1
|
Closs G, Bhandari M, Helmy YA, Kathayat D, Lokesh D, Jung K, Suazo ID, Srivastava V, Deblais L, Rajashekara G. The probiotic Lacticaseibacillus rhamnosus GG supplementation reduces Salmonella load and modulates growth, intestinal morphology, gut microbiota, and immune responses in chickens. Infect Immun 2025; 93:e0042024. [PMID: 40172512 PMCID: PMC12070740 DOI: 10.1128/iai.00420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Salmonella, a leading cause of foodborne illnesses, is primarily transmitted to humans through the consumption of contaminated poultry products. The increasing resistance of Salmonella to antibiotics and lack of cross-protection by vaccines necessitate new control strategies in poultry production systems. This study assessed the efficacy of probiotics against Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE). Lactobacillus acidophilus (LA), Lacticaseibacillus rhamnosus GG (LGG), and Bifidobacterium animalis subsp. lactis (Bb12) showed inhibition of ST and SE in agar well diffusion assay, with stable inhibitory properties. In co-culture assay, both LGG and Bb12 completely suppressed ST and SE growth. Liquid chromatography-with tandem mass spectrometry (LC-MS/MS) analysis of the LGG and Bb12 cell-free culture supernatant identified novel bioactive peptides with anti-Salmonella properties. Administering LGG in drinking water of chickens raised on built-up litter floor in experimental conditions significantly reduced the ST load (5.95 logs and 3.74 on 7 days post-infection [dpi] and 14 dpi, respectively). Gut microbiota analysis revealed increased abundance of several beneficial genera such as Butyricicoccus, Erysipelatoclostridium, Flavonifractor, and Bacillus in LGG-treated groups. Histomorphometry analysis demonstrated increased villus height (VH) and VH by crypt depth ratio in the ileum of the LGG-treated group on 14 dpi. These results highlight LGG as a promising probiotic for controlling Salmonella in chickens and reducing transmission to humans. The beneficial properties of LGG are attributed to the production of antimicrobial peptides, microbiota modulation, and enhanced intestinal integrity.IMPORTANCESalmonella is the leading cause of foodborne illnesses in the United States and worldwide. It is primarily transmitted through contaminated poultry and poultry products (eggs and poultry meat). Increasing resistance of Salmonella to antibiotics and lack of cross-protection by vaccines necessitate new control strategies to reduce Salmonella in poultry production system and minimize human infections. Probiotics, which are live beneficial microorganisms when administered in an optimum amount, have been increasingly used in recent years as alternatives to antibiotics to promote health. Our study showed that LGG exhibited superior probiotics properties and significantly reduced Salmonella load in chickens. Thus, LGG supplementation is a promising approach to prevent Salmonella infection and enhance performance of poultry thereby enhance food safety, proper antibiotic stewardship and public health.
Collapse
Affiliation(s)
- Gary Closs
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
- Department of Food Science & Technology, The Ohio State University, Columbus, Ohio, USA
| | - Menuka Bhandari
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Yosra A. Helmy
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Dipak Kathayat
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Dhanashree Lokesh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Isidora D. Suazo
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Vishal Srivastava
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Loic Deblais
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Vijayaram S, Razafindralambo H, Ghafarifarsani H, Sun YZ, Hoseinifar SH, Van Doan H. Synergetic response on herbal and probiotic applications: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1315-1329. [PMID: 38411877 DOI: 10.1007/s10695-024-01318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
Herbs and their by-products are important traditional medicines and food supplements; they provide numerous beneficial effects for animals. Consequently, probiotics are living cell organisms, nontoxic, and friendly microbes. Probiotics have numerous beneficial activities such as inhibition of pathogens, enhancement of the immune system, growth, disease resistance, improving water quality, reducing toxic effects, synthesis of vitamins, prevention of cancer, reduction of irritable bowel syndrome, and more positive responses in animals. Herbal and probiotic combinations have more active responses and produce new substances to enhance beneficial responses in animals. Herbal and probiotic mixture report is still limited applications for animals. However, the mechanisms by which they interact with the immune system and gut microbiota in animals are largely unclear. This review provides some information on the effect of herbal and probiotic blend on animals. This review discusses current research advancements to fulfill research gaps and promote effective and healthy animal production.
