1
|
Zhang W, Liu P, Song M, Li X, Zhao X, Song Y, Tian D, Zhang C, Zhang Y, Ren Y, Liu C, Liu J, Feng Y, Mu Y. Emission fluxes of nitrous acid (HONO) from livestock and poultry wastes. J Environ Sci (China) 2025; 156:466-473. [PMID: 40412947 DOI: 10.1016/j.jes.2024.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 05/27/2025]
Abstract
Gaseous nitrous acid (HONO) is a critical contributor to daytime hydroxyl radical in the troposphere. Livestock farming has been recognized as an overlooked HONO source, but the lack of detailed flux measurements from livestock and poultry wastes would cause uncertainties in modeling its environmental impacts. Here, based on field flux measurements and laboratory experiments, we observed substantial HONO emissions from the composting of swine feces and chicken manure in the warm season, which might be mainly attributed to nitrification process in livestock and poultry wastes. The HONO emission from chicken manure was found to be much higher than that from swine feces, and the higher NH3 emission but lower N2O and NO emissions from chicken manure were also observed. Considering that the interaction among these nitrogen species during nitrification process, the obviously lower HONO emission from swine feces was likely to be explained by the lack of the total ammonia nitrogen and H+ donors in swine feces. Temperature is also a key factor that influences the HONO emission from livestock wastes. In addition, the total HONO emission from swine feces in China was estimated to be approximately 107.7 Gg-N/yr according to the national swine amounts, which is comparable to the national soil HONO emissions, underscoring its non-negligible contribution to regional air quality. Therefore, effective emission control of HONO from livestock and poultry wastes should be carried out to further improve air quality in China.
Collapse
Affiliation(s)
- Wenjin Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pengfei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Min Song
- Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China
| | - Xuran Li
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiaoxi Zhao
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yifei Song
- Sinopec, Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Di Tian
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chenglong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangang Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junfeng Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Koesling M, Hansen KNJ, Hansen S, Steinshamn H. Environmental impact and economic performance of Norwegian dairy farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179609. [PMID: 40347755 DOI: 10.1016/j.scitotenv.2025.179609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
CONTEXT Dairy farming contributes approximately 2.5 % of annual global anthropogenic greenhouse gas (GHG) emissions, necessitating effective mitigation strategies. Two approaches are often discussed: low-intensity, low-cost production with minimal reliance on purchased inputs; and high-intensity production with higher-yielding cows to reduce land use and reduce methane emissions per unit of milk. OBJECTIVE The objective was to identify management factors and farm characteristics that explain variations in GHG emissions, environmental, and economic performance. Indicators included were GHG emissions, land use occupation, energy intensity, nitrogen intensity, and gross margin. METHODS Life Cycle Assessment (LCA) was used to calculate the environmental impacts for 200 commercial dairy farms in Central Norway based on farm activities, purchased inputs, machinery, and buildings from 2014 to 2016. A multiple regression analysis with backward elimination was conducted to highlight important variables for environmental impact and economic outcome. RESULTS AND CONCLUSIONS A higher share of dairy cows was found to be the most important factor in reducing GHG emissions, energy and nitrogen intensity, and land use but also to decrease gross margin. Additional key factors for reducing environmental impact included less purchased nitrogen fertiliser, and higher forage yield. There were no statistical correlations between GHG emissions and gross margin per MJ of human-edible energy delivered. SIGNIFICANCE Conducting LCA for many dairy farms allows to highlight important factors influencing environmental impact and economic outcome. Using the delivery of human-edible energy from milk and meat as a functional unit allows for a combined evaluation of milk and meat production on a farm.
Collapse
Affiliation(s)
- Matthias Koesling
- Department for Climate and Food Production, NIBIO - Norwegian Institute of Bioeconomy Research, 6630 Tingvoll, Norway.
| | - Kristian Nikolai Jæger Hansen
- Norwegian Centre for Organic Agriculture, NORSØK, 6630 Tingvoll, Norway; Aarhus University, Department of Agroecology, Section for Agricultural Systems and Sustainability, 8830 Tjele, Denmark.
| | - Sissel Hansen
- Norwegian Centre for Organic Agriculture, NORSØK, 6630 Tingvoll, Norway.
| | - Håvard Steinshamn
- Department for Grassland and Livestock, NIBIO - Norwegian Institute of Bioeconomy Research, 6630 Tingvoll, Norway.
| |
Collapse
|
3
|
Haider S, Song J, Bai J, Wang X, Ren G, Bai Y, Huang Y, Shah T, Feng Y. Toward Low-Emission Agriculture: Synergistic Contribution of Inorganic Nitrogen and Organic Fertilizers to GHG Emissions and Strategies for Mitigation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1551. [PMID: 40431118 PMCID: PMC12115026 DOI: 10.3390/plants14101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Nitrogen (N) and organic-source fertilizers in agriculture are important to sustain crop production for feeding the growing global population. However, their use can result in significant greenhouse gas (GHG) emissions, particularly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), which are important climate drivers. This review discusses the interactive effects, uncovering both additive and suppressive outcomes of emissions under various soil and climatic conditions. In addition to examining the effects of nitrogen and the nitrogen use efficiency (NUE), it is crucial to comprehend the mechanisms and contributions of organic fertilizers to GHG emissions. This understanding is vital for developing mitigation strategies that effectively reduce emissions while maintaining agricultural productivity. In this review, the current knowledge is utilized for the management of nitrogen practices, such as the optimization of fertilization rates, timing, and methods of application, in terms of the nitrogen use efficiency and the related GHG emissions. Moreover, we discuss the role of organic fertilizers, including straw, manure, and biochar, as a mitigation strategy in relation to GHG emissions through soil carbon sequestration and enhanced nutrient cycling. Important strategies such as crop rotation, tillage, irrigation, organic fertilizers, and legume crops are considered as suitable approaches for minimizing emissions. Even with the progress made in mitigating fertilizer-related emissions, research gaps remain, specifically concerning the long-term effect of organic fertilizers and the interactions between microbial communities in the soil and fertilization practices. Furthermore, the differences in application practices and environmental conditions present considerable obstacles to accurate emission quantification. This review underlines the importance of conducting more thorough research on the combined application of N and organic fertilizers in multiple cropping systems to evolve region-specific mitigation strategies.
Collapse
Affiliation(s)
- Shahzad Haider
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Jiajie Song
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Jinze Bai
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Xing Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Guangxin Ren
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Yuxin Bai
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Yuming Huang
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Tahir Shah
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China;
| | - Yongzhong Feng
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| |
Collapse
|
4
|
Liang Y, Gao B, Zhang X, Yi H, Li J, Zhang W. Combined addition of γ-PGA and DCD facilitates phytoremediation of heavy metals and carbon sequestration: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124746. [PMID: 40054352 DOI: 10.1016/j.jenvman.2025.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
A field study examined the impact of γ-polyglutamic acid (γ-PGA), both alone and in combination with dicyandiamide (DCD), on the phytoremediation of soil contaminated with Cd, Pb, and Zn. This study focused on the heavy metal (HM) accumulation, and soil CO2 and N2O emissions in Cosmos sulphureus and Pennisetum americanum × P. purpureum, and soil microbial communities. The findings indicated that the application of γ-PGA, either alone or in combination with DCD, increased plant yield and HM bioavailability in the soil, leading to improved HM uptake by plants. For P. americanum × P. purpureum, compared to CK treatment, the combined addition of γ-PGA and DCD increased the Cd, Pb, and Zn extraction by 131.4%, 80.6%, and 99.7%, respectively. Compared to γ-PGA alone, the combined addition of γ-PGA and DCD reduced the soil N2O emission and global warming potential by 26.4% and 39.1%, respectively. P. americanum × P. purpureum treated with γ-PGA and DCD achieved C sequestration of 829 kg ha-1. Moreover, the application of γ-PGA, alone or in combination with DCD, increased the abundance of soil microbes. Bacteria (Proteobacteria, Actinobacteriota, and Firmicutes) as well as fungi (Basidiomycota and Mortierellomycota) contributed to HM accumulation and resistance to stress by altering soil enzyme activities, C and N fractions. Additionally, Acidobacteriota and Patescibacteria are beneficial to reducing soil GHG emissions and GWP in P. americanum × P. purpureum soil treated with γ-PGA and DCD. In conclusion, P. americanum × P. purpureum with the combined addition of γ-PGA and DCD increased HM extraction and total C sequestration in the plant-soil system. This approach offers a scientific basis and promising approach for integrating phytoremediation with C sequestration.
Collapse
Affiliation(s)
- Yexi Liang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China.
| | - Haifeng Yi
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Junjiang Li
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Wenying Zhang
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
5
|
Liu J, Zhou M, Zhou L, Dang R, Xiao L, Tan Y, Li M, Yu J, Zhang P, Hernández M, Lichtfouse E. Methane production related to microbiota in dairy cattle feces. ENVIRONMENTAL RESEARCH 2025; 267:120642. [PMID: 39701354 DOI: 10.1016/j.envres.2024.120642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Methane (CH4) emission from livestock feces, led by ruminants, shows a profound impact on global warming. Despite this, we have almost no information on the syntrophy of the intact microbiome metabolisms, from carbohydrates to the one-carbon units, covering multiple stages of ruminant development. In this study, syntrophic effects of polysaccharide degradation and acetate-producing bacteria, and methanogenic archaea were revealed through metagenome-assembled genomes from water saturated dairy cattle feces. Although CH4 is thought to be produced by archaea, more edges, nodes, and balanced interaction types revealed by network analysis provided a closed bacteria-archaea network. The CH4 production potential and pathways were further evaluated through dynamic, thermodynamic and 13C stable isotope analysis. The powerful CH4 production potential benefited from the metabolic flux: classical polysaccharides, soluble sugar (glucose, galactose, lactose), acetate, and CH4 produced via typical acetoclastic methanogenesis. In comparison, a cooperative model dominated by hydrogenotrophic methanogenic archaea presented a weak ability to generate CH4. Our findings comprehensively link carbon and CH4 metabolism paradigm to specific microbial lineages which are shaped related to developmental stages of the dairy cattle, directing influencing global warming from livestock and waste treatment.
Collapse
Affiliation(s)
- Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou, 253023, China
| | - Meng Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Lifeng Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Liaocheng University School of Geography and Environment, Liaocheng, 252059, China
| | - Run Dang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Liaocheng University School of Geography and Environment, Liaocheng, 252059, China
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yang Tan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Meng Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou, 253023, China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou, 253023, China.
| | - Peng Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Marcela Hernández
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
6
|
Hickmann FMW, Salahshournia B, Andretta I, Létourneau-Montminy MP, Rajagopal R. Impact of lowering nitrogen content in pig manure through low crude protein diets on anaerobic digestion process stability, biogas yields, and digestate composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175957. [PMID: 39226967 DOI: 10.1016/j.scitotenv.2024.175957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Lowering crude protein in pig diets can reduce nitrogen (N) excretion and alter manure characteristics. Anaerobic digestion (AD) offers potential for converting pig manure into biogas and bio-based fertilizers (i.e., digestate). However, limited research exists on the effects of N content in pig manure on AD when pigs are fed diets with varying crude protein levels. This study investigated how lowering N content in pig manure through low crude protein diets may affect AD process stability, biogas generation, and digestate properties. Manures from different dietary treatments, named as control (CON), low N (LN), and very low N (VLN), with Total Kjeldahl Nitrogen concentrations of 5.87, 5.42, and 5.15 g/L, respectively, were investigated. Daily biogas production, composition (CH4, CO2, and H2S), and digestate properties were monitored over 13 fed-batch cycles (25 ± 4 days per cycle). The experiment was conducted at 20 ± 1 °C, a condition suited for milder climate regions, using six single-stage digesters operated in sequencing fed-batch mode. Data were analyzed by ANOVA using PROC MIXED with repeated measures. Results showed that the differences in N content in pig manure due to the three dietary treatments had a limited impact on biogas generation, with specific methane yields remaining similar over time. CH4 concentrations remained stable between 60 and 65 %, ensuring high-quality biogas despite dietary variations. Differences between treatments became more pronounced with increased organic loading rates (OLRs) due to variations in the amount of volatile solids fed. AD also remained stable (Total Volatile Fatty Acids/Total Alkalinity <0.25) even at an OLR of 2.15 g of chemical oxygen demand L-1 day-1, highlighting AD's robustness at lower temperatures. Digestate samples contained essential minerals beneficial for plant growth. More research is needed to explore varied manure compositions and feeding strategies to better understand the interactions of animal nutrition with AD.
