1
|
Borea R, Reduzzi C. The growing field of liquid biopsy and its Snowball effect on reshaping cancer management. THE JOURNAL OF LIQUID BIOPSY 2025; 8:100293. [PMID: 40255897 PMCID: PMC12008596 DOI: 10.1016/j.jlb.2025.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Liquid biopsy (LB) has emerged as a transformative tool in oncology, providing a minimally invasive approach for tumor detection, molecular characterization, and real-time treatment monitoring. By analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and microRNA (miRNA), LB enables comprehensive tumor profiling without the need for traditional tissue biopsies. Over the past decade, research in this field has expanded exponentially, leading to the integration of LB into clinical practice for specific cancer types, including lung and breast cancer. In 2024, the Journal of Liquid Biopsy (JLB) published innovative studies exploring the latest advancements in LB technologies, biomarkers, and their applications for cancer detection, minimal residual disease (MRD) monitoring, and therapy response assessment. This review synthesizes recent findings on the role of LB in cancer treatment and monitoring across different biomarkers, with a particular focus on newly published studies and their context within translational research. Additionally, it highlights emerging techniques such as fragmentomics, artificial intelligence, and multiomics, paving the way for more precise, personalized treatment decisions. Despite these advancements, challenges remain in standardizing methodologies, optimizing clinical validation, and integrating LB into routine oncological workflows. This mini-review highlights the evolving landscape of LB research and its potential to revolutionize cancer diagnosis, treatment monitoring, and therapeutic decision-making, ushering in a new era of precision oncology.
Collapse
Affiliation(s)
- Roberto Borea
- Department of Public Health, University Federico II of Naples, Naples, Italy
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY, 10021, USA
| |
Collapse
|
2
|
Zhang Y, Xu M, Wang Y, Yu F, Chen X, Wang G, Zhao K, Yang H, Su X. Value of [ 18F]AlF-NOTA-FAPI-04 PET/CT for predicting pathological response and survival in patients with locally advanced pancreatic ductal adenocarcinoma receiving neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2025; 52:2118-2131. [PMID: 39820598 DOI: 10.1007/s00259-025-07084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
OBJECTIVES This study aimed to evaluate the predictive value of [18F]AlF-NOTA-FAPI-04 PET/CT for pathological response to neoadjuvant chemotherapy (NCT) and prognosis in patients with locally advanced pancreatic ductal adenocarcinoma (LAPDAC). METHODS This study included 34 patients with histopathologically and radiologically confirmed LAPDAC who received [18F]AlF-NOTA-FAPI-04 PET/CT scans before NCT. After 4-6 cycles of NCT, these patients underwent radical resection. Pathological response to NCT was assessed by pathological tumor regression grades (TRG) based on the Evans system. PET/CT parameters were evaluated for their association with TRG, recurrence-free survival (RFS) and overall survival (OS) after NCT, including the maximum standardized uptake value (SUVmax), FAPI-avid tumor volume (FTV), total lesion FAP expression (TLF) of primary tumor, total FAPI-avid pancreatic volume (FPV) and total pancreatic FAP expression (TPF) of total pancreas. RESULTS Of 34 patients with LAPDAC, 14 patients had a pathologic good response (PGR, Evans III-IV), and 20 patients had a pathologic poor response (PPR, Evans I-II). Both the primary tumor SUVmax, FTV and TLF, and total pancreas FPV and TPF in the PGR groups were significantly lower than those in the PPR groups. Furthermore, SUVmax and TLF were higher in poorly differentiated LAPDAC than in well-moderately differentiated neoplasms. The FTV, TLF, FPV and TPF were closely associated with RFS and OS. On multivariate analysis, patients with FTV > 54.21 and TLF > 290.21 had a worse RFS and OS, respectively (HR = 3.24, P = 0.014 and HR = 3.35, P = 0.019) and OS (HR = 7.35, P = 0.002 and HR = 7.09, P = 0.004) in LAPDAC after NCT. CONCLUSIONS The parameters of [18F]AlF-NOTA-FAPI-04 PET/CT had the excellent performance for predicting pathologic TRG after NCT in LAPDAC. FTV and TLF were independent postoperative prognostic factors for RFS and OS for LAPDAC.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Mimi Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yu Wang
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinxin Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Guangfa Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Kui Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Lindskrog SV, Strandgaard T, Nordentoft I, Galsky MD, Powles T, Agerbæk M, Jensen JB, Alix-Panabières C, Dyrskjøt L. Circulating tumour DNA and circulating tumour cells in bladder cancer - from discovery to clinical implementation. Nat Rev Urol 2025:10.1038/s41585-025-01023-9. [PMID: 40234713 DOI: 10.1038/s41585-025-01023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Liquid biopsies, indicating the sampling of body fluids rather than solid-tissue biopsies, have the potential to revolutionize cancer care through personalized, noninvasive disease detection and monitoring. Circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) are promising blood-based biomarkers in bladder cancer. Results from several studies have shown the clinical potential of ctDNA and CTCs in bladder cancer for prognostication, treatment-response monitoring, and early detection of minimal residual disease and disease recurrence. Following successful clinical trial evaluation, assessment of ctDNA and CTCs holds the potential to transform the therapeutic pathway for patients with bladder cancer - potentially in combination with the analysis of urinary tumour DNA - through tailored treatment guidance and optimized disease surveillance.
Collapse
Affiliation(s)
- Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Matthew D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mads Agerbæk
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Laboratory, Site Unique de Biology, University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Valenza C, Saldanha EF, Gong Y, De Placido P, Gritsch D, Ortiz H, Trapani D, Conforti F, Cremolini C, Peters S, Mateo J, Subbiah V, Parsons HA, Partridge AH, Curigliano G. Circulating tumor DNA Clearance as a Predictive Biomarker of Pathologic Complete Response in Patients with Solid Tumors Treated with Neoadjuvant Immune-Checkpoint Inhibitors: a Systematic Review and Meta-Analysis. Ann Oncol 2025:S0923-7534(25)00130-9. [PMID: 40187491 DOI: 10.1016/j.annonc.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND In patients with solid tumors undergoing neoadjuvant immune checkpoint inhibitor (ICI) therapy, identifying biomarkers to predict pathologic complete response (pCR) preoperatively could enhance treatment modulation. Circulating tumor DNA (ctDNA) clearance is a potential predictor of pCR, though its analytical and clinical validity has yet to be established. This systematic review and meta-analysis aims to assess the role of ctDNA clearance as a predictor of pCR in patients with solid tumors treated with neoadjuvant ICIs. MATERIALS AND METHODS A systematic search of PubMed, EMBASE and conference proceedings up to 5 August 2024 was carried out to identify phase 1b, 2 or 3 clinical trials investigating ctDNA clearance and pCR in patients with solid tumors and detectable ctDNA, undergoing neoadjuvant therapy with ICIs. Using a bivariate model, we estimated the pooled sensitivity and specificity of ctDNA clearance in predicting pCR, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR), with 95% Confidence Intervals (CI). RESULTS Thirteen trials involving 380 patients with detectable ctDNA at baseline were included. ctDNA was assessed with a tumor-informed approach in 11 (85%) trials. Overall, 38% of patients achieved pCR and 73% had ctDNA clearance before/at the surgery. Pooled sensitivity was 0.98 (95% CI: 0.86, 1.00), specificity was 0.53 (95% CI: 0.37, 0.69), PLR was 2.09 (95% CI: 1.48, 2.93), NLR was 0.04 (95% CI: 0.01, 0.26), DOR was 57.36 (95% CI: 8.12, 405.12). Significant heterogeneity was observed across studies (I2 ∼70% for all metrics), indicating considerable variability in the diagnostic performance. CONCLUSION The lack of ctDNA clearance may identify patients unlikely to have a pCR. Instead, the confirmatory power of ctDNA clearance is limited by low specificity and high heterogeneity due to the variability of the assays, and warrants further study. Therefore, clinicians should not rely on the use of ctDNA clearance to inform treatment decisions in the neoadjuvant setting.
