1
|
Kawai F. Somatic ion channels and action potentials in olfactory receptor cells and vomeronasal receptor cells. J Neurophysiol 2024; 131:455-471. [PMID: 38264787 DOI: 10.1152/jn.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.
Collapse
Affiliation(s)
- Fusao Kawai
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Amato E, Taroc EZM, Forni PE. Illuminating the terminal nerve: Uncovering the link between GnRH-1 neuron and olfactory development. J Comp Neurol 2024; 532:e25599. [PMID: 38488687 PMCID: PMC10958589 DOI: 10.1002/cne.25599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.
Collapse
Affiliation(s)
- Enrico Amato
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M. Taroc
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
3
|
Bruintjes TD, Bleys RLAW. The clinical significance of the human vomeronasal organ. Surg Radiol Anat 2023; 45:457-460. [PMID: 36759365 PMCID: PMC10039832 DOI: 10.1007/s00276-023-03101-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE To find out whether the vomeronasal organ (VNO) can be identified in the nose as a mucosal pit in the anterior nasal septum, to elucidate its function in man and to determine whether it is important to preserve the VNO during septal surgery. METHODS Literature review. RESULTS AND CONCLUSION The VNO is histologically present in almost all humans, but a macroscopically visible septal pit does not necessarily correspond with the actual VNO. The human VNO is probably a vestigial organ with a non-operational sensory function. It is not necessary to take particular care not to damage the VNO during septal surgery.
Collapse
Affiliation(s)
- Tjasse D Bruintjes
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Otorhinolaryngology, Gelre Hospital Apeldoorn, Apeldoorn, The Netherlands.
| | - Ronald L A W Bleys
- Department of Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Dhawan SS, Yedavalli V, Massoud TF. Atavistic and vestigial anatomical structures in the head, neck, and spine: an overview. Anat Sci Int 2023:10.1007/s12565-022-00701-7. [PMID: 36680662 DOI: 10.1007/s12565-022-00701-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023]
Abstract
Organisms may retain nonfunctional anatomical features as a consequence of evolutionary natural selection. Resultant atavistic and vestigial anatomical structures have long been a source of perplexity. Atavism is when an ancestral trait reappears after loss through an evolutionary change in previous generations, whereas vestigial structures are remnants that are largely or entirely functionless relative to their original roles. While physicians are cognizant of their existence, atavistic and vestigial structures are rarely emphasized in anatomical curricula and can, therefore, be puzzling when discovered incidentally. In addition, the literature is replete with examples of the terms atavistic and vestigial being used interchangeably without careful distinction between them. We provide an overview of important atavistic and vestigial structures in the head, neck, and spine that can serve as a reference for anatomists and clinical neuroscientists. We review the literature on atavistic and vestigial anatomical structures of the head, neck, and spine that may be encountered in clinical practice. We define atavistic and vestigial structures and employ these definitions consistently when classifying anatomical structures. Pertinent anatomical structures are numerous and include human tails, plica semilunaris, the vomeronasal organ, levator claviculae, and external ear muscles, to name a few. Atavistic and vestigial structures are found throughout the head, neck, and spine. Some, such as human tails and branchial cysts may be clinically symptomatic. Literature reports indicate that their prevalence varies across populations. Knowledge of atavistic and vestigial anatomical structures can inform diagnoses, prevent misrecognition of variation for pathology, and guide clinical interventions.
Collapse
Affiliation(s)
- Siddhant Suri Dhawan
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, and Stanford Initiative for Multimodality Neuro-Imaging in Translational Anatomy Research (SIMITAR), Department of Radiology, Stanford University School of Medicine, Stanford, USA. .,Center for Academic Medicine, Radiology MC: 5659; 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
(E)-1,2-Difluoroethylene (HFO-1132E). Toxicol Ind Health 2022; 38:435-443. [PMID: 35921195 DOI: 10.1177/07482337221111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
(E)-1,2-Difluoroethylene (HFO-1132E) is a colorless gas used as a refrigerant. HFO-1132E has low acute toxicity following inhalation exposure in rats and dogs. HFO-1132E caused neither cardiac sensitization in dogs nor reproductive or developmental toxicity in rats following repeated inhalation exposure. Repeated inhalation exposure for up to 13 weeks in rats resulted in degeneration of the vomeronasal organ (VNO) at all exposure levels. However, the VNO is poorly developed or absent in humans. HFO-1132E was not genotoxic in either an in vitro chromosome aberration study or in vivo (rat) or in vitro micronucleus assays although the substance was mutagenic in 4 of 5 Salmonella and E. coli strains with and without S9. In an in vivo comet assay in rats, statistically significant increases in DNA strand breaks were observed in the kidney at concentrations ≥60,000 ppm and in the liver, bladder, and lung at 120,000 ppm. An increase in hedgehog cells was also noted at these concentrations that confounded the comet response. The point of departure for the WEEL was 15,000 ppm from the 13-week inhalation study. After application of appropriate adjustment factors, an 8-h time-weighted average (TWA) WEEL value of 350 ppm was derived. This exposure limit is expected to provide a significant margin of safety against any potential adverse health effects in workers. A short-term exposure level (STEL) or skin notation is not applicable for this WEEL.
Collapse
|
6
|
Guzmán-Ruiz MA, Jiménez A, Cárdenas-Rivera A, Guerrero-Vargas NN, Organista-Juárez D, Guevara-Guzmán R. Regulation of Metabolic Health by an "Olfactory-Hypothalamic Axis" and Its Possible Implications for the Development of Therapeutic Approaches for Obesity and T2D. Cell Mol Neurobiol 2022; 42:1727-1743. [PMID: 33813677 PMCID: PMC11421737 DOI: 10.1007/s10571-021-01080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The olfactory system is responsible for the reception, integration and interpretation of odors. However, in the last years, it has been discovered that the olfactory perception of food can rapidly modulate the activity of hypothalamic neurons involved in the regulation of energy balance. Conversely, the hormonal signals derived from changes in the metabolic status of the body can also change the sensitivity of the olfactory system, suggesting that the bidirectional relationship established between the olfactory and the hypothalamic systems is key for the maintenance of metabolic homeostasis. In the first part of this review, we describe the possible mechanisms and anatomical pathways involved in the modulation of energy balance regulated by the olfactory system. Hence, we propose a model to explain its implication in the maintenance of the metabolic homeostasis of the organism. In the second part, we discuss how the olfactory system could be involved in the development of metabolic diseases such as obesity and type two diabetes and, finally, we propose the use of intranasal therapies aimed to regulate and improve the activity of the olfactory system that in turn will be able to control the neuronal activity of hypothalamic centers to prevent or ameliorate metabolic diseases.