Collapse
Affiliation(s)
- Felipe M W Hickmann
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada; Departamento de Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | - Behrang Salahshournia
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada; Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ines Andretta
- Departamento de Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marie-Pierre Létourneau-Montminy
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada.
| |
Collapse
|
7
|
Shetty BD, Pandey PK, Mai K. Microbial diversity in dairy manure environment under liquid-solid separation systems. ENVIRONMENTAL TECHNOLOGY 2024; 45:5838-5854. [PMID: 38310325 DOI: 10.1080/09593330.2024.2309481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
In dairy manure, a wide array of microorganisms, including many pathogens, survive and grow under suitable conditions. This microbial community offers a tremendous opportunity for studying animal health, the transport of microbes into the soil, air, and water, and consequential impacts on public health. The aim of this study was to assess the impacts of manure management practices on the microbial community of manure. The key novelty of this work is to identify the impacts of various stages of manure management on microbes living in dairy manure. In general, the majority of dairy farms in California use a flush system to manage dairy manure, which involves liquid-solid separations. To separate liquid and solid in manure, Multi-stage Alternate Dairy Effluent Management Systems (ADEMS) that use mechanical separation systems (MSS) or weeping wall separation systems (WWSS) are used. Thus, this study was conducted to understand how these manure management systems affect the microbial community. We studied the microbial communities in the WWSS and MSS separation systems, as well as in the four stages of the ADEMS. The 16S rRNA gene from the extracted genomic DNA of dairy manure was amplified using the NovoSeq Illumina next-generation sequencing platform. The sequencing data were used to perform the analysis of similarity (ANOSIM) and multi-response permutation procedure (MRRP) statistical tests, and the results showed that microbial communities among WWSS and MSS were significantly different (p < 0.05). These findings have significant practical implications for the design and implementation of manure management practices in dairy farms.
Collapse
Affiliation(s)
- B Dharmaveer Shetty
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Kelly Mai
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Mechanisms of Disease and Translational Research, School of Medical Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Golchin A, Misaghi M. Investigating the effects of climate change and anthropogenic activities on SOC storage and cumulative CO 2 emissions in forest soils across altitudinal gradients using the century model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173758. [PMID: 38852874 DOI: 10.1016/j.scitotenv.2024.173758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the impact of climate change, grazing, manure application, and liming on soil organic carbon (SOC) stock and cumulative carbon dioxide (CO2) emissions in forest soils across different altitudes. Despite similar soil texture, acidity, and salinity across elevations, SOC stock significantly increased with altitude due to cooler temperatures and higher precipitation. The highest SOC stock (97.46 t ha-1) was observed at 2000-2500 m, compared to the lowest (44.23 t ha-1) at 500-1000 m. The Century C Model accurately predicted SOC stock, with correlation and determination coefficients exceeding 0.98. A climate change scenario projecting decreased precipitation (2.15 mm per decade) and increased temperature (0.4 °C) revealed potential SOC stock losses ranging from 28.36 to 36.35 %, particularly at higher altitudes. Grazing further decreased SOC stock, with a more pronounced effect at higher elevations. However, manure application (40 t ha-1 every four years) and liming (7-10 t ha-1 every three years) had positive effects on SOC stock, again amplified at higher altitudes and with an increase in lime application rate. In scenarios combining climate change with manure application and climate change with liming, manure application and liming mitigated some negative impacts of climate change, but could not fully offset them, resulting in 1.49-5.42 % and 0.39-4.07 % decreases respectively. Simulations of cumulative CO2 emissions mirrored the distribution of SOC stock, with higher emissions observed at higher altitudes and with management practices that increased SOC stock. This study emphasizes the critical role of conserving high-altitude forest soils and implementing optimal forest management strategies to combat climate change by minimizing SOC losses.
Collapse
Affiliation(s)
- Ahmad Golchin
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Mehran Misaghi
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| |
Collapse
|
9
|
Yang Y, Tilman D, Jin Z, Smith P, Barrett CB, Zhu YG, Burney J, D'Odorico P, Fantke P, Fargione J, Finlay JC, Rulli MC, Sloat L, Jan van Groenigen K, West PC, Ziska L, Michalak AM, Lobell DB, Clark M, Colquhoun J, Garg T, Garrett KA, Geels C, Hernandez RR, Herrero M, Hutchison WD, Jain M, Jungers JM, Liu B, Mueller ND, Ortiz-Bobea A, Schewe J, Song J, Verheyen J, Vitousek P, Wada Y, Xia L, Zhang X, Zhuang M. Climate change exacerbates the environmental impacts of agriculture. Science 2024; 385:eadn3747. [PMID: 39236181 DOI: 10.1126/science.adn3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
- The National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, PR China
- The Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, PR China
| | - David Tilman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland
| | - Christopher B Barrett
- CH Dyson School of Applied Economics and Management, JE Brooks School of Public Policy, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14850, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jennifer Burney
- School of Global Policy and Strategy, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92037 USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Peter Fantke
- substitute ApS, Graaspurvevej 55, 2400 Copenhagen, Denmark
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joe Fargione
- The Nature Conservancy, Minneapolis, MN 55415, USA
| | - Jacques C Finlay
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- St. Anthony Falls Laboratory, Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, MN 55414, USA
| | | | - Lindsey Sloat
- World Resources Institute, Washington, DC 20002, USA
| | | | - Paul C West
- Department of Applied Economics, University of Minnesota, St. Paul, MN 55108, USA
- Project Drawdown, St. Paul, MN 55101, USA
| | - Lewis Ziska
- Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, CA 94305, USA
- Department of Earth System Science, and Department of Biology, Stanford University, Stanford, CA 94305, USA
- Google Research, Mountain View, CA 94043, USA
| | - David B Lobell
- Department of Earth System Science and Center on Food Security and the Environment, Stanford University, Stanford, CA 94305, USA
| | - Michael Clark
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jed Colquhoun
- The National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, PR China
| | - Teevrat Garg
- The Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, PR China
| | - Karen A Garrett
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Camilla Geels
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Rebecca R Hernandez
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Mario Herrero
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland
| | - William D Hutchison
- CH Dyson School of Applied Economics and Management, JE Brooks School of Public Policy, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14850, USA
| | - Meha Jain
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jacob M Jungers
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Beibei Liu
- School of Global Policy and Strategy, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel D Mueller
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92037 USA
| | - Ariel Ortiz-Bobea
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Jacob Schewe
- substitute ApS, Graaspurvevej 55, 2400 Copenhagen, Denmark
| | - Jie Song
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Peter Vitousek
- St. Anthony Falls Laboratory, Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, MN 55414, USA
| | - Yoshihide Wada
- Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Longlong Xia
- World Resources Institute, Washington, DC 20002, USA
| | - Xin Zhang
- Department of Geography, University of Exeter, Exeter EX4 4RJ, UK
| | - Minghao Zhuang
- Department of Applied Economics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
10
|
Haider KM, Focsa C, Decuq C, Esnault B, Lafouge F, Loubet B, Petitprez D, Ciuraru R. Chemical characterization of volatile organic compounds emitted by animal manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121453. [PMID: 38875988 DOI: 10.1016/j.jenvman.2024.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Animal manure is considered a valuable organic fertilizer due to its important nutrient content enhancing soil fertility and plant growth in agriculture. Besides its beneficial role as fertilizer, animal manure represents a significant source of volatile organic compounds (VOCs), playing a significant role in atmospheric chemistry. Understanding the composition of VOCs Understanding VOCs from animal manure is crucial for assessing their environmental impact, as they can cause air pollution, odors, and harm to human health and ecosystems. Laboratory studies enhance field measurements by providing a precise inventory of manure emissions, addressing gaps in existing literature. Both approaches complement each other in advancing our understanding of manure emissions. In this context, we conducted an experimental study involving various animal manures (cow, horse, sheep, and goat) taken from a farm in Grignon (near Paris, France). We employed atmospheric simulation chambers within a controlled laboratory environment. The analysis of VOCs involved the combination of Proton Transfer Reaction-Quadrupole ion guide-Time-of-Flight Mass Spectrometry (PTR-QiTOF-MS) and Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Using PTR-QiTOF-MS, 368 compounds were detected and quantified within the manure samples. The complementary analysis by TD-GC-MS enhanced our identification of VOCs. Our findings revealed various chemical groups of VOCs, including oxygenated compounds (e.g., ethanol, cresol, acetaldehyde, etc.), nitrogenated compounds (ammonia, trimethylamine, etc.), sulfur compounds (methanethiol, dimethyl sulfide, etc.), aromatic compounds (phenols and indoles), terpenes (isoprene, D-limonene, etc.) and halogenated compounds. Cow manure exhibited the highest VOC emission fluxes, followed by goat, sheep, and horse manures. Notably, oxygenated VOCs were dominant contributors to total VOC emission fluxes in all samples. Statistical analysis highlighted the distinct nature of cow manure emissions, characterized by oxygenated compounds and nitrogenated compounds. In addition, goat manure was isolated from the other samples with high emissions of compounds having both oxygen and nitrogen atoms in their molecular formulas (e.g., CH3NO2). The experimental dataset obtained in this study provides an inventory reference for both VOCs and their emission fluxes in animal manures. Furthermore, it highlights odorant compounds and VOCs that serve as atmospheric aerosol precursor. Future studies can explore the effectiveness of various manure treatment methods to promote sustainable agriculture practices.
Collapse
Affiliation(s)
- K M Haider
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille, F-59000, France; Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France.
| | - C Focsa
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille, F-59000, France
| | - C Decuq
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - B Esnault
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - F Lafouge
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - B Loubet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | - D Petitprez
- Univ.Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Lille, F-59000, France
| | - R Ciuraru
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France.
| |
Collapse
|
11
|
Al Zahra W, Ikhsan Shiddieqy M, Anisa R, Yani A, Priyo Purwanto B. The dynamics of nitrous oxide and methane emissions from various types of dairy manure at smallholder dairy farms as affected by storage periods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:10-20. [PMID: 38704922 DOI: 10.1016/j.wasman.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Storing manure emits greenhouse gas (GHG) emissions, including nitrous oxide (N2O) and methane (CH4). However, the emissions from types of manure stored at smallholder dairy farms remains unknown. Hence, the study aims to analyse the dynamics of N2O and CH4 from different types of dairy manure as affected by storage periods. We collected samples from fresh manure (FM-DF1), manure from communal ponds in an urban dairy farm (IP-DF1, FP-DF1, MS-DF1), fresh manure from an urban dairy farm (FM-DF2), and fresh (FM-DF3), separated (FS-DF3), and fermented manure (FR-DF3) from a peri-urban dairy farm, and stored them for eight weeks and analyse them using the closed chamber method. The changes of manure composition including total solids (TS), nitrogen (N), ammonia-nitrogen (N-NH3), and carbon (C) were analysed. Results indicated an increase TS in all treatments except for MS-DF1, while N, N-NH3, and C content decreased in all treatments. The N2O emissions formed at the start, peaked in the middle, and declined towards the end storage period. The CH4 emissions peaked at the start and decreased until the end storage period. Treatment FM-DF2 yield highest cumulative of N2O (0.82 g/m2) and CH4 (41.63 g/m2) compared to other fresh manure treatment. A mixed model analysis detected a significant interaction (p < 0.05) between manure types and storage periods. In conclusion, manure types and storage periods affect the emissions. Changes in manure concentration during storage and animal diets are two important factors influencing emissions. Strategies to reduce emissions include reducing moisture content in manure, shortening storage periods, and improving feed quality.