Collapse
Affiliation(s)
- C Valenza
- Harvard Chan School of Public Health, Harvard University, Boston, MA, USA; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - E F Saldanha
- Harvard Chan School of Public Health, Harvard University, Boston, MA, USA; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Y Gong
- Harvard Chan School of Public Health, Harvard University, Boston, MA, USA
| | - P De Placido
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - D Gritsch
- Harvard Chan School of Public Health, Harvard University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - H Ortiz
- Harvard Chan School of Public Health, Harvard University, Boston, MA, USA
| | - D Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - F Conforti
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - C Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - J Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - V Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - H A Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - A H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - G Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Magyar CTJ, Rajendran L, Li Z, Banz V, Vogel A, O'Kane GM, Chan ACY, Sapisochin G. Precision surgery for hepatocellular carcinoma. Lancet Gastroenterol Hepatol 2025; 10:350-368. [PMID: 39993401 DOI: 10.1016/s2468-1253(24)00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 02/26/2025]
Abstract
Hepatocellular carcinoma arises in the setting of cirrhosis in most cases, requiring multidisciplinary input to define resectability. In this regard, more precise surgical management considers patient factors and anatomical states, including resection margins, tumour biology, and perioperative therapy. Together with advances in surgical techniques, this integrated approach has resulted in considerable improvements in patient morbidity and oncological outcomes. Despite this, recurrence rates in hepatocellular carcinoma remain high. As the systemic treatment landscape in hepatocellular carcinoma continues to evolve and locoregional options are increasingly used, we review current and future opportunities to individualise the surgical management of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Tibor Josef Magyar
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada; Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luckshi Rajendran
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada; Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada; Division of Transplant Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Zhihao Li
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada; Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Vanessa Banz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arndt Vogel
- Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Division of Gastroenterology and Hepatology, Toronto General Hospital, Toronto, ON, Canada; Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Grainne Mary O'Kane
- Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Medicine Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; St Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Albert Chi-Yan Chan
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gonzalo Sapisochin
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada; Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
6
|
Ma D, Routman DM. De-escalation of Adjuvant Therapy in Operatively Managed HPV Associated Oropharyngeal Carcinoma: Current Status and Future Directions. Semin Radiat Oncol 2025; 35:166-172. [PMID: 40090743 DOI: 10.1016/j.semradonc.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/18/2025]
Abstract
Human papillomavirus (HPV) associated oropharyngeal carcinoma is currently the most frequently diagnosed head and neck cancer in the United States. Due to the generally high cure rates with standard therapies, de-intensification strategies are being explored to reduce acute and long-term side effects. For patients treated with definitive chemoradiation, unselected de-escalation has shown worse progression-free survival compared to standard therapy. Concurrently, surgical management is becoming more prevalent, and adjuvant de-escalation appears promising. Further research is required to identify optimal candidacy for adjuvant de-escalation and to understand the relationship between dose and volume de-escalation. Biomarkers such as ctDNA may assist in candidate selection, but validation and alignment with pathological criteria are necessary.
Collapse
Affiliation(s)
- Daniel Ma
- Department of Radiation Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, MN..
| | - David M Routman
- Department of Radiation Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, MN
| |
Collapse
|
7
|
Capasso I, Nero C, Anderson G, Del Re M, Perrone E, Fanfani F, Scambia G, Cucinella G, Mariani A, Choong G, Reynolds E. Circulating tumor DNA in endometrial cancer: clinical significance and implications. Int J Gynecol Cancer 2025; 35:101656. [PMID: 39955181 DOI: 10.1016/j.ijgc.2025.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/17/2025] Open
Abstract
Circulating tumor DNA (ctDNA) is a promising non-invasive tool that has been demonstrated to be a clinically useful biomarker in several tumor types for risk stratification, prognosis, and early detection of recurrence. However, there are limited data on the clinical utility of ctDNA in endometrial cancer (EC) compared with other solid tumors. The evolution of EC management through the integration of molecular characterization into the treatment algorithm has intensified the need to develop more effective predictive biomarkers to optimize treatment and reduce clinical toxicities. Given its non-invasive nature and its ability to represent and complement tumor multiclonal spatial and temporal heterogeneity, ctDNA could act as a valid surrogate for tissue sampling. In addition to plasma ctDNA detection being associated with clinicopathologic features of tumor aggressiveness at pre-operative assessment, an association with reduced disease-free survival and overall survival has been observed in patients with detectable ctDNA. Moreover, the half-life of ctDNA is significantly shorter than CA125, and plasma levels are reported to be completely cleared from the blood within 1 week from surgical debulking. Therefore, ctDNA may serve as a dynamic biomarker for occult microscopic residual disease when assessed within the first 4 to 8 weeks after eradicative surgery. Few studies have reported high sensitivity of ctDNA in detecting disease recurrence at longitudinal follow-up, although there are limited data comparing ctDNA and traditional serum biomarkers (CA125 and HE4) in identifying recurrence. In the perspective of personalized oncology, ctDNA may potentially help improve adjuvant therapeutic management by escalating/de-escalating treatment based on ctDNA detection after surgery, during maintenance, or in the recurrent/metastatic setting, in addition to acting as a sensitive biomarker for early detection of recurrence. Several challenges hinder the use of ctDNA in EC, including the lack of standardized protocols, the low mutational burden, tumor heterogeneity, and background normal DNA, which limit assay sensitivity and specificity. In addition, the high cost of ctDNA analysis, particularly, next-generation sequencing, restricts its accessibility. Future trials should focus on cost-effective approaches to ensure sustainability and efficient resource allocation.
Collapse
Affiliation(s)
- Ilaria Capasso
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy; Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA
| | - Camilla Nero
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Gloria Anderson
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Marzia Del Re
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy; Department of Faculty Medicine, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Emanuele Perrone
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Francesco Fanfani
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Giuseppe Cucinella
- Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA
| | - Andrea Mariani
- Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA
| | - Grace Choong
- Mayo Clinic, Department of Oncology, Rochester, MN, USA
| | - Evelyn Reynolds
- Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA.
| |
Collapse
|
8
|
Fina E, Vitale E, De Summa S, Gadaleta-Caldarola G, Tommasi S, Massafra R, Brunetti O, Rizzo A. Liquid biopsy for guiding breast cancer immunotherapy. Immunotherapy 2025:1-15. [PMID: 40083311 DOI: 10.1080/1750743x.2025.2479426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Liquid biopsy is a laboratory test used to detect and analyze circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and other tumor-derived components, in a blood sample. In the context of breast cancer (BC), liquid biopsies hold significant promise for guiding the use of immune checkpoint inhibitors and immune-based combinations, offering real-time insights into tumor dynamics, treatment response, and resistance mechanisms. This review explores the role of liquid biopsy in BC immunotherapy, focusing on its applications, benefits, issues, and current and future research directions.
Collapse
Affiliation(s)
- Emanuela Fina
- Thoracic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| | - Simona De Summa
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | | | - Stefania Tommasi
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| |
Collapse
|
9
|
Gouda MA, Ballesteros PA, Garrido-Laguna I, Rodon J. Efficacy assessment in phase I clinical trials: endpoints and challenges. Ann Oncol 2025:S0923-7534(25)00081-X. [PMID: 40049448 DOI: 10.1016/j.annonc.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025] Open
Abstract
The scope of phase I clinical trials in oncology goes beyond the conventional safety evaluation-only objectives of these trials in other specialties. Rather, most first-in-human oncology clinical trials have therapeutic intent, and efficacy signals observed in phase I trials can drive a go/no-go decision of advancing a new molecule to phase II testing. The complexity of efficacy assessment in the context of a small, heterogeneous patient population and a complex study design requires a more liberal perspective compared with later trial phases when looking into efficacy endpoints. Classically, in later-phase clinical trials, these endpoints would include the objective response rate, progression-free survival, and overall survival. However, new, evolving endpoints may be worth investigating when looking into the antitumor activity signals in phase I trials. Integration of all these endpoints into trial designs can improve the assessment of therapeutic efficacy during early drug development and guide decisions related to the further advancement of novel molecules into later phases. In this review, we discuss the advantages and pitfalls of different classic efficacy endpoints when evaluated as part of phase I trials in oncology and describe how challenges in assessing the antitumor activity of new drugs can be overcome through the incorporation of novel endpoints that have thus far proven successful in clinical trials.