Collapse
Affiliation(s)
- Seerengaraj Vijayaram
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hary Razafindralambo
- ProBioLab, Campus Universitaire de La Faculté de Gembloux AgroBio Tech/Université de Liège, B5030, Gembloux, Belgium
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Rafiq K, Tofazzal Hossain M, Ahmed R, Hasan MM, Islam R, Hossen MI, Shaha SN, Islam MR. Role of Different Growth Enhancers as Alternative to In-feed Antibiotics in Poultry Industry. Front Vet Sci 2022; 8:794588. [PMID: 35224074 PMCID: PMC8873819 DOI: 10.3389/fvets.2021.794588] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
The poultry industry has grown so fast alongside the irrational use of antibiotics to maximize profit and make the production cost-effective during the last few decades. The rising and indiscriminate use of antibiotics might result in the deposition of residues in poultry food products and in the development of resistance to these drugs by microorganisms. Therefore, many diseases are becoming difficult to treat both in humans and animals. In addition, the use of low-dose antibiotics as growth enhancer results in antibiotic residues in food products, which have detrimental effects on human health. On the other hand, many studies have shown that antibiotics administered to poultry and livestock are poorly absorbed through the gut and usually excreted without metabolism. These excreted antibiotics eventually accumulate in the environment and enter the human food chain, resulting in the bioaccumulation of drug residues in the human body. In this regard, to find out alternatives is of paramount importance for the production of safe meat and egg. Therefore, in recent years, much research attention was disarticulated toward the exploration for alternatives to antibiotic as in-feed growth enhancers after its ban by the EU. As a result, probiotics, prebiotics, phytobiotics, spirulina, symbiotic, and their combination are being used more frequently in poultry production. Feed additives therefore gained popularity in poultry production by having many advantages but without any residues in poultry products. In addition, numerous studies demonstrating that such biological supplements compete with antimicrobial resistance have been conducted. Therefore, the purpose of this review article was to highlight the advantages of using biological products instead of antibiotics as poultry in-feed growth enhancers to enhance the production performance, reduce intestinal pathogenic bacteria, and maintain gut health, potentiating the immune response, safety, and wholesomeness of meat and eggs as evidence of consumer protection, as well as to improve the safety of poultry products for human consumption.
Collapse
Affiliation(s)
- Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- *Correspondence: Kazi Rafiq
| | | | - Rokeya Ahmed
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mehedi Hasan
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rejaul Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ismail Hossen
- Livestock Division, Bangladesh Agricultural Research Council, Dhaka, Bangladesh
| | | | | |
Collapse
|
4
|
Ishfaq M, Chen C, Bao J, Zhang W, Wu Z, Wang J, Liu Y, Tian E, Hamid S, Li R, Ding L, Li J. Baicalin ameliorates oxidative stress and apoptosis by restoring mitochondrial dynamics in the spleen of chickens via the opposite modulation of NF-κB and Nrf2/HO-1 signaling pathway during Mycoplasma gallisepticum infection. Poult Sci 2020; 98:6296-6310. [PMID: 31376349 PMCID: PMC8913776 DOI: 10.3382/ps/pez406] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma gallisepticum (MG) infection produces a profound inflammatory response in the respiratory tract and evade birds' immune recognition to establish a chronic infection. Previous reports documented that the flavonoid baicalin possess potent anti-inflammatory, and antioxidant activities. However, whether baicalin prevent immune dysfunction is largely unknown. In the present study, the preventive effects of baicalin were determined on oxidative stress generation and apoptosis in the spleen of chickens infected with MG. Histopathological examination showed abnormal morphological changes including cell hyperplasia, lymphocytes depletion, and the red and white pulp of spleen were not clearly visible in the model group. Oxidative stress-related parameters were significantly (P < 0.05) increased in the model group. However, baicalin treatment significantly (P < 0.05) ameliorated oxidative stress and partially alleviated the abnormal morphological changes in the chicken spleen compared to model group. Terminal deoxynucleotidyl transferase–mediated dUTP nick endlabeling assay results, mRNA, and protein expression levels of mitochondrial apoptosis-related genes showed that baicalin significantly attenuated apoptosis. Moreover, baicalin restored the mRNA expression of mitochondrial dynamics-related genes and maintain the balance between mitochondrial inner and outer membranes. Intriguingly, the protective effects of baicalin were associated with the upregulation of nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) pathway and suppression of nuclear factor-kappa B (NF-κB) pathway in the spleen of chicken. In summary, these findings indicated that baicalin promoted mitochondrial dynamics imbalance and effectively prevents oxidative stress and apoptosis in the splenocytes of chickens infected with MG.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jiaxin Bao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Erjie Tian
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Sattar Hamid
- Department of Animal health, The University of Agriculture, Peshawar 25130, Pakistan
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Liangjun Ding
- College of life Science, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| |
Collapse
|
5
|
Chang CH, Teng PY, Lee TT, Yu B. Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1797-1808. [PMID: 32054193 PMCID: PMC7649073 DOI: 10.5713/ajas.19.0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Objective This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.