Collapse
Affiliation(s)
- Windi Al Zahra
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, P.O. Box 16680, Bogor, West Java, Indonesia.
| | - Mohammad Ikhsan Shiddieqy
- Research Centre for Animal Husbandry, National Research and Innovation Agency (BRIN), P.O Box 16911, Cibinong, West Java, Indonesia
| | - Rahma Anisa
- Department of Statistics, Faculty of Mathematics and Natural Sciences, IPB University, P.O Box 16680, Bogor, West Java, Indonesia
| | - Ahmad Yani
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, P.O. Box 16680, Bogor, West Java, Indonesia
| | - Bagus Priyo Purwanto
- College of Vocational Studies, IPB University, P.O Box 16128 Bogor, West Java, Indonesia
| |
Collapse
|
12
|
Ferraz PFP, Ferraz GAES, Ferreira JC, Aguiar JV, Santana LS, Norton T. Assessment of Ammonia Emissions and Greenhouse Gases in Dairy Cattle Facilities: A Bibliometric Analysis. Animals (Basel) 2024; 14:1721. [PMID: 38929340 PMCID: PMC11201209 DOI: 10.3390/ani14121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
A deeper understanding of gas emissions in milk production is crucial for promoting productive efficiency, sustainable resource use, and animal welfare. This paper aims to analyze ammonia and greenhouse gas emissions in dairy farming using bibliometric methods. A total of 187 English-language articles with experimental data from the Scopus and Web of Science databases (January 1987 to April 2024) were reviewed. Publications notably increased from 1997, with the highest number of papers published in 2022. Research mainly focuses on ammonia and methane emissions, including quantification, volatilization, and mitigation strategies. Other gases like carbon dioxide, nitrous oxide, and hydrogen sulfide were also studied. Key institutions include the University of California-Davis and Aarhus University. Bibliometric analysis revealed research evolution, identifying trends, gaps, and future research opportunities. This bibliometric analysis offers insights into emissions, air quality, sustainability, and animal welfare in dairy farming, highlighting areas for innovative mitigation strategies to enhance production sustainability. This research contributes to academia, enhancing agricultural practices, and informing environmental policies. It is possible to conclude that this research is a valuable tool for understanding the evolution of research on gas emissions in dairy cattle facilities, providing guidance for future studies and interventions to promote more sustainable production.
Collapse
Affiliation(s)
- Patricia Ferreira Ponciano Ferraz
- Department of Agricultural Engineering, School of Engineering, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil; (G.A.e.S.F.); (J.C.F.)
| | - Gabriel Araújo e Silva Ferraz
- Department of Agricultural Engineering, School of Engineering, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil; (G.A.e.S.F.); (J.C.F.)
| | - Jacqueline Cardoso Ferreira
- Department of Agricultural Engineering, School of Engineering, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil; (G.A.e.S.F.); (J.C.F.)
| | - João Victor Aguiar
- Department of Animal Science, Faculty of Animal Science and Veterinary Medicine, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil;
| | - Lucas Santos Santana
- Department of Agricultural and Environmental Engineering, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Unaí 38610-000, Brazil;
| | - Tomas Norton
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, B-3001 Leuven, Belgium;
| |
Collapse
|
13
|
Mezzetti M, Passamonti MM, Dall’Asta M, Bertoni G, Trevisi E, Ajmone Marsan P. Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods 2024; 13:1650. [PMID: 38890886 PMCID: PMC11171858 DOI: 10.3390/foods13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Milk has become a staple food product globally. Traditionally, milk quality assessment has been primarily focused on hygiene and composition to ensure its safety for consumption and processing. However, in recent years, the concept of milk quality has expanded to encompass a broader range of factors. Consumers now also consider animal welfare, environmental impact, and the presence of additional beneficial components in milk when assessing its quality. This shifting consumer demand has led to increased attention on the overall production and sourcing practices of milk. Reflecting on this trend, this review critically explores such novel quality parameters, offering insights into how such practices meet the modern consumer's holistic expectations. The multifaceted aspects of milk quality are examined, revealing the intertwined relationship between milk safety, compositional integrity, and the additional health benefits provided by milk's bioactive properties. By embracing sustainable farming practices, dairy farmers and processors are encouraged not only to fulfill but to anticipate consumer standards for premium milk quality. This comprehensive approach to milk quality underscores the necessity of adapting dairy production to address the evolving nutritional landscape and consumption patterns.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Matilde Maria Passamonti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Margherita Dall’Asta
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Giuseppe Bertoni
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Erminio Trevisi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
- Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy
| | - Paolo Ajmone Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| |
Collapse
|
14
|
Esteves C, Costa E, Mata M, Mota M, Martins M, Ribeiro H, Fangueiro D. Partial replacement of mineral fertilisers with animal manures in an apple orchard: Effects on GHG emission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120552. [PMID: 38531128 DOI: 10.1016/j.jenvman.2024.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Partial replacement of mineral fertilisers (MF) with animal manures is a good alternative to reduce MF use and increase both nutrient cycling in agriculture and soil organic matter. However, the adoption of this practice must not lead to increased environmental impacts. In this two-year study conducted in an apple orchard, MF were partially replaced with various animal manures, including cattle slurry (CS), acidified cattle slurry (ACS), solid cattle manure (CsM), or poultry manure (PM), and their impacts on greenhouse gas emission (GHG: CO2, N2O and CH4) were examined. A control (CTRL) receiving only MF served as the baseline, representing the conventional scenario in orchard fertilisation. Overall, replacing MF with manures increased GHG emissions, with the magnitude of the impacts depending on the specific characteristics of the manures and the amount of nutrients and organic matter applied. Comparing to the CTRL, application of ACS and CS led to higher CH4 and N2O emissions, while PM application increased both N2O and CO2 emissions. In contrast, replacement with PM and CsM decreased CH4 emissions. Nevertheless, results varied between the two years, influenced by several factors, including soil conditions. While acidification showed potential to mitigate CH4 emissions, it also led to increased N2O emissions compared to CS, particularly in 2022, suggesting the need for further investigation to avoid emission trade-offs. Replacement with CS (20.49 t CO2-eq ha-1) and CsM (20.30 t CO2-eq ha-1) showed comparable global warming potential (GWP) to the conventional scenario (CTRL, 19.49 t CO2-eq ha-1), highlighting their potential as viable MF substitutes.
Collapse
Affiliation(s)
- Catarina Esteves
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Eva Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Mata
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Mariana Mota
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Martins
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Henrique Ribeiro
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - David Fangueiro
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Terra Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| |
Collapse
|
15
|
Brickman S, Darby H, Ruhl L, Adair EC. Nitrous oxide emissions are driven by environmental conditions rather than nitrogen application methods in a perennial hayfield. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:133-146. [PMID: 38127325 DOI: 10.1002/jeq2.20536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Agricultural best management practices (BMPs) intended to solve one environmental challenge may have unintended climate impacts. For example, manure injection is often promoted for its potential to reduce runoff and nitrogen (N) loss as NH3 , but the practice has been shown to increase N2 O, a powerful greenhouse gas, compared to surface application. Urease inhibitor application with N fertilizer is another BMP that can enhance N retention by reducing NH3 emissions, but its impact on N2 O emissions is mixed. Thus, we measured N2 O, CO2 , soil mineral N availability, soil moisture, soil temperature, and yield in a 2-year perennial hayfield trial with four fertilization treatments (manure injection, manure broadcast, synthetic urea, and control) applied with or without a urease inhibitor in Alburgh, VT. We used linear models to examine treatment effects on daily and cumulative N2 O emissions and a boosted regression tree (BRT) model to identify the most important drivers of daily N2 O fluxes in our trial. While fertilization type had a significant impact on N2 O fluxes (p < 0.05), our treatments explained an unexpectedly small amount of the variation in emissions (R2 = 0.042), and urease inhibitor had no effect. Instead, soil moisture was the most important predictor of daily N2 O fluxes (39.7% relative influence in BRT model), followed by CO2 fluxes, soil inorganic N, and soil temperature. Soil moisture and temperature interacted to produce the largest daily N2 O fluxes when both were relatively high, suggesting that injecting manure during dry periods or during wet but cool periods could reduce its climate impacts.
Collapse
Affiliation(s)
- Sarah Brickman
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, USA
- Department of Land, Air and Water Resources, University of California, Davis, California, USA
| | - Heather Darby
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, USA
- Department of Plant and Soil Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, USA
| | - Lindsey Ruhl
- Department of Plant and Soil Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, USA
| | - E Carol Adair
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
16
|
Yan X, Ying Y, Li K, Zhang Q, Wang K. A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120028. [PMID: 38219668 DOI: 10.1016/j.jenvman.2024.120028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
One of the key issues in manure management of livestock production is to reduce greenhouse gas (GHG) and air pollutant emissions, which lead to significant environmental footprint and human/animal health threats. This study provides a review of potentially efficacious technologies and management strategies that reduce GHG and air pollutant emissions during the three key stages of manure management in livestock production, i.e., animal housing, manure storage and treatment, and manure application. Several effective mitigation technologies and practices for each manure management stage are identified and analyzed in detail, including feeding formulation adjustment, frequent manure removal and air scrubber during animal housing stage; solid-liquid separation, manure covers for storage, acidification, anaerobic digestion and composting during manure storage and treatment stage; land application techniques at appropriate timing during manure application stage. The results indicated several promising approaches to reduce multiple gas emissions from the entire manure management. Removing manure 2-3 times per week or every day during animal housing stage is an effective and simple way to reduce GHG and air pollutant emissions. Acidification during manure storage and treatment stage can reduce ammonia and methane emissions by 33%-93% and 67%-87%, respectively and proper acid, such as lactic acid can also reduce nitrous oxide emission by about 90%. Shallow injection of manure for field application has the best performance in reducing ammonia emission by 62%-70% but increase nitrous oxide emission. The possible trade-off brings insight to the prioritization of targeted gas emissions for the researchers, stakeholders and policymakers, and also highlights the importance of assessing the mitigation technologies across the entire manure management chain. Implementing a combination of the management strategies needs comprehensive considerations about mitigation efficiency, technical feasibility, local regulations, climate condition, scalability and cost-effectiveness.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Optical, Mechanical and Electrical Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, Zhejiang, China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China; Guangxi Yangxiang Co., Ltd., Gangnan District, Guigang, 537106, Guangxi, China
| | - Yongfei Ying
- Zhejiang Province Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Zhejiang Province Department of Agriculture, 111 Yuyun Road, Hangzhou, 310020, Zhejiang, China
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Qiang Zhang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
17
|
Yin Y, Gu M, Zhang W, Yang C, Li H, Wang X, Chen R. Relationships between different types of biochar and N 2O emissions during composting based on roles of nosZ-carrying denitrifying bacterial communities enriched on compost and biochar particles. BIORESOURCE TECHNOLOGY 2024; 394:130214. [PMID: 38122996 DOI: 10.1016/j.biortech.2023.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Biochar has demonstrated the potential in mitigating N2O emissions during composting. However, little is known about how microbial communities on biochar particles interact with N2O emissions. This study selected three types of biochar (corn stalk biochar (CSB), rape straw biochar (RSB), and bamboo charcoal (BC)) to investigate the relationship between N2O emissions and denitrifying bacterial communities on compost and biochar particles. The results showed that N2O emissions rate were higher in the thermophilic phase, and the average emissions rate of BC treatment were lower 40% and 26% than CSB and RSB, respectively. The nosZ-carrying denitrifying bacterial community played a key role in reducing N2O emissions, and the network indicated that Rhizobium and Paracoccus on compost particles may have played major roles in reducing N2O emissions, but only Paracoccus on biochar particles. Notably, BC enhanced the efficiency of N2O emission reduction by enhancing the abundance of these key genera.
Collapse
Affiliation(s)
- Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| | - Mengjin Gu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 750 07 Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
18
|
Sandoval DF, Junca Paredes JJ, Enciso Valencia KJ, Díaz Baca MF, Bravo Parra AM, Burkart S. Long-term relationships of beef and dairy cattle and greenhouse gas emissions: Application of co-integrated panel models for Latin America. Heliyon 2024; 10:e23364. [PMID: 38169786 PMCID: PMC10758816 DOI: 10.1016/j.heliyon.2023.e23364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The cattle sector plays a pivotal role in the economies of numerous Latin American and Caribbean countries. However, it also exerts a significant impact on environmental degradation, including substantial contributions to greenhouse gas emissions (accounting for 23.5 % of global livestock emissions) and deforestation (70 % attributed to livestock in South America). This article aims to investigate the complex, long-term, and short-term relationships between population growth, pastureland expansion, deforestation, and the cattle sector in 15 countries across the region, focusing on their effects on greenhouse gas emissions as well as beef and dairy production. Utilizing data from FAOSTAT spanning the period from 1990 to 2019, a cointegrated panel model was developed using the Pooled Mean Group technique, resulting in the estimation of six models. The aggregate-level results for the region reveal the presence of relatively stable long-term relationships. This implies that over time, the influence of population growth, pastureland expansion, and deforestation on greenhouse gas emissions from cattle production tends to diminish in significance. This long-term behavior may be particularly pronounced in countries with more developed cattle sectors, where efforts to mitigate the environmental impacts of cattle production, such as promoting improved forage technologies, silvo-pastoral systems, grazing management practices, and the implementation of policies, regulatory frameworks, and incentives, have gained traction. These progressive countries can serve as regional benchmarks, and the lessons they have learned hold valuable insights for the sustainable intensification of cattle production in countries with less-developed cattle sectors.