Collapse
Affiliation(s)
- M A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - P A Ballesteros
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Garrido-Laguna
- Department of Medical Oncology, Huntsman Cancer Institute, Salt Lake City, USA
| | - J Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
10
|
Sasaki T, Hiraki H, Yashima‐Abo A, Nagashima H, Endo F, Yaegashi M, Miura S, Obata K, Yanagawa N, Itamochi H, Shirota H, Iwaya T, Nishizuka SS. Comprehensive Genome Profiling-Initiated Tumor-Informed Circulating Tumor DNA Monitoring for Patients With Advanced Cancer. Cancer Sci 2025; 116:764-774. [PMID: 39757125 PMCID: PMC11875764 DOI: 10.1111/cas.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
In Japan, comprehensive genome profiling (CGP) as a companion diagnostic (CDx) has been covered by public insurance since June 2019, but the proportion of patients with cancer who actually received drug therapy based on CGP data is low. In the present study, we attempted to use CGP as a starting point for tumor-informed circulating tumor DNA (ctDNA) monitoring. We retrospectively validated 219 patients with malignant tumors who underwent CGP at Iwate Medical University Hospital between October 2019 and April 2023 in terms of patient demographics, genetic analysis, drug recommendations, and drug administration rate. The 219 cancer cases analyzed by CGP for 27 target organs, including prostate (n = 27, 12.3%), colorectal (n = 25, 11.4%), lung (n = 19, 8.7%), and other neoplasms (n = 148, 67.6%). Among the cohort, only 14 cases (6.4%) subsequently were able to undertake the recommended action by Molecular Tumor Board. Of patients who underwent ctDNA monitoring based on somatic mutations identified by CGP (n = 11), clinical validity was confirmed in terms of early relapse prediction (n = 5, 45.5%), treatment response evaluation (n = 10, 90.9%), and no relapse/regrowth corroboration (n = 2, 18.2%) whereas 90.9% (n = 10) of patients obtained information with at least one source of the clinical validity. Although the current rate of CGP contributing to a drug recommendation is low, CGP results can be an alternate resource for tumor-informed longitudinal ctDNA monitoring to provide information concerning early relapse prediction, treatment response evaluation, and no relapse/regrowth corroboration.
Collapse
Affiliation(s)
- Taiga Sasaki
- Division of Biomedical Research and DevelopmentIwate Medical University Institute for Biomedical SciencesYahabaJapan
- Department of Respiratory MedicineIwate Medical University School of MedicineYahabaJapan
| | - Hayato Hiraki
- Division of Biomedical Research and DevelopmentIwate Medical University Institute for Biomedical SciencesYahabaJapan
| | - Akiko Yashima‐Abo
- Division of Biomedical Research and DevelopmentIwate Medical University Institute for Biomedical SciencesYahabaJapan
| | - Hiromi Nagashima
- Department of Respiratory MedicineIwate Medical University School of MedicineYahabaJapan
| | - Fumitaka Endo
- Department of Clinical OncologyIwate Medical University School of MedicineYahabaJapan
| | - Mizunori Yaegashi
- Department of SurgeryIwate Medical University School of MedicineYahabaJapan
| | - Shimpei Miura
- Department of DermatologyIwate Medical University School of MedicineYahabaJapan
| | - Keiko Obata
- Department of Clinical GeneticsIwate Medical University School of MedicineYahabaJapan
| | - Naoki Yanagawa
- Department of Diagnostic PathologyIwate Medical University School of MedicineYahabaJapan
| | - Hiroaki Itamochi
- Department of Clinical OncologyIwate Medical University School of MedicineYahabaJapan
| | - Hidekazu Shirota
- Department of Medical OncologyTohoku University HospitalSendaiJapan
| | - Takeshi Iwaya
- Department of Clinical OncologyIwate Medical University School of MedicineYahabaJapan
| | - Satoshi S. Nishizuka
- Division of Biomedical Research and DevelopmentIwate Medical University Institute for Biomedical SciencesYahabaJapan
| |
Collapse
|
11
|
Guigal-Stephan N, Lockhart B, Moser T, Heitzer E. A perspective review on the systematic implementation of ctDNA in phase I clinical trial drug development. J Exp Clin Cancer Res 2025; 44:79. [PMID: 40022112 PMCID: PMC11871688 DOI: 10.1186/s13046-025-03328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
Circulating tumour DNA (ctDNA) represents an increasingly important biomarker for the screening, diagnosis and management of patients in clinical practice in advanced/metastatic disease across multiple cancer types. In this context, ctDNA-based comprehensive genomic profiling is now available for patient management decisions, and several ctDNA-based companion diagnostic assays have been approved by regulatory agencies. However, although the assessment of ctDNA levels in Phase II-III drug development is now gathering momentum, it remains somewhat surprisingly limited in the early Phase I phases in light of the potential opportunities provided by such analysis. In this perspective review, we investigate the potential and hurdles of applying ctDNA testing for the inclusion and monitoring of patients in phase 1 clinical trials. This will enable more informed decisions regarding patient inclusion, dose optimization, and proof-of-mechanism of drug biological activity and molecular response, thereby supporting the evolving oncology drug development paradigm. Furthermore, we will highlight the use of cost-efficient, agnostic genome-wide techniques (such as low-pass whole genome sequencing and fragmentomics) and methylation-based methods to facilitate a more systematic integration of ctDNA in early clinical trial settings.
Collapse
Affiliation(s)
- Nolwen Guigal-Stephan
- Translational Medicine, Institut de Recherches Servier, 22 route 128, Gif-sur-Yvette, Saclay, 91190, France.
| | - Brian Lockhart
- Translational Medicine, Institut de Recherches Servier, 22 route 128, Gif-sur-Yvette, Saclay, 91190, France
| | - Tina Moser
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, Graz, 8010, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, Graz, 8010, Austria.
| |
Collapse
|
12
|
Wang Z, Wu Q. Advancements in non-invasive diagnosis of gastric cancer. World J Gastroenterol 2025; 31:101886. [PMID: 39958452 PMCID: PMC11752698 DOI: 10.3748/wjg.v31.i6.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 01/10/2025] Open
Abstract
Gastric cancer (GC), a multifaceted and highly aggressive malignancy, represents challenging healthcare burdens globally, with a high incidence and mortality rate. Although endoscopy, combined with histological examination, is the gold standard for GC diagnosis, its high cost, invasiveness, and specialized requirements hinder widespread use for screening. With the emergence of innovative technologies such as advanced imaging, liquid biopsy, and breath tests, the landscape of GC diagnosis is poised for radical transformation, becoming more accessible, less invasive, and more efficient. As the non-invasive diagnostic techniques continue to advance and undergo rigorous clinical validation, they hold the promise of significantly impacting patient outcomes, ultimately leading to better treatment results and improved quality of life for patients with GC.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
13
|
Leite da Silva LF, Saldanha EF, de Menezes JSA, Halamy Pereira L, de Bragança dos Santos JAR, Buonopane IR, de Souza EM, de Menezes CUG, Lopes G. Plasma ctDNA kinetics as a predictor of systemic therapy response for advanced non-small cell lung cancer: a systematic review and meta-analysis. Oncologist 2025; 30:oyae344. [PMID: 39998904 PMCID: PMC11853598 DOI: 10.1093/oncolo/oyae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/07/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Predicting early treatment response in advanced non-small cell lung cancer (NSCLC) is challenging. Longitudinal monitoring of circulating tumor DNA (ctDNA) can track tumor response to treatments like immune checkpoint blockade (ICB) and correlate with outcomes. This meta-analysis evaluated whether ctDNA clearance or decrease is associated with improved survival across various settings in NSCLC. METHODS A systematic review of MEDLINE, EMBASE, and Cochrane databases (up to April 2024) identified studies evaluating the impact of ctDNA kinetics on survival outcomes in non-curative NSCLC settings. Pooled hazard ratios (HR) for progression-free survival (PFS) and overall survival (OS) were calculated using a random effects model. RESULTS We included 32 studies with 3047 NSCLC patients receiving systemic therapies such as targeted therapy (TT), ICB, and chemotherapy. Meta-analysis of 31 studies showed that ctDNA decrease/clearance was linked to improved PFS (HR: 0.32 [0.26, 0.40], I² = 63%, P < .01). Subgroup analysis indicated strong PFS benefits from ctDNA clearance (HR: 0.27 [0.20, 0.36]). Similar improvements were seen across patients undergoing targeted therapy (HR: 0.34) and ICB (HR: 0.33). Analysis of 25 studies revealed a significant association between ctDNA reduction and better OS (HR: 0.31 [0.23, 0.42], I² = 47%, P < .01). Subgroup findings were consistent for both TT (HR: 0.41) and ICB (HR: 0.32). Sensitivity analysis demonstrated that ctDNA clearance/decrease was consistently associated with improved PFS across study designs and ctDNA analysis methods. There was no significant variation in hazard ratios for PFS based on NSCLC subtypes, smoking status, or sex. CONCLUSION Plasma ctDNA kinetics was associated with improved survival outcomes in patients diagnosed with advanced NSCLC undergoing treatment with TT and ICB.
