéheillard J, Anton PM. Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis. World J Gastroenterol 2020; 26:3145-3169. [PMID: 32684732 PMCID: PMC7336325 DOI: 10.3748/wjg.v26.i23.3145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Early childhood growth and development is conditioned by the consecutive events belonging to perinatal programming. This critical window of life will be very sensitive to any event altering programming of the main body functions. Programming of gut function, which is starting right after conception, relates to a very well-established series of cellular and molecular events associating all types of cells present in this organ, including neurons, endocrine and immune cells. At birth, this machinery continues to settle with the establishment of extra connection between enteric and other systemic systems and is partially under the control of gut microbiota activity, itself being under the densification and the diversification of microorganisms' population. As thus, any environmental factor interfering on this pre-established program may have a strong incidence on body functions. For all these reasons, pregnant women, fetuses and infants will be particularly susceptible to environmental factors and especially food contaminants. In this review, we will summarize the actual understanding of the consequences of repeated low-level exposure to major food contaminants on gut homeostasis settlement and on brain/gut axis communication considering the pivotal role played by the gut microbiota during the fetal and postnatal stages and the presumed consequences of these food toxicants on the individuals especially in relation with the risks of developing later in life non-communicable chronic diseases.
Collapse
Affiliation(s)
- Elodie Sarron
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Maxime Pérot
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Nicolas Barbezier
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Jérôme Gay-Quéheillard
- Périnatalité et risques Toxiques, UMR-I-01, Université de Picardie Jules Verne, Amiens 80000, France
| | - Pauline M Anton
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| |
Collapse
|
12
|
Fecal Volatile Organic Compound Profiles are Not Influenced by Gestational Age and Mode of Delivery: A Longitudinal Multicenter Cohort Study. BIOSENSORS-BASEL 2020; 10:bios10050050. [PMID: 32403393 PMCID: PMC7277672 DOI: 10.3390/bios10050050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Fecal volatile organic compounds (VOC) reflect human and gut microbiota metabolic pathways and their interaction. VOC behold potential as non-invasive preclinical diagnostic biomarkers in various diseases, e.g., necrotizing enterocolitis and late onset sepsis. There is a need for standardization and assessment of the influence of clinical and environmental factors on the VOC outcome before this technique can be applied in clinical practice. The aim of this study was to investigate the influence of gestational age (GA) and mode of delivery on the fecal VOC pattern in preterm infants born below 30 weeks of gestation. Longitudinal fecal samples, collected on days 7, 14, and 21 postnatally, were analyzed by an electronic nose device (Cyranose 320®). In total, 58 preterm infants were included (29 infants born at GA 24–26 weeks vs. 29 at 27–29 completed weeks, 24 vaginally born vs. 34 via C-section). No differences were identified at any predefined time point in terms of GA and delivery mode (p > 0.05). We, therefore, concluded that correction for these factors in this population is not warranted when performing fecal VOC analysis in the first three weeks of life.
Collapse
|
13
|
Sakai AM, Iensue TNAN, Pereira KO, Silva RLD, Pegoraro LGDO, Salvador MSDA, Rodrigues R, Capobiango JD, Souza NAAD, Pelisson M, Vespero EC, Yamauchi LM, Perugini MRE, Yamada-Ogatta SF, Rossetto EG, Kerbauy G. Colonization profile and duration by multi-resistant organisms in a prospective cohort of newborns after hospital discharge. Rev Inst Med Trop Sao Paulo 2020; 62:e22. [PMID: 32236389 PMCID: PMC7178810 DOI: 10.1590/s1678-9946202062022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/18/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the spontaneous decolonization period and characteristics in a prospective cohort of newborns colonized by multidrug-resistant organisms, after their discharge from the neonatal intensive care unit. Multidrug resistance is defined as bacterial non-susceptibility to ≥ 1 agent of ≥ 3 antimicrobial categories. In total, 618 newborns were included in the study, of which 173 (28.0%) presented a positive culture for multidrug-resistant microorganisms, and of these, 52 (30.1%) were followed up in this study. The most frequent intrinsic factors were be born by cesarean section (86.5%), prematurity (84.6%), and very low birth weight (76.9%). The extrinsic factors were having remained hospitalized for an average of 27 days, during which 67.3% were submitted to invasive procedures and 88.5% received antimicrobials. The intrinsic and extrinsic factors of newborns were not associated to a decolonization period longer or shorter than 3 months, which was the average period of decolonization found in the present study. From the totality of colonization cultures sampled at hospital discharge, the Gram-negative Extended Spectrum β-lactamase producing bacteria were the most common, with 28.9% of babies colonized by Klebsiella spp. The median period of decolonization by multidrug-resistant microorganisms in the newborns population after hospital discharge was 3 months, but was highly dependent on the microbial species, and this period was not associated to any intrinsic and extrinsic factors of the newborn.