Collapse
Affiliation(s)
- Danny Fernando Sandoval
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - John Jairo Junca Paredes
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Karen Johanna Enciso Valencia
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Manuel Francisco Díaz Baca
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Aura María Bravo Parra
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| | - Stefan Burkart
- International Center for Tropical Agriculture (CIAT), Tropical Forages Program, km 17 recta Cali-Palmira, Cali, Colombia
| |
Collapse
|
19
|
Fuertes E, Seradj AR, Balcells J, Maynegre J, de la Fuente G. Characterization of microbial populations in two distinct dairy manure management systems: seasonal effect and implications for pollutant gases emissions. J Anim Sci 2024; 102:skae316. [PMID: 39460654 PMCID: PMC11641847 DOI: 10.1093/jas/skae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Following an increase in the demand for dairy products, higher quantities of manure are consequently produced, with the subsequent pollutant gas emission charge associated with its management. The 2 mostly used housing systems in the northeast of Spain, cubicles (CUB) and compost-bedded pack (CBP), entail different manure management techniques; thus, our main objective was to describe the microbiota present in the manure of both systems during 2 distinct climatic situations (winter, mean temperature of 6.2 °C; and summer, mean temperature of 36.4 °C). The secondary aim was to correlate these microbiological profiles with literature findings on the emission of certain well-known pollutant gases from manure. CBP showed to have higher alpha biodiversity as well as presenting a remarkable clustering by season but showed lower network complexity than CUB. Firmicutes/Bacteroidetes ratio was found superior in CUB, which also presented a significantly higher abundance of methanogenic genera belonging to Euryarchaeota phylum, such as Methanobrevibacter, Methanosaeta or Methanosarcina. On the other hand, CBP manure presented a significant presence of Corynebacterium, Pseudomonas, or Truepera, among other genera, which activity has been linked to nitrogen (N) transformation pathways in manure. The season also had a relevant role to play in the fluctuation of these populations within each housing system under study. These results show how microbial populations change when manure is differently managed, and how these variations can be related to the synthesis of certain pollutant gases in housing systems.
Collapse
Affiliation(s)
- Esperanza Fuertes
- Department of Animal Science, Agrotecnio Center, Universitat Lleida, Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Ahmad Reza Seradj
- Department of Animal Science, Agrotecnio Center, Universitat Lleida, Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Joaquim Balcells
- Department of Animal Science, Agrotecnio Center, Universitat Lleida, Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Jordi Maynegre
- Department of Animal Science, Agrotecnio Center, Universitat Lleida, Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Gabriel de la Fuente
- Department of Animal Science, Agrotecnio Center, Universitat Lleida, Alcalde Rovira Roure 191, Lleida 25198, Spain
| |
Collapse
|
20
|
He Z, Ding B, Pei S, Cao H, Liang J, Li Z. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166917. [PMID: 37704128 DOI: 10.1016/j.scitotenv.2023.166917] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Although organic fertilizers played an important role in enhancing crop yield and soil quality, the effects of organic fertilizers replacing chemical fertilizers on greenhouse gas (GHG) emissions remained inconsistent, and further impeding the widespread adoption of organic fertilizers. Therefore, a global meta-analysis used 568 comparisons from 137 publications was conducted to evaluate the responses of GHG emissions to organic fertilizers replacing chemical fertilizers. The results indicated that organic fertilizers replacing chemical fertilizers significantly decreased N2O emissions, but increasing global warming potential (GWP) by enhancing CH4 and CO2 emissions. When replacing chemical fertilizers with organic fertilizers, a variety of factors such as climate conditions, soil conditions, crop types and agricultural practices influenced the GHG emissions and GWP. Among these factors, fertilizer organic C and available N level were the main factors affecting GHG and GWP. However, considering the feasibility and ease of optimizing these factors, fertilizer organic C, C/N and N substitution rate showed a more favorable choice for GWP reduction, and their interactions significantly affecting GWP. Moreover, considering the distinct GHG emissions patterns in dryland and paddy field, the analysis of optimizing GWP based on fertilizer organic C, C/N and N substitution rate was separately conducted. According to the simulation optimization, the optimal combination of fertilizer organic C (137.2-228.8 g·kg-1), C/N (6.9-52.0) and N substitution rate (20.0-22.5 %) effectively suppressed the extent of increase in GWP in paddy field compared with chemical fertilizers. In dryland, optimizing fertilizer organic C (100-278 g·kg-1), C/N (70.7-76.6) and N substitution rate (10.2-16.0 %) led to a reduction in GWP compared with chemical fertilizers, indicating that dryland are more suitable for promoting organic fertilizer application. In conclusion, this meta-analysis study quantitatively assessed the GHG emissions when organic fertilizers replacing chemical fertilizers, and also provided a scientific basis for the mitigation of GHG emissions by organic fertilizers management.
Collapse
Affiliation(s)
- Zijian He
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bangxin Ding
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuyao Pei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongxia Cao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiaping Liang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhijun Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Zhang J, Luo Z, Li N, Yu Y, Cai M, Zheng L, Zhu F, Huang F, K Tomberlin J, Rehman KU, Yu Z, Zhang J. Cellulose-degrading bacteria improve conversion efficiency in the co-digestion of dairy and chicken manure by black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119156. [PMID: 37837764 DOI: 10.1016/j.jenvman.2023.119156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijun Luo
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongqiang Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| | | | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
22
|
Duda R, Zdechlik R, Kania J. Groundwater nitrate pollution risk assessment based on the potential impact of land use, nitrogen balance, and vulnerability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122508-122523. [PMID: 37968487 PMCID: PMC10724313 DOI: 10.1007/s11356-023-30850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
The predicting groundwater nitrate pollution risk, especially in terms of changes in fertilizing, has not been fully investigated so far. In particular, there is no comprehensive method to assess this risk in areas of different land use type, and not only in agricultural areas. The aim of this study was to develop a novel multicriteria methodology for groundwater nitrate pollution risk assessment, which meets these issues. A further aim was to determine how much this risk would change if the amount of organic and synthetic fertilization was reduced. An assumption was that groundwater pollution risk is a combination of the potential adverse impacts of land use, fertilization, and intrinsic groundwater vulnerability to pollution. The impact of fertilization was holistically evaluated by balancing nitrogen from spatially differentiated the size of the breeding, species of livestock, manure and synthetic fertilizers input, and spatially differentiated topsoil, with nitrogen uptake by different crops. The nitrate concentration in the leachate was used as a measure of the impact of fertilization. This concentration was compared to the natural baseline nitrate concentration in groundwater. Three fertilization scenarios for groundwater pollution risk assessment in two study areas were discussed. Under typical agricultural, climatic, soil, and geological conditions in Europe for the current total fertilization level of 95-120 kg N ha-1 groundwater nitrate pollution risk is low and moderate, but for fertilization of 150-180 kg N ha-1, a reduction in the total fertilization (synthetic and manure) by 40 to 50% may be required to achieve low risk of degradation of natural groundwater quality. Predictive simulations of groundwater nitrate pollution risk confirmed that reducing synthetic and organic fertilization has an effect, especially in areas with intensive fertilization. This method may allow for a holistic and scenario-based assessment of groundwater pollution risk and may help decision-makers introduce solutions to manage this risk under conditions of climate change, preservation of groundwater quality, and food security.
Collapse
Affiliation(s)
- Robert Duda
- Faculty of Geology, Geophysics and Environmental Protection, Department of Hydrogeology and Engineering Geology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Robert Zdechlik
- Faculty of Geology, Geophysics and Environmental Protection, Department of Hydrogeology and Engineering Geology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Jarosław Kania
- Faculty of Geology, Geophysics and Environmental Protection, Department of Hydrogeology and Engineering Geology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
23
|
Çinar G, Dragoni F, Ammon C, Belik V, van der Weerden TJ, Noble A, Hassouna M, Amon B. Effects of environmental and housing system factors on ammonia and greenhouse gas emissions from cattle barns: A meta-analysis of a global data collation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:60-70. [PMID: 37714011 DOI: 10.1016/j.wasman.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
This study provides a meta-analysis on the relationships between cattle barn CH4, NH3 and N2O emission rates and their key drivers (i.e., housing type, floor type, environmental conditions). Understanding these relationships is essential to reduce uncertainties in emission inventories and suggest targeted mitigation measures. The total number of daily emission rates included in the analysis was 139 for CH4, 293 for NH3 and 100 for N2O emissions. Emission rates in the database showed a large variation with 45-803.5 g/LU d-1 for CH4, 0.036-146.7 gN LU-1 d-1 for NH3, and 0.002-18 gN LU-1 d-1 for N2O emissions. Despite the high emission variability, significant effects were identified·NH3 showed positive correlation with air temperature; NH3 emissions differed between housing types but not between floor types·NH3 emissions from tied stalls were lower than the ones from cubicle housing regardless of the floor type. Additionally, NH3 emissions from loose housings were lower than the ones from cubicle housing·NH3 and N2O emission rates from temperate wet zones were lower than the ones from temperate dry zones. CH4 emission rates were affected by environmental factors only and not by housing and floor type, showing negative correlation with air temperature and humidity. The factors investigated can be suggested as ancillary variables and descriptors when cattle barn emissions are measured, in order to make best use of emission data. Country-specific data of these key drivers can be included into national inventories to adapt them to different agroecosystems and support targeted policies.
Collapse
Affiliation(s)
- Gültac Çinar
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag 7-13, 14163 Berlin, Germany
| | - Federico Dragoni
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Christian Ammon
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Vitaly Belik
- Veterinary Epidemiology and Biometry, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | | | - Alasdair Noble
- AgResearch Ltd, Lincoln Research Centre, Lincoln 7674, New Zealand
| | | | - Barbara Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Zielona Góra, Faculty of Civil Engineering, Architecture and Environmental Engineering, 65-417 Zielona Góra, Poland
| |
Collapse
|
24
|
Fu J, Zhou X, He Y, Liu R, Yao Y, Zhou G, Chen H, Zhou L, Fu Y, Bai SH. Co-application of biochar and organic amendments on soil greenhouse gas emissions: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166171. [PMID: 37582442 DOI: 10.1016/j.scitotenv.2023.166171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Biochar has been shown to reduce soil greenhouse gas (GHG) and increase nutrient retention in soil; however, the interaction between biochar and organic amendments on GHG emissions remain largely unclear. In this study, we collected 162 two-factor observations to explore how biochar and organic amendments jointly affect soil GHG emissions. Our results showed that biochar addition significantly increased soil CO2 emission by 8.62 %, but reduced CH4 and N2O emissions by 27.0 % and 23.9 %, respectively. Meanwhile, organic amendments and the co-application with biochar resulted in an increase of global warming potential based on the 100-year time horizon (GWP100) by an average of 18.3 % and 26.1 %. More importantly, the interactive effect of biochar and organic amendments on CO2 emission was antagonistic (the combined effect was weaker than the sum of their individual effects), while additive on CH4 and N2O emissions. Additionally, our results suggested that when biochar is co-applied with organic amendments, soil GHG emissions were largely influenced by soil initial total carbon, soil texture, and biochar feedstocks. Our work highlights the important interactive effects of biochar and organic amendments on soil GHG emissions, and provides new insights for promoting ecosystem sustainability as well as mitigating future climate change.
Collapse
Affiliation(s)
- Jia Fu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanghui He
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Ruiqiang Liu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yixian Yao
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guiyao Zhou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Hongyang Chen
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
25
|
Park M, Kim J, Hwang YW, Guillaume B. A thematic review on livestock manure treatment strategies focusing on thermochemical conversion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111833-111849. [PMID: 37848787 DOI: 10.1007/s11356-023-30153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Livestock manure (LSM) management is emerging as a challenge due to increasing livestock consumption. Owing to the decreased agricultural land area, it is necessary to ensure LSM utilization in non-agricultural fields. LSM can be a valuable resource if managed as a circulating resource. This study discusses research trends based on a literature review and classifies LSM treatments. The analysis of each treatment is presented according to research trends, and implications for the future LSM processing are discussed. "Biological treatment" accounted for the largest portion at 48%, "manure management," which suggests improvement in manure treatment through systematic thinking or LSM management practices, accounted for 16%, and "thermochemical conversion" accounted for 11%. In addition, "life cycle assessment (LCA) research," "solid-liquid separation approach," and "nutrient-recovery/losses" were derived. Studies on biological treatments are increasing. Although anaerobic digestion (AD) is the most used method, it has the disadvantages of long processing time and waste generation after processing. As a key supplement, thermochemical conversion (TCC) technology, which could overcome the disadvantages of AD, was reviewed.