Collapse
Affiliation(s)
- Luís F Leite da Silva
- Departmento de Ciências Médicas, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brazil
| | - Erick F Saldanha
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON M5G 2M9, Canada
| | | | - Leonardo Halamy Pereira
- Departmento de Ciências Médicas, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brazil
| | | | | | - Erito M de Souza
- Departmento de Ciências Médicas, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brazil
| | | | - Gilberto Lopes
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
14
|
Ozair A, Wilding H, Bhanja D, Mikolajewicz N, Glantz M, Grossman SA, Sahgal A, Le Rhun E, Weller M, Weiss T, Batchelor TT, Wen PY, Haas-Kogan DA, Khasraw M, Rudà R, Soffietti R, Vollmuth P, Subbiah V, Bettegowda C, Pham LC, Woodworth GF, Ahluwalia MS, Mansouri A. Leptomeningeal metastatic disease: new frontiers and future directions. Nat Rev Clin Oncol 2025; 22:134-154. [PMID: 39653782 DOI: 10.1038/s41571-024-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Leptomeningeal metastatic disease (LMD), encompassing entities of 'meningeal carcinomatosis', neoplastic meningitis' and 'leukaemic/lymphomatous meningitis', arises secondary to the metastatic dissemination of cancer cells from extracranial and certain intracranial malignancies into the leptomeninges and cerebrospinal fluid. The clinical burden of LMD has been increasing secondary to more sensitive diagnostics, aggressive local therapies for discrete brain metastases, and improved management of extracranial disease with targeted and immunotherapeutic agents, resulting in improved survival. However, owing to drug delivery challenges and the unique microenvironment of LMD, novel therapies against systemic disease have not yet translated into improved outcomes for these patients. Underdiagnosis and misdiagnosis are common, response assessment remains challenging, and the prognosis associated with this disease of whole neuroaxis remains extremely poor. The dearth of effective therapies is further challenged by the difficulties in studying this dynamic disease state. In this Review, a multidisciplinary group of experts describe the emerging evidence and areas of active investigation in LMD and provide directed recommendations for future research. Drawing upon paradigm-changing advances in mechanistic science, computational approaches, and trial design, the authors discuss domain-specific and cross-disciplinary strategies for optimizing the clinical and translational research landscape for LMD. Advances in diagnostics, multi-agent intrathecal therapies, cell-based therapies, immunotherapies, proton craniospinal irradiation and ongoing clinical trials offer hope for improving outcomes for patients with LMD.
Collapse
Affiliation(s)
- Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah Wilding
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Debarati Bhanja
- Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tracy T Batchelor
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daphne A Haas-Kogan
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumour Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
- Department of Oncology, Candiolo Institute for Cancer Research, FPO-IRCCS, Candiolo, Turin, Italy
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, University Hospital Bonn, Bonn, Germany
- Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivek Subbiah
- Early Phase Drug Development Program, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Chetan Bettegowda
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lily C Pham
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
15
|
Greenwald NF, Nederlof I, Sowers C, Ding DY, Park S, Kong A, Houlahan KE, Varra SR, de Graaf M, Geurts V, Liu CC, Ranek JS, Voorwerk L, de Maaker M, Kagel A, McCaffrey E, Khan A, Yeh CY, Fullaway CC, Khair Z, Bai Y, Piyadasa H, Risom T, Delmastro A, Hartmann FJ, Mangiante L, Sotomayor-Vivas C, Schumacher TN, Ma Z, Bosse M, van de Vijver MJ, Tibshirani R, Horlings HM, Curtis C, Kok M, Angelo M. Temporal and spatial composition of the tumor microenvironment predicts response to immune checkpoint inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634557. [PMID: 39975273 PMCID: PMC11838242 DOI: 10.1101/2025.01.26.634557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Immune checkpoint inhibition (ICI) has fundamentally changed cancer treatment. However, only a minority of patients with metastatic triple negative breast cancer (TNBC) benefit from ICI, and the determinants of response remain largely unknown. To better understand the factors influencing patient outcome, we assembled a longitudinal cohort with tissue from multiple timepoints, including primary tumor, pre-treatment metastatic tumor, and on-treatment metastatic tumor from 117 patients treated with ICI (nivolumab) in the phase II TONIC trial. We used highly multiplexed imaging to quantify the subcellular localization of 37 proteins in each tumor. To extract meaningful information from the imaging data, we developed SpaceCat, a computational pipeline that quantifies features from imaging data such as cell density, cell diversity, spatial structure, and functional marker expression. We applied SpaceCat to 678 images from 294 tumors, generating more than 800 distinct features per tumor. Spatial features were more predictive of patient outcome, including features like the degree of mixing between cancer and immune cells, the diversity of the neighboring immune cells surrounding cancer cells, and the degree of T cell infiltration at the tumor border. Non-spatial features, including the ratio between T cell subsets and cancer cells and PD-L1 levels on myeloid cells, were also associated with patient outcome. Surprisingly, we did not identify robust predictors of response in the primary tumors. In contrast, the metastatic tumors had numerous features which predicted response. Some of these features, such as the cellular diversity at the tumor border, were shared across timepoints, but many of the features, such as T cell infiltration at the tumor border, were predictive of response at only a single timepoint. We trained multivariate models on all of the features in the dataset, finding that we could accurately predict patient outcome from the pre-treatment metastatic tumors, with improved performance using the on-treatment tumors. We validated our findings in matched bulk RNA-seq data, finding the most informative features from the on-treatment samples. Our study highlights the importance of profiling sequential tumor biopsies to understand the evolution of the tumor microenvironment, elucidating the temporal and spatial dynamics underlying patient responses and underscoring the need for further research on the prognostic role of metastatic tissue and its utility in stratifying patients for ICI.
Collapse
Affiliation(s)
- Noah F. Greenwald
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Nederlof
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cameron Sowers
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daisy Yi Ding
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Seongyeol Park
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen E. Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Manon de Graaf
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Veerle Geurts
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Candace C. Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jolene S. Ranek
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Leonie Voorwerk
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Michiel de Maaker
- Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Adam Kagel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine Yiwen Yeh
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Zumana Khair
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University School of Humanities and Sciences, Stanford, CA, USA, Stanford University School of Humanities and Sciences, Stanford, CA, USA
| | - Hadeesha Piyadasa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tyler Risom
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alea Delmastro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Felix J. Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- German Cancer Research Center (DKFZ), Heidelberg, Systems Immunology & Single-Cell Biology, Germany
| | - Lise Mangiante
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhicheng Ma
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Robert Tibshirani
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Hugo M. Horlings
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christina Curtis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marleen Kok
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Ruiz-Torres DA, Merkin RD, Bryan M, Mendel J, Efthymiou V, Roberts T, Patel M, Park JC, Chevalier A, Murray C, Gates L, Pipinikas C, Stott SL, Fisch AS, Wirth LJ, Faden DL. Personalized circulating tumor DNA dynamics predict survival and response to immune checkpoint blockade in recurrent/metastatic head and neck cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.27.25321198. [PMID: 39973993 PMCID: PMC11838965 DOI: 10.1101/2025.01.27.25321198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is an aggressive cancer with a median overall survival of only 12 months. Existing biomarkers have limited ability to predict treatment response or survival, exposing many patients to the potential toxicity of treatment without certain clinical benefit. Circulating tumor DNA (ctDNA) has emerged as a non-invasive, real-time biomarker that could address these challenges. Methods We analyzed 137 plasma samples from 16 patients with R/M HNSCC undergoing immune checkpoint blockade (ICB)-based therapy. A tumor-informed, highly sensitive next-generation sequencing liquid biopsy assay (RaDaR, NeoGenomics Laboratories, Inc.) was applied to track ctDNA changes at baseline and throughout treatment. Univariable and multivariable analyses were used to assess the association between ctDNA negativity and key clinical outcomes: disease control (best objective response of stable disease, partial response, or complete response), three-year overall survival (OS), and three-year progression-free survival (PFS). We also assessed a machine learning model to predict disease progression based on ctDNA dynamics. Results Multivariable analysis revealed that ctDNA negativity during treatment was significantly associated with improved disease control (OR 21.7, 95% CI 1.86-754.88, p=0.0317), three-year OS (HR 0.04, 95% CI 0.00-0.47, p=0.0103), and three-year PFS (HR 0.03, 95% CI 0.00-0.37, p=0.0057). The machine learning model predicted disease progression with 88% accuracy (AUC 0.89). Conclusion Serial ctDNA monitoring predicted disease control, survival, and progression in patients with R/M HNSCC receiving treatment with ICB, suggesting that incorporation of ctDNA into clinical practice could enhance treatment decision-making for clinicians and improve patient outcomes.