Collapse
Affiliation(s)
- Mara Alaide Guzmán-Ruiz
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| | - Adriana Jiménez
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Alfredo Cárdenas-Rivera
- Centro de Investigación en Bioingeniería, Universidad de Ingeniería y Tecnología, Lima, Perú
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - Diana Organista-Juárez
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Rosalinda Guevara-Guzmán
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
7
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
8
|
Buzek A, Serwańska-Leja K, Zaworska-Zakrzewska A, Kasprowicz-Potocka M. The Shape of the Nasal Cavity and Adaptations to Sniffing in the Dog ( Canis familiaris) Compared to Other Domesticated Mammals: A Review Article. Animals (Basel) 2022; 12:517. [PMID: 35203225 PMCID: PMC8868339 DOI: 10.3390/ani12040517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Dogs are a good starting point for the description and anatomical analysis of turbinates of the nose. This work aimed at summing up the state of knowledge on the shape of the nasal cavity and airflow in these domestic animals and dealt with the brachycephalic syndrome (BOAS) and anatomical changes in the initial airway area in dogs with a short and widened skull. As a result of artificial selection and breeding concepts, the dog population grew very quickly. Modern dog breeds are characterized by a great variety of their anatomical shape. Craniological changes also had a significant impact on the structure and physiology of the respiratory system in mammals. The shape of the nasal cavity is particularly distinctive in dogs. Numerous studies have established that dogs and their olfactory ability are of great importance in searching for lost people, detecting explosives or drugs as well as signaling disease in the human body. The manuscript describes the structure of the initial part of the respiratory system, including the nasal turbinates, and compares representatives of various animal species. It provides information on the anatomy of brachycephalic dogs and BOAS. The studies suggest that further characterization and studies of nasal turbinates and their hypertrophy are important.
Collapse
Affiliation(s)
- Anna Buzek
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (A.B.); (A.Z.-Z.); (M.K.-P.)
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
| | - Anita Zaworska-Zakrzewska
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (A.B.); (A.Z.-Z.); (M.K.-P.)
| | - Małgorzata Kasprowicz-Potocka
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (A.B.); (A.Z.-Z.); (M.K.-P.)
| |
Collapse
|
9
|
Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2022; 97:20-44. [PMID: 34480392 DOI: 10.1111/brv.12787] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.
Collapse
Affiliation(s)
- Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| |
Collapse
|
10
|
Brüning RS, Tombor L, Schulz MH, Dimmeler S, John D. Comparative analysis of common alignment tools for single-cell RNA sequencing. Gigascience 2022; 11:giac001. [PMID: 35084033 PMCID: PMC8848315 DOI: 10.1093/gigascience/giac001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With the rise of single-cell RNA sequencing new bioinformatic tools have been developed to handle specific demands, such as quantifying unique molecular identifiers and correcting cell barcodes. Here, we benchmarked several datasets with the most common alignment tools for single-cell RNA sequencing data. We evaluated differences in the whitelisting, gene quantification, overall performance, and potential variations in clustering or detection of differentially expressed genes. We compared the tools Cell Ranger version 6, STARsolo, Kallisto, Alevin, and Alevin-fry on 3 published datasets for human and mouse, sequenced with different versions of the 10X sequencing protocol. RESULTS Striking differences were observed in the overall runtime of the mappers. Besides that, Kallisto and Alevin showed variances in the number of valid cells and detected genes per cell. Kallisto reported the highest number of cells; however, we observed an overrepresentation of cells with low gene content and unknown cell type. Conversely, Alevin rarely reported such low-content cells. Further variations were detected in the set of expressed genes. While STARsolo, Cell Ranger 6, Alevin-fry, and Alevin produced similar gene sets, Kallisto detected additional genes from the Vmn and Olfr gene family, which are likely mapping artefacts. We also observed differences in the mitochondrial content of the resulting cells when comparing a prefiltered annotation set to the full annotation set that includes pseudogenes and other biotypes. CONCLUSION Overall, this study provides a detailed comparison of common single-cell RNA sequencing mappers and shows their specific properties on 10X Genomics data.
Collapse
Affiliation(s)
- Ralf Schulze Brüning
- Institute of Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Lukas Tombor
- Institute of Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58 10785 Berlin, Germany
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58 10785 Berlin, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58 10785 Berlin, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
11
|
Zaremska V, Fischer IM, Renzone G, Arena S, Scaloni A, Knoll W, Pelosi P. Reverse Chemical Ecology Suggests Putative Primate Pheromones. Mol Biol Evol 2022; 39:msab338. [PMID: 34897488 PMCID: PMC8789041 DOI: 10.1093/molbev/msab338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pheromonal communication is widespread among living organisms, but in apes and particularly in humans there is currently no strong evidence for such phenomenon. Among primates, lemurs use pheromones to communicate within members of the same species, whereas in some monkeys such capabilities seem to be lost. Chemical communication in humans appears to be impaired by the lack or malfunctioning of biochemical tools and anatomical structures mediating detection of pheromones. Here, we report on a pheromone-carrier protein (SAL) adopting a "reverse chemical ecology" approach to get insights on the structures of potential pheromones in a representative species of lemurs (Microcebus murinus) known to use pheromones, Old-World monkeys (Cercocebus atys) for which chemical communication has been observed, and humans (Homo sapiens), where pheromones and chemical communication are still questioned. We have expressed the SAL orthologous proteins of these primate species, after reconstructing the gene encoding the human SAL, which is disrupted due to a single base mutation preventing its translation into RNA. Ligand-binding experiments with the recombinant SALs revealed macrocyclic ketones and lactones as the best ligands for all three proteins, suggesting cyclopentadecanone, pentadecanolide, and closely related compounds as the best candidates for potential pheromones. Such hypothesis agrees with the presence of a chemical very similar to hexadecanolide in the gland secretions of Mandrillus sphinx, a species closely related to C. atys. Our results indicate that the function of this carrier protein has not changed much during evolution from lemurs to humans, although its physiological role has been certainly impaired in humans.
Collapse
Affiliation(s)
- Valeriia Zaremska
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | | | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| |
Collapse
|
12
|
Invitto S, Keshmiri S, Mazzatenta A, Grasso A, Romano D, Bona F, Shiomi M, Sumioka H, Ishiguro H. Perception of Social Odor and Gender-Related Differences Investigated Through the Use of Transfer Entropy and Embodied Medium. Front Syst Neurosci 2021; 15:650528. [PMID: 34177474 PMCID: PMC8232750 DOI: 10.3389/fnsys.2021.650528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
The perception of putative pheromones or social odors (PPSO) in humans is a widely debated topic because the published results seem ambiguous. Our research aimed to evaluate how cross-modal processing of PPSO and gender voice can affect the behavioral and psychophysiological states of the subject during a listening task with a bodily contact medium, and how these effects could be gender related. Before the experimental session, three embodied media, were exposed to volatilized estratetraenol (Estr), 5α-androst-16-en-3 α-ol (Andr), and Vaseline oil. The experimental session consisted in listening to a story that were transmitted, with a male or female voice, by the communicative medium via a Bluetooth system during a listening task, recorded through 64-active channel electroencephalography (EEG). The sense of co-presence and social presence, elicited by the medium, showed how the established relationship with the medium was gender dependent and modulated by the PPSO. In particular, Andr induced greater responses related to co-presence. The gender of the participants was related to the co-presence desire, where women imagined higher medium co-presence than men. EEG findings seemed to be more responsive to the PPSO–gender voice interaction, than behavioral results. The mismatch between female PPSO and male voice elicited the greatest cortical flow of information. In the case of the Andr–male voice condition, the trained model appeared to assign more relevance to the flow of information to the right frontotemporal regions (involved in odor recognition memory and social behavior). The Estr–male voice condition showed activation of the bilateral frontoparietal network, which is linked to cognitive control, cognitive flexibility, and auditory consciousness. The model appears to distinguish the dissonance condition linked to Andr matched with a female voice: it highlights a flow of information to the right occipital lobe and to the frontal pole. The PPSO could influence the co-presence judgements and EEG response. The results seem suggest that could be an implicit pattern linked to PPSO-related gender differences and gender voice.