Collapse
Affiliation(s)
- Misook Park
- Program in Circular Economy Environmental System, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, South Korea
- National Institute of Green Technology, 60 Yeouinaru-ro, Yeongdeungpo-gu, Seoul, South Korea
| | - Junbeum Kim
- CREIDD Research Center on Environmental Studies & Sustainability, UR InSyTE (Interdisciplinary research on Society-Technology-Environment Interactions), University of Technology of Troyes, Troyes, France
| | - Yong Woo Hwang
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, South Korea.
| | - Bertrand Guillaume
- CREIDD Research Center on Environmental Studies & Sustainability, UR InSyTE (Interdisciplinary research on Society-Technology-Environment Interactions), University of Technology of Troyes, Troyes, France
| |
Collapse
|
26
|
Singaravadivelan A, Sachin PB, Harikumar S, Vijayakumar P, Vindhya MV, Farhana FMB, Rameesa KK, Mathew J. Life cycle assessment of greenhouse gas emission from the dairy production system - review. Trop Anim Health Prod 2023; 55:320. [PMID: 37747649 DOI: 10.1007/s11250-023-03748-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Climate change is altering ecological systems and poses a serious threat to human life. Climate change also seriously influences on livestock production by interfering with growth, reproduction, and production. Livestock, on the other hand, is blamed for being a significant contributor to climate change, emitting 8.1 gigatonnes of CO2-eq per year and accounting for two-thirds of global ammonia emissions. Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) are three major greenhouse gases (GHG) that are primarily produced by enteric fermentation, feed production, diet management, and total product output. Ruminants account for three-quarters of total CO2-equivalent (CO2-eq) emissions from the livestock sector. The global dairy sector alone emits 4.0% of global anthropogenic GHG emissions. Hence, dairy farming needs to engage in environmental impact assessment. Public concern for a sustainable and environmentally friendly farming system is growing, resulting in the significant importance of food-based life cycle assessment (LCA). Over the last decade, LCA has been used in agriculture to assess total GHG emissions associated with products such as milk and manure. It includes the production of farm inputs, farm emissions, milk processing, transportation, consumer use, and waste. LCA studies on milk production would assist us in identifying the specific production processes/areas that contribute to excessive greenhouse gas emissions when producing milk and recommending appropriate mitigation strategies to be implemented for a clean, green, and resilient environment.
Collapse
Affiliation(s)
- Arunasalam Singaravadivelan
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India.
| | - Patil B Sachin
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - S Harikumar
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - Periyasamy Vijayakumar
- Livestock Farm Complex, Veterinary College and Research Institute, Orathanadu, 614 625, Tamil Nadu, India
| | - M V Vindhya
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - F M Beegum Farhana
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - K K Rameesa
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - Joseph Mathew
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| |
Collapse
|
27
|
van der Weerden TJ, Noble AN, Beltran I, Hutchings NJ, Thorman RE, de Klein CAM, Amon B. Influence of key factors on ammonia and nitrous oxide emission factors for excreta deposited by livestock and land-applied manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164066. [PMID: 37201844 DOI: 10.1016/j.scitotenv.2023.164066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Ammonia (NH3) and nitrous oxide (N2O) emissions from livestock manure management have a significant impact on air quality and climate change. There is an increasing urgency to improve our understanding of drivers influencing these emissions. We analysed the DATAMAN ("DATAbase for MANaging greenhouse gas and ammonia emissions factors") database to identify key factors influencing (i) NH3 emission factors (EFs) for cattle and swine manure applied to land and (ii) N2O EFs for cattle and swine manure applied to land, and (iii) cattle urine, dung and sheep urine deposited during grazing. Slurry dry matter (DM) content, total ammoniacal nitrogen (TAN) concentration and method of application were significant drivers of NH3 EFs from cattle and swine slurry. Mixed effect models explained 14-59 % of the variance in NH3 EFs. Apart from the method of application, the significant influence of manure DM, manure TAN concentration or pH on NH3 EFs suggests mitigation strategies should focus on these. Identifying key factors influencing N2O EFs from manures and livestock grazing was more challenging, likely because of the complexities associated with microbial processes and soil physical properties impacting N2O production and emissions. Generally, significant factors were soil-related e.g. soil water content, pH, clay content, suggesting mitigations may need to consider the conditions of the receiving environment for manure spreading and grazing deposition. Total variability explained by terms in mixed effect model was on average 66 %, with the random effect 'experiment identification number' explaining, on average, 41 % of the total variability in the models. We suspect this term captured the effect of non-measured manure, soil and climate factors and any biases in application and measurement technique effects associated with individual experiments. This analysis has helped to improve our understanding of key factors of NH3 and N2O EFs for inclusion within models. With more studies over time, insights into the underlying processes influencing emissions will be further improved.
Collapse
Affiliation(s)
| | - A N Noble
- AgResearch Ltd, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - I Beltran
- Instituto de Investigaciones Agropecuarias (INIA), INIA Remehue, Carretera Panamericana Sur km. 8 Norte, Osorno, Chile
| | - N J Hutchings
- Research Centre Foulum, Aarhus University, Tjele 8830, Denmark
| | - R E Thorman
- ADAS, ADAS Boxworth, Battlegate Road, Boxworth, Cambridge, CB23 4NN, UK
| | - C A M de Klein
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - B Amon
- Leibniz-Institut für Agrartechnik und Bioökonomie (ATB), Max-Eyth-Allee 100, Potsdam D-14469, Germany; Faculty of Civil Engineering, Architecture and Environmental Engineering, University of Zielona Góra, Poland
| |
Collapse
|
28
|
van Gastelen S, Jan van Dooren H, Bannink A. Enteric and manure emissions from Holstein-Friesian dairy cattle fed grass silage-based or corn silage-based diets. J Dairy Sci 2023; 106:6094-6113. [PMID: 37479574 DOI: 10.3168/jds.2022-22378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/06/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to evaluate trade-offs between enteric and manure CH4 emissions, and the size of synergistic effects for CH4 and nitrogenous emissions (NH3 and N2O). Sixty-four Holstein-Friesian cows were blocked in groups of 4 based on parity, lactation stage, and milk yield. Cows within a block were randomly allocated to a dietary sequence in a crossover design with a grass silage-based diet (GS) and a corn silage-based diet (CS). The GS diet consisted of 50% grass silage and 50% concentrate, and CS consisted of 10% grass silage, 40% corn silage, and 50% concentrate (dry matter basis). The composition of the concentrate was identical for both diets. Cows were housed in groups of 16 animals, in 4 mechanically ventilated barn units for independent emission measurement. Treatment periods were composed of a 2-wk adaptation period followed by a 5-wk measurement period, 1 wk of which was without cows to allow separation of enteric and manure emissions. In each barn unit, ventilation rates and concentrations of CH4, CO2, NH3, and N2O in incoming and outgoing air were measured. Cow excretion of organic matter was higher for CS compared with GS. Enteric CH4 and cow-associated NH3 and N2O emissions (i.e., manure emissions excluded) were lower for CS compared with GS (-11, -40, and -45%, respectively). The CH4 and N2O emissions from stored manure (i.e., in absence of cows) were not affected by diet, whereas that of NH3 emission tended to be lower for CS compared with GS. In conclusion, there was no trade-off between enteric and manure CH4 emissions, and there were synergistic effects for CH4 and nitrogenous emissions when grass silage was exchanged for corn silage, without balancing the diets for crude protein content, in this short-term study.
Collapse
Affiliation(s)
- Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands.
| | - Hendrik Jan van Dooren
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
29
|
Cong Q, Wang Y, Zhang Y, Yin F, Zhang W, Cao T, Dong H. Effects of self-produced lactic fermentation (SPLF) on GHG and VSC emissions during swine slurry storage. ENVIRONMENTAL RESEARCH 2023; 231:116240. [PMID: 37268210 DOI: 10.1016/j.envres.2023.116240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Self-produced lactic fermentation (SPLF) is a new valued utilization technology, but its impact on gas emission remains unclear. The objective of this study is to investigate the effect of replacing the H2SO4 additive with SPLF on greenhouse gas (GHG), and volatile sulfur compound (VSC) emissions from swine slurry storage in a laboratory-scale study. In this study, SPLF is directed toward producing lactic acid (LA) through the anaerobic fermentation of slurry and apple waste under the most suitable conditions, with the LA concentration kept at 10,000-52000 mg COD/L and the pH remaining within 4.5 during the following 90 days of slurry storage. Compared with that in the slurry storage treatment (CK), the GHG emissions decreased by 86% and 87% in the SPLF and H2SO4 groups, respectively. The low pH (i.e., less than 4.5) inhibited the growth of Methanocorpusculum and Methanosarcina and resulted in very low mcrA gene copies in the SPLF group, leading to a reduction in CH4 emissions. The methanethiol, dimethyl sulfide, dimethyl disulfide, and H2S emissions in the SPLF group were reduced by 57%, 42%, 22%, and 87% and increased by 2206%, 61%, 173%, and 1856% in the H2SO4 group, respectively. Therefore, SPLF can be an innovative bioacidification technology for effectively reducing GHG and VSC emissions from animal slurry storage.
Collapse
Affiliation(s)
- Qunxin Cong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Fuertes E, Balcells J, Maynegre J, de la Fuente G, Sarri L, Seradj AR. Measurement of Methane and Ammonia Emissions from Compost-Bedded Pack Systems in Dairy Barns: Tilling Effect and Seasonal Variations. Animals (Basel) 2023; 13:1871. [PMID: 37889784 PMCID: PMC10252099 DOI: 10.3390/ani13111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 10/29/2023] Open
Abstract
Dairy cattle contribute to environmental harm as a source of polluting gas emissions, mainly of enteric origin, but also from manure management, which varies among housing systems. Compost-bedded pack systems use manure as bedding material, which is composted in situ daily. As current literature referring to their impact on NH3 and CH4 emissions is scarce, this study aims to characterize the emissions of these two gases originating from three barns of this system, differentiating between two emission phases: static emission and dynamic emission. In addition, the experiment differentiated emissions between winter and summer. Dynamic emission, corresponding to the time of the day when the bed is being composted, increased over 3 and 60 times the static emission of NH3 and CH4, respectively. In terms of absolute emissions, both gases presented higher emissions during summer (1.86 to 4.08 g NH3 m-2 day-1 and 1.0 to 4.75 g CH4 m-2 day-1 for winter and summer, respectively). In this way, contaminant gases produced during the tilling process of the manure, especially during the warmer periods of the year, need to be taken into account as they work as a significant factor in emissions derived from compost-bedded pack systems.
Collapse
Affiliation(s)
| | - Joaquim Balcells
- Department of Animal Science, University of Lleida, Alcalde Rovira Roure 191, 25198 Lleida, Spain; (E.F.)
| | | | | | | | | |
Collapse
|
31
|
Yue X, Liu X, Wang F, Shen C, Zhang Y. Contrasting effects of organic materials versus their derived biochars on maize growth, soil properties and bacterial community in two type soils. Front Microbiol 2023; 14:1174921. [PMID: 37303791 PMCID: PMC10247979 DOI: 10.3389/fmicb.2023.1174921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
The objective of this study was to assess the benefit of applying biochar instead of its feedstock in enhancing soil quality. To accomplish this, we investigated the short-term effects of two organic materials and their derived biochars on maize growth, soil properties, and microbial community in fluvo-aquic and red soil with a pot experiment. Five treatments were applied to each soil, namely, the addition of straw, manure, straw-derived biochar, manure-derived biochar, and the control with no addition of any organic materials and biochar. Our results revealed that straw decreased the shoot biomass of maize in both soils, while straw-derived biochar, manure and manure-derived biochar increased it by 51.50, 35.47 and 74.95% in fluvo-aquic soil and by 36.38, 117.57 and 67.05% in red soil compared with the control, respectively. Regarding soil properties, although all treatments increased soil total organic carbon, straw and manure exhibited more pronounced effects on improving permanganate-oxidizable carbon, basal respiration, and enzyme activity compared with their derived biochars. Manure and its biochar had more significant effects on improving soil available phosphorus, whereas straw and its biochar exhibited more ameliorating effects on available potassium. Straw and manure consistently decreased bacterial alpha diversity (Chao1 and Shannon index) and altered bacterial community composition in the two soils by increasing the relative abundances of Proteobacteria, Firmicutes, and Bacteroidota and decreasing those of Actinobacteriota, Chloroflexi, and Acidobacteriota. More specifically, straw had a greater effect on Proteobacteria, whereas manure affected Firmicutes more. While straw-derived biochar had no effect on bacterial diversity and bacterial community composition in both soils, manure-derived biochar increased bacterial diversity in the fluvo-aquic soil and altered bacterial community composition in the red soil by increasing the relative abundances of Proteobacteria and Bacteroidota and decreasing that of Firmicutes. In summary, owing to the input of active organic carbon, straw and manure exhibited more pronounced short-term effects on soil enzyme activity and bacterial community compared with their derived biochar. Furthermore, straw-derived biochar was found to be a better option than straw in promoting maize growth and nutrient resorption, while the choice of manure and its biochar should be determined by the soil type.