Collapse
Affiliation(s)
- Andressa Midori Sakai
- Universidade Estadual de Londrina, Departamento de Enfermagem, Londrina, Paraná, Brazil
| | | | - Kauana Olanda Pereira
- Universidade Estadual de Londrina, Departamento de Enfermagem, Londrina, Paraná, Brazil
| | - Renata Lima da Silva
- Universidade Estadual de Londrina, Departamento de Enfermagem, Londrina, Paraná, Brazil
| | | | - Marta Silva de Almeida Salvador
- Universidade Estadual de Londrina, Departamento de Microbiologia, Laboratório de Ecologia Microbiana, Londrina, Paraná, Brazil
| | - Renne Rodrigues
- Universidade Estadual de Londrina, Departamento de Saúde Coletiva, Londrina, Paraná, Brazil
| | - Jaqueline Dario Capobiango
- Universidade Estadual de Londrina, Departamento de Pediatria e Cirurgia Pediátrica, Londrina, Paraná, Brazil
| | | | - Marsileni Pelisson
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, Paraná, Brazil
| | - Eliana Carolina Vespero
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Universidade Estadual de Londrina, Departamento de Microbiologia, Londrina, Paraná, Brazil
| | - Marcia Regina Eches Perugini
- Universidade Estadual de Londrina, Departamento de Patologia, Análises Clínicas e Toxicológicas, Londrina, Paraná, Brazil
| | | | | | - Gilselena Kerbauy
- Universidade Estadual de Londrina, Departamento de Enfermagem, Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Kamdar S, Hutchinson R, Laing A, Stacey F, Ansbro K, Millar MR, Costeloe K, Wade WG, Fleming P, Gibbons DL. Perinatal inflammation influences but does not arrest rapid immune development in preterm babies. Nat Commun 2020; 11:1284. [PMID: 32152273 PMCID: PMC7062833 DOI: 10.1038/s41467-020-14923-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infection and infection-related complications are important causes of death and morbidity following preterm birth. Despite this risk, there is limited understanding of the development of the immune system in those born prematurely, and of how this development is influenced by perinatal factors. Here we prospectively and longitudinally follow a cohort of babies born before 32 weeks of gestation. We demonstrate that preterm babies, including those born extremely prematurely (<28 weeks), are capable of rapidly acquiring some adult levels of immune functionality, in which immune maturation occurs independently of the developing heterogeneous microbiome. By contrast, we observe a reduced percentage of CXCL8-producing T cells, but comparable levels of TNF-producing T cells, from babies exposed to in utero or postnatal infection, which precedes an unstable post-natal clinical course. These data show that rapid immune development is possible in preterm babies, but distinct identifiable differences in functionality may predict subsequent infection mediated outcomes.
Collapse
Affiliation(s)
- S Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - R Hutchinson
- Department of Neonatology, Homerton University Hospital, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A Laing
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - F Stacey
- Department of Neonatology, Homerton University Hospital, London, UK
| | - K Ansbro
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- University of Sheffield, Sheffield, UK
| | - M R Millar
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - K Costeloe
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - W G Wade
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - P Fleming
- Department of Neonatology, Homerton University Hospital, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - D L Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
15
|
Fundora JB, Guha P, Shores DR, Pammi M, Maheshwari A. Intestinal dysbiosis and necrotizing enterocolitis: assessment for causality using Bradford Hill criteria. Pediatr Res 2020; 87:235-248. [PMID: 31238334 PMCID: PMC7224339 DOI: 10.1038/s41390-019-0482-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 02/08/2023]
Abstract
In recent years, several studies have shown that premature infants who develop NEC frequently display enteric dysbiosis with increased Gram-negative bacteria for several days to weeks prior to NEC onset. The importance of these findings, for the possibility of a causal role of these bacteria in NEC pathogenesis, and for potential value of gut dysbiosis as a biomarker of NEC, is well-recognized. In this review, we present current evidence supporting the association between NEC in premature infants and enteric dysbiosis, and its evaluation using the Bradford Hill criteria for causality. To provide an objective appraisal, we developed a novel scoring system for causal inference. Despite important methodological and statistical limitations, there is support for the association from several large studies and a meta-analysis. The association draws strength from strong biological plausibility of a role of Gram-negative bacteria in NEC and from evidence for temporality, that dysbiosis may antedate NEC onset. The weakness of the association is in the low level of consistency across studies, and the lack of specificity of effect. There is a need for an improved definition of dysbiosis, either based on a critical threshold of relative abundances or at higher levels of taxonomic resolution.