Collapse
Affiliation(s)
- Chi Huan Chang
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| | - Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Bi Yu
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
6
|
Chang CH, Teng PY, Lee TT, Yu B. The effects of the supplementation of multi-strain probiotics on intestinal microbiota, metabolites and inflammation of young SPF chickens challenged with Salmonella enterica subsp. enterica. Anim Sci J 2019; 90:737-746. [PMID: 30983065 DOI: 10.1111/asj.13205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
This study assessed the effect of probiotics on cecal microbiota, cecal short-chain fatty acids (SCFAs), and the gene expression of cytokines in young specific-pathogen-free (SPF) chickens infected with S. enterica subsp. enterica. One-day-old SPF chickens (n = 105) were randomly assigned to one of the three treatment groups: control (Cont) group, Salmonella-infected (Sal) group, and a Salmonella-infected group treated with multi-strain probiotics (ProSal group). All chickens except those in the Cont group were challenged orally with 1 × 108 cfu/ml of Salmonella 4 days after hatching. Chickens in the Sal group exhibited more abundance of Proteobacteria than those in the Cont and ProSal groups. At the genus level, chickens in ProSal group exhibited increased numbers of Lactobacillus and Oscillospira compared with those in the other groups. Chickens in the ProSal group exhibited a significant increase of cecal SCFAs compared with chickens in the Sal group. Chickens in the ProSal group exhibited increased gene expression of anti-inflammatory cytokines, IL-10 and TGF-β4, and decreased expression of the proinflammatory cytokine, IFN-γ, in the cecal tonsil compared with those in the Sal group. The results of this study indicated that the administration of probiotics can modulate microbiota, SCFAs, and immunomodulatory activity in SPF chickens.
Collapse
Affiliation(s)
- Chi Huan Chang
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| | - Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| | - Bi Yu
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
7
|
Chang CH, Teng PY, Lee TT, Yu B. Effects of Multi-Strain Probiotics Combined with Gardeniae fructus on Intestinal Microbiota, Metabolites, and Morphology in Broilers. J Poult Sci 2019; 56:32-43. [PMID: 32055194 PMCID: PMC6993885 DOI: 10.2141/jpsa.0170179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/11/2018] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to investigate the effects of a multi-strain probiotic combined with Gardeniae fructus on the growth performance, intestinal microbiota composition and metabolites, and intestinal morphology of broiler chickens. The dietary treatments included the basal diet without any antimicrobials (C), the basal diet supplemented with 10 ppm avilamycin (A), the basal diet supplemented with 0.1% multi-strain probiotics powder containing Lactobacillus acidophilus LAP5, L. fermentum P2, L. casei L21, and Pediococcus acidophilus LS (1×107 CFU/g) (P), and the basal diet supplemented with a mixture of 0.1% multi-strain probiotics and 0.05% herbal medicine G. fructus (PH). The results showed no significant differences in growth performance across all groups. A denaturing gradient gel electrophoresis analysis indicated that the groups PH, P, and A exhibited an increase in the similarity coefficients of their intestinal microbial populations. The real-time polymerase chain reaction (PCR) analysis showed that the relative concentrations of Firmicutes and Lactobacillus in the cecum and Bifidobacterium spp. in the ileum were higher in the groups PH, P, and A than in group C, and the diet supplemented with multi-strain probiotics combined with G. fructus decreased the concentrations of cecal Escherichia spp. and Clostridium perfringens. The broilers fed with multi-strain probiotics combined with G. fructus showed a significant increase (P<0.05) in the cecal short-chain fatty acids (total SCFA, acetic acid, and butyric acid) compared to the other groups. The treatment with antibiotics, multi-strain probiotics, or multi-strain probiotics combined with G. fructus increased the villus height/crypt depth ratio in the ileum of broilers. In conclusion, the supplementation of multi-strain probiotics combined with G. fructus was beneficial to the intestinal microflora composition, metabolites, and morphology in broilers.
Collapse
Affiliation(s)
- Chi Huan Chang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Bi Yu
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
8
|
Yin MC, Chang CH, Su CH, Yu B, Hsu YM. Pteris multifida, Cortex phellodendri, and probiotics attenuated inflammatory status and immunity in mice with a Salmonella enterica serovar Typhimurium infection. Biosci Biotechnol Biochem 2018. [PMID: 29517465 DOI: 10.1080/09168451.2018.1447356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pteris multifida (PM) and Cortex phellodendri (CP) are medicinal foods used for gastrointestinal protection. Lactic-acid bacteria are probiotics. Salmonella Typhimurium strain ST21-infected mice were used to examine the alleviative effects of two lactic-acid bacteria (LAB) as well as aqueous extracts of PM and CP for a 4-day treatment. CP and LAB decreased fecal ST counts. CP and PM reduced the ST21 count in the blood, intestine, and liver. LAB lowered the ST21 count in the intestine and spleen. CP and LAB decreased the IFN-gamma level; PM lowered the TNF-alpha level; and both LAB and PM reduced the IL-1beta level in serum. PM and CP lowered the IgG level in serum. The data in a macrophage infection model indicate that TNF-alpha was partial involved in this alleviative effects, other mechanisms might be involved. In sum, these novel findings suggest that PM, CP, and LAB probiotics are potential anti-Salmonellae agents.
Collapse
Affiliation(s)
- Mei-Chin Yin
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung City, Taiwan
| | - Chiung-Hung Chang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan.,Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chiu-Hsian Su
- Department of Biological Science and Technology, China Medical University, Taichung City, Taiwan
| | - Bi Yu
- Department of Animal Science, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung City, Taiwan
| |
Collapse
|
9
|
|