Collapse
|
32
|
Chang F, Fabian-Wheeler E, Richard TL, Hile M. Compaction effects on greenhouse gas and ammonia emissions from solid dairy manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117399. [PMID: 36731415 DOI: 10.1016/j.jenvman.2023.117399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Waste management practices of solid dairy manures were evaluated under controlled conditions to study gas transport and emission inside manure piles. Three applied stresses and three moisture contents were tested to represent manure conditions managed at various pile depths. A Fourier-transform infrared spectroscopy monitor measured concentrations of greenhouses gases [methane, carbon dioxide, and nitrous oxide] and ammonia as part of gas flux rate calculations. Results showed that carbon dioxide dominated the greenhouse gas emissions under all test conditions. Gas transfer, primarily diffusion, was facilitated by manure with high mechanical strength and high permeability. Gas emission rates reduced dramatically when moisture content increased in manure with high water holding capacity, while compaction treatments did not as strongly affect the gas emission rates. Results provide fundamental insights into management strategies for reducing gas emissions from solid dairy manure.
Collapse
Affiliation(s)
- Fangle Chang
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA; Ningbo Innovation Center, Zhejiang University, Ningbo, Zhejiang, 315100, China.
| | - Eileen Fabian-Wheeler
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA.
| | - Tom L Richard
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA.
| | - Michael Hile
- Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
33
|
Hu Y, Thomsen TP, Fenton O, Sommer SG, Shi W, Cui W. Effects of dairy processing sludge and derived biochar on greenhouse gas emissions from Danish and Irish soils. ENVIRONMENTAL RESEARCH 2023; 216:114543. [PMID: 36252841 DOI: 10.1016/j.envres.2022.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Globally, to ensure food security bio-based fertilizers must replace a percentage of chemical fertilizers. Such replacement must be deemed sustainable from agronomic and greenhouse gas (GHG) emission perspectives. For agronomic performance several controlled protocols are in place but not for testing GHG emissions. Herein, a pre-screening tool is presented to examine GHG emissions from bio-waste as fertilizers. The various treatments examined are as follows: soil with added mineral nitrogen (N, 140 kg N ha-1) fertilizer (MF), the same amount of MF combined with dairy processing sludge (DS), sludge-derived biochar produced at 450 °C (BC450) and 700 °C (BC700) and untreated control (CK). These treatments were combined with Danish (sandy loam) or Irish (clay loam) soils, with carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions and soil inorganic-N contents measured on selected days. During the incubation, biochar mitigated N2O emissions by regulating denitrification. BC450 reduced N2O emissions from Danish soil by 95.5% and BC700 by 97.7% compared to emissions with the sludge application, and for Irish soil, the N2O reductions were 93.6% and 32.3%, respectively. For both soils, biochar reduced CO2 emissions by 50% as compared to the sludge. The lower N2O reduction potential of BC700 for Irish soil could be due to the high soil organic carbon and clay content and pyrolysis temperature. For the same reasons emissions of N2O and CO2 from Irish soil were significantly higher than from Danish soil. The temporal variation in N2O emissions was correlated with soil inorganic-N contents. The CH4 emissions across treatments were not significantly different. This study developed a simple and cost-effective pre-screening method to evaluate the GHG emission potential of new bio-waste before its field application and guide the development of national emission inventories, towards achieving the goals of circular economy and the European Green Deal.
Collapse
Affiliation(s)
- Yihuai Hu
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200, Aarhus N, Denmark
| | - Tobias Pape Thomsen
- Department of People and Technology, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Owen Fenton
- Teagasc, Johnstown Castle, Environment Research Centre, Wexford, Ireland
| | - Sven Gjedde Sommer
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200, Aarhus N, Denmark.
| | - Wenxuan Shi
- Teagasc, Johnstown Castle, Environment Research Centre, Wexford, Ireland; Civil Engineering and Ryan Institute, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Wenjing Cui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
34
|
Vangeli S, Cardenas LM, Posse G, Chadwick DR, Krol DJ, Thorman RE, Lanigan GJ, Misselbrook TH. Revisiting sampling duration to estimate N 2O emission factors for manure application and cattle excreta deposition for the UK and Ireland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116037. [PMID: 36049305 DOI: 10.1016/j.jenvman.2022.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
According to the available guidelines, good practices for calculating nitrous oxide (N2O) emission factors (EFs) for livestock excreta and manure application include that sampling duration should be of at least one year after the nitrogen (N) application or deposition. However, the available experimental data suggest that in many cases most emissions are concentrated in the first months following N application. Therefore resources could be better deployed by measuring more intensively during a shorter period. This study aimed to assess the contribution of the N2O flux in the period directly after N application to the annual net emission. We used a database of 100 year-long plot experiments from different excreted-N sources (dung, urine, farmyard manure and slurry) used to derive EFs for the UK and Ireland. We explored different shorter potential measurement periods that could be used as proxies for cumulative annual emissions. The analysis showed that the majority of emissions occur in the first months after application, especially in experiments that i) had urine as the N source, ii) had spring N application, iii) were conducted on fine-textured soils, or iv) showed high annual emissions magnitude. Experiments that showed a smaller percentage of emissions in the first months also had a low magnitude of annual net emissions (below 370 gN2O-N ha-1 year-1), so the impact of measuring during a shorter period would not greatly influence the calculated EF. Accurate EF estimations were obtained by measuring for at least 60 days for urine (underestimation: 7.1%), 120 days for dung and slurry (4.7 and 5.1%) and 180 days for FYM (1.4%). At least in temperate climates, these results are promising in terms of being able to estimate annual N2O fluxes accurately by collecting data for less than 12 months, with significant resource-saving when conducting experiments towards developing country-specific EFs.
Collapse
Affiliation(s)
- Sebastian Vangeli
- Instituto de Clima y Agua, CIRN, CNIA INTA Castelar, 1686, Hurlingham, Buenos Aires, Argentina; Facultad de Agronomia, Cátedra de Manejo y Conservación de Suelos, Universidad de Buenos Aires, 1417, Buenos Aires, Argentina.
| | - Laura M Cardenas
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
| | - Gabriela Posse
- Instituto de Clima y Agua, CIRN, CNIA INTA Castelar, 1686, Hurlingham, Buenos Aires, Argentina
| | - Dave R Chadwick
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Dominika J Krol
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co. Wexford, Y35 TC97, Ireland
| | - Rachel E Thorman
- ADAS Boxworth, Battlegate Road, Boxworth, Cambridge, CB23 4NN, UK
| | - Gary J Lanigan
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co. Wexford, Y35 TC97, Ireland
| | - Tom H Misselbrook
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
| |
Collapse
|
35
|
Zhi B, Xiang S, Wang Y, Dai Z, Du P, Wang R, Li X, Yang G, Feng Y, Ren G, Wang X. Redeploy manure resources to enhance the agro-pastoral cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157439. [PMID: 35863581 DOI: 10.1016/j.scitotenv.2022.157439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Returning manure to the land is a critical link in the internal cycle of agricultural systems, but excess manure leads to water eutrophication. The traditional manure re-use method brings pathogenic microorganisms, heavy metals, antibiotic resistance genes (ARGs), insect eggs, and other contaminants into the soil, posing a great threat to the ecological environment and human health. Clarifying the spatial distribution patterns of manure nutrient supply and farmland nutrient demand can help guide a more efficient and harmless way to return manure to farmland. This work counted data on cultivation and breeding in 356 cities on the Chinese mainland from 2015 to 2019 and calculated the livestock breeding volume (LB), total environmental capacity (C), and remaining environmental capacity (RC) accordingly. The Spatial Autocorrelation Model (SAC) was used to analyze the distribution patterns of the three. Data results show that China currently has the potential to double LB, but most cities in the west have excess manure due to the mismatched distribution of LB and C. The hot spot analysis results demonstrate the priority/general areas of manure management and the export/import areas of manure resources. The results of the outlier analysis show that some cities located at the boundary of RC Cold/Hot spot areas (e.g., Chengdu City) can perform resource replacement nearby to relieve local environmental pressure. This study analyzes the potential and realistic resistance to utilizing manure as an organic nutrient resource and provides a reference for developing manure management links.
Collapse
Affiliation(s)
- Boyao Zhi
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shumin Xiang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yanbo Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Zhixiong Dai
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pufang Du
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Rui Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuetao Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| | - Yongzhong Feng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| | - Guangxin Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| | - Xiaojiao Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
36
|
Wang G, Liu P, Hu J, Zhang F. Agriculture-Induced N 2O Emissions and Reduction Strategies in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12193. [PMID: 36231496 PMCID: PMC9565993 DOI: 10.3390/ijerph191912193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Greenhouse gases are one of the most important factors in climate change, their emissions reduction is a global problem. Clarifying the spatial patterns of N2O, as an important component of greenhouse gases, it is of great significance. Based on the planting and breeding data of China from 2000 to 2019, this paper measures the N2O emissions of agricultural systems, and uses kernel density to explore the spatial distribution differences between the eight major economic zones. Finally, the proposed emissions reduction countermeasures are provided. The research results show that the N2O emissions of China's agricultural system showed a trend of increasing first and then decreasing, and in 2019, the national N2O emissions were 710,300 tons, agricultural land emissions and animal husbandry emissions were the main sources of N2O emissions. The difference in N2O emissions by province was significant, the concentration trend was more prominent, and the differences of N2O emissions between provinces and regions were diverse. In order to achieve the reduction in N2O emissions, it is necessary to carry out low-carbon production of staple grains for different parts and economic zones, and focusing on low-carbon production in the Central Part and the West Part, as well as the Northeast and the Greater Southwest zones, is essential.
Collapse
Affiliation(s)
- Guofeng Wang
- Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China
- Think Tank for Eco-Civilization, Chinese Academy of Social Sciences, Beijing 102445, China
| | - Pu Liu
- Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China
| | - Jinmiao Hu
- Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China
| | - Fan Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Wang Y, Liang L, Liu J, Guo D, Zhu Z, Dong H. Impact of anaerobic digestion on reactive nitrogen gas emissions from dairy slurry storage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115306. [PMID: 35594822 DOI: 10.1016/j.jenvman.2022.115306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Biogas digesters are commonly used to treat animal manure/slurry, and abundant digested slurry is generated during the digestion process. Gas emissions from digested and raw slurry may vary with the change in slurry parameters after digestion, but the mechanism is not well understood. Gas emissions from raw dairy slurry (RS) and digested dairy slurry (BS) during 98 days of storage were investigated in this study to evaluate the effects of anaerobic digestion on reactive nitrogen emissions from slurry storage. Results showed that much higher N2O and NO emission and lower NH3 emission was achieved in BS than in RS. The mean gaseous emission of RS and BS accounted for 27.8% ± 6.9% and 17.1% ± 2.3% of the initial TN for NH3, 0.1% ± 0.1% and 3.5% ± 1.6% of the initial TN for N2O, and 0.0% ± 0.0% and 0.2% ± 0.0% of the initial TN for NO, respectively. Among all detected N2O-forming and reducing microbial genes, the abundance of amoA genes was the most closely related to N2O flux (r = 0.54, p < 0.01). More aerobic conditions occurred in BS, and dissolved oxygen (DO) increased to 0.4-1.6 mg L-1 after 35 days because the low organic matter of BS resulted in good infiltration of surface air into the slurry. The increased DO stimulated the growth of Nitrosomonas and the increase in amoA gene copies and contributed to the high N2O and NO emissions in BS through the nitrification process. Vulcanibacillus, Thauera, Castellaniella, and Thermomonas were the major denitrifying bacteria that occurred in BS and caused an incomplete denitrification process, which could be another reason for the increase in N2O and NO emissions from BS. Our study indicated that anaerobic digestion reduced the organic matter content of the slurry and caused an active microbial environment that facilitated the transformation of slurry N to N2O in BS storage, thus lowering the NH3 emission compared with RS storage. Therefore, aside from NH3, N2O should also be preferentially mitigated during BS storage because N2O is a greenhouse gas with high global warming potential.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100087, China.
| | - Lina Liang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100087, China
| | - Jingyi Liu
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100087, China
| | - Dongpo Guo
- Asia Dairy Fab. Ltd, Beijing, 100085, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
38
|
Guo H, Su Z, Yang X, Xu S, Pan H. Greenhouse Gas Emissions from Beef Cattle Breeding Based on the Ecological Cycle Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159481. [PMID: 35954833 PMCID: PMC9367784 DOI: 10.3390/ijerph19159481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022]
Abstract
Over the past few decades, the supply of beef has increasingly become available with the great improvement of the quality of life, especially in developing countries. However, along with the demand for meat products of high quality and the transformation of dietary structure, the impact of massive agricultural greenhouse gas emissions on the environmental load cannot be ignored. Therefore, the objective of this study is to predict the annual greenhouse gas emissions of 10 million heads of beef cattle under both the ecological cycle model (EC model) and the non-ecological cycle model (non-EC model), respectively, in order to compare the differences between these two production models in each process, and thus explore which one is more sustainable and environmentally friendly. To this end, through the life cycle assessment (LCA), this paper performs relevant calculations according to the methodology of 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019 IPCC Inventories). The results have shown that the total GHG emissions of the non-EC model were almost 4 times higher than those of the EC model, and feed-grain cultivation and manure management were main emission sources in both models. The non-EC model produced significantly more emissions than the EC model in each kind of GHG, especially the largest gap between these two was in CO2 emissions that accounted for 68.01% and 56.17% of the respective planting and breeding systems. This study demonstrates that the transformation of a beef cattle breeding model has a significant direct impact on cutting agricultural GHG emissions, and persuades other countries in the similar situation to vigorously advocate ecological cycling breeding model instead of the traditional ones so that promotes coordinated development between planting industry and beef cattle breeding industry.