Collapse
Affiliation(s)
- Jennifer B Fundora
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pallabi Guha
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Darla R Shores
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohan Pammi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Poor Bifidobacterial Colonization Is Associated with Late Provision of Colostrum and Improved with Probiotic Supplementation in Low Birth Weight Infants. Nutrients 2019; 11:nu11040839. [PMID: 31013872 PMCID: PMC6520773 DOI: 10.3390/nu11040839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/20/2023] Open
Abstract
This study aimed to evaluate the association between bifidobacterial colonization in low birth weight infants and perinatal factors, including the timing of initial colostrum and the effect of probiotics on this colonization. In this non-randomized controlled trial, we enrolled 98 low-birth-weight infants from a neonatal intensive care unit (NICU) in Japan. Infants were divided into three groups: group N (no intervention), group H (received non-live bifidobacteria), and group L (received live bifidobacteria). The number of bifidobacteria in the infants’ stools at 1 month of age was measured using real-time polymerase chain reaction (PCR). We divided infants into “rich bifidobacteria” (≥104.8 cells/g feces) and “poor bifidobacteria” (<104.8 cells/g feces) subgroups. The ratio of “rich bifidobacteria” infants was 20/31, 34/36, and 30/30 in groups N, H, and L, respectively. In group N, the “rich bifidobacteria” group received first colostrum significantly earlier than the “poor bifidobacteria” group (1 day vs. 4 days, P < 0.05). Compared with the N group, both groups H and L had a significantly high proportion of “rich bifidobacteria” infants (P < 0.05). Bifidobacterial colonization was poor in premature infants at 1 month compared with term infants, and the level of colonization was associated with the timing of initial provision of colostrum. Providing probiotics to premature infants can improve bifidobacterial colonization.
Collapse
|
17
|
|
18
|
Nguyen TTB, Chung HJ, Kim HJ, Hong ST. Establishment of an ideal gut microbiota to boost healthy growth of neonates. Crit Rev Microbiol 2019; 45:118-129. [PMID: 30773108 DOI: 10.1080/1040841x.2018.1561643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For decades, supporting the optimal growth of low birth weight (LBW) infants has been considered one of the most important paediatric challenges, despite advances in neonatal intensive care technology and nutrition interventions. Since gut microbiota affects such diverse phenotypes in adults, the difference in gut microbiota composition between normal infants and LBW infants raises the possibility of gut microbiota playing an important role in different growth rates of neonates. Based on the concept that probiotics are generally beneficial to the health, numerous studies have been made on probiotics as a supplement to the diet of the LBW infants. However, clinical results on the effects of probiotics on LBW infant growth are either inconsistent or contradictory with each other, and thus the contribution of gut microbiota in neonatal growth has remained inconclusive. In this review, recent researches on neonatal gut microbiota are discussed to develop a new strategy for targeting gut microbiota as a solution to growth retardation in LBW infants. We also discuss how to establish the ideal gut microbiota to support optimal growth of LBW infants.