Collapse
Affiliation(s)
- Sara Invitto
- INSPIRE-Laboratory of Cognitive and Psychophysiological Olfactory Processes, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Andrea Mazzatenta
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alberto Grasso
- INSPIRE-Laboratory of Cognitive and Psychophysiological Olfactory Processes, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Daniele Romano
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy.,Department of History, Society and Human Studies, University of Salento, Lecce, Italy
| | - Fabio Bona
- INSPIRE-Laboratory of Cognitive and Psychophysiological Olfactory Processes, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Masahiro Shiomi
- Interaction Science Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Hidenobu Sumioka
- Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Hiroshi Ishiguro
- Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan.,Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Oleszkiewicz A, Suhle P, Haehner A, Croy I. Prior exposure to Hedione, a model of pheromone, does not affect female ratings of male facial attractiveness or likeability. Physiol Behav 2021; 238:113458. [PMID: 34033848 DOI: 10.1016/j.physbeh.2021.113458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
The existence of pheromones in humans is controversial, partly because of definitional difficulties and partly because of the question of possible chemical substances. The synthetic compound Methyl dihydrojasmonate (Hedione) is potent to bind to vomeronasal-type 1 receptors (VN1R1s) and activate limbic areas of the brain in a sex-specific manner. However, one of the most important definitional points for a human pheromone effect has not yet been investigated, i.e., whether smelling Hedione, a model of pheromone, has a behavioral effect. We tested in females whether Hedione leads to altered perception of male social stimuli. Each of the included women were sensitive to Hedione and were tested around the time of ovulation in three consecutive sessions, during each they were exposed to either Hedione or Phenylethyl alcohol or Odorless air. We measured the speed of male face recognition (implicit priming task) and collected ratings of facial attractiveness and likeability of men (explicit task). Only about half of the women tested were sensitive to Hedione. Those women did not show any effect of Hedione exposure in the implicit priming task and moderate, but non-significant effects in the explicit task. We therefore assume that Hedione is not a potent model of pheromone in humans and this observation may be due to the fact that the artificially produced substance is not suited for signaling the proximity of other humans. Furthermore, the high rate of Hedione-specific anosmia leads to the hypothesis that a substantial proportion of individuals has a poor V1NR1 receptor expression.
Collapse
Affiliation(s)
- Anna Oleszkiewicz
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Germany; Institute of Psychology, University of Wroclaw, Poland.
| | - Paulina Suhle
- Department of Psychotherapy and Psychosomatic Medicine, TU Dresden, Germany
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatic Medicine, TU Dresden, Germany; Department of Psychology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
14
|
Elmer LK, Madliger CL, Blumstein DT, Elvidge CK, Fernández-Juricic E, Horodysky AZ, Johnson NS, McGuire LP, Swaisgood RR, Cooke SJ. Exploiting common senses: sensory ecology meets wildlife conservation and management. CONSERVATION PHYSIOLOGY 2021; 9:coab002. [PMID: 33815799 PMCID: PMC8009554 DOI: 10.1093/conphys/coab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 05/21/2023]
Abstract
Multidisciplinary approaches to conservation and wildlife management are often effective in addressing complex, multi-factor problems. Emerging fields such as conservation physiology and conservation behaviour can provide innovative solutions and management strategies for target species and systems. Sensory ecology combines the study of 'how animals acquire' and process sensory stimuli from their environments, and the ecological and evolutionary significance of 'how animals respond' to this information. We review the benefits that sensory ecology can bring to wildlife conservation and management by discussing case studies across major taxa and sensory modalities. Conservation practices informed by a sensory ecology approach include the amelioration of sensory traps, control of invasive species, reduction of human-wildlife conflicts and relocation and establishment of new populations of endangered species. We illustrate that sensory ecology can facilitate the understanding of mechanistic ecological and physiological explanations underlying particular conservation issues and also can help develop innovative solutions to ameliorate conservation problems.
Collapse
Affiliation(s)
- Laura K Elmer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Nicholas S Johnson
- USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | - Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ronald R Swaisgood
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027-7000, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
Stoyanov GS, Sapundzhiev NR, Tonchev AB. The vomeronasal organ: History, development, morphology, and functional neuroanatomy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:283-291. [PMID: 34266599 DOI: 10.1016/b978-0-12-819973-2.00020-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human vomeronasal organ (VNO) is an accessory olfactory organ located on the anteroinferior part of the nasal septum, 1.5-2.5cm from the nostrils. Its main role is pheromone reception and, through its anatomical connections with the central nervous system, especially parts of the hypothalamus, modulation of both social and sexual behavior, although these relations have been established only in nonprimates and very little is yet established for the structure and function of the human VNO. Morphologically, the human VNO is a pit or duct-shaped structure, comprised of three cellular layers-basal cells, neural cells with olfactory cell morphology and immunohistochemical phenotype, and ciliated respiratory epithelium. Medially and connected to the VNO, a small nerve fiber is found that runs longitudinally to the nasal septum and is considered by some to be a distant process of the Cranial Nerve 0 or terminal nerve. In addition to pheromone reception, the human VNO has also been associated with several pathological conditions, including sinus septi nasi, posttraumatic stress disorder, and ectopic olfactory esthesioblastoma.
Collapse
Affiliation(s)
- George S Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University, Varna, Bulgaria.
| | - Nikolay R Sapundzhiev
- Department of Neurosurgery and ENT Diseases, Division of ENT Diseases, Faculty of Medicine, Medical University, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria
| |
Collapse
|
16
|
Montardy Q, Kwan WC, Mundinano IC, Fox DM, Wang L, Gross CT, Bourne JA. Mapping the neural circuitry of predator fear in the nonhuman primate. Brain Struct Funct 2020; 226:195-205. [PMID: 33263778 PMCID: PMC7817595 DOI: 10.1007/s00429-020-02176-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
In rodents, innate and learned fear of predators depends on the medial hypothalamic defensive system, a conserved brain network that lies downstream of the amygdala and promotes avoidance via projections to the periaqueductal gray. Whether this network is involved in primate fear remains unknown. To address this, we provoked flight responses to a predator (moving snake) in the marmoset monkey under laboratory conditions. We combined c-Fos immunolabeling and anterograde/retrograde tracing to map the functional connectivity of the ventromedial hypothalamus, a core node in the medial hypothalamic defensive system. Our findings demonstrate that the ventromedial hypothalamus is recruited by predator exposure in primates and that anatomical connectivity of the rodent and primate medial hypothalamic defensive system are highly conserved.
Collapse
Affiliation(s)
- Quentin Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - William C Kwan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Inaki C Mundinano
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Dylan M Fox
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Cornelius T Gross
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy.
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
17
|
Unique air inclusions within the nasopalatine duct indicating its presence radiographically: a case presentation. Surg Radiol Anat 2020; 42:817-821. [PMID: 32040607 DOI: 10.1007/s00276-020-02428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
The anterior maxilla is characterized by the nasopalatine canal that originates bilaterally from the anterior nasal floor, subsequently fuses, and terminates at the incisive foramen in the anterior palate. Embryologically, this structure forms within the primary palate, and contains the neurovascular bundle, but also continuous epithelialized bands. The latter, termed nasopalatine ducts, usually degenerate and/or obliterate before birth. However, in some individuals, the ducts may remain partially or completely patent. The present case report describes for the first time in the literature a rare finding of air inclusions within the anatomical area of the nasopalatine canal indicating the presence of a nasopalatine duct as visualized with cone beam computed tomography. The patient was asymptomatic and the radiographic findings were seen incidentally. An endoscopic inspection of the anterior nasal cavities confirmed the presence of the nasal openings of the partially patent nasopalatine ducts.