Collapse
|
39
|
Effects of Manure Removal Frequencies and Deodorants on Ammonia and GHG Concentrations in Livestock House. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to mitigate the concentration of NH3 and greenhouse gases (GHGs: CO2, N2O, CH4) in livestock houses, two experiments, one determining the ideal manure removal frequency by cleaning the feces from a livestock house once, twice, three, and four times a day, and one in which microbial deodorant and VenaZn deodorant were sprayed, were conducted in a rabbit breeding house. The NH3, CO2, N2O, and CH4 concentrations were monitored continuously with an Innova 1512 photoacoustic gas monitor during the experiments. The results were as follows: the manure removal frequency had a significant impact on the average concentrations of NH3, CO2, and CH4 in the rabbit house. Cleaning the feces in the rabbit breeding house two to three times a day significantly reduced the NH3 concentration, and, on the contrary, cleaning the feces four times a day increased the NH3 concentration in rabbit house; increasing the manure removal frequency significantly reduced the concentrations of CO2 and CH4 in the rabbit house. Considering the average concentrations of NH3, CO2, N2O, and CH4 in the rabbit house and economic cost, it was better to remove feces twice a day. The average NH3 and CO2 concentration declined significantly within 3 days in the summer and winter; the N2O concentration declined within 3 days in the summer but did not decline in the winter; and there was no effect on the CH4 concentration in the summer and in the winter after spraying the rabbit house with microbial deodorant. Therefore, it was better to spray microbial deodorant twice a week on Monday and Thursday to reduce the NH3, CO2, and N2O concentrations in rabbit houses. The NH3, CO2, N2O, and CH4 concentrations first showed a decreasing trend and then an increasing trend over 5 days in the summer and 7 days in the winter after VenaZn deodorant was sprayed in the rabbit house, and the NH3, CO2, N2O, and CH4 concentrations on day 3 and day 4 were significantly lower than they were on the other days.
Collapse
|
40
|
Niles MT, Wiltshire S, Lombard J, Branan M, Vuolo M, Chintala R, Tricarico J. Manure management strategies are interconnected with complexity across U.S. dairy farms. PLoS One 2022; 17:e0267731. [PMID: 35657780 PMCID: PMC9165779 DOI: 10.1371/journal.pone.0267731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Among one of the key challenges in dairy production is the management of manure in a way that is beneficial for agricultural production, with minimal environmental and public health impacts. Manure management systems (MMS)—the entire system of handling, storage, and application of manure—are diverse in countries with developed dairy industries such as the United States, enabled by a number of different technologies. The ways in which dairy farmers manage manure is driven by varying tradeoffs, including economic, social, and environmental; however, existing research has not examined the relationships between components of MMS. Here we use data from the National Animal Health Monitoring System’s Dairy 2014 study to explore the ways in which manure handling, storage, and application are related, using a series of logistic regression models and network associations. We found significant associations between how manure is handled, stored, and applied, especially driven by the consistency of manure. For solid manure, we found highly heterogeneous systems, where farmers may have a suite of alternative manure management strategies available to them, and substitution is viable. Conversely, farms using liquid manure systems have very few substitutes in their MMS, suggesting greater investment in certain infrastructures, which are not easily changed. Such findings have important implications for shifting farmers towards management practices with minimal environmental and public health impacts, demonstrating that not all farm systems are easily changed. We highlight these results in light of current policies, which may not fully capture the relationships across the MMS, and suggest that greater financing may be necessary to shift MMS on some farms. Furthermore, we suggest that different MMS have varying tradeoffs across environmental, social, and economic aspects, which demonstrates that MMS are highly individualized to a given farm’s goals and priorities.
Collapse
Affiliation(s)
- Meredith T. Niles
- Department of Nutrition and Food Sciences & Food Systems Program, University of Vermont, Burlington, Vermont, United States of America
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Serge Wiltshire
- Department of Nutrition and Food Sciences & Food Systems Program, University of Vermont, Burlington, Vermont, United States of America
| | - Jason Lombard
- U.S. Department of Agriculture, National Animal Health Monitoring System, Animal Plant Health Inspection Service, Veterinary Services, Riverdale, MD, United States of America
| | - Matthew Branan
- U.S. Department of Agriculture, National Animal Health Monitoring System, Animal Plant Health Inspection Service, Veterinary Services, Riverdale, MD, United States of America
| | - Matthew Vuolo
- U.S. Department of Agriculture, National Animal Health Monitoring System, Animal Plant Health Inspection Service, Veterinary Services, Riverdale, MD, United States of America
| | - Rajesh Chintala
- Dairy Management Inc., Rosemont, IL, United States of America
| | - Juan Tricarico
- Dairy Management Inc., Rosemont, IL, United States of America
| |
Collapse
|
41
|
The Effects of Dietary Crude Protein Level on Ammonia Emissions from Slurry from Lactating Holstein-Friesian Cows as Measured in Open-Circuit Respiration Chambers. Animals (Basel) 2022; 12:ani12101243. [PMID: 35625089 PMCID: PMC9137890 DOI: 10.3390/ani12101243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Farmed livestock, particularly dairy cows, are the largest source of ammonia (NH3) emissions to the atmosphere in Europe and other parts of the developed world. Generally, more than 80% of the total agricultural NH3 emissions in Europe come from manure slurries (mixtures of urine and faeces) with hydrolysis of urea nitrogen (N) in urine, and ammonification of the organic N fraction in faeces as the two main sources of the NH3. It is also worth noting that the concentration of these two main sources of NH3 emissions from manure slurries (particularly urea N in urine) is positively associated with dietary protein content. Abstract The effect of dietary crude protein (CP) level on ammonia (NH3) emissions from slurry from lactating Holstein-Friesian cows was studied. Twenty-four-hour total collections of faeces and urine were made from 24 lactating Holstein-Friesian cows fed four total mixed rations containing 141, 151, 177, and 201 g CP/kg DM (6 cows/diet). The collected urine and faeces from each cow were combined to form 2 kg duplicate slurry samples (weight/weight; fresh basis) according to the proportions in which they were excreted. NH3 emissions from the slurry samples were measured, during 0–24 and 24–48 h intervals in six open-circuit respiration chambers maintained at two temperatures (8 or 18 °C). NH3 emissions for the 0–24 and 0–48 h intervals, as well as the average daily emissions, increased linearly with increasing dietary CP level. Increasing the temperature from 8 to 18 °C positively affected NH3 emissions, but only for the 0–24 h interval. In situations where direct measurements are impossible, NH3 emissions from slurry can be predicted accurately using equations based on dietary CP level supported by either urinary nitrogen, faeces nitrogen, or both. In summary, increasing dietary CP level linearly increased average daily NH3 emissions from slurry, with a 5.4 g increase for each 10 g increase in dietary CP.
Collapse
|
42
|
Dalby FR, Guldberg LB, Feilberg A, Kofoed MVW. Reducing greenhouse gas emissions from pig slurry by acidification with organic and inorganic acids. PLoS One 2022; 17:e0267693. [PMID: 35511811 PMCID: PMC9070912 DOI: 10.1371/journal.pone.0267693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Methane (CH4) emission from pig slurry is a large contributor to the climate footprint of livestock production. Acidification of excreta from livestock animals with sulfuric acid, reduce CH4 emission and is practiced at many Danish farms. Possible interaction effects with other acidic agents or management practices (e.g. frequent slurry removal and residual slurry acidification) have not been fully investigated. Here we assessed the effect of pig slurry acidification with a range of organic and inorganic acids with respect to their CH4 inhibitor potential in several batch experiments (BS). After careful selection of promising CH4 inhibitors, three continuous headspace experiments (CHS) were carried out to simulate management of manure in pig houses. In BS experiments, more than <99% CH4 reduction was observed with HNO3 treatment to pH 5.5. Treatments with HNO3, H2SO4, and H3PO4 reduced CH4 production more than acetic acid and other organic acids when acidified to the same initial pH of 5.5. Synergistic effects were not observed when mixing inorganic and organic acids as otherwise proposed in the literature, which was attributed to the high amount of acetic acid in the slurry to start with. In the CHS experiments, HNO3 treatment reduced CH4 more than H2SO4, but increased nitrous oxide (N2O) emission, particularly when the acidification target pH was above 6, suggesting considerable denitrification activity. Due to increased N2O emission from HNO3 treatments, HNO3 reduced total CO2-eq by 67%, whereas H2SO4 reduced CO2-eq by 91.5% compared to untreated slurry. In experiments with daily slurry addition, weekly slurry removal, and residual acidification, HNO3 and H2SO4 treatments reduced CO2-eq by 27% and 48%, respectively (not significant). More cycles of residual acidification are recommended in future research. The study provides solid evidence that HNO3 treatment is not suitable for reducing CO2-eq and H2SO4 should be the preferred acidic agent for slurry acidification.
Collapse
Affiliation(s)
- Frederik R. Dalby
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Science, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Lise B. Guldberg
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Science, Aarhus University, Aarhus, Denmark
| | - Anders Feilberg
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Science, Aarhus University, Aarhus, Denmark
| | - Michael V. W. Kofoed
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Miranda-Carrazco A, Ramírez-Villanueva DA, Dendooven L. Greenhouse gas emissions of biosolid and cow manure during composting and vermicomposting and when applied to soil cultivated with wheat (Triticum sp. L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24968-24982. [PMID: 34837621 DOI: 10.1007/s11356-021-17624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Biosolids are a by-product of wastewater treatment, and their nutritional composition makes them ideal for fertilizing crops. However, pre-treatments, such as conditioning and/or (vermi)composting, are often required to stabilize the product and remove pathogens. Biosolids, cow manure, and a 50-50% mixture were conditioned for 21 days, composted or vermicomposted with Eisenia fetida (Savigny 1826) for 28 days, and applied to soil cultivated with wheat (Triticum sp. L.), while emissions of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were monitored. Emissions of CH4 were large from the biosolid and N2O from the cow manure during conditioning. Emissions of CH4 remained high during (vermi)composting of the biosolids, while the emissions of N2O from the cow manure dropped. The addition of E. fetida did not affect the emissions of greenhouse gases during (vermi)composting. The emission of N2O was higher when (vermi)composted biosolid was applied to soil cultivated with wheat than when (vermi)composted cow manure was applied. The global warming potential (GWP) of the sum of the emitted greenhouse gases (GHG) during conditioning, (vermi)composting, and when the final product was applied to soil was 3 times larger from the cow manure than from the biosolid, but mixing biosolid with cow manure eliminated that difference. It was concluded that mixing biosolid with cow manure might be a simple way to reduce the GWP of the emitted GHG during storage, (vermi)composting, and when applied to soil.