Collapse
Affiliation(s)
- Daniel A. Ruiz-Torres
- Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Ross D. Merkin
- Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Michael Bryan
- Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114
| | - Julia Mendel
- Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114
| | | | - Thomas Roberts
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Manisha Patel
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Jong C. Park
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Amber Chevalier
- NeoGenomics, Babraham Research Campus, Cambridge, UK and Research Triangle Park, NC, USA
| | - Clodagh Murray
- NeoGenomics, Babraham Research Campus, Cambridge, UK and Research Triangle Park, NC, USA
| | - Lisa Gates
- NeoGenomics, Babraham Research Campus, Cambridge, UK and Research Triangle Park, NC, USA
| | | | - Shannon L. Stott
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114
- Broad Institute of MIT and Harvard, Merkin Building, NE30, 415 Main St, Cambridge, MA 02142
| | - Adam S. Fisch
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
- Massachusetts General Hospital, Department of Pathology, 55 Fruit St, Boston, MA 02114
| | - Lori J. Wirth
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Daniel L. Faden
- Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114
- Massachusetts General Hospital Cancer Center, 55 Fruit St, Boston, MA 02114
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
- Broad Institute of MIT and Harvard, Merkin Building, NE30, 415 Main St, Cambridge, MA 02142
| |
Collapse
|
17
|
Nobrega M, Bisarro Dos Reis M, Ferreira de Souza M, Hugo Furini H, Costa Brandão Berti F, Larissa Melo Souza I, Mingorance Carvalho T, Zanata SM, Emilio Fuganti P, Malheiros D, Maria de Souza Fonseca Ribeiro E, Mara de Syllos Cólus I. Comparative analysis of extracellular vesicles miRNAs (EV-miRNAs) and cell-free microRNAs (cf-miRNAs) reveals that EV-miRNAs are more promising as diagnostic and prognostic biomarkers for prostate cancer. Gene 2024:149186. [PMID: 39708932 DOI: 10.1016/j.gene.2024.149186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
MicroRNAs can be found intracellularly incorporated into extracellular vesicles (EV-miRNAs) or extracellularly as cell-free miRNAs (cf-miRNAs). This study aimed to compare the diagnostic and prognostic potential of four miRNAs with recognized roles in prostate cancer as cf-miRNAs and EV-miRNAs, obtained from liquid biopsies (LB). Total RNA was isolated from whole plasma and plasma EVs from 15 controls (CTR) and 30 patients (20 with localized prostate cancer (PCa), 10 with metastatic prostate cancer (mPCa)). The miRNAs were quantified by RT-qPCR and the relative expression of these miRNAs was compared between the three groups, and their associations with clinicopathological parameters were assessed. Receiver operating characteristic (ROC) curves were performed to evaluate the diagnostic potential of the miRNAs in discriminating different groups. Overall, EV-miRNAs showed higher expression compared to cf-miRNAs. All EV-miRNAs analyzed showed diagnostic potential with an area under the curve (AUC) above 0.744. EV-miR-21-5p, EV-miR-375-3p, and EV-miR-1290-3p were overexpressed in PCa and mPCa compared to CTR, while EV-miR-200c-3p was overexpressed only in mPCa in comparison to CTR. Remarkably, EV-miR-375-3p and EV-miR-1290-3p could differentiate mPCa with ISUP ≥ 3, demonstrating their prognostic potential. In addition, EV-miR-1290-3p and EV-4-miR-panel detected patients with PSA > 10 ng/mL. Cf-miRNAs performed lower than EV-miRNAs, which can be explained by the greater stability and specificity of EV-miRNAs, making them superior to cf-miRNA. The results show that LB, a non-invasive strategy, is clinically feasible to identify EV-miRNAs as biomarkers for PCa and may provide additional information for assessing PCa risk stratification.
Collapse
Affiliation(s)
- Monyse Nobrega
- Department of General Biology, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | - Hector Hugo Furini
- Department of General Biology, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ingrid Larissa Melo Souza
- Department of Cell and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Laboratory for Applied Science and Technology in Health (LACTAS), Carlos Chagas Institute, FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Tamyres Mingorance Carvalho
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvio M Zanata
- Department of Cell and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | | | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | | | | |
Collapse
|
18
|
Pan J, Wu J, Wang B, Zhu B, Liu X, Gan H, Wei Y, Jin S, Hu X, Wang Q, Song S, Liu C, Ye D, Zhu Y. Interlesional response heterogeneity is associated with the prognosis of abiraterone treatment in metastatic castration-resistant prostate cancer. MED 2024; 5:1475-1484.e3. [PMID: 39151419 DOI: 10.1016/j.medj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Interlesional response heterogeneity (ILRH) poses challenges to the treatment of metastatic castration-resistant prostate cancer (mCRPC). Currently, there are no prospective clinical trials exploring the prognostic significance of ILRH on paired positron emission tomography/computed tomography (PET/CT) in the context of abiraterone therapy. METHODS In this prospective study, we enrolled patients with mCRPC treated with abiraterone (ClinicalTrials.gov: NCT05188911; ChiCTR.org.cn: ChiCTR2000034708). 68Ga-prostate-specific membrane antigen (PSMA)+18F-fluorodeoxyglucose (FDG) PET/CT and circulating tumor DNA (ctDNA) monitoring were performed at baseline and week 13. Patients were grouped by their early ILRH measurement. The primary endpoint was to evaluate the predictive role of ILRH for conventional progression-free survival (PFS) through the concordance index (C-index) assessment. Conventional PFS was defined as the time from medication to conventional radiographic progression, clinical progression, or death. FINDINGS Ultimately, 33 patients were included with a median follow-up of 28.7 months. Baseline+week 13 PSMA PET/CT revealed that 33.3% of patients showed ILRH. Those patients with hetero-responding disease had significantly different PFS compared to the responding and non-responding groups (hazard ratio: responding group = reference, hetero-responding group = 4.0, non-responding group = 5.8; p < 0.0001). The C-index of ILRH on paired PSMA PET/CT (0.742 vs. 0.660) and FDG PET/CT (0.736 vs. 0.668) for conventional PFS was higher than that of PSA response. In an exploratory analysis, PSMA-/FDG+ lesions at week 13 were identified as a strong surrogate for poor conventional PFS (p = 0.039). CONCLUSIONS ILRH on both baseline+week 13 PSMA and FDG PET/CT strongly associated with conventional PFS. FUNDING This study was funded by the Ministry of Science and Technology of China and Shanghai.
Collapse
Affiliation(s)
- Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Beihe Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qifeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shaoli Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Chang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Hamfjord J, Guren TK, Glimelius B, Sorbye H, Pfeiffer P, Dajani O, Lingjærde OC, Tveit KM, Spindler KLG, Pallisgaard N, Kure EH. Exploring Early Kinetic Profiles of CEA, ctDNA and cfDNA in Patients With RAS-/BRAF-Mutated Metastatic Colorectal Cancer. Clin Colorectal Cancer 2024:S1533-0028(24)00113-0. [PMID: 39743478 DOI: 10.1016/j.clcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Patients with metastatic colorectal cancer (mCRC) respond differently to first-line chemotherapy. Early identification of patients with limited or no clinical benefit could prompt a timelier introduction of second-line therapy and potentially lead to improved overall outcomes. Carcinoembryonic antigen (CEA) is currently the only blood-based marker in clinical use for disease control monitoring in mCRC. Circulating cell-free DNA (cfDNA), including circulating tumor DNA (ctDNA) could become a useful surrogate for oncological outcomes. MATERIALS AND METHODS Forty patients with RAS-/BRAF-mutated mCRC from the prospective NORDIC-VII trial (NCT00145314) were included. An exploratory model system was made to describe the early on-treatment kinetics of CEA, cfDNA and ctDNA during first-line oxaliplatin-based chemotherapy, and investigate the associations with radiological response, progression-free survival (PFS) and overall survival (OS). RESULTS Summary metrics were made, representing percentage change from treatment start to time-grid day 7 (P7), day 14 (P14), and day 49 (P49); slope from time-grid day 0 to 7 (S7), day 8 to 14 (S14), and day 15 to 49 (S49); and area under the curve from time-grid day 0 to 49 (AUC). Notably P49 and S49 for ctDNA and CEA were associated with radiological response and/or PFS. The early dynamics of the two markers differed substantially, with faster and more marked changes in ctDNA compared with CEA. Nine patients did not reach complete/near complete molecular ctDNA response close to first evaluation (∼week 8), a state associated with a short PFS (HR 2.72; 95% CI, 1.22-6.06; P = .01) and OS (HR 3.12; 95% CI, 1.35-7.23; P < .01). Contrary, twenty-two patients did not reach radiological response (i.e., complete or partial response) at first evaluation, but this was not associated with PFS (HR 1.21; 95% CI, 0.64-2.30; P = .55) nor OS (HR 1.37; 95% CI, 0.70-2.68; P = .37). CONCLUSION Early dynamics of ctDNA during first-line oxaliplatin-based chemotherapy hold prognostic value, supporting the idea of prospectively validating a ctDNA-RECIST framework in the early care pathway of mCRC patients. TRIAL REGISTRATION ClinicalTrials.gov, NCT00145314.