Collapse
|
18
|
Popov SV, Kamchatnov PR, Sturov NV, Bogdanets SA. [Modern studies of the role of the vomeronasal system in the perception of pheromones and their impact on social and sexual behavior]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:143-147. [PMID: 31994528 DOI: 10.17116/jnevro2019119121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The vomeronasal system (VNS) provides regulation of a wide range of autonomic and affective functions, behavioral reactions in response to the specific chemical stimuli pheromones secreted by mammals, including humans. The results of experimental studies confirming the existence of VNS and explaining the basic mechanisms of its functioning are presented. The results of studies of healthy volunteers, explaining the effect of pheromones on a number of functions of the human body, are considered.
Collapse
Affiliation(s)
- S V Popov
- Peoples' Friendship University of Russia, Moscow, Russia
| | - P R Kamchatnov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N V Sturov
- Peoples' Friendship University of Russia, Moscow, Russia
| | - S A Bogdanets
- Medical Center Yuzhnyy 'Vascular clinic', Moscow, Russia
| |
Collapse
|
19
|
Micarelli A, Cormano A, Caccamo D, Alessandrini M. Olfactory-Related Quality of Life in Multiple Chemical Sensitivity: A Genetic-Acquired Factors Model. Int J Mol Sci 2019; 21:ijms21010156. [PMID: 31881664 PMCID: PMC6981591 DOI: 10.3390/ijms21010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Genetic polymorphisms as well as environmental exposures to chemical compounds, iatrogenic, psychological, and physical trauma may play a pathophysiological role in multiple chemical sensitivity (MCS) olfactory complaints, given that xenobiotic metabolism is influenced by sequence variations in genes of metabolizing enzymes. Thus, the aim of the present study was to depict-by means of multiple regression analysis-how different genetic conditions, grouped according to their function as well as clinical background and environmental exposure may interfere with those olfactory complaints referred by MCS patients. Therefore, MCS patients after gene polymorphism sequencing, the olfactory-related quality of life score-calculated by means of the Questionnaire of Olfactory Disorder in forty-six MCS patients-have been found to significantly rely on the phase I and II enzymes score and exposure to previous compounds and surgical treatments. The present work-implementing for the first time a genetic-acquired factors model on a regression analysis-further reinforces those theories, positing MCS as a complex, multifactorial, disease in which the genetic risk related to phase I and II enzymes involved in xenobiotic detoxification, olfactory, and neurodegenerative diseases play a necessary, but probably not sufficient role, along the pathophysiological route of the disease.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Institute of Mountain Emergency Medicine, EURAC Research, I-39100 Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), 02032 Rome, Italy
- Correspondence:
| | | | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, 98124 Messina, Italy;
| | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
20
|
Gebhart VM, Rodewald A, Wollbaum E, Hertel K, Bitter T, Jirikowski GF. Evidence for accessory chemosensory cells in the adult human nasal cavity. J Chem Neuroanat 2019; 104:101732. [PMID: 31874203 DOI: 10.1016/j.jchemneu.2019.101732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
The existence of functionally relevant accessory olfactory organs in humans is still a matter of controversy. A vomeronasal organ (VNO) with sensory and non-sensory epithelia exists only in macrosmatic mammals. A similar structure is regularly observed in humans during fetal development. The postnatal persistence of a VNO like epithelial duct has been described in about 10 %. Here we studied tissue samples of nasal mucosa from adults. In all individuals we found epithelial cells in the lower part of the nasal septum which exhibited morphological features of sensory neurons and which showed immunostaining for olfactory marker protein OMP. These cells were interposed by ciliated cells, goblet cells and small intraepithelial capillaries. Only occasionally we found such cells within a morphologically defined epithelial duct. A clear separation of sensory and non-sensory epithelia could not be observed. In most cases we found OMP positive groups of cells either in epithelial cavities or just embedded in respiratory epithelium. With RT-PCR we could confirm the presence of OMP encoding mRNA thus supporting the idea of intrinsic expression of this protein in the nasal mucosa. We conclude that accessory chemosensory structures are regularly conserved in adult humans in the approximate anatomical location of the VNO of microsmatic animals. Their functional importance is yet to be determined.
Collapse
Affiliation(s)
| | - Andrea Rodewald
- Institute of Anatomy II, Jena University Hospital, Jena, Germany
| | - Enrico Wollbaum
- Institute of Anatomy I, Jena University Hospital, Jena, Germany
| | - Kay Hertel
- Institute of Pathology, HELIOS Klinikum, Erfurt, Germany
| | - Thomas Bitter
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
21
|
A test of the effects of the equine maternal pheromone on the clinical and ethological parameters of equines undergoing hoof trimming. J Vet Behav 2019. [DOI: 10.1016/j.jveb.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Marini M, Manetti M, Sgambati E. Immunolocalization of VEGF/VEGFR system in human fetal vomeronasal organ during early development. Acta Histochem 2019; 121:94-100. [PMID: 30442382 DOI: 10.1016/j.acthis.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/01/2023]
Abstract
The vomeronasal system (VNS) is an accessory olfactory structure present in most mammals adhibited to the detection of specific chemosignals implied in social and reproductive behavior. The VNS comprises the vomeronasal organ (VNO), vomeronasal nerve and accessory olfactory bulb. VNO is characterized by a neuroepithelium constituted by bipolar neurons and supporting and stem/progenitor cells. In humans, VNO is present during fetal life and is supposed to possess chemoreceptor activity and participate in gonadotropin-releasing hormone neuronal precursor migration toward the hypothalamus. Instead, the existence and functions of VNO in postnatal life is debated. Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have been demonstrated to play fundamental roles in various neurogenic events. However, there are no data regarding the localization and possible function of VEGF/VEGFRs in human fetal VNO. Therefore, this study was conceived to investigate the expression of VEGF/VEGFRs in human VNO in an early developmental period (9-12 weeks of gestation), when this organ appears well structured. Coronal sections of maxillofacial specimens were subjected to peroxidase-based immunohistochemistry for VEGF, VEGFR-1 and VEGFR-2. Double immunofluorescence for VEGF, VEGFR-1 or VEGFR-2 and the neuronal marker protein gene product 9.5 (PGP 9.5) was also performed. VEGF expression was evident in the entire VNO epithelium, with particularly strong reactivity in the middle layer. Strongly VEGF-immunostained cells with aspect similar to bipolar neurons and/or their presumable precursors were detected in the middle and basal layers. Cells detaching from the basal epithelial layer and detached cell groups in the surrounding lamina propria showed moderate/strong VEGF expression. The strongest VEGFR-1 and VEGFR-2 expression was detected in the apical epithelial layer. Cells with aspect similar to bipolar neurons and/or their presumable precursors located in the middle and basal layers and the detaching/detached cells displayed a VEGFR-1 and VEGFR-2 reactivity similar to that of VEGF. The basal epithelial layer exhibited stronger staining for VEGFRs than for VEGF. Cells with morphology and VEGF/VEGFR expression similar to those of the detaching/detached cells were also detected in the middle and basal VNO epithelial layers. Double immunofluorescence using anti-PGP 9.5 antibodies demonstrated that most of the VEGF/VEGFR-immunoreactive cells were neuronal cells. Collectively, our findings suggest that during early fetal development the VEGF/VEGFR system might be involved in the presumptive VNO chemoreceptor activity and neuronal precursor migration.