Collapse
Affiliation(s)
| | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
44
|
Energy Use in the EU Livestock Sector: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study conducts a review bringing together data from a large number of studies investigating energy use in EU livestock systems. Such a study has not been conducted previously, and improvements in our understanding of energy use concentrations in livestock systems will aid in developing interventions to achieve the EU’s 2030 and 2050 sustainability targets. The results from the Life Cycle Assessments included in this review indicate that energy use is concentrated in feed, housing, and manure management. In most systems, animal feed is the dominant energy use category. Regarding specific livestock categories, the studies covered indicate that energy use requirements range from 2.1 to 5.3 MJ/kg per ECM for cow milk, 59.2 MJ/kg for a suckler cow–calf, and 43.73 MJ/kg for a dairy bull, 15.9 MJ/kg to 22.7 MJ/kg for pork production, 9.6 MJ/kg to 19.1 MJ/kg for broiler production, 20.5–23.5 MJ/kg for chicken egg production. Our review indicates dominance of and dependence on fossil fuel and discusses the situation and research around transitioning towards renewable energy sources and improving energy efficiency. Our analysis indicates that existing energy use data in livestock systems are fragmented and characterized by multiple methodologies and considerable data gaps. In our view, there is a need for the development of a standardized methodology for measuring energy use in livestock systems, which we consider a necessary step to develop interventions that reduce fossil energy use in livestock systems and its contribution to climatic change.
Collapse
|
45
|
Abstract
Livestock manure is a major source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). The emissions can be mitigated by production of biogas through anaerobic digestion (AD) of manure, mostly together with other biowastes, which can substitute fossil energy and thereby reduce CO2 emissions and postdigestion GHG emissions. This paper presents GHG balances for manure and biowaste management as affected by AD for five Danish biogas scenarios in which pig and cattle slurry were codigested with one or more of the following biomasses: deep litter, straw, energy crops, slaughterhouse waste, grass–clover green manure, and household waste. The calculated effects of AD on the GHG balance of each scenario included fossil fuel substitution, energy use for transport, leakage of CH4 from biogas production plants, CH4 emissions during storage of animal manure and biowaste, N2O emissions from stored and field applied biomass, N2O emissions related to nitrate (NO3−) leaching and ammonia (NH3) losses, N2O emissions from cultivation of energy crops, and soil C sequestration. All scenarios caused significant reductions in GHG emissions. Most of the reductions resulted from fossil fuel substitution and reduced emissions of CH4 during storage of codigestates. The total reductions in GHG emissions ranged from 65 to 105 kg CO2-eq ton−1 biomass. This wide range showed the importance of biomass composition. Reductions were highest when straw and grass–clover were used as codigestates, whereas reductions per unit energy produced were highest when deep litter or deep litter plus energy crops were used. Potential effects of iLUC were ignored but may have a negative impact on the GHG balance when using energy crops, and this may potentially exceed the calculated positive climate impacts of biogas production. The ammonia emission potential of digestate applied in the field is higher than that from cattle slurry and pig slurry because of the higher pH of the digestate. This effect, and the higher content of TAN in digestate, resulted in increasing ammonia emissions at 0.14 to 0.3 kg NH3-N ton−1 biomass. Nitrate leaching was reduced in all scenarios and ranged from 0.04 to 0.45 kg NO3-N ton−1 biomass. In the scenario in which maize silage was introduced, the maize production increased leaching and almost negated the effect of AD. Methane leakage caused a 7% reduction in the positive climate impact for each percentage point of leakage in a manure-based biogas scenario.
Collapse
|
46
|
Yin Y, Yang C, Li M, Zheng Y, Ge C, Gu J, Li H, Duan M, Wang X, Chen R. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149294. [PMID: 34332388 DOI: 10.1016/j.scitotenv.2021.149294] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 05/22/2023]
Abstract
Biochar possesses a unique porous structure and abundant surface functional groups, which can potentially help mitigate greenhouse gas (GHG) emissions from compost. This review summarizes the properties and functions of biochar, and the effects of biochar on common GHGs (methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)) and ammonia (NH3, an indirect GHG) during composting. Studies have shown that it is possible to improve the mitigation of GHG emissions during composting by adjusting the biochar amount, type of raw material, pyrolysis temperature, and particle size. Biochar produced from crop residues and woody biomass has a greater effect on mitigating CH4, N2O, and NH3 emissions during composting, and GHG emissions can be reduced significantly by adding about 10% (w/w) biochar. Biochar produced by high temperature pyrolysis (500-900 °C) has a greater effect on mitigating CH4 and N2O emissions, whereas biochar generated by low temperature pyrolysis (200-500 °C) is more effective at reducing NH3 emissions. Interestingly, adding granular biochar is more beneficial for mitigating CH4 emissions, whereas adding powdered biochar is better at reducing NH3 emissions. According to the current research status, developing new methods for producing and using biochar (e.g., modified or combined with other additives) should be the focus of future research into mitigating GHG emissions during composting. The findings summarized in this review may provide a reference to allow the establishment of standards for using biochar to mitigate GHG emissions from compost.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Mengtong Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chengjun Ge
- School of Ecology and Environment, Hainan University, Haikou 570228, PR China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Haichao Li
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
47
|
Mori A. Farmyard manure application and associated root proliferation improve the net greenhouse gas balance of Italian ryegrass - Maize double-cropping field in Nasu, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148332. [PMID: 34147791 DOI: 10.1016/j.scitotenv.2021.148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In Japan, most cows are fed indoors, so cow manure must be carefully treated and used to manage soil fertility. The objective of this study was to compare the net greenhouse gas (GHG) balance (NGHGB) of Italian ryegrass - corn (maize) double-cropping fields receiving farmyard manure (FYM), slurry, or methane fermentation digestion liquid (MFDL). FYM, Slurry, MFDL, mineral fertilizer only (Fert.), and no-N control (Cont.) plots were set up in a randomized block design (n = 3). FYM, slurry, or MFDL was applied to meet the K requirement for forage production, and then mineral fertilizers were supplemented to meet the N and P requirements. From September 2017 to September 2020, C inputs as manure and crop residue, heterotrophic respiration (RH), and emissions of methane (CH4) and nitrous oxide (N2O) from soil were determined. The similarity of the total yields in FYM, Slurry, MFDL, and Fert. plots reflected judicious fertility management. However, the residue-C input of Italian ryegrass was 38% greater in FYM plots than in the other plots. Manure-C input decreased in the order of FYM > Slurry > MFDL plots. RH was greater in FYM and Slurry plots than in MFDL plots. Net ecosystem C balance (NECB) ([residue-C + manure-C] - [RH-C + CH4-C]) decreased in the order of FYM > Slurry > MFDL plots. N2O emission was greater in Slurry and MFDL plots than in FYM plots. Consequently, NGHGB ([CH4 and N2O emissions] - NECB) in terms of CO2 equivalent decreased in the order of MFDL > Slurry > FYM plots, so FYM application contributed most to GHG mitigation. Yield-scaled NGHGB was smallest in FYM plots owing to the synergy of the greatest residue-C and manure-C inputs, less N2O emission, and the achievement of a high enough yield, reflecting judicious fertility management based on manure and mineral fertilizer.
Collapse
Affiliation(s)
- Akinori Mori
- Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan.
| |
Collapse
|
48
|
Rivera JE, Chará J. CH4 and N2O Emissions From Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in Grazing Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.657936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cattle production systems are an important source of greenhouse gases (GHG) emitted to the atmosphere. Animal manure and managed soils are the most important sources of emissions from livestock after enteric methane. It is estimated that the N2O and CH4 produced in grasslands and manure management systems can contribute up to 25% of the emissions generated at the farm level, and therefore it is important to identify strategies to reduce the fluxes of these gases, especially in grazing systems where mitigation strategies have received less attention. This review describes the main factors that affect the emission of GHG from manure in bovine systems and the main strategies for their mitigation with emphasis on grazing production systems. The emissions of N2O and CH4 are highly variable and depend on multiple factors, which makes it difficult to use strategies that mitigate both gases simultaneously. We found that strategies such as the optimization of the diet, the implementation of silvopastoral systems and other practices with the capacity to improve soil quality and cover, and the use of nitrogen fixing plants are among the practices with more potential to reduce emissions from manure and at the same time contribute to increase carbon capture and improve food production. These strategies can be implemented to reduce the emissions of both gases and, depending on the method used and the production system, the reductions can reach up to 50% of CH4 or N2O emissions from manure according to different studies. However, many research gaps should be addressed in order to obtain such reductions at a larger scale.
Collapse
|
49
|
Almaraz M, Wong MY, Geoghegan EK, Houlton BZ. A review of carbon farming impacts on nitrogen cycling, retention, and loss. Ann N Y Acad Sci 2021; 1505:102-117. [PMID: 34580879 DOI: 10.1111/nyas.14690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
Soil carbon (C) sequestration in agricultural working lands via soil amendments and management practices is considered a relatively well-tested and affordable approach for removing CO2 from the atmosphere. Carbon farming provides useful benefits for soil health, biomass production, and crop resilience, but the effects of different soil C sequestration approaches on the nitrogen (N) cycle remain controversial. While some C farming practices have been shown to reduce N fertilizer use in some cases, C farming could also impose an unwanted "N penalty" through which soil C gains can only be maintained with additional N inputs, thereby increasing N losses to the environment. We systematically reviewed meta-analysis studies on the impacts of C farming on N cycling in agroecosystems and estimated the cumulative effect of several C farming practices on N cycling. We found that, on average, combined C farming practices significantly reduced nitrous oxide emissions and nitrate leaching from soils, thus inferring both N cycling and climate change benefits. In addition to more widely studied C farming practices that generate organic C, we also discuss silicate rock additions, which offer a pathway to inorganic C sequestration that does not require additional N inputs, framing important questions for future research.
Collapse
Affiliation(s)
- Maya Almaraz
- John Muir Institute of the Environment, University of California, Davis, California
| | | | - Emily K Geoghegan
- Department of Land, Air and Water Resources, University of California, Davis, California
| | - Benjamin Z Houlton
- Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York.,Department of Ecology and Evolutionary Biology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
50
|
Sapkota TB, Khanam F, Mathivanan GP, Vetter S, Hussain SG, Pilat AL, Shahrin S, Hossain MK, Sarker NR, Krupnik TJ. Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147344. [PMID: 33971592 DOI: 10.1016/j.scitotenv.2021.147344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Climate change is and will continue to have significant implications for agricultural systems. While adaptation to climate change should be the priority for smallholder production systems, adoption of cost-effective mitigation options in agriculture not only contributes to food security but also reduces the extent of climate change and future adaptation needs. Utilizing management data from 16,413 and 12,548 crop and livestock farmers and associated soil and climatic data, we estimated GHG emissions generated from crop and livestock production using crop and livestock models, respectively. Mitigation measures in crop and livestock production, their mitigation potential and cost/benefit of adoption were then obtained from literature review, stakeholder consultations and expert opinion. We applied the identified mitigation measures to a realistic scale of adoption scenario in the short- (2030) and long-term (2050). Our results were then validated through stakeholders consultations. Here, we present identified mitigation options, their mitigation potentials and cost or benefit of adoption in the form of Marginal Abatement Cost Curves (MACC). Based on our analysis, total GHG emissions from agricultural sector in Bangladesh for the year 2014-15 is 76.79 million tonne (Mt) carbon-dioxide equivalent (CO2e). Business-as-usual GHG emissions from the agricultural sector in Bangladesh are approximately 86.87 and 100.44 Mt CO2e year-1 by 2030 and 2050, respectively. Adoption of climate-smart crop and livestock management options to reduce emissions considering a realistic adoption scenario would offer GHG mitigation opportunities of 9.51 and 14.21 Mt CO2e year-1 by 2030 and 2050, respectively. Of this mitigation potential, 70-75% can be achieved through cost-saving options that could benefit smallholder farmers. Realization of this potential mitigation benefit, however, largely depends on the degree to which supportive policies and measures can encourage farmers' adoption of the identified climate smart agricultural techniques. Therefore, government should focus on facilitating uptake of these options through appropriate policy interventions, incentive mechanisms and strengthening agricultural extension programs.
Collapse
Affiliation(s)
- Tek B Sapkota
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico.
| | - Fahmida Khanam
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
| | - Gokul Prasad Mathivanan
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India; Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Sylvia Vetter
- Institute of Biological & Environmental Sciences, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK
| | - Sk Ghulam Hussain
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh; Bangladesh Agricultural Research Council, Dhaka 1215, Bangladesh
| | - Anne-Laure Pilat
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
| | - Sumona Shahrin
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
| | - Md Khaled Hossain
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
| | - Nathu Ram Sarker
- Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh
| | - Timothy J Krupnik
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
| |
Collapse
|