Collapse
Affiliation(s)
- Julian Hamfjord
- Department of Oncology, Oslo University Hospital, Oslo, Norway; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Olav Dajani
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Computer Science, University of Oslo, Oslo, Norway
| | - Kjell Magne Tveit
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karen-Lise Garm Spindler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Elin H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Bø in Telemark, Norway
| |
Collapse
|
20
|
Wyatt AW, Litiere S, Bidard FC, Cabel L, Dyrskjøt L, Karlovich CA, Pantel K, Petrie J, Philip R, Andrews HS, Vellanki PJ, Tolmeijer SH, Villalobos Alberu X, Alfano C, Bogaerts J, Calvo E, Chen AP, Toledo RA, de Vries EGE, Seymour L, Laurie SA, Garralda E. Plasma ctDNA as a Treatment Response Biomarker in Metastatic Cancers: Evaluation by the RECIST Working Group. Clin Cancer Res 2024; 30:5034-5041. [PMID: 39269996 DOI: 10.1158/1078-0432.ccr-24-1883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Early indicators of metastatic cancer response to therapy are important for evaluating new drugs and stopping ineffective treatment. The RECIST guidelines based on repeat cancer imaging are widely adopted in clinical trials, are used to identify active regimens that may change practice, and contribute to regulatory approvals. However, these criteria do not provide insight before 6 to 12 weeks of treatment and typically require that patients have measurable disease. Recent data suggest that measuring on-treatment changes in the amount or proportion of ctDNA in peripheral blood plasma may accurately identify responding and nonresponding cancers at earlier time points. Over the past year, the RECIST working group has evaluated current evidence for plasma ctDNA kinetics as a treatment response biomarker in metastatic cancers and early endpoint in clinical trials to identify areas of focus for future research and validation. Here, we outline the requirement for large standardized trial datasets, greater scrutiny of optimal ctDNA collection time points and assay thresholds, and consideration of regulatory body guidelines and patient opinions. In particular, clinically meaningful changes in plasma ctDNA abundance are likely to differ by cancer type and therapy class and must be assessed before ctDNA can be considered a potential pan-cancer response evaluation biomarker. Despite the need for additional data, minimally invasive on-treatment ctDNA measurements hold promise to build upon existing response assessments such as RECIST and offer opportunities for developing novel early endpoints for modern clinical trials.
Collapse
Affiliation(s)
- Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre and Clinical Cancer Genomics Program, BC Cancer, Vancouver, British Columbia, Canada
| | - Saskia Litiere
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Francois-Clément Bidard
- Department of Medical Oncology, Institut Curie, Université Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Université Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, France
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Chris A Karlovich
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Klaus Pantel
- Department of Tumor Biology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joan Petrie
- Canadian Cancer Trials Group, Kingston, Ontario, Canada
| | - Reena Philip
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, Maryland
| | | | - Paz J Vellanki
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Christian Alfano
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Jan Bogaerts
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | | | - Elisabeth G E de Vries
- University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Lesley Seymour
- Canadian Cancer Trials Group, Queen's University, Kingston, Ontario, Canada
| | - Scott A Laurie
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
21
|
Nicolò E, Gianni C, Curigliano G, Reduzzi C, Cristofanilli M. Modeling the management of patients with human epidermal growth factor receptor 2-positive breast cancer with liquid biopsy: the future of precision medicine. Curr Opin Oncol 2024; 36:503-513. [PMID: 39011731 DOI: 10.1097/cco.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW In the evolving landscape of human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) management, liquid biopsy offers unprecedented opportunities for guiding clinical decisions. Here, we review the most recent findings on liquid biopsy applications in HER2-positive BC and its potential role in addressing challenges specific to this BC subtype. RECENT FINDINGS Recent studies have highlighted the significance of liquid biopsy analytes, primarily circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), in stratifying patients' prognosis, predicting treatment response, and monitoring tumor evolution in both early and advanced stages of BC. Liquid biopsy holds promise in studying minimal residual disease to detect and potentially treat disease recurrence before it manifests clinically. Additionally, liquid biopsy may have significant implication in the management of brain metastasis, a major challenge in HER2-positive BC, and could redefine parameters for determining HER2 positivity. Combining ctDNA and CTCs is crucial for a comprehensive understanding of HER2-positive tumors, as they provide complementary insights. SUMMARY Research efforts are needed to address analytical challenges, validate, and broaden the application of liquid biopsy in HER2-positive BC. This effort will ultimately facilitate its integration into clinical practice, optimizing the care of patients with HER2-positive tumors.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
22
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
23
|
Xu Z, Jiang G, Dai J. Tumor therapeutics in the era of "RECIST": past, current insights, and future prospects. Oncol Rev 2024; 18:1435922. [PMID: 39493769 PMCID: PMC11527623 DOI: 10.3389/or.2024.1435922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, advancements in medical treatment and imaging technologies have revolutionized the assessment of tumor response. However, the Response Evaluation Criteria in Solid Tumors (RECIST) has long been established as the gold standard for evaluating tumor treatment. As treatment modalities evolve, the need for continuous refinement and adaptation of RECIST becomes increasingly apparent. This review explores the historical evolution, current applications, limitations, and future directions of RECIST. It discusses the challenges of distinguishing true progression from pseudo-progression in ICIs (immune checkpoint inhibitors), the integration of advanced imaging tools, and the necessity for RECIST criteria tailored to specific therapies like neoadjuvant treatments. The review highlights the ongoing efforts to enhance RECIST's accuracy and reliability in clinical decision-making and the potential for developing new standards to better evaluate treatment efficacy in the rapidly evolving landscape of oncology.
Collapse
Affiliation(s)
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Dai
- *Correspondence: Gening Jiang, ; Jie Dai,
| |
Collapse
|
24
|
Ospina AV. Overview of the Role of Liquid Biopsy in Non-small Cell Lung Cancer (NSCLC). Clin Oncol (R Coll Radiol) 2024; 36:e371-e380. [PMID: 39048406 DOI: 10.1016/j.clon.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Solid tumour tissue has traditionally been used for cancer molecular diagnostics. Recently, biomarker assessment in blood or liquid biopsies has become relevant because it allows genotyping in a less invasive and costly manner. In addition, it is a very useful technique in cases with insufficient tumour samples. Recent data have shown that this method can provide the baseline molecular characteristics of the tumour and resistance changes that emerge during cancer treatment. In terms of diagnostic application, the platforms available for clinical use in lung cancer focus on the isolation and detection of circulating DNA (ctDNA) and generally cover a limited number of mutations in genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS) and BRAF, as well as anaplastic lymphoma kinase (ALK) rearrangements. In parallel, there are plasma genotyping platforms based on next-generation sequencing (NGS) techniques, which are much broader in scope, allowing multiple genes to be studied simultaneously in a more efficient manner. More recently, promising research scenarios for liquid biopsy have emerged, such as its utility for early diagnosis and evaluation of minimal residual disease after oncological treatment. In light of these advances, knowledge of the benefits and limitations of liquid biopsy, as well as awareness of emerging information on new indications for this technique in non-small cell lung cancer (NSCLC), are of paramount importance in developing more effective management strategies for patients with this neoplasm.