Collapse
Affiliation(s)
- Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy.
| |
Collapse
|
23
|
Courtens F, Demangeat JL, Benabdallah M. Could the Olfactory System Be a Target for Homeopathic Remedies as Nanomedicines? J Altern Complement Med 2018; 24:1032-1038. [PMID: 29889551 PMCID: PMC6247980 DOI: 10.1089/acm.2018.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Homeopathic remedies (HRs) contain odorant molecules such as flavonoids or terpenes and can lose their efficiency in presence of some competitive odors. Such similarities, along with extreme sensitivity of the olfactory system, widespread presence of olfactory receptors over all organic tissues (where they have metabolic roles besides perception of odors), and potential direct access to the brain through olfactory nerves (ONs) and trigeminal nerves, may suggest the olfactory system as target for HRs. Recent works highlighted that HRs exist in a dual form, that is, a still molecular form at low dilution and a nanoparticulate form at high dilution, and that remnants of source remedy persist in extremely high dilutions. From the literature, both odorants and nanoparticles (NPs) can enter the body through inhalation, digestive absorption, or through the skin, especially, NPs or viruses can directly reach the brain through axons of nerves. Assuming that HRs are recognized by olfactory receptors, their information could be transmitted to numerous tissues through receptor-ligand interaction, or to the brain by either activating the axon potential of ONs and trigeminal nerves or, in their nanoparticulate form, by translocating through axons of these nerves. Moreover, the nanoparticulate form may activate the immune system at multiple levels, induce systemic various biological responses through the pituitary axis and inflammation factors, or modulate gene expression at the cellular level. As immunity, inflammation, pituitary axis, and olfactory system are closely linked together, their permanent interaction triggered by olfactory receptors may thus ensure homeostasis.
Collapse
|
24
|
Peut-on améliorer ses habiletés de séduction ? SEXOLOGIES 2018. [DOI: 10.1016/j.sexol.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Ilkiw JL, Kmita LC, Targa ADS, Noseda ACD, Rodrigues LS, Dorieux FWC, Fagotti J, Dos Santos P, Lima MMS. Dopaminergic Lesion in the Olfactory Bulb Restores Olfaction and Induces Depressive-Like Behaviors in a 6-OHDA Model of Parkinson's Disease. Mol Neurobiol 2018; 56:1082-1095. [PMID: 29869198 DOI: 10.1007/s12035-018-1134-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Olfactory impairments and depressive behavior are commonly reported by individuals with Parkinson's disease (PD) being observed before motor symptoms. The mechanisms underlying these clinical manifestations are not fully elucidated. However, the imbalance in dopaminergic neurotransmission seems to play an important role in this context. In patients and animal models of PD, an increase in the dopaminergic interneurons of the glomerular layer in olfactory bulb (OB-gl) is observed, which may contribute to the olfactory impairment. In addition, neuronal imbalance in OB is related to depressive symptoms, as demonstrated by chemical olfactory bulbectomy. In view of that, we hypothesized that a reduction in the number or density of dopaminergic neurons present in OB could promote an olfactory improvement and, in contrast, would accentuate the depressive-like behaviors in the 6-hydroxydopamine (6-OHDA) model of PD. Therefore, we performed single or double injections of 6-OHDA within the substantia nigra pars compacta (SNpc) and/or in the OB-gl. We observed that, after 7 days, the group with nigral lesion exhibited olfactory impairment, as well as the group with the lesion in the OB-gl. However, the combination of the lesions prevented the occurrence of hyposmia. In relation to depressive-like behaviors, we observed that the SNpc injury promoted depressive-like behavior, being accentuated after a double injury. Our results demonstrated the importance of the dopaminergic neurons of the OB-gl in different non-motor features of PD, since the selective reduction of these periglomerular neurons was able to induce olfactory impairment and depressive-like behaviors.
Collapse
Affiliation(s)
- Jessica L Ilkiw
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Luana C Kmita
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Adriano D S Targa
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Ana Carolina D Noseda
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Lais S Rodrigues
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Flávia W C Dorieux
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Juliane Fagotti
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Patrícia Dos Santos
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Marcelo M S Lima
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil.
| |
Collapse
|
26
|
Louryan S, Vanmuylder N. [Contributions of embryology and comparative anatomy for teaching of cranial nerves]. Morphologie 2018; 102:111-121. [PMID: 29858141 DOI: 10.1016/j.morpho.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 05/21/2023]
Abstract
Some authors propose a global approach, including imaging, to describe cranial nerves from a clinical point of view. If we can agree to a certain extent with this proposal, we consider that the use of a medical point of view can neglect histological and embryological features which contribute to a better understanding of nerve function. For example, it is false to consider totally "nerves" I and II as "sensory cranial nerves". They are not true nerves, but derive manly from direct expansions of the central nervous system. They differ fundamentally from cranial nerves, except for the fibers present at the roof of olfactory fossa. The cranial nerve nuclei arise from "Herrick's columns", which originate from alar and basal plates. These columns, which correspond to "functional components" of these nerves are extremely important for the understanding of cranial nerve functions (as "viscero-efferent", "somato-afferent", etc.), which also helps students to memorize these nerves. The usual classification of cranial nerves neglect the terminal nerve, present in adult humans and associated to the vomero-nasal organ. It includes in the cranial nerves a trunk nerve secondary associated with the head, the hypoglossal nerve, and creates a supernumerary cranial nerve (the accessory nerve) by fusion of vagous fibers with cervical roots. Close consideration of the development and the comparative anatomy can lead to a new synthesis useful to understand the cranial nerves from a general biological point of view and can facilitate their study.
Collapse
Affiliation(s)
- S Louryan
- Laboratoire d'Anatomie, Biomécanique et Organogenèse (Dir : Prof. S. Louryan), faculté de médecine, université Libre de Bruxelles, route de Lennik, 808 (CP 619), B1070 Bruxelles, Belgique.
| | - N Vanmuylder
- Laboratoire d'Anatomie, Biomécanique et Organogenèse (Dir : Prof. S. Louryan), faculté de médecine, université Libre de Bruxelles, route de Lennik, 808 (CP 619), B1070 Bruxelles, Belgique
| |
Collapse
|
27
|
Stoyanov GS, Matev BK, Valchanov P, Sapundzhiev N, Young JR. The Human Vomeronasal (Jacobson's) Organ: A Short Review of Current Conceptions, With an English Translation of Potiquet's Original Text. Cureus 2018; 10:e2643. [PMID: 30034965 PMCID: PMC6050168 DOI: 10.7759/cureus.2643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vomeronasal organ (VNO) is a structure located in the anteroinferior portion of the nasal septum and is part of the accessory olfactory system. The VNO, together with its associated structures, has been shown to play a role in the formation of social and sexual behavior in animals, thanks to its pheromone receptor cells and the stimulating effect on the secretion of gonadotropin-releasing hormone. The VNO was first described as a structure by the Dutch botanist and anatomist Frederik Ruysch in 1703 while dissecting a young male cadaver. This finding, however, is widely contradicted due to no elaborate descriptions being made by the Ruysch. The description of the VNO is more widely attributed to the Danish surgeon Ludwig Jacobson, with whom the VNO has been synonymized, as in 1803 he described the structure in a variety of mammals. Whilst Jacobson extensively studied prior reports of the VNO, he publicly denied its existence in humans. Following these discoveries and some contradictory statements in 1891, M. Potiquet published one of the more influential reviews on the topic. To this day, despite the first report of the organ's existence being made in a human and many articles stating its presence and supporting its function, the presence of a VNO in humans is still widely debated upon.