Collapse
Affiliation(s)
- Thi Thanh Binh Nguyen
- a Department of Biomedical Sciences and Institute for Medical Science , Chonbuk National University Medical School , Jeonju , Jeollabuk-do , South Korea.,b Department of Pediatrics , Hue University of Medicine and Pharmacy , Hue , Vietnam
| | - Hea-Jong Chung
- a Department of Biomedical Sciences and Institute for Medical Science , Chonbuk National University Medical School , Jeonju , Jeollabuk-do , South Korea
| | - Hyeon-Jin Kim
- c JINIS BDRD Institute, JINIS Biopharmaceuticals Co , Wanju , Chonbuk , South Korea
| | - Seong-Tshool Hong
- a Department of Biomedical Sciences and Institute for Medical Science , Chonbuk National University Medical School , Jeonju , Jeollabuk-do , South Korea
| |
Collapse
|
19
|
Morais J, Marques C, Teixeira D, Durão C, Faria A, Brito S, Cardoso M, Macedo I, Tomé T, Calhau C. FEEDMI: A Study Protocol to Determine the Influence of Infant-Feeding on Very-Preterm-Infant's Gut Microbiota. Neonatology 2019; 116:179-184. [PMID: 31132782 DOI: 10.1159/000496547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preterm infants are especially vulnerable to gut microbiota disruption and dysbiosis since their early gut microbiota is less abundant and diverse. Several factors may influence infants' gut microbiota, such as the mother's diet, mode of delivery, antibiotic exposure, and type of feeding. OBJECTIVES This study aims to examine the factors associated with very-preterm neonate's intestinal microbiota, namely: (1) type of infant-feeding (breast milk, donor human milk with or without bovine protein-based fortifier, and preterm formula); (2) maternal diet; and (3) mode of delivery. METHODS This is an observational study conducted in a cohort of very preterm infants hospitalized in the neonatal intensive care unit of Maternidade Dr. Alfredo da Costa. After delivery, the mothers are asked to collect their own fecal samples and are invited to complete a semiquantitative food frequency questionnaire. The maternal diet will be classified in accordance to the Mediterranean Diet adherence score. Stool samples have been collected from very premature infants every 7 days for 21 days. DNA has been extracted from the fecal samples, and different bacterial genus and species will be quantified by real-time polymerase chain reaction. RESULTS AND CONCLUSIONS It is hypothesized that significant differences in the microbiota composition and clinical outcomes of very preterm infants will be observed depending on the type of infant feeding. In addition, this study will clarify how pasteurized donor's milk influences the intestinal microbiota colonization of preterm infants. This is a pioneer study developed in collaboration with the country's Human Milk Bank. We also expect to find microbiota alterations in infants according to the mode of delivery and to maternal diet. This study will contribute to increase the evidence on the effects of breast or donor human milk and its fortification with a bovine protein-based fortifier on infant microbiota.
Collapse
Affiliation(s)
- Juliana Morais
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,CINTESIS, Center for Health Technology Services Research, Porto, Portugal
| | - Cláudia Marques
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,CINTESIS, Center for Health Technology Services Research, Porto, Portugal
| | - Diana Teixeira
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,CINTESIS, Center for Health Technology Services Research, Porto, Portugal.,Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, Lisbon, Portugal
| | - Catarina Durão
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,EPIUnit - Institute of Public Health, Universidade do Porto, Porto, Portugal
| | - Ana Faria
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,CINTESIS, Center for Health Technology Services Research, Porto, Portugal.,Comprehensive Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sara Brito
- Neonatal Intensive Care Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitar de Lisboa Central, Lisbon, Portugal
| | - Manuela Cardoso
- Nutrition and Dietetics Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Israel Macedo
- Neonatal Intensive Care Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitar de Lisboa Central, Lisbon, Portugal
| | - Teresa Tomé
- Neonatal Intensive Care Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitar de Lisboa Central, Lisbon, Portugal
| | - Conceição Calhau
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal, .,CINTESIS, Center for Health Technology Services Research, Porto, Portugal, .,Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, Lisbon, Portugal,
| |
Collapse
|
20
|
Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol 2018; 61:739-751. [PMID: 30460694 DOI: 10.1002/dev.21806] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
Dysbiosis of the gut microbiome in preterm infants predisposes the neonate to various major morbidities including neonatal necrotizing enterocolitis and sepsis in the neonatal intensive care unit, and adverse neurological outcomes later in life. There are parallel early developmental windows for the gut microbiota and the nervous system during prenatal to postnatal of life. Therefore, preterm infants represent a unique population in which optimization of initial colonization and microbiota development can affect brain development and enhance neurological outcomes. In this review, we will first discuss the factors affecting the assembly of neonatal gut microbiota and the contribution of dysbiosis in preterm infants to neuroinflammation and neurodevelopmental disorders. We then will discuss the emerging pathways connecting the gut microbiome and brain development. Further we will discuss the significance of current models for alteration of the gut microbiome (including humanized gnotobiotic models and exposure to antibiotics) to brain development and functions. Understanding the role of early optimization of the microbiome in brain development is of paramount importance for developing microbiome-targeted therapies and protecting infants from prematurity-related neurodevelopmental diseases.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| | - Erika C Claud
- Department of Pediatrics, University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
21
|
Abstract
The developmental origin of health and disease highlights the importance of the period of the first 1000 days (from the conception to the 2 years of life). The process of the gut microbiota establishment is included in this time window. Various perinatal determinants, such as cesarean section delivery, type of feeding, antibiotics treatment, gestational age or environment, can affect the pattern of bacterial colonization and result in dysbiosis. The alteration of the early bacterial gut pattern can persist over several months and may have long-lasting functional effects with an impact on disease risk later in life. As for example, early gut dysbiosis has been involved in allergic diseases and obesity occurrence. Besides, while it was thought that the fetus developed under sterile conditions, recent data suggested the presence of a microbiota in utero, particularly in the placenta. Even if the origin of this microbiota and its eventual transfer to the infant are nowadays unknown, this placental microbiota could trigger immune responses in the fetus and would program the infant's immune development during fetal life, earlier than previously considered. Moreover, several studies demonstrated a link between the composition of placental microbiota and some pathological conditions of the pregnancy. All these data show the evidence of relationships between the neonatal gut establishment and future health outcomes. Hence, the use of pre- and/or probiotics to prevent or repair any early dysbiosis is increasingly attractive to avoid long-term health consequences.