Collapse
Affiliation(s)
- A V Ospina
- Instituto Investigación Sanitaria Puerta de Hierro - Segovia de Arana (IDIPHISA), Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, C/Manuel de Falla, 1 Majadahonda, Madrid, 28222, Spain.
| |
Collapse
|
25
|
Cabezas-Camarero S, Pérez-Segura P, Riquelme A, Román-García J. Profound ctDNA and radiological responses after 2 cycles of avelumab in a metastatic Merkel cell carcinoma of the head and neck. Oral Oncol 2024; 157:106971. [PMID: 39067262 DOI: 10.1016/j.oraloncology.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an uncommon skin cancer that in more than 90 % of cases develops within the head and neck region. MCC is an aggressive disease with a dismal prognosis before the advent of immunotherapy. Avelumab, an anti-PDL1 agent is approved since 2017 for the treatment of advanced MCC after demonstrating a high response rate and favorable impact in survival. METHODS Next generation sequencing (NGS) of the primary tumor biopsy from initial diagnosis (Foundation One CDx, Roche Diagnostics) as well as from plasma samples (Foundation One Liquid, Roche Diagnostics) obtained before and during treatment with avelumab were performed. RESULTS We present the case of a patient with a metastatic MCC developing in the left parotid gland / pre-auricular area in an 80-year-old male with a long-lasting history of high UV exposure. After two cycles of avelumab 10 mg/kg/q2wk a near complete metabolic response and a major radiological response occurred in parallel to a brisk reduction in the ctDNA tumor fraction as well as variant-allele frequencies (VAFs) of all the mutations detected before the start of avelumab. CONCLUSION Avelumab may achieve rapid and major responses in metastatic MCC. Our study demonstrates that ctDNA mirrors radiological responses and may serve as an ideal companion for diagnosis and disease monitoring in MCC.
Collapse
Affiliation(s)
- Santiago Cabezas-Camarero
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain; Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain.
| | - Pedro Pérez-Segura
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain; Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Alejandro Riquelme
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain
| | - Javier Román-García
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain
| |
Collapse
|
26
|
Sweeney CJ, Petry R, Xu C, Childress M, He J, Fabrizio D, Gjoerup O, Morley S, Catlett T, Assaf ZJ, Yuen K, Wongchenko M, Shah K, Gupta P, Hegde P, Pasquina LW, Mariathasan S, Graf RP, Powles T. Circulating Tumor DNA Assessment for Treatment Monitoring Adds Value to PSA in Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2024; 30:4115-4122. [PMID: 38990098 PMCID: PMC11393539 DOI: 10.1158/1078-0432.ccr-24-1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Enzalutamide after abiraterone progression is commonly used in metastatic castration-resistant prostate cancer despite a low rate of clinical benefit. Analyzing IMbassador250, a phase III trial assessing enzalutamide with or without atezolizumab after abiraterone, we hypothesized that baseline and early changes in circulating tumor DNA (ctDNA) tumor fraction (TF) may identify patients more likely to exhibit survival benefit from enzalutamide. EXPERIMENTAL DESIGN ctDNA was quantified from plasma samples using a tissue-agnostic assay without buffy coat sequencing. Baseline ctDNA TF, changes in ctDNA TF from baseline to cycle 3 day 1 (C3D1), and detection at C3D1 alone were compared with overall response rate, radiographic progression-free survival (rPFS), median OS (mOS), and 50% reduction in PSA. RESULTS ctDNA TF detection at baseline and/or C3D1 was associated with shorter rPFS and OS in 494 evaluable patients. Detection of ctDNA TF at C3D1, with or without detection at cycle 1 day 1, was associated with worse rPFS and mOS than lack of detection. When ctDNA TF and PSA response at C3D1 were discordant, patients with (ctDNA TF undetected/PSA not reduced) had more favorable outcomes than (ctDNA TF detected/PSA reduced; mOS 22.1 vs. 16 months; P < 0.001). CONCLUSIONS In a large cohort of patients with metastatic castration-resistant prostate cancer receiving enzalutamide after abiraterone, we demonstrate the utility of a new tissue-agnostic assay for monitoring molecular response based on ctDNA TF detection and dynamics. ctDNA TF provides a minimally invasive, complementary biomarker to PSA testing and may refine personalized treatment approaches.
Collapse
Affiliation(s)
- Christopher J. Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide SA, Australia.
| | - Russell Petry
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Chang Xu
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | - Jie He
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | - Ole Gjoerup
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | | | - Zoe J. Assaf
- Genentech, Inc., South San Francisco, California.
| | - Kobe Yuen
- Genentech, Inc., South San Francisco, California.
| | | | - Kalpit Shah
- Genentech, Inc., South San Francisco, California.
| | | | - Priti Hegde
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | | | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Thomas Powles
- Saint Bartholomew’s Hospital, London, United Kingdom.
| |
Collapse
|
27
|
Di Bella MA, Taverna S. Extracellular Vesicles: Diagnostic and Therapeutic Applications in Cancer. BIOLOGY 2024; 13:716. [PMID: 39336143 PMCID: PMC11446462 DOI: 10.3390/biology13090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In recent years, knowledge of cell-released extracellular vesicle (EV) functions has undergone rapid growth. EVs are membrane vesicles loaded with proteins, nucleic acids, lipids, and bioactive molecules. Once released into the extracellular space, EVs are delivered to target cells that may go through modifications in physiological or pathological conditions. EVs are nano shuttles with a crucial role in promoting short- and long-distance cell-cell communication. Comprehension of the mechanism that regulates this process is a benefit for both medicine and basic science. Currently, EVs attract immense interest in precision and nanomedicine for their potential use in diagnosis, prognosis, and therapies. This review reports the latest advances in EV studies, focusing on the nature and features of EVs and on conventional and emerging methodologies used for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a summary of advances in nanomedical applications of EVs. Moreover, concerns that require further studies before translation to clinical applications are discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
28
|
Boscolo Bielo L, Trapani D, Nicolò E, Valenza C, Guidi L, Belli C, Kotteas E, Marra A, Prat A, Fusco N, Criscitiello C, Burstein HJ, Curigliano G. The evolving landscape of metastatic HER2-positive, hormone receptor-positive Breast Cancer. Cancer Treat Rev 2024; 128:102761. [PMID: 38772169 DOI: 10.1016/j.ctrv.2024.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Therapeutic agents targeting Human Epidermal Growth Factor Receptor 2 (HER2) demonstrated to positively impact the prognosis of HER2-positive breast cancer. HER2-positive breast cancer can present either as hormone receptor-negative or positive, defining Triple-positive breast cancer (TPBC). TPBC demonstrate unique gene expression profiles, showing reduced HER2-driven gene expression, as recapitulated by a higher proportion of Luminal-type intrinsic subtypes. The different molecular landscape of TPBC dictates distinctive clinical features, including reduced chemotherapy sensitivity, different patterns of recurrence, and better overall prognosis. Cross-talk between HER2 and hormone receptor signaling seems to be critical to determine resistance to HER2-directed agents. Accordingly, superior outcomes have been achieved with the use of endocrine therapy, representing the first subtype-specific pharmacological intervention unique to this subgroup. Additional targeted agents capable to tackle resistance mechanisms to anti-HER2, hormone agents, or both might further improve the efficacy of treatments, such as PI3K/AKT/mTOR inhibitors, particularly in a biomarker-enriched setting, and CDK4/6-inhibitors, with preliminary data suggesting a role of PAM50 subtyping to predict higher benefits in luminal tumors. Finally, the distinct biology of triple-positive tumors may yield the rationale for considering combinations within antibody-drug conjugate regimens. Accordingly, in this review, we summarized the current evidence and rationale for considering TPBC as a different entity, in which distinct therapeutical approaches leveraging on the different biological profile of TPBC may result in superior anticancer regimens and improved patient-centric outcomes.