Collapse
Affiliation(s)
- George S Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", Varna, BGR
| | - Boyko K Matev
- Student, Faculty of Medicine, Medical University - Varna "prof. Dr. Paraskev Stoyanov", Varna, BGR
| | - Petar Valchanov
- Anatomy and Cell Biology, Faculty of Medicine, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria, Varna, BGR
| | - Nikolay Sapundzhiev
- Department of Neurosurgery and Ent, Division of Ent, Faculty of Medicine, Medical University Varna "prof. Dr. Paraskev Stoyanov", Varna, BGR
| | | |
Collapse
|
28
|
|
29
|
D'Aniello B, Semin GR, Scandurra A, Pinelli C. The Vomeronasal Organ: A Neglected Organ. Front Neuroanat 2017; 11:70. [PMID: 28871220 PMCID: PMC5566567 DOI: 10.3389/fnana.2017.00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Biagio D'Aniello
- Department of Biology, University of Naples "Federico II,"Naples, Italy
| | - Gün R Semin
- William James Center for Research, Instituto Superior de Psicologia Aplicada - Instituto Universitário (ISPA-IU)Lisbon, Portugal
| | - Anna Scandurra
- Department of Biology, University of Naples "Federico II,"Naples, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli,"Caserta, Italy
| |
Collapse
|
30
|
Henningsson S, Hovey D, Vass K, Walum H, Sandnabba K, Santtila P, Jern P, Westberg L. A missense polymorphism in the putative pheromone receptor gene VN1R1 is associated with sociosexual behavior. Transl Psychiatry 2017; 7:e1102. [PMID: 28440809 PMCID: PMC5416707 DOI: 10.1038/tp.2017.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/09/2017] [Accepted: 02/10/2017] [Indexed: 01/05/2023] Open
Abstract
Pheromones regulate social and reproductive behavior in most mammalian species. These effects are mediated by the vomeronasal and main olfactory systems. Effects of putative pheromones on human neuroendocrine activity, brain activity and attractiveness ratings suggest that humans may communicate via similar chemosignaling. Here we studied two samples of younger and older individuals, respectively, with respect to one nonsynonymous polymorphism in the gene encoding the human vomeronasal type-1 receptor 1, VN1R1, and one nonsynonymous polymorphism in the gene encoding the olfactory receptor OR7D4. Participants in both samples had self-reported their sociosexual behavior using the sociosexual orientation inventory, including questions regarding lifetime number of one-night stands, number of partners last year and expected number of partners the coming 5 years. In women, there was a significant association between the VN1R1 polymorphism and sociosexual behavior in both samples, driven specifically by the question regarding one-night stands. Our results support the hypothesis that human social interaction is modulated by communication via chemosignaling.
Collapse
Affiliation(s)
- S Henningsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K Vass
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H Walum
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Atlanta, GA, USA
- Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - K Sandnabba
- Department of Psychology, Faculty of Arts, Psychology and Theology, Åbo Akademi University, Åbo, Finland
| | - P Santtila
- Department of Psychology, Faculty of Arts, Psychology and Theology, Åbo Akademi University, Åbo, Finland
| | - P Jern
- Department of Psychology, Faculty of Arts, Psychology and Theology, Åbo Akademi University, Åbo, Finland
| | - L Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Huang Z, Thiebaud N, Fadool DA. Differential serotonergic modulation across the main and accessory olfactory bulbs. J Physiol 2017; 595:3515-3533. [PMID: 28229459 DOI: 10.1113/jp273945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/12/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS There are serotonergic projections to both the main (MOB) and the accessory olfactory bulb (AOB). Current-clamp experiments demonstrate that serotonergic afferents are largely excitatory for mitral cells (MCs) in the MOB where 5-HT2A receptors mediate a direct excitatory action. Serotonergic afferents are predominately inhibitory for MCs in the AOB. There are two types of inhibition: indirect inhibition mediated through the 5-HT2 receptors on GABAergic interneurons and direct inhibition via the 5-HT1 receptors on MCs. Differential 5-HT neuromodulation of MCs across the MOB and AOB could contribute to select behaviours such as olfactory learning or aggression. ABSTRACT Mitral cells (MCs) contained in the main (MOB) and accessory (AOB) olfactory bulb have distinct intrinsic membrane properties but the extent of neuromodulation across the two systems has not been widely explored. Herein, we investigated a widely distributed CNS modulator, serotonin (5-HT), for its ability to modulate the biophysical properties of MCs across the MOB and AOB, using an in vitro, brain slice approach in postnatal 15-30 day mice. In the MOB, 5-HT elicited three types of responses in 93% of 180 cells tested. Cells were either directly excited (70%), inhibited (10%) or showed a mixed response (13%)- first inhibition followed by excitation. In the AOB, 82% of 148 cells were inhibited with 18% of cells showing no response. Albeit located in parallel partitions of the olfactory system, 5-HT largely elicited MC excitation in the MOB while it evoked two different kinetic rates of MC inhibition in the AOB. Using a combination of pharmacological agents, we found that the MC excitatory responses in the MOB were mediated by 5-HT2A receptors through a direct activation. In comparison, 5-HT-evoked inhibitory responses in the AOB arose due to a polysynaptic, slow-onset inhibition attributed to 5-HT2 receptor activation exciting GABAergic interneurons. The second type of inhibition had a rapid onset as a result of direct inhibition mediated by the 5-HT1 class of receptors. The distinct serotonergic modulation of MCs between the MOB and AOB could provide a molecular basis for differential chemosensory behaviours driven by the brainstem raphe nuclei into these parallel systems.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Nicolas Thiebaud
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Debra Ann Fadool
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| |
Collapse
|
32
|
Lennon MJ, Jones SP, Lovelace MD, Guillemin GJ, Brew BJ. Bcl11b-A Critical Neurodevelopmental Transcription Factor-Roles in Health and Disease. Front Cell Neurosci 2017; 11:89. [PMID: 28424591 PMCID: PMC5372781 DOI: 10.3389/fncel.2017.00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
B cell leukemia 11b (Bcl11b) is a zinc finger protein transcription factor with a multiplicity of functions. It works as both a genetic suppressor and activator, acting directly, attaching to promoter regions, as well as indirectly, attaching to promoter-bound transcription factors. Bcl11b is a fundamental transcription factor in fetal development, with important roles for the differentiation and development of various neuronal subtypes in the central nervous system (CNS). It has been used as a specific marker of layer V subcerebral projection neurons as well as striatal interneurons. Bcl11b also has critical developmental functions in the immune, integumentary and cardiac systems, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. Bcl11b has been implicated in a number of disease states including Huntington's disease, Alzheimer's disease, HIV and T-Cell malignancy, amongst others. Bcl11b is a fascinating protein whose critical roles in the CNS and other parts of the body are yet to be fully explicated. This review summarizes the current literature on Bcl11b and its functions in development, health, and disease as well as future directions for research.