Collapse
|
22
|
Chong CYL, Bloomfield FH, O'Sullivan JM. Factors Affecting Gastrointestinal Microbiome Development in Neonates. Nutrients 2018; 10:nu10030274. [PMID: 29495552 PMCID: PMC5872692 DOI: 10.3390/nu10030274] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022] Open
Abstract
The gut microbiome is established in the newborn period and is recognised to interact with the host to influence metabolism. Different environmental factors that are encountered during this critical period may influence the gut microbial composition, potentially impacting upon later disease risk, such as asthma, metabolic disorder, and inflammatory bowel disease. The sterility dogma of the foetus in utero is challenged by studies that identified bacteria, bacterial DNA, or bacterial products in meconium, amniotic fluid, and the placenta; indicating the initiation of maternal-to-offspring microbial colonisation in utero. This narrative review aims to provide a better understanding of factors that affect the development of the gastrointestinal (GI) microbiome during prenatal, perinatal to postnatal life, and their reciprocal relationship with GI tract development in neonates.
Collapse
Affiliation(s)
- Clara Yieh Lin Chong
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Frank H Bloomfield
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- Newborn Services, Auckland City Hospital, Auckland 1023, New Zealand.
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
23
|
Itani T, Ayoub Moubareck C, Melki I, Rousseau C, Mangin I, Butel MJ, Karam-Sarkis D. Preterm infants with necrotising enterocolitis demonstrate an unbalanced gut microbiota. Acta Paediatr 2018; 107:40-47. [PMID: 28921627 DOI: 10.1111/apa.14078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
AIM This Lebanese study tested the hypothesis that differences would exist in the gut microbiota of preterm infants with and without necrotising enterocolitis (NEC), as reported in Western countries. METHODS This study compared 11 infants with NEC and 11 controls, all born at 27-35 weeks, in three neonatal intensive care units between January 2013 and March 2015. Faecal samples were collected at key time points, and microbiota was analysed by culture, quantitative PCR (qPCR) and temperature temporal gel electrophoresis (TTGE). RESULTS The cultures revealed that all preterm infants were poorly colonised and harboured no more than seven species. Prior to NEC diagnosis, significant differences were observed by qPCR with a higher colonisation by staphylococci (p = 0.034) and lower colonisations by enterococci (p = 0.039) and lactobacilli (p = 0.048) in the NEC group compared to the healthy controls. Throughout the study, virtually all of the infants were colonised by Enterobacteriaceae at high levels. TTGE analysis revealed no particular clusterisation, showing high interindividual variability. CONCLUSION The NEC infants were poorly colonised with no more than seven species, and the controls had a more diversified and balanced gut microbiota. Understanding NEC aetiology better could lead to more effective prophylactic interventions and a reduced incidence.
Collapse
Affiliation(s)
- Tarek Itani
- Microbiology Laboratory; Faculty of Pharmacy; Saint-Joseph University; Beirut Lebanon
| | - Carole Ayoub Moubareck
- Microbiology Laboratory; Faculty of Pharmacy; Saint-Joseph University; Beirut Lebanon
- College of Natural and Health Sciences; Zayed University; Dubai UAE
| | - Imad Melki
- Hôtel Dieu de France Hospital; Beirut Lebanon
| | - Clotilde Rousseau
- Department Risk in pregnancy; Hospital University; Paris Descartes University; Sorbonne Paris Cité; Paris France
- Microbiology; Saint-Louis Hospital; APHP; Paris France
| | - Irène Mangin
- Department Risk in pregnancy; Hospital University; Paris Descartes University; Sorbonne Paris Cité; Paris France
- Laboratoire MIEL; Conservatoire national des arts et métiers; Paris France
| | - Marie-José Butel
- Department Risk in pregnancy; Hospital University; Paris Descartes University; Sorbonne Paris Cité; Paris France
| | - Dolla Karam-Sarkis
- Microbiology Laboratory; Faculty of Pharmacy; Saint-Joseph University; Beirut Lebanon
| |
Collapse
|