Collapse
Affiliation(s)
- Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elias Kotteas
- Oncology Unit, Sotiria General Hospital, 3rd Dept of Internal Medicine, Athens School of Medicine, Greece
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Aleix Prat
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Harold J Burstein
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
29
|
Ascione L, Guidi L, Prakash A, Trapani D, LoRusso P, Lou E, Curigliano G. Unlocking the Potential: Biomarkers of Response to Antibody-Drug Conjugates. Am Soc Clin Oncol Educ Book 2024; 44:e431766. [PMID: 38828973 DOI: 10.1200/edbk_431766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Antibody-drug conjugates (ADCs) have reshaped the cancer treatment landscape across a variety of different tumor types. ADCs' peculiar pharmacologic design combines the cytotoxic properties of chemotherapeutic agents with the selectivity of targeted therapies. At present, the approval of many ADCs used in clinical practice has not always been biomarker-driven. Indeed, predicting ADCs' activity and toxicity through the demonstration of specific biomarkers is still a great unmet need, and the identification of patients who can derive significant benefit from treatment with ADCs may often be uncertain. With the lack of robust predictive biomarkers to anticipate primary, intrinsic resistance to ADCs and no consolidated biomarkers to aid in the early identification of treatment resistance (ie, acquired resistance), the determination of precise biologic mechanisms of ADC activity and safety becomes priority in the quest for better patient-centric outcomes. Of great relevance, whether the target antigen expression is a determinant of ADCs' primary activity is still to be clarified, and available data remain quite controversial. Antigen expression assessment is typically performed on tissue biopsy, hence only providing information on a specific tumor site, therefore unable to capture heterogeneous patterns of tumor antigen expression. Quantifying the expression of the target antigen across all tumor sites would help better understand tumor heterogeneity, whereas molecularly characterizing tumor-intrinsic features over time might provide information on resistance mechanisms. In addition, toxicity can represent a critical concern, since most ADCs have a safety profile that resembles that of chemotherapies, with often unique adverse events requiring special management, possibly because of the differential in pharmacokinetics between the small-molecule agent versus payload of a similar class (eg, deruxtecan conjugate-related interstitial lung disease). As such, the identification of robust predictive biomarkers of safety and activity of ADCs has the potential to improve patient selection and enrich the population of patients most likely to derive a substantial clinical benefit, especially in those disease settings where different ADCs happen to be approved in competing clinical indications, with undefined biomarkers to make precise decision making and unclear data on how to sequence ADCs. At this point, the identification of clinically actionable biomarkers in the space of ADCs remains a top research priority.
Collapse
Affiliation(s)
- Liliana Ascione
- Division of Early Drug Development, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, Milan, Italy
| | - Lorenzo Guidi
- Division of Early Drug Development, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, Milan, Italy
| | - Ajay Prakash
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Dario Trapani
- Division of Early Drug Development, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, Milan, Italy
| | - Patricia LoRusso
- Yale University School of Medicine, Yale Cancer Center, New Haven, CT
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Giuseppe Curigliano
- Division of Early Drug Development, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
30
|
Bogatsa E, Lazaridis G, Stivanaki C, Timotheadou E. Neoadjuvant and Adjuvant Immunotherapy in Resectable NSCLC. Cancers (Basel) 2024; 16:1619. [PMID: 38730571 PMCID: PMC11083960 DOI: 10.3390/cancers16091619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Non-small cell lung cancer, even when diagnosed in early stages, has been linked with poor survival rates and distant recurrence patterns. Novel therapeutic approaches harnessing the immune system have been implemented in early stages, following the designated steps of advanced NSCLC treatment strategies. Immune-checkpoint inhibitor (ICI) regimens as monotherapy, combinational, or alongside chemotherapy have been intensely investigated as adjuvant, neoadjuvant, and, more recently, perioperative therapeutic strategies, representing pivotal milestones in the evolution of early lung cancer management while holding great potential for the future. The subject of current ongoing research is optimizing treatment outcomes for patient subsets with different needs and identifying biomarkers that could be predictive of response while translating the trials' endpoints to survival rates. The aim of this review is to discuss all current treatment options with the pros and cons of each, persistent challenges, and future perspectives on immunotherapy as illuminating the path to a new era for resectable NSCLC.
Collapse
Affiliation(s)
| | - George Lazaridis
- Department of Medical Oncology, Aristotle University of Thessaloniki, Papageorgiou Hospital, 56429 Thessaloniki, Greece; (E.B.); (E.T.)
| | | | | |
Collapse
|
31
|
Hoo R, Chua KLM, Panda PK, Skanderup AJ, Tan DSW. Precision Endpoints for Contemporary Precision Oncology Trials. Cancer Discov 2024; 14:573-578. [PMID: 38571432 DOI: 10.1158/2159-8290.cd-24-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
SUMMARY Traditional endpoints such as progression-free survival and overall survival do not fully capture the pharmacologic and pharmacodynamic effects of a therapeutic intervention. Incorporating mechanism-driven biomarkers and validated surrogate proximal endpoints can provide orthogonal readouts of anti-tumor activity and delineate the relative contribution of treatment components on an individual level, highlighting the limitation of solely relying on aggregated readouts from clinical trials to facilitate go/no-go decisions for precision therapies.
Collapse
Affiliation(s)
- Regina Hoo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Cancer and Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore
- Genome Institute of Singapore, Singapore
| | - Kevin L M Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Pankaj Kumar Panda
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | | | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Cancer and Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore
- Genome Institute of Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| |
Collapse
|
32
|
Singhal A, Li BT, O'Reilly EM. Targeting KRAS in cancer. Nat Med 2024; 30:969-983. [PMID: 38637634 PMCID: PMC11845254 DOI: 10.1038/s41591-024-02903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
RAS family variants-most of which involve KRAS-are the most commonly occurring hotspot mutations in human cancers and are associated with a poor prognosis. For almost four decades, KRAS has been considered undruggable, in part due to its structure, which lacks small-molecule binding sites. But recent developments in bioengineering, organic chemistry and related fields have provided the infrastructure to make direct KRAS targeting possible. The first successes occurred with allele-specific targeting of KRAS p.Gly12Cys (G12C) in non-small cell lung cancer, resulting in regulatory approval of two agents-sotorasib and adagrasib. Inhibitors targeting other variants beyond G12C have shown preliminary antitumor activity in highly refractory malignancies such as pancreatic cancer. Herein, we outline RAS pathobiology with a focus on KRAS, illustrate therapeutic approaches across a variety of malignancies, including emphasis on the 'on' and 'off' switch allele-specific and 'pan' RAS inhibitors, and review immunotherapeutic and other key combination RAS targeting strategies. We summarize mechanistic understanding of de novo and acquired resistance, review combination approaches, emerging technologies and drug development paradigms and outline a blueprint for the future of KRAS therapeutics with anticipated profound clinical impact.
Collapse
Affiliation(s)
- Anupriya Singhal
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Verma S, Breadner D, Mittal A, Palma DA, Nayak R, Raphael J, Vincent M. An Updated Review of Management of Resectable Stage III NSCLC in the Era of Neoadjuvant Immunotherapy. Cancers (Basel) 2024; 16:1302. [PMID: 38610980 PMCID: PMC11010993 DOI: 10.3390/cancers16071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Immune-checkpoint inhibitors (ICIs) have an established role in the treatment of locally advanced and metastatic non-small cell lung cancer (NSCLC). ICIs have now entered the paradigm of early-stage NSCLC. The recent evidence shows that the addition of ICI to neoadjuvant chemotherapy improves the pathological complete response (pCR) rate and survival rate in early-stage resectable NSCLC and is now a standard of care option in this setting. In this regard, stage III NSCLC merits special consideration, as it is heterogenous and requires a multidisciplinary approach to management. As the neoadjuvant approach is being adopted widely, new challenges have emerged and the boundaries for resectability are being re-examined. Consequently, it is ever more important to carefully individualize the treatment strategy for each patient with resectable stage III NSCLC. In this review, we discuss the recent literature in this field with particular focus on evolving definitions of resectability, T4 disease, N2 disease (single and multi-station), and nodal downstaging. We also highlight the controversy around adjuvant treatment in this setting and discuss the selection of patients for adjuvant treatment, options of salvage, and next line treatment in cases of progression on/after neoadjuvant treatment or after R2 resection. We will conclude with a brief discussion of predictive biomarkers, predictive models, ongoing studies, and directions for future research in this space.
Collapse
Affiliation(s)
- Saurav Verma
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (D.B.); (J.R.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.A.P.); (R.N.)
| | - Daniel Breadner
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (D.B.); (J.R.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.A.P.); (R.N.)
| | - Abhenil Mittal
- Division of Medical Oncology, Northeast Cancer Centre, Ramsey Lake Health Centre, Sudbury, ON P3E 5J1, Canada;
| | - David A. Palma
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.A.P.); (R.N.)
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Rahul Nayak
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.A.P.); (R.N.)
- Division of Thoracic Surgery, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Jacques Raphael
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (D.B.); (J.R.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.A.P.); (R.N.)
| | - Mark Vincent
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (D.B.); (J.R.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (D.A.P.); (R.N.)
| |
Collapse
|