Collapse
Affiliation(s)
- Matthew J Lennon
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Simon P Jones
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia.,Departments of Neurology and Immunology, St. Vincent's HospitalSydney, NSW, Australia
| |
Collapse
|
33
|
Horie S, Yamaki A, Takami S. Presence of Sex Steroid-Metabolizing Enzymes in the Olfactory Mucosa of Rats. Anat Rec (Hoboken) 2016; 300:402-414. [PMID: 27737514 DOI: 10.1002/ar.23497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 11/08/2022]
Abstract
Although several lines of evidence have suggested that sex steroids influence olfaction, little is known about the cellular basis of steroid-metabolizing enzymes in the olfactory system. Thus, we aimed to examine gene expression and immunolocalization of four sex steroid-metabolizing enzymes in the olfactory mucosa (OM) of albino rats; steroid side chain-cleaving enzyme (P450scc), 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD-1), 17β-HSD type 2 (17β-HSD-2), and aromatase. P450scc is known to catalyze conversion from cholesterol to pregnenolone. 17β-HSD-1 catalyzes conversion from estrone to estradiol, and 17β-HSD-2 does the reverse. Aromatase catalyzes the conversion from testosterone to estradiol-17β. Messenger (m) RNAs of all four enzymes mentioned above were detected in the OM. Western blot analysis demonstrated that P450scc, 17β-HSD-1, and 17β-HSD-2 were detected in the OM. Immunoreactivity for these three enzymes was observed in sustentacular cells of the olfactory epithelium and acinar cells of Bowman's glands. Immunoelectron microscopy analysis demonstrated immunoreactivity for P450scc in mitochondria, and for 17β-HSD-1 and 17β-HSD-2 in the well-developed smooth endoplasmic reticulum and myeloid bodies of the sustentacular cells. The present study suggests that sustentacular cells and acinar cells of the Bowman's glands in the rat OM express at least three of the steroid-metabolizing enzymes, that is, P450scc 17β-HSD-1, and 17β-HSD-2, and de novo synthesis of estradiol takes place in the OM. Anat Rec, 300:402-414, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sawa Horie
- Laboratory of Anatomy and Celluler Biology Graduate School of Health Sciences, Kyorin University, Tokyo, Japan.,Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Akiko Yamaki
- Department of Biomedical Laboratory Science Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Shigeru Takami
- Laboratory of Anatomy and Celluler Biology Graduate School of Health Sciences, Kyorin University, Tokyo, Japan.,Sakai Electron Microscopy Application Laboratory, Saitama, Japan.,Department of Physical Therapy Faculty of Social Work Studies, Josai International University, Chiba-ken, Japan.,Laboratory of Neuroscience Department of Physiology, Iwate Medical University School of Dentistry, Iwate, Japan
| |
Collapse
|
34
|
Salazar I, Barrios AW, SáNchez-Quinteiro P. Revisiting the Vomeronasal System From an Integrated Perspective. Anat Rec (Hoboken) 2016; 299:1488-1491. [PMID: 27594382 DOI: 10.1002/ar.23470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 11/07/2022]
Abstract
"Olfactory subsystems" is a relatively new terminology to refer to the different regions of the nasal cavity featuring olfactory sensory neurons. In mice, the olfactory chemical cues are detected in four well delimited areas: the main olfactory epithelium, the septal organ, Grüneberg's ganglion, and the sensory epithelium of the vomeronasal organ. Nevertheless, such distribution is by no means exhibited by all mammals. In microsmatic mammals -humans included- the only existing olfactory subsystem is the main olfactory epithelium. This raises the question of whether the lack of certain olfactory structures in those species implies that they are unable to identify certain olfactory signals, or on the contrary, their main olfactory epithelium assumes such role. It would be interesting to determine, in the context of biomedical research, if the sense of smell in humans is fully or partially endowed with the wide range of functions assigned to the vomeronasal system in mice. If it is not, presumptive implications of the lack of such functions should be addressed in human health and well-being. Anat Rec, 299:1488-1491, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy and Animal Production, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - Arthur W Barrios
- Department of Anatomy and Animal Production, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Pablo SáNchez-Quinteiro
- Department of Anatomy and Animal Production, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
35
|
Abstract
Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described.
Collapse
|
36
|
Takami S, Yukimatsu M, Matsumura G, Horie S, Nishiyama F. Morphological Analysis for Neuron-Like Cells in the Vomeronasal Organ of Human Fetuses at the Middle of Gestation. Anat Rec (Hoboken) 2015; 299:88-97. [PMID: 26565893 DOI: 10.1002/ar.23290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 11/06/2022]
Abstract
The vomeronasal organ (VNO) of 5-month-old fetuses was examined immunohistochemically by the use of an antiserum to protein gene product 9.5 (PGP). The purpose was to identify if the human fetal VNO is lined by neuroepithelium. The PGP antiserum labeled abundant cells within the vomeronasal epithelium (VE), nerve fiber bundles in its lamina propria, and cells associated with these bundles. PGP-immunoreactive (ir) vomeronasal epithelial cells were classified into three subtypes. Type I cells, about 44% of the total cells observed, did not have any processes and tended to be located in the basal layer of the VE. Type II cells, about 37% had a single apical process that projected toward the lumen, ending at the epithelial surface. Type III cells sent a prominent process mainly toward the basement membrane, and occupied about 19% of the total cells observed. In the lamina propria, a considerable number of PGP-ir cells was observed. Some of them were present in nerve fiber bundles and contained processes parallel to the bundles. In addition, PGP-ir nerve fiber bundles and cells associated with them were even present in the portion of the nasal septal mucosa that was very close to the brain. The present results strongly suggested that the VE in human fetuses at mid-gestation is a neuroepithelium and that the VE may produce migrating cells toward the brain.
Collapse
Affiliation(s)
- Shigeru Takami
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan.,Sakai Electron Microscopy Application Laboratory, Saitama, Japan.,Department of Physiology, Iwate Medical University School of Dentistry, Iwate, Japan
| | - Maiko Yukimatsu
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - George Matsumura
- Department of Anatomy Faculty of Medicine, Kyorin Unversity, Tokyo, Japan
| | - Sawa Horie
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan.,Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Fumiaki Nishiyama
- Department of Anatomy, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| |
Collapse
|
37
|
deCatanzaro D. Sex steroids as pheromones in mammals: the exceptional role of estradiol. Horm Behav 2015; 68:103-16. [PMID: 25125222 DOI: 10.1016/j.yhbeh.2014.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022]
Abstract
This article is part of a Special Issue (Chemosignals and Reproduction). Whether from endogenous or exogenous sources, 17β-estradiol (E2) has very powerful influences over mammalian female reproductive physiology and behavior. Given its highly lipophilic nature and low molecular mass, E2 readily enters excretions and can be absorbed from exogenous sources via nasal, cutaneous, and other modes of exposure. Indeed, systemic injection of tritiated estradiol ((3)H-E2) into a male mouse or bat has been shown to produce significant levels of radioactivity in the reproductive tissues and brain of cohabiting female conspecifics. Bioactive E2 and other steroids are naturally found in male mouse urine and other excretions, and males actively direct their urine at proximate females. Very low doses of E2 can mimic the Bruce effect (disruption of peri-implantation pregnancy by novel males), the Vandenbergh effect (early reproductive maturation induced by novel males), and male-induced estrus and ovulation. Males' capacities to induce the Bruce and Vandenbergh effects can both be diminished by manipulations that reduce their urinary E2. Uterine dynamics during the Bruce and Vandenbergh effects are consistent with the actions of E2. Collectively, these data demonstrate a critical role of male-sourced E2 in these major mammalian pheromonal effects.
Collapse
Affiliation(s)
- Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
38
|
Pérez-Gómez A, Stein B, Leinders-Zufall T, Chamero P. Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Front Neuroanat 2014; 8:135. [PMID: 25505388 PMCID: PMC4244706 DOI: 10.3389/fnana.2014.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/03/2014] [Indexed: 01/20/2023] Open
Abstract
The vomeronasal organ (VNO) is a sensory organ that is found in most terrestrial vertebrates and that is principally implicated in the detection of pheromones. The VNO contains specialized sensory neurons organized in a pseudostratified neuroepithelium that recognize chemical signals involved in initiating innate behavioral responses. In rodents, the VNO neuroepithelium is segregated into two distinct zones, apical and basal. The molecular mechanisms involved in ligand detection by apical and basal VNO sensory neurons differ extensively. These two VNO subsystems express different subfamilies of vomeronasal receptors and signaling molecules, detect distinct chemosignals, and project to separate regions of the accessory olfactory bulb (AOB). The roles that these olfactory subdivisions play in the control of specific olfactory-mediated behaviors are largely unclear. However, analysis of mutant mouse lines for signal transduction components together with identification of defined chemosensory ligands has revealed a fundamental role of the basal part of the mouse VNO in mediating a wide range of instinctive behaviors, such as aggression, predator avoidance, and sexual attraction. Here we will compare the divergent functions and synergies between the olfactory subsystems and consider new insights in how higher neural circuits are defined for the initiation of instinctive behaviors.
Collapse
Affiliation(s)
- Anabel Pérez-Gómez
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Benjamin Stein
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Trese Leinders-Zufall
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Pablo Chamero
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| |
Collapse
|
39
|
Krajnik J, Kollndorfer K, Nenning KH, Lundström JN, Schöpf V. Gender effects and sexual-orientation impact on androstadienone-evoked behavior and neural processing. Front Neurosci 2014; 8:195. [PMID: 25132813 PMCID: PMC4116783 DOI: 10.3389/fnins.2014.00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/22/2014] [Indexed: 11/27/2022] Open
Abstract
In humans, the most established and investigated substance acting as a chemosignal, i.e., a substance that is excreted from the body, is 4,16-androstadien-3-one (AND). AND, which is found in sweat and saliva, is known to be responsible for influencing several variables, such as psychophysiological status, behavior, as well as cortical processing. The aim of the present review is to give insight into the variety of AND effects, with special regard to specific cross-sexual characteristics of this putative human chemosignal, emphasizing the neural activation patterns and factors such as contextual conditions. This review highlights the importance of including those contributing factors into the analysis of behavioral as well as brain-related studies.
Collapse
Affiliation(s)
- Jacqueline Krajnik
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna Vienna, Austria
| | - Kathrin Kollndorfer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Image Analysis and Radiology Lab, Medical University of Vienna Vienna, Austria
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden ; Monell Chemical Senses Center Philadelphia, PA, USA ; Department of Psychology, University of Pennsylvania Philadelphia, PA, USA
| | - Veronika Schöpf
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna Vienna, Austria
| |
Collapse
|
40
|
Yuan TF, Ding F, Guo B. Tears stop the “pedophile” in mice: involvement of the vomeronasal system. Acta Ethol 2014. [DOI: 10.1007/s10211-014-0202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
|
42
|
Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5. J Neurosci 2014; 34:3268-78. [PMID: 24573286 DOI: 10.1523/jneurosci.4903-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl- channels; in TRPM5-GFP+ OSNs, the Ca2+ -activated Cl- ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5.
Collapse
|
43
|
Ploss V, Gebhart VM, Dölz W, Jirikowski GF. Sex hormone binding globulin in the rat olfactory system. J Chem Neuroanat 2014; 57-58:10-4. [PMID: 24681170 DOI: 10.1016/j.jchemneu.2014.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Ovarian steroids are known to act on the olfactory system. Their mode of action, however, is mostly unclear to date since nuclear receptors are lacking in sensory neurons. Here we used immunocytochemistry and RT-PCR to study expression and distribution of sex hormone binding globulin (SHBG) in the rat olfactory system. Single sensory cells in the olfactory mucosa and their projections in the olfactory bulb showed specific SHBG immunostaining as determined by double immunofluorescence with olfactory marker protein OMP. Larger groups of SHBG stained sensory cells occurred in the vomeronasal organ (VNO). A portion of the olfactory glomeruli in the accessory olfactory bulb showed large networks of SHBG positive nerve fibres. Some of the mitral cells showed SHBG immune fluorescence. RT-PCR revealed SHBG encoding mRNA in the olfactory mucosa, in the VNO and in the olfactory bulbs indicating intrinsic expression of the binding globulin. The VNO and its related projections within the limbic system are known to be sensitive to gonadal steroid hormones. We conclude that SHBG may be of functional importance for rapid effects of olfactory steroids on limbic functions including the control of reproductive behaviours through pheromones.
Collapse
Affiliation(s)
- V Ploss
- Department of Anatomy II, University Hospital Jena, Friedrich Schiller University Jena, Germany
| | - V M Gebhart
- Department of Anatomy II, University Hospital Jena, Friedrich Schiller University Jena, Germany
| | - W Dölz
- Department of Anatomy II, University Hospital Jena, Friedrich Schiller University Jena, Germany
| | - G F Jirikowski
- Department of Anatomy II, University Hospital Jena, Friedrich Schiller University Jena, Germany.
| |
Collapse
|
44
|
Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5. J Neurosci 2014. [PMID: 24573286 DOI: 10.1523/jneurosci.4903‐13.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl- channels; in TRPM5-GFP+ OSNs, the Ca2+ -activated Cl- ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5.
Collapse
|
45
|
Auffarth B. Understanding smell—The olfactory stimulus problem. Neurosci Biobehav Rev 2013; 37:1667-79. [DOI: 10.1016/j.neubiorev.2013.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
|
46
|
Korzan WJ, Freamat M, Johnson AG, Cherry JA, Baum MJ. Either main or accessory olfactory system signaling can mediate the rewarding effects of estrous female chemosignals in sexually naive male mice. Behav Neurosci 2013; 127:755-62. [PMID: 23978150 DOI: 10.1037/a0033945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A long-held view has been that interest of male mice in female body odors reflects an activation of reward circuits in the male brain following their detection by the vomeronasal organ (VNO) and processing via the accessory olfactory system. We found that adult, sexually naive male mice acquired a conditioned place preference (CPP) after repeatedly receiving estrous female urine on the nose and being placed in an initially nonpreferred chamber with soiled estrous bedding on the floor. CPP was not acquired in control mice that received saline on the nose before being placed in a nonpreferred chamber with clean bedding. Robust acquisition of a CPP using estrous female odors as the reward persisted in separate groups of mice in which VNO-accessory olfactory function was disrupted by bilateral lesioning of the accessory olfactory bulb (AOB) or in which main olfactory function was disrupted by zinc sulfate lesions of the main olfactory epithelium (MOE). By contrast, no CPP was acquired for estrous odors in males that received combined AOB and MOE lesions. Either the main or the accessory olfactory system suffices to mediate the rewarding effects of estrous female odors in the male mouse, even in the absence of prior mating experience. The main olfactory system is part of the circuitry that responds to chemosignals involved in motivated behavior, a role that may be particularly important for humans who lack a functional accessory olfactory system.
Collapse
|
47
|
Abstract
It has been known for over a century that these cranial nerves exist, and that they are not typographical errors nor a sensational event reported in the medical literature. A number of scientific articles on anatomy highlight how textbooks on descriptive anatomy do not always consider variables such as differences related to the geographical areas where people live, and these differences do exist. This is an important concept not only for surgeons, but also for all medical professionals who use manual techniques when treating their patients, ie, osteopaths, chiropractors, physiotherapists, and other manual therapists. This paper highlights the latest developments regarding these cranial nerves, offering at the same time some ideas for further reflection when looking at clinical scenarios that appear to bear little relationship to each other. Inclusion of these concepts in everyday anamnesis is encouraged.
Collapse
Affiliation(s)
- Bruno Bordoni
- Don Carlo Gnocchi IRCCS, Department of Cardiology, Milan
| | | |
Collapse
|