1
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
2
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Brown E, Swinscoe G, Lefteri DA, Singh R, Moran A, Thompson RF, Maskell D, Beaumont H, Bentham MJ, Donald C, Kohl A, Macdonald A, Ranson N, Foster R, McKimmie CS, Kalli AC, Griffin S. Inhibitors of the small membrane (M) protein viroporin prevent Zika virus infection. eLife 2024; 13:e68404. [PMID: 39177307 PMCID: PMC11449487 DOI: 10.7554/elife.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/22/2024] [Indexed: 08/24/2024] Open
Abstract
Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.
Collapse
Affiliation(s)
- Emma Brown
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Gemma Swinscoe
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniella A Lefteri
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Ravi Singh
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Amy Moran
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Rebecca F Thompson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniel Maskell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hannah Beaumont
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Matthew J Bentham
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Claire Donald
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Alain Kohl
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Neil Ranson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Clive S McKimmie
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Antreas C Kalli
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Stephen Griffin
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| |
Collapse
|
5
|
Nomura K, Andreazza F, Cheng J, Dong K, Zhou P, He SY. Bacterial pathogens deliver water- and solute-permeable channels to plant cells. Nature 2023; 621:586-591. [PMID: 37704725 PMCID: PMC10511319 DOI: 10.1038/s41586-023-06531-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Many animal- and plant-pathogenic bacteria use a type III secretion system to deliver effector proteins into host cells1,2. Elucidation of how these effector proteins function in host cells is critical for understanding infectious diseases in animals and plants3-5. The widely conserved AvrE-family effectors, including DspE in Erwinia amylovora and AvrE in Pseudomonas syringae, have a central role in the pathogenesis of diverse phytopathogenic bacteria6. These conserved effectors are involved in the induction of 'water soaking' and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE-family effectors fold into a β-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in inward and outward currents, permeability to water and osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine dendrimers as inhibitors of the DspE/AvrE channels. Notably, polyamidoamines broadly inhibit AvrE and DspE virulence activities in Xenopus oocytes and during E. amylovora and P. syringae infections. Thus, we have unravelled the biochemical function of a centrally important family of bacterial effectors with broad conceptual and practical implications in the study of bacterial pathogenesis.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | | | - Jie Cheng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC, USA.
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Nomura K, Andreazza F, Cheng J, Dong K, Zhou P, He SY. Bacterial pathogens deliver water/solute-permeable channels as a virulence strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.547699. [PMID: 37546725 PMCID: PMC10402153 DOI: 10.1101/2023.07.29.547699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Many animal and plant pathogenic bacteria utilize a type III secretion system to deliver effector proteins into the host cell 1,2 . Elucidation of how these effector proteins function in the host cell is critical for understanding infectious diseases in animals and plants 3-5 . The widely conserved AvrE/DspE-family effectors play a central role in the pathogenesis of diverse phytopathogenic bacteria 6 . These conserved effectors are involved in the induction of "water-soaking" and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE/DspE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE/DspE-family effectors fold into a β-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in (i) inward and outward currents, (ii) permeability to water and (iii) osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine (PAMAM) dendrimers as inhibitors of the DspE/AvrE channels. Remarkably, PAMAMs broadly inhibit AvrE/DspE virulence activities in Xenopus oocytes and during Erwinia amylovora and Pseudomonas syringae infections. Thus, we have unraveled the enigmatic function of a centrally important family of bacterial effectors with significant conceptual and practical implications in the study of bacterial pathogenesis.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | | | - Jie Cheng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Asrani P, Seebohm G, Stoll R. Potassium viroporins as model systems for understanding eukaryotic ion channel behaviour. Virus Res 2022; 320:198903. [PMID: 36037849 DOI: 10.1016/j.virusres.2022.198903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.
Collapse
Affiliation(s)
- Purva Asrani
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster D-48149, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany.
| |
Collapse
|
8
|
Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol 2022; 145:106185. [PMID: 35219876 PMCID: PMC8868010 DOI: 10.1016/j.biocel.2022.106185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Viroporins are indispensable for viral replication. As intracellular ion channels they disturb pH gradients of organelles and allow Ca2+ flux across ER membranes. Viroporins interact with numerous intracellular proteins and pathways and can trigger inflammatory responses. Thus, they are relevant targets in the search for antiviral drugs. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underlies the world-wide pandemic of COVID-19, where an effective therapy is still lacking despite impressive progress in the development of vaccines and vaccination campaigns. Among the 29 proteins of SARS-CoV-2, the E- and ORF3a proteins have been identified as viroporins that contribute to the massive release of inflammatory cytokines observed in COVID-19. Here, we describe structure and function of viroporins and their role in inflammasome activation and cellular processes during the virus replication cycle. Techniques to study viroporin function are presented, with a focus on cellular and electrophysiological assays. Contributions of SARS-CoV-2 viroporins to the viral life cycle are discussed with respect to their structure, channel function, binding partners, and their role in viral infection and virus replication. Viroporin sequences of new variants of concern (α–ο) of SARS-CoV-2 are briefly reviewed as they harbour changes in E and 3a proteins that may affect their function.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute for Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
9
|
Dwivedi V, Gupta RK, Gupta A, Chaudhary VK, Gupta S, Gupta V. Repurposing Novel Antagonists to p7 Viroporin of HCV Using in silico Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220124112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Background: P7 viroporin in HCV is a cation-selective ion channel-forming protein, functional in the oligomeric form. It is considered to be a potential target for anti-HCV compounds due to its crucial role in viral entry, assembly and release.
Method:
Conserved crucial residues present in HCV p7 protein were delineated with a specific focus on the genotypes 3a &1b prevalent in India from the available literature. Using the Flex-X docking tool, a library of FDA-approved drugs was docked on the receptor sites prepared around crucial residues. In the present study, we propose drug repurposing to target viroporin p7, which may help in the rapid development of effective anti-HCV therapies.
Results:
With our approach of poly-pharmacology, a variety of drugs currently identified classified as antibiotics, anti-parasitic, antiemetic, anti-retroviral, and anti-neoplastic were found to dock successfully with the p7 viroporin. Noteworthy among these are general-purpose cephalosporin antibiotics, leucal, phthalylsulfathiazole, and granisetron, which may be useful in acute HCV infection and anti-neoplastic sorafenib and nilotinib, which may be valuable in advanced HCV-HCC cases.
Conclusion:
This study could pave the way for quick repurposing of these compounds as anti-HCV therapeutics.
Collapse
Affiliation(s)
- Varsha Dwivedi
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Amita Gupta
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Vijay K Chaudhary
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Sanjay Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| |
Collapse
|
10
|
Breitinger U, Farag NS, Ali NKM, Ahmed M, El-Azizi MA, Breitinger HG. Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels. J Gen Virol 2021; 102. [PMID: 33709903 DOI: 10.1099/jgv.0.001571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The p7 viroporin of the hepatitis C virus (HCV) forms an intracellular proton-conducting transmembrane channel in virus-infected cells, shunting the pH of intracellular compartments and thus helping virus assembly and release. This activity is essential for virus infectivity, making viroporins an attractive target for drug development. The protein sequence and drug sensitivity of p7 vary between the seven major genotypes of the hepatitis C virus, but the essential channel activity is preserved. Here, we investigated the effect of several inhibitors on recombinant HCV p7 channels corresponding to genotypes 1a-b, 2a-b, 3a and 4a using patch-clamp electrophysiology and cell-based assays. We established a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based cell viability assay for recombinant p7 expressed in HEK293 cells to assess channel activity and its sensitivity to inhibitors. The results from the cell viability assay were consistent with control measurements using established assays of haemadsorption and intracellular pH, and agreed with data from patch-clamp electrophysiology. Hexamethylene amiloride (HMA) was the most potent inhibitor of p7 activity, but possessed cytotoxic activity at higher concentrations. Rimantadine was active against p7 of all genotypes, while amantadine activity was genotype-dependent. The alkyl-chain iminosugars NB-DNJ, NN-DNJ and NN-DGJ were tested and their activity was found to be genotype-specific. In the current study, we introduce cell viability assays as a rapid and cost-efficient technique to assess viroporin activity and identify channel inhibitors as potential novel antiviral drugs.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Nourhan K M Ali
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Marwa Ahmed
- Present address: Institute of Biochemistry and Biophysics Friedrich-Schiller-University Jena, Hans-Knöll-Str. 2, D-07745, Jena, Germany.,Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Mohamed A El-Azizi
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | | |
Collapse
|
11
|
Wei S, Hu X, Du L, Zhao L, Xue H, Liu C, Chou JJ, Zhong J, Tong Y, Wang S, OuYang B. Inhibitor Development against p7 Channel in Hepatitis C Virus. Molecules 2021; 26:1350. [PMID: 33802584 PMCID: PMC7961618 DOI: 10.3390/molecules26051350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatitis C Virus (HCV) is the key cause of chronic and severe liver diseases. The recent direct-acting antiviral agents have shown the clinical success on HCV-related diseases, but the rapid HCV mutations of the virus highlight the sustaining necessity to develop new drugs. p7, the viroporin protein from HCV, has been sought after as a potential anti-HCV drug target. Several classes of compounds, such as amantadine and rimantadine have been testified for p7 inhibition. However, the efficacies of these compounds are not high. Here, we screened some novel p7 inhibitors with amantadine scaffold for the inhibitor development. The dissociation constant (Kd) of 42 ARD-series compounds were determined by nuclear magnetic resonance (NMR) titrations. The efficacies of the two best inhibitors, ARD87 and ARD112, were further confirmed using viral production assay. The binding mode analysis and binding stability for the strongest inhibitor were deciphered by molecular dynamics (MD) simulation. These ARD-series compounds together with 49 previously published compounds were further analyzed by molecular docking. Key pharmacophores were identified among the structure-similar compounds. Our studies suggest that different functional groups are highly correlated with the efficacy for inhibiting p7 of HCV, in which hydrophobic interactions are the dominant forces for the inhibition potency. Our findings provide guiding principles for designing higher affinity inhibitors of p7 as potential anti-HCV drug candidates.
Collapse
Affiliation(s)
- Shukun Wei
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
| | - Xiaoyou Hu
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
| | - Linlin Zhao
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chaolun Liu
- ShanghaiTech University, Shanghai 201210, China;
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| | - Jin Zhong
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- ShanghaiTech University, Shanghai 201210, China;
| | - Yimin Tong
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; (S.W.); (L.D.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China; (X.H.); (J.Z.)
| |
Collapse
|
12
|
Shaw J, Gosain R, Kalita MM, Foster TL, Kankanala J, Mahato DR, Abas S, King BJ, Scott C, Brown E, Bentham MJ, Wetherill L, Bloy A, Samson A, Harris M, Mankouri J, Rowlands DJ, Macdonald A, Tarr AW, Fischer WB, Foster R, Griffin S. Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy. eLife 2020; 9:e52555. [PMID: 33169665 PMCID: PMC7714397 DOI: 10.7554/elife.52555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.
Collapse
Affiliation(s)
- Joseph Shaw
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Rajendra Gosain
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Monoj Mon Kalita
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Toshana L Foster
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jayakanth Kankanala
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - D Ram Mahato
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Sonia Abas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Barnabas J King
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | - Claire Scott
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Emma Brown
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Matthew J Bentham
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Laura Wetherill
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Abigail Bloy
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
| | - Mark Harris
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jamel Mankouri
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | | | - Richard Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Stephen Griffin
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| |
Collapse
|
13
|
Largo E, Queralt-Martín M, Carravilla P, Nieva JL, Alcaraz A. Single-molecule conformational dynamics of viroporin ion channels regulated by lipid-protein interactions. Bioelectrochemistry 2020; 137:107641. [PMID: 32889489 PMCID: PMC7444495 DOI: 10.1016/j.bioelechem.2020.107641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Classic swine fever is a highly contagious and often fatal viral disease that is caused by the classical swine fever virus (CSFV). Protein p7 of CFSV is a prototype of viroporin, a family of small, highly hydrophobic proteins postulated to modulate virus-host interactions during the processes of virus entry, replication and assembly. It has been shown that CSFV p7 displays substantial ion channel activity when incorporated into membrane systems, but a deep rationalization of the size and dynamics of the induced pores is yet to emerge. Here, we use high-resolution conductance measurements and current fluctuation analysis to demonstrate that CSFV p7 channels are ruled by equilibrium conformational dynamics involving protein-lipid interactions. Atomic force microscopy (AFM) confirms the existence of a variety of pore sizes and their tight regulation by solution pH. We conclude that p7 viroporin forms subnanometric channels involved in virus propagation, but also much larger pores (1-10 nm in diameter) with potentially significant roles in virus pathogenicity. Our findings provide new insights into the sources of noise in protein electrochemistry and demonstrate the existence of slow complex dynamics characteristic of crowded systems like biomembrane surfaces.
Collapse
Affiliation(s)
- Eneko Largo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa E-48940, Spain; Department of Immunology, Microbiology and Parasitology, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - Pablo Carravilla
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa E-48940, Spain; Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, Jena, Germany
| | - José L Nieva
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa E-48940, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
14
|
Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza. PLoS Pathog 2020; 16:e1008716. [PMID: 32780760 PMCID: PMC7418971 DOI: 10.1371/journal.ppat.1008716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/19/2020] [Indexed: 12/05/2022] Open
Abstract
Pandemic influenza A virus (IAV) remains a significant threat to global health. Preparedness relies primarily upon a single class of neuraminidase (NA) targeted antivirals, against which resistance is steadily growing. The M2 proton channel is an alternative clinically proven antiviral target, yet a near-ubiquitous S31N polymorphism in M2 evokes resistance to licensed adamantane drugs. Hence, inhibitors capable of targeting N31 containing M2 (M2-N31) are highly desirable. Rational in silico design and in vitro screens delineated compounds favouring either lumenal or peripheral M2 binding, yielding effective M2-N31 inhibitors in both cases. Hits included adamantanes as well as novel compounds, with some showing low micromolar potency versus pandemic “swine” H1N1 influenza (Eng195) in culture. Interestingly, a published adamantane-based M2-N31 inhibitor rapidly selected a resistant V27A polymorphism (M2-A27/N31), whereas this was not the case for non-adamantane compounds. Nevertheless, combinations of adamantanes and novel compounds achieved synergistic antiviral effects, and the latter synergised with the neuraminidase inhibitor (NAi), Zanamivir. Thus, site-directed drug combinations show potential to rejuvenate M2 as an antiviral target whilst reducing the risk of drug resistance. "Swine flu" illustrated that the spread of influenza pandemics in the modern era is rapid, making antiviral drugs the best way of limiting disease. One proven influenza drug target is the M2 proton channel, which plays an essential role during virus entry. However, resistance against licensed drugs targeting this protein is now ubiquitous, largely due to an S31N change in the M2 sequence. Understandably, considerable effort has focused on developing M2-N31 inhibitors, yet this has been hampered by controversy surrounding two potential drug binding sites. Here, we show that both sites can in fact be targeted by new M2-N31 inhibitors, generating synergistic antiviral effects. Developing such drug combinations should improve patient outcomes and minimise the emergence of future drug resistance.
Collapse
|
15
|
Farag NS, Breitinger U, Breitinger HG, El Azizi MA. Viroporins and inflammasomes: A key to understand virus-induced inflammation. Int J Biochem Cell Biol 2020; 122:105738. [PMID: 32156572 PMCID: PMC7102644 DOI: 10.1016/j.biocel.2020.105738] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
The article provides a summary on cellular receptors involved in virus immunity. It summarizes key findings on viroporins, a novel class of viral proteins and their role in the virus life cycle and host cell interactions. It presents an overview of the current understanding of inflammasomes complex activation, with special focus on NLRP3. It discusses the correlation between viroporins and inflammasomes activation and aggravated inflammatory cytokines production.
Viroporins are virus encoded proteins that alter membrane permeability and can trigger subsequent cellular signals. Oligomerization of viroporin subunits results in formation of a hydrophilic pore which facilitates ion transport across host cell membranes. These viral channel proteins may be involved in different stages of the virus infection cycle. Inflammasomes are large multimolecular complexes best recognized for their ability to control activation of caspase-1, which in turn regulates the maturation of interleukin-1 β (IL-1β) and interleukin 18 (IL-18). IL-1β was originally identified as a pro-inflammatory cytokine able to induce both local and systemic inflammation and a febrile reaction in response to infection or injury. Excessive production of IL-1β is associated with autoimmune and inflammatory diseases. Microbial derivatives, bacterial pore-forming toxins, extracellular ATP and other pathogen-associated molecular patterns trigger activation of NLRP3 inflammasomes. Recent studies have reported that viroporin activity is capable of inducing inflammasome activity and production of IL-1β, where NLRP3 is shown to be regulated by fluxes of K+, H+ and Ca2+ in addition to reactive oxygen species, autophagy and endoplasmic reticulum stress. The aim of this review is to present an overview of the key findings on viroporin activity with special emphasis on their role in virus immunity and as possible activators of inflammasomes.
Collapse
Affiliation(s)
- N S Farag
- Department of Microbiology and Immunology, German University inCairo, New Cairo, Egypt.
| | - U Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - H G Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - M A El Azizi
- Department of Microbiology and Immunology, German University inCairo, New Cairo, Egypt
| |
Collapse
|
16
|
Lee H, Cho YY, Lee GY, You D, Yoo YD, Kim YJ. A direct role for hepatitis B virus X protein in inducing mitochondrial membrane permeabilization. J Viral Hepat 2018; 25:412-420. [PMID: 29193612 PMCID: PMC7167162 DOI: 10.1111/jvh.12831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/14/2017] [Indexed: 01/03/2023]
Abstract
Hepatitis B virus X protein (HBx) acts as a multifunctional protein that regulates intracellular signalling pathways during HBV infection. It has mainly been studied in terms of its interaction with cellular proteins. Here, we show that HBx induces membrane permeabilization independently of the mitochondrial permeability transition pore complex. We generated mitochondrial outer membrane-mimic liposomes to observe the direct effects of HBx on membranes. We found that HBx induced membrane permeabilization, and the region comprising the transmembrane domain and the mitochondrial-targeting sequence was sufficient for this process. Membrane permeabilization was inhibited by nonselective channel blockers or by N-(n-nonyl)deoxynojirimycin (NN-DNJ), a viroporin inhibitor. Moreover, NN-DNJ inhibited HBx-induced mitochondrial depolarization in Huh-7 cells. Based on the results of this study, we can postulate that the HBx protein itself is sufficient to induce mitochondrial membrane permeabilization. Our finding provides important information for a strategy of HBx targeting during HBV treatment.
Collapse
Affiliation(s)
- H‐R. Lee
- Laboratory of Molecular Cell BiologyGraduate School of MedicineKorea University College of MedicineKorea UniversitySeoulKorea,Department of Biosystems and BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
| | - Y. Y. Cho
- Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulKorea
| | - G. Y. Lee
- Laboratory of Molecular Cell BiologyGraduate School of MedicineKorea University College of MedicineKorea UniversitySeoulKorea
| | - D‐g. You
- Laboratory of Molecular Cell BiologyGraduate School of MedicineKorea University College of MedicineKorea UniversitySeoulKorea
| | - Y. D. Yoo
- Laboratory of Molecular Cell BiologyGraduate School of MedicineKorea University College of MedicineKorea UniversitySeoulKorea
| | - Y. J. Kim
- Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
17
|
Lee GY, You DG, Lee HR, Hwang SW, Lee CJ, Yoo YD. Romo1 is a mitochondrial nonselective cation channel with viroporin-like characteristics. J Cell Biol 2018; 217:2059-2071. [PMID: 29545371 PMCID: PMC5987721 DOI: 10.1083/jcb.201709001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Romo1 regulates mitochondrial reactive oxygen species production and acts as an essential redox sensor in mitochondrial dynamics. Lee et al. demonstrate that Romo1 is a unique mitochondrial ion channel with viroporin-like characteristics that distinguish Romo1 from other known eukaryotic ion channels. Reactive oxygen species (ROS) modulator 1 (Romo1) is a nuclear-encoded mitochondrial inner membrane protein known to regulate mitochondrial ROS production and to act as an essential redox sensor in mitochondrial dynamics. Although its physiological roles have been studied for a decade, the biophysical mechanisms that explain these activities of Romo1 are unclear. In this study, we report that Romo1 is a unique mitochondrial ion channel that differs from currently identified eukaryotic ion channels. Romo1 is a highly conserved protein with structural features of class II viroporins, which are virus-encoded nonselective cation channels. Indeed, Romo1 forms a nonselective cation channel with its amphipathic helical transmembrane domain necessary for pore-forming activity. Notably, channel activity was specifically inhibited by Fe2+ ions, an essential transition metal ion in ROS metabolism. Using structural bioinformatics, we designed an experimental data–guided structural model of Romo1 with a rational hexameric structure. We propose that Romo1 establishes a new category of viroporin-like nonselective cation channel in eukaryotes.
Collapse
Affiliation(s)
- Gi Young Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Deok-Gyun You
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye-Ra Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Korea University-Korea Institute of Science and Technology Graduate School of Convergence Technology, Korea University, Seoul, Republic of Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Patch-Clamp Study of Hepatitis C p7 Channels Reveals Genotype-Specific Sensitivity to Inhibitors. Biophys J 2017; 110:2419-2429. [PMID: 27276260 DOI: 10.1016/j.bpj.2016.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C is a major worldwide disease and health hazard, affecting ∼3% of the world population. The p7 protein of hepatitis C virus (HCV) is an intracellular ion channel and pH regulator that is involved in the viral replication cycle. It is targeted by various classical ion channel blockers. Here, we generated p7 constructs corresponding to HCV genotypes 1a, 2a, 3a, and 4a for recombinant expression in HEK293 cells, and studied p7 channels using patch-clamp recording techniques. The pH50 values for recombinant p7 channels were between 6.0 and 6.5, as expected for proton-activated channels, and current-voltage dependence did not show any differences between genotypes. Inhibition of p7-mediated currents by amantadine, however, exhibited significant, genotype-specific variation. The IC50 values of p7-1a and p7-4a were 0.7 ± 0.1 nM and 3.2 ± 1.2 nM, whereas p7-2a and p7-3a had 50- to 1000-fold lower sensitivity, with IC50 values of 2402 ± 334 nM and 344 ± 64 nM, respectively. The IC50 values for rimantadine were low across all genotypes, ranging from 0.7 ± 0.1 nM, 1.6 ± 0.6 nM, and 3.0 ± 0.8 nM for p7-1a, p7-3a, and p7-4a, respectively, to 24 ± 4 nM for p7-2a. Results from patch-clamp recordings agreed well with cellular assays of p7 activity, namely, measurements of intracellular pH and hemadsorption assays, which confirmed the much reduced amantadine sensitivity of genotypes 2a and 3a. Thus, our results establish patch-clamp studies of recombinant viroporins as a valid analytical tool that can provide quantitative information about viroporin channel properties, complementing established techniques.
Collapse
|
19
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
20
|
Jiang Y, Zhang L, Wen D, Ding Y. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1361-6. [PMID: 27612837 DOI: 10.1016/j.msec.2016.08.044] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/27/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) exhibit antibacterial activity against both Gram-positive and Gram-negative bacteria. However, the antimicrobial mechanism of ZnO NPs remains unclear. In this study, we investigated the interactions among ZnO NPs, released chemicals (Zn(2+) and Reactive Oxygen Species, ROS) and Escherichia coli (E. coli) cells. ZnO NPs without contacting with bacterial cells showed strong antibacterial effect. The results of the leakage of intracellular K(+) and integrity of carboxyfluoresce in-filled liposomes showed that ZnO NPs have antimicrobial activity against E. coli by non-specifically disrupting E. coli membranes. Traces of zinc ions (1.25mg/L) and hydrogen peroxide (from 1.25 to 4.5μM/L) were detected in ZnO NPs suspensions, but was insufficient to cause the antibacterial effect. However, the addition of radical scavengers suppressed the bactericidal effect of ZnO coated films against E. coli, potentially implicating ROS generation, especially hydroxyl radicals, in the antibacterial ability of ZnO NPs.
Collapse
Affiliation(s)
- Yunhong Jiang
- Institute of Particle Science and Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | - Lingling Zhang
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, China
| | - Dongsheng Wen
- Institute of Particle Science and Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Yulong Ding
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK
| |
Collapse
|
21
|
Ion Channel Function and Cross-Species Determinants in Viral Assembly of Nonprimate Hepacivirus p7. J Virol 2016; 90:5075-5089. [PMID: 26962224 DOI: 10.1128/jvi.00132-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Nonprimate hepacivirus (NPHV), the closest homolog of hepatitis C virus (HCV) described to date, has recently been discovered in horses. Even though the two viruses share a similar genomic organization, conservation of the encoded hepaciviral proteins remains undetermined. The HCV p7 protein is localized within endoplasmic reticulum (ER) membranes and is important for the production of infectious particles. In this study, we analyzed the structural and functional features of NPHV p7 in addition to its role during virus assembly. Three-dimensional homology models for NPHV p7 using various nuclear magnetic resonance spectroscopy (NMR) structures were generated, highlighting the conserved residues important for ion channel function. By applying a liposome permeability assay, we observed that NPHV p7 exhibited liposome permeability features similar to those of HCV p7, indicative of similar ion channel activity. Next, we characterized the viral protein using a p7-based trans-complementation approach. A similar subcellular localization pattern at the ER membrane was observed, although production of infectious particles was likely hindered by genetic incompatibilities with HCV proteins. To further characterize these cross-species constraints, chimeric viruses were constructed by substituting different regions of HCV p7 with NPHV p7. The N terminus and transmembrane domains were nonexchangeable and therefore constitute a cross-species barrier in hepaciviral assembly. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious trans-complemented viral particles. In conclusion, comparison of NPHV and HCV p7 revealed structural and functional homology of these proteins, including liposome permeability, and broadly acting determinants that modulate hepaciviral virion assembly and contribute to the host-species barrier were identified. IMPORTANCE The recent discovery of new relatives of hepatitis C virus (HCV) enables for the first time the study of cross-species determinants shaping hepaciviral pathogenesis. Nonprimate hepacivirus (NPHV) was described to infect horses and represents so far the closest homolog of HCV. Both viruses encode the same viral proteins; however, NPHV protein functions remain poorly understood. In this study, we aimed to dissect NPHV p7 on a structural and functional level. By using various NMR structures of HCV p7 as templates, three-dimensional homology models for NPHV p7 were generated, highlighting conserved residues that are important for ion channel function. A p7-based trans-complementation approach and the construction of NPHV/HCV p7 chimeric viruses showed that the N terminus and transmembrane domains were nonexchangeable. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious viral particles. These results identify species-specific constraints as well as exchangeable determinants in hepaciviral assembly.
Collapse
|
22
|
Zheng JS, He Y, Zuo C, Cai XY, Tang S, Wang ZA, Zhang LH, Tian CL, Liu L. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification. J Am Chem Soc 2016; 138:3553-61. [PMID: 26943264 DOI: 10.1021/jacs.6b00515] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.
Collapse
Affiliation(s)
- Ji-Shen Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Yao He
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chao Zuo
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiao-Ying Cai
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Zhipeng A Wang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Long-Hua Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
23
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
24
|
Ermis F, Senocak Tasci E. New treatment strategies for hepatitis C infection. World J Hepatol 2015; 7:2100-2109. [PMID: 26301052 PMCID: PMC4539403 DOI: 10.4254/wjh.v7.i17.2100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/04/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C infection can lead to cirrhosis and hepatocellular carcinoma and it is an important cause of mortality and morbidity. Achieving a sustained virological response has been the major aim for decades. Interferon treatment was the primarily developed therapy against the infection. Addition of the guanosine analog ribavirin to stop viral RNA synthesis increased the response rates as well as the adverse effects of the treatment. The increasing demands for alternative regimens led to the development of direct-acting antivirals (DAAs). The approval of sofosbuvir and simeprevir signaled a new era of antiviral treatment for hepatitis C infection. Although the majority of studies have been performed with DAAs in combination with interferon and resulted in a decrease in treatment duration and increase in response rates, the response rates achieved with interferon-free regimens provided hope for patients ineligible for therapy with interferon. Most DAA studies are in phase II leading to phase III. In the near future more DAAs are expected to be approved. The main disadvantage of the therapy remains the cost of the drugs. Here, we focus on new treatment strategies for hepatitis C infection as well as agents targeting hepatitis C virus replication that are in clinical development.
Collapse
Affiliation(s)
- Fatih Ermis
- Fatih Ermis, Department of Gastroenterology, Duzce University Faculty of Medicine, 81620 Duzce, Turkey
| | - Elif Senocak Tasci
- Fatih Ermis, Department of Gastroenterology, Duzce University Faculty of Medicine, 81620 Duzce, Turkey
| |
Collapse
|
25
|
Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 2015; 7:4461-81. [PMID: 26258788 PMCID: PMC4576187 DOI: 10.3390/v7082826] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of hepatitis C virus (HCV) infection in the human population has triggered intensive research efforts that have led to the development of curative antiviral therapy. Moreover, HCV has become a role model to study fundamental principles that govern the replication cycle of a positive strand RNA virus. In fact, for most HCV proteins high-resolution X-ray and NMR (Nuclear Magnetic Resonance)-based structures have been established and profound insights into their biochemical and biological properties have been gained. One example is p7, a small hydrophobic protein that is dispensable for RNA replication, but crucial for the production and release of infectious HCV particles from infected cells. Owing to its ability to insert into membranes and assemble into homo-oligomeric complexes that function as minimalistic ion channels, HCV p7 is a member of the viroporin family. This review compiles the most recent findings related to the structure and dual pore/ion channel activity of p7 of different HCV genotypes. The alternative conformations and topologies proposed for HCV p7 in its monomeric and oligomeric state are described and discussed in detail. We also summarize the different roles p7 might play in the HCV replication cycle and highlight both the ion channel/pore-like function and the additional roles of p7 unrelated to its channel activity. Finally, we discuss possibilities to utilize viroporin inhibitors for antagonizing p7 ion channel/pore-like activity.
Collapse
|
26
|
Lan Z, Chong Z, Liu C, Feng D, Fang D, Zang W, Zhou J. Amantadine inhibits cellular proliferation and induces the apoptosis of hepatocellular cancer cells in vitro. Int J Mol Med 2015. [PMID: 26201988 DOI: 10.3892/ijmm.2015.2289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide, and its incidence associated with viral infection has increased in recent years. Amantadine is a tricyclic symmetric amine that can effectively protect against the hepatitis C virus. However, its antitumor properties remain unclear. In the present study, the effects of amantadine on tumor cell viability, cell cycle regulation and apoptosis were investigated. The growth of HepG2 and SMMC‑7721 cells (HCC cell lines) was detected by an MTT assay. Flow cytometry was used to investigate cell cycle regulation and apoptosis. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were also performed to examine the expression of cell cycle‑ and apoptosis‑related genes and proteins, including cyclin E, cyclin D1, cyclin‑dependent kinase 2 (CDK2), B‑cell lymphoma 2 (Bcl‑2) and Bax. Our results demonstrated that amantadine markedly inhibited the proliferation of HepG2 and SMMC‑7721 cells in a dose‑ and time‑dependent manner and arrested the cell cycle at the G0/G1 phase. The levels of the cell cycle‑related genes and proteins (cyclin D1, cyclin E and CDK2) were reduced by amantadine, and apoptosis was significantly induced. Amantadine treatment also reduced Bcl‑2 and increased the Bax protein and mRNA levels. Additionally, Bcl‑2/Bax ratios were lower in the two HCC cell lines following amantadine treatment. Collectively, these results emphasize the role of amantadine in suppressing proliferation and inducing apoptosis in HCC cells, advocating its use as a novel tumor-suppressive therapeutic candidate.
Collapse
Affiliation(s)
- Zengmei Lan
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Zhaoyang Chong
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Cong Liu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Danyang Feng
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Dihai Fang
- Department of Cardiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Weijin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Zhou
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
28
|
Padhi S, Priyakumar UD. Ion Hydration Dynamics in Conjunction with a Hydrophobic Gating Mechanism Regulates Ion Permeation in p7 Viroporin from Hepatitis C Virus. J Phys Chem B 2015; 119:6204-10. [DOI: 10.1021/acs.jpcb.5b02759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siladitya Padhi
- Centre for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - U. Deva Priyakumar
- Centre for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
29
|
Abstract
Virus encoded ion channels, termed viroporins, are expressed by a diverse set of viruses and have been found to target nearly every host cell membrane and compartment, including endocytic/exocytic vesicles, ER, mitochondria, Golgi, and the plasma membrane. Viroporins are generally very small (<100 amino acids) integral membrane proteins that share common structure motifs (conserved cluster of basic residues adjacent to an amphipathic alpha-helix) but only limited sequence homology between viruses. Ion channel activity of viroporins is either required for replication or greatly enhances replication and pathogenesis. Channel characteristics have been investigated using standard electrophysiological techniques, including planar lipid bilayer, liposome patch clamp or whole-cell voltage clamp. In general, viroporins are voltage-independent non-specific monovalent cation channels, with the exception of the influenza A virus M2 channel that forms a highly specific proton channel due to a conserved HXXXW motif. Viroporin channel currents range between highly variable (‘burst-like’) fluctuations to well resolved unitary (‘square-top’) transitions, and emerging data indicates the quality of channel activity is influenced by many factors, including viroporin synthesis/solubilization, the lipid environment and the ionic composition of the buffers, as well as intrinsic differences between the viroporins themselves. Compounds that block viroporin channel activity are effective antiviral drugs both in vitro and in vivo. Surprisingly distinct viroporins are inhibited by the same compounds (e.g., amantadines and amiloride derivatives), despite wide sequence divergence, raising the possibility of broadly acting antiviral drugs that target viroporins. Electrophysiology of viroporins will continue to play a critical role in elucidating the functional roles viroporins play in pathogenesis and to develop new drugs to combat viroporin-encoding pathogens.
Collapse
Affiliation(s)
- Anne H. Delcour
- Dept. of Biology and Biochemistry, University of Houston, Houston, Texas USA
| |
Collapse
|
30
|
Guo TC, Johansson DX, Haugland Ø, Liljeström P, Evensen Ø. A 6K-deletion variant of salmonid alphavirus is non-viable but can be rescued through RNA recombination. PLoS One 2014; 9:e100184. [PMID: 25009976 PMCID: PMC4091863 DOI: 10.1371/journal.pone.0100184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/23/2014] [Indexed: 01/13/2023] Open
Abstract
Pancreas disease (PD) of Atlantic salmon is an emerging disease caused by Salmonid alphavirus (SAV) which mainly affects salmonid aquaculture in Western Europe. Although genome structure of SAV has been characterized and each individual viral protein has been identified, the role of 6K protein in viral replication and infectivity remains undefined. The 6K protein of alphaviruses is a small and hydrophobic protein which is involved in membrane permeabilization, protein processing and virus budding. Because these common features are shared across many viral species, they have been named viroporins. In the present study, we applied reverse genetics to generate SAV3 6K-deleted (Δ6K) variant and investigate the role of 6K protein. Our findings show that the 6K-deletion variant of salmonid alphavirus is non-viable. Despite viral proteins of Δ6K variant are detected in the cytoplasm by immunostaining, they are not found on the cell surface. Further, analysis of viral proteins produced in Δ6K cDNA clone transfected cells using radioimmunoprecipitation (RIPA) and western blot showed a protein band of larger size than E2 of wild-type SAV3. When Δ6K cDNA was co-transfected with SAV3 helper cDNA encoding the whole structural genes including 6K, the infectivity was rescued. The development of CPE after co-transfection and resolved genome sequence of rescued virus confirmed full-length viral genome being generated through RNA recombination. The discovery of the important role of the 6K protein in virus production provides a new possibility for the development of antiviral intervention which is highly needed to control SAV infection in salmonids.
Collapse
Affiliation(s)
- Tz-Chun Guo
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Daniel X. Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øyvind Haugland
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øystein Evensen
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
- * E-mail:
| |
Collapse
|
31
|
Atoom AM, Taylor NGA, Russell RS. The elusive function of the hepatitis C virus p7 protein. Virology 2014; 462-463:377-87. [PMID: 25001174 PMCID: PMC7112009 DOI: 10.1016/j.virol.2014.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden with 2–3% of the world׳s population being chronically infected. Persistent infection can lead to cirrhosis and hepatocellular carcinoma. Recently available treatment options show enhanced efficacy of virus clearance, but are associated with resistance and significant side effects. This warrants further research into the basic understanding of viral proteins and their pathophysiology. The p7 protein of HCV is an integral membrane protein that forms an ion-channel. The role of p7 in the HCV life cycle is presently uncertain, but most of the research performed to date highlights its role in the virus assembly process. The aim of this review is to provide an overview of the literature investigating p7, its structural and functional details, and to summarize the developments to date regarding potential anti-p7 compounds. A better understanding of this protein may lead to development of a new and effective therapy. This review paper provides an overview of the literature investigating HCV. The content focuses on p7 structural and functional details. We summarize the developments to date regarding potential anti-p7 compounds.
Collapse
Affiliation(s)
- Ali M Atoom
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Nathan G A Taylor
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Rodney S Russell
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada.
| |
Collapse
|
32
|
Quarato G, Scrima R, Ripoli M, Agriesti F, Moradpour D, Capitanio N, Piccoli C. Protective role of amantadine in mitochondrial dysfunction and oxidative stress mediated by hepatitis C virus protein expression. Biochem Pharmacol 2014; 89:545-56. [PMID: 24726442 DOI: 10.1016/j.bcp.2014.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
Amantadine is an antiviral and antiparkinsonian drug that has been evaluated in combination therapies against hepatitis C virus (HCV) infection. Controversial results have been reported concerning its efficacy, and its mechanism of action remains unclear. Data obtained in vitro suggested a role of amantadine in inhibiting HCV p7-mediated cation conductance. In keeping with the fact that mitochondria are responsible to ionic fluxes and that HCV infection impairs mitochondrial function, we investigated a potential role of amantadine in modulating mitochondrial function. Using a well-characterized inducible cell line expressing the full-length HCV polyprotein, we found that amantadine not only prevented but also rescued HCV protein-mediated mitochondrial dysfunction. Specifically, amantadine corrected (i) overload of mitochondrial Ca²⁺; (ii) inhibition of respiratory chain activity and oxidative phosphorylation; (iii) reduction of membrane potential; and (iv) overproduction of reactive oxygen species. The effects of amantadine were observed within 15 min following drug administration and confirmed in Huh-7.5 cells transfected with an infectious HCV genome. These effects were also observed in cells expressing subgenomic HCV constructs, indicating that they are not mediated or only in part mediated by p7. Single organelle analyzes carried out on isolated mouse liver mitochondria demonstrated that amantadine induces hyperpolarization of the membrane potential. Moreover, amantadine treatment increased the calcium threshold required to trigger mitochondrial permeability transition opening. In conclusion, these results support a role of amantadine in preserving cellular bioenergetics and redox homeostasis in HCV-infected cells and unveil an effect of the drug which might be exploited for a broader therapeutic utilization.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy
| | - Maria Ripoli
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PT, Italy
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy.
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy.
| |
Collapse
|
33
|
Foster TL, Thompson GS, Kalverda AP, Kankanala J, Bentham M, Wetherill LF, Thompson J, Barker AM, Clarke D, Noerenberg M, Pearson AR, Rowlands DJ, Homans SW, Harris M, Foster R, Griffin S. Structure-guided design affirms inhibitors of hepatitis C virus p7 as a viable class of antivirals targeting virion release. Hepatology 2014; 59:408-22. [PMID: 24022996 PMCID: PMC4298801 DOI: 10.1002/hep.26685] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/07/2013] [Indexed: 01/02/2023]
Abstract
UNLABELLED Current interferon-based therapy for hepatitis C virus (HCV) infection is inadequate, prompting a shift toward combinations of direct-acting antivirals (DAA) with the first protease-targeted drugs licensed in 2012. Many compounds are in the pipeline yet primarily target only three viral proteins, namely, NS3/4A protease, NS5B polymerase, and NS5A. With concerns growing over resistance, broadening the repertoire for DAA targets is a major priority. Here we describe the complete structure of the HCV p7 protein as a monomeric hairpin, solved using a novel combination of chemical shift and nuclear Overhauser effect (NOE)-based methods. This represents atomic resolution information for a full-length virus-coded ion channel, or "viroporin," whose essential functions represent a clinically proven class of antiviral target exploited previously for influenza A virus therapy. Specific drug-protein interactions validate an allosteric site on the channel periphery and its relevance is demonstrated by the selection of novel, structurally diverse inhibitory small molecules with nanomolar potency in culture. Hit compounds represent a 10,000-fold improvement over prototypes, suppress rimantadine resistance polymorphisms at submicromolar concentrations, and show activity against other HCV genotypes. CONCLUSION This proof-of-principle that structure-guided design can lead to drug-like molecules affirms p7 as a much-needed new target in the burgeoning era of HCV DAA.
Collapse
Affiliation(s)
- Toshana L Foster
- Leeds Institute of Cancer & Pathology & CRUK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of LeedsLeeds, West Yorkshire, UK,School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Gary S Thompson
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Arnout P Kalverda
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Jayakanth Kankanala
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Matthew Bentham
- Leeds Institute of Cancer & Pathology & CRUK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of LeedsLeeds, West Yorkshire, UK
| | - Laura F Wetherill
- Leeds Institute of Cancer & Pathology & CRUK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of LeedsLeeds, West Yorkshire, UK
| | - Joseph Thompson
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Amy M Barker
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Dean Clarke
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Marko Noerenberg
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Arwen R Pearson
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - David J Rowlands
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Steven W Homans
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Mark Harris
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| | - Richard Foster
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK,School of Chemistry, Faculty of Mathematics and Physical Sciences, University of LeedsLeeds, West Yorkshire, UK,Address reprint requests to: Stephen Griffin, Leeds Institute of Cancer & Pathology & CRUK Clinical Centre, Faculty of Medicine and Health, St. James’ University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire, LS9 7TF, UK. E-mail: ; fax: (+44)113 3438501
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology & CRUK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of LeedsLeeds, West Yorkshire, UK,School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeeds, West Yorkshire, UK
| |
Collapse
|
34
|
Two different conformations in hepatitis C virus p7 protein account for proton transport and dye release. PLoS One 2014; 9:e78494. [PMID: 24409277 PMCID: PMC3883635 DOI: 10.1371/journal.pone.0078494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 10/18/2013] [Indexed: 12/28/2022] Open
Abstract
The p7 protein from the hepatitis C virus (HCV) is a 63 amino acid long polypeptide that is essential for replication, and is involved in protein trafficking and proton transport. Therefore, p7 is a possible target for antivirals. The consensus model for the channel formed by p7 protein is a hexameric or heptameric oligomer of α-helical hairpin monomers, each having two transmembrane domains, TM1 and TM2, where the N-terminal TM1 would face the lumen of this channel. A reported high-throughput functional assay to search for p7 channel inhibitors is based on carboxyfluorescein (CF) release from liposomes after p7 addition. However, the rationale for the dual ability of p7 to serve as an ion or proton channel in the infected cell, and to permeabilize membranes to large molecules like CF is not clear. We have recreated both activities in vitro, examining the conformation present in these assays using infrared spectroscopy. Our results indicate that an α-helical form of p7, which can transport protons, is not able to elicit CF release. In contrast, membrane permeabilization to CF is observed when p7 contains a high percentage of β-structure, or when using a C-terminal fragment of p7, encompassing TM2. We propose that the reported inhibitory effect of some small compounds, e.g., rimantadine, on both CF release and proton transport can be explained via binding to the membrane-inserted C-terminal half of p7, increasing its rigidity, in a similar way to the influenza A M2-rimantadine interaction.
Collapse
|
35
|
Atkins E, Tatineni R, Li H, Gretch D, Harris M, Griffin S. The stability of secreted, acid-labile H77/JFH-1 hepatitis C virus (HCV) particles is altered by patient isolate genotype 1a p7 sequences. Virology 2014; 448:117-24. [PMID: 24314642 PMCID: PMC7615703 DOI: 10.1016/j.virol.2013.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/05/2013] [Accepted: 10/03/2013] [Indexed: 12/17/2022]
Abstract
Secreted infectious particles generated by the genotype 2a JFH-1 hepatitis C virus infectious clone are resistant to acidic pH, whereas intracellular virions remain acid-labile. Thus, JFH-1 particles are thought to undergo pH maturation as they are secreted from the cell. Here, we demonstrate that both infectious intracellular and secreted genotype 1a (H77)/JFH-1 chimaeric particles display enhanced acid sensitivity compared with JFH-1, although pH maturation still occurs upon release. Introduction of p7 sequences from genotype 1a infected HCV patients into the H77/JFH-1 background yielded variable effects on infectious particle production and sensitivity to small molecule inhibitors. However, two selected patient p7 sequences increased the acid stability of secreted, but not intracellular H77/JFH-1 particles, suggesting that p7 directly influences particle pH maturation via an as yet undefined mechanism. We propose that HCV particles vary in acid stability, and that this may be dictated by variations in both canonical structural proteins and p7.
Collapse
Affiliation(s)
- Elizabeth Atkins
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
| | - Ranjitha Tatineni
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, United Kingdom
| | - Hui Li
- Department of Laboratory Medicine, University of Washington School of Medicine, Harborview Medical Centre, Ninth & Jefferson Building, 908 Jefferson Street, Seattle, WA 98104, USA
| | - David Gretch
- Department of Laboratory Medicine, University of Washington School of Medicine, Harborview Medical Centre, Ninth & Jefferson Building, 908 Jefferson Street, Seattle, WA 98104, USA
| | - Mark Harris
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
| | - Stephen Griffin
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, United Kingdom
| |
Collapse
|
36
|
Largo E, Gladue DP, Huarte N, Borca MV, Nieva JL. Pore-forming activity of pestivirus p7 in a minimal model system supports genus-specific viroporin function. Antiviral Res 2013; 101:30-6. [PMID: 24189547 DOI: 10.1016/j.antiviral.2013.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
Viroporins are small integral membrane proteins functional in viral assembly and egress by promoting permeabilization. Blocking of viroporin function therefore constitutes a target for antiviral development. Classical swine fever virus (CSFV) protein p7 has been recently regarded as a class II viroporin. Here, we sought to establish the determinants of the CSFV p7 permeabilizing activity in a minimal model system. Assessment of an overlapping peptide library mapped the porating domain to the C-terminal hydrophobic stretch (residues 39-67). Pore-opening dependence on pH or sensitivity to channel blockers observed for the full protein required the inclusion of a preceding polar sequence (residues 33-38). Effects of lipid composition and structural data further support that the resulting peptide (residues 33-67), may comprise a bona fide surrogate to assay p7 activity in model membranes. Our observations imply that CSFV p7 relies on genus-specific structures-mechanisms to perform its viroporin function.
Collapse
Affiliation(s)
- Eneko Largo
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Douglas P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Manuel V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - José L Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
37
|
Meredith LW, Zitzmann N, McKeating JA. Differential effect of p7 inhibitors on hepatitis C virus cell-to-cell transmission. Antiviral Res 2013; 100:636-9. [PMID: 24157306 PMCID: PMC3851685 DOI: 10.1016/j.antiviral.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/19/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
p7 Inhibitors were tested for their ability to block HCV cell-free and cell-to-cell transmission. p7 Inhibitor BIT225 reduced the infectivity of diverse HCV extracellular virus. p7 Inhibitors had minimal effect on HCV cell-to-cell transmission. Important to consider HCV transmission route when assessing assembly inhibitors.
Inhibitors targeting the hepatitis C virus (HCV) encoded viroporin, p7 prevent virus release in vitro. HCV can transmit by cell-free particle infection of new target cells and via cell-to-cell dependent contact with limited exposure to the extracellular environment. The role of assembly inhibitors in preventing HCV transmission via these pathways has not been studied. We compared the efficacy of three published p7 inhibitors to inhibit cell-free and cell-to-cell transmission of two chimeric HCV strains encoding genotype 2 (GT2) or 5 (GT5) p7 using a recently developed single cycle co-culture assay. The inhibitors reduced the infectivity of extracellular GT2 and GT5 virus by 80–90% and GT2 virus cell-to-cell transmission by 50%. However, all of the p7 inhibitors had minimal effect on GT5 cell contact dependent transmission. Screening a wider panel of diverse viral genotypes demonstrated that p7 viroporin inhibitors were significantly more effective at blocking cell-free virus than cell-to-cell transmission. These results suggest an altered assembly or trafficking of cell-to-cell transmitted compared to secreted virus. These observations have important implications for the validation, therapeutic design and testing of HCV assembly inhibitors.
Collapse
Affiliation(s)
- L W Meredith
- Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
38
|
Wang YT, Hsu HJ, Fischer WB. Computational modeling of the p7 monomer from HCV and its interaction with small molecule drugs. SPRINGERPLUS 2013; 2:324. [PMID: 23961398 PMCID: PMC3724979 DOI: 10.1186/2193-1801-2-324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/11/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus p7 protein is a 63 amino acid polytopic protein with two transmembrane domains (TMDs) and one of the prime targets for anti HCV drug development. A bio-inspired modeling pathway is used to generate plausible computational models of the two TMDs forming the monomeric protein model. A flexible region between Leu-13 and Gly-15 is identified for TMD11-32 and a region around Gly-46 to Trp-48 for TMD236-58. Mutations of the tyrosine residues in TMD236-58 into phenylalanine and serine are simulated to identify their role in shaping TMD2. Lowest energy structures of the two TMDs connected with the loop residues are used for a posing study in which small molecule drugs BIT225, amantadine, rimantadine and NN-DNJ, are identified to bind to the loop region. BIT225 is identified to interact with the backbone of the functionally important residues Arg-35 and Trp-36.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Life Science, Tzu Chi University, Hualien, 970 Taiwan
| | | | | |
Collapse
|
39
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
40
|
The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother 2012; 57:637-9. [PMID: 23114759 DOI: 10.1128/aac.02005-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antistaphylococcal agents commonly lack activity against Gram-negative bacteria like Escherichia coli owing to the permeability barrier presented by the outer membrane and/or the action of efflux transporters. When these intrinsic resistance mechanisms are artificially compromised, such agents almost invariably demonstrate antibacterial activity against Gram negatives. Here we show that this is not the case for the antibiotic daptomycin, whose target appears to be absent from E. coli and other Gram-negative pathogens.
Collapse
|
41
|
Chandler DE, Penin F, Schulten K, Chipot C. The p7 protein of hepatitis C virus forms structurally plastic, minimalist ion channels. PLoS Comput Biol 2012; 8:e1002702. [PMID: 23028296 PMCID: PMC3447957 DOI: 10.1371/journal.pcbi.1002702] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) p7 is a membrane-associated oligomeric protein harboring ion channel activity. It is essential for effective assembly and release of infectious HCV particles and an attractive target for antiviral intervention. Yet, the self-assembly and molecular mechanism of p7 ion channelling are currently only partially understood. Using molecular dynamics simulations (aggregate time 1.2 µs), we show that p7 can form stable oligomers of four to seven subunits, with a bias towards six or seven subunits, and suggest that p7 self-assembles in a sequential manner, with tetrameric and pentameric complexes forming as intermediate states leading to the final hexameric or heptameric assembly. We describe a model of a hexameric p7 complex, which forms a transiently-open channel capable of conducting ions in simulation. We investigate the ability of the hexameric model to flexibly rearrange to adapt to the local lipid environment, and demonstrate how this model can be reconciled with low-resolution electron microscopy data. In the light of these results, a view of p7 oligomerization is proposed, wherein hexameric and heptameric complexes may coexist, forming minimalist, yet robust functional ion channels. In the absence of a high-resolution p7 structure, the models presented in this paper can prove valuable as a substitute structure in future studies of p7 function, or in the search for p7-inhibiting drugs.
Collapse
Affiliation(s)
- Danielle E. Chandler
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - François Penin
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, Univ Lyon, France; CNRS, UMR 5086, Lyon, France
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christophe Chipot
- Beckman Institute, University of Illinois at Urbana-Champaign Urbana, Illinois, United States of America
- Équipe de Dynamique des Assemblages Membranaires UMR 7565, Université de Lorraine, Vanduvre-lès-Nancy, France
| |
Collapse
|
42
|
Abstract
Viroporins are small virally encoded hydrophobic proteins that oligomerize in the membrane of host cells, leading to the formation of hydrophilic pores. This activity modifies several cellular functions, including membrane permeability, Ca2+ homeostasis, membrane remodelling and glycoprotein trafficking. A classification scheme for viroporins is proposed on the basis of their structure and membrane topology. Thus, class I and class II viroporins are defined according to the number of transmembrane domains in the protein (one and two, respectively), and subclasses are defined according to their orientation in the membrane. The main function of viroporins during viral replication is to participate in virion morphogenesis and release from host cells. In addition, some viroporins are involved in viral entry and genome replication. The structure and activity of several viroporins, such as picornavirus protein 2B (P2B), influenza A virus matrix protein 2 (M2), hepatitis C virus p7 and HIV-1 viral protein U (Vpu), have been analysed in detail. New members of this expanding family of viral proteins have been described, from both RNA and DNA viruses. In addition to having a common general structure, all of these new viroporins have the ability to increase membrane permeability. Viroporins represent ideal targets to block viral replication and the spread of infection. Although a number of selective inhibitors of viroporin ion channels have been analysed in detail, optimized screening systems promise to provide new and more potent antiviral compounds in the near future.
Viroporins belong to a growing family of virally encoded proteins that form aqueous channels in the membranes of host cells. Here, Carrasco and colleagues review the structure and diverse biological functions of these proteins during the viral life cycle, as well as their potential as antiviral therapeutic targets. Viroporins are small, hydrophobic proteins that are encoded by a wide range of clinically relevant animal viruses. When these proteins oligomerize in host cell membranes, they form hydrophilic pores that disrupt a number of physiological properties of the cell. Viroporins are crucial for viral pathogenicity owing to their involvement in several diverse steps of the viral life cycle. Thus, these viral proteins, which include influenza A virus matrix protein 2 (M2), HIV-1 viral protein U (Vpu) and hepatitis C virus p7, represent ideal targets for therapeutic intervention, and several compounds that block their pore-forming activity have been identified. Here, we review recent studies in the field that have advanced our knowledge of the structure and function of this expanding family of viral proteins.
Collapse
|
43
|
Wetherill LF, Holmes KK, Verow M, Müller M, Howell G, Harris M, Fishwick C, Stonehouse N, Foster R, Blair GE, Griffin S, Macdonald A. High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J Virol 2012; 86:5341-51. [PMID: 22357280 PMCID: PMC3347351 DOI: 10.1128/jvi.06243-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/15/2012] [Indexed: 01/12/2023] Open
Abstract
High-risk human papillomavirus type 16 (HPV16) is the primary causative agent of cervical cancer and therefore is responsible for significant morbidity and mortality worldwide. Cellular transformation is mediated directly by the expression of viral oncogenes, the least characterized of which, E5, subverts cellular proliferation and immune recognition processes. Despite a growing catalogue of E5-specific host interactions, little is understood regarding the molecular basis of its function. Here we describe a novel function for HPV16 E5 as an oligomeric channel-forming protein, placing it within the virus-encoded "viroporin" family. The development of a novel recombinant E5 expression system showed that E5 formed oligomeric assemblies of a defined luminal diameter and stoichiometry in membranous environments and that such channels mediated fluorescent dye release from liposomes. Hexameric E5 channel stoichiometry was suggested by native PAGE studies. In lieu of high-resolution structural information, established de novo molecular modeling and design methods permitted the development of the first specific small-molecule E5 inhibitor, capable of both abrogating channel activity in vitro and reducing E5-mediated effects on cell signaling pathways. The identification of channel activity should enhance the future understanding of the physiological function of E5 and could represent an important target for antiviral intervention.
Collapse
Affiliation(s)
- Laura F. Wetherill
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kristopher K. Holmes
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Mark Verow
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Marietta Müller
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Gareth Howell
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Colin Fishwick
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Nicola Stonehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - G. Eric Blair
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen Griffin
- Leeds Institute of Molecular Medicine, Faculty of Medicine and Health, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Andrew Macdonald
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
44
|
Abstract
The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.
Collapse
|
45
|
Li H, Atkins E, Bruckner J, McArdle S, Qiu WC, Thomassen LV, Scott J, Shuhart MC, Livingston S, Townshend-Bulson L, McMahon BJ, Harris M, Griffin S, Gretch DR. Genetic and functional heterogeneity of the hepatitis C virus p7 ion channel during natural chronic infection. Virology 2012; 423:30-7. [DOI: 10.1016/j.virol.2011.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/01/2011] [Accepted: 11/11/2011] [Indexed: 01/19/2023]
|
46
|
Foster TL, Verow M, Wozniak AL, Bentham MJ, Thompson J, Atkins E, Weinman SA, Fishwick C, Foster R, Harris M, Griffin S. Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology 2011; 54:79-90. [PMID: 21520195 DOI: 10.1002/hep.24371] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED The hepatitis C virus (HCV) p7 ion channel plays a critical role during infectious virus production and represents an important new therapeutic target. Its activity is blocked by structurally distinct classes of small molecules, with sensitivity varying between isolate p7 sequences. Although this is indicative of specific protein-drug interactions, a lack of high-resolution structural information has precluded the identification of inhibitor binding sites, and their modes of action remain undefined. Furthermore, a lack of clinical efficacy for existing p7 inhibitors has cast doubt over their specific antiviral effects. We identified specific resistance mutations that define the mode of action for two classes of p7 inhibitor: adamantanes and alkylated imino sugars (IS). Adamantane resistance was mediated by an L20F mutation, which has been documented in clinical trials. Molecular modeling revealed that L20 resided within a membrane-exposed binding pocket, where drug binding prevented low pH-mediated channel opening. The peripheral binding pocket was further validated by a panel of adamantane derivatives as well as a bespoke molecule designed to bind the region with high affinity. By contrast, an F25A polymorphism found in genotype 3a HCV conferred IS resistance and confirmed that these compounds intercalate between p7 protomers, preventing channel oligomerization. Neither resistance mutation significantly reduced viral fitness in culture, consistent with a low genetic barrier to resistance occurring in vivo. Furthermore, no cross-resistance was observed for the mutant phenotypes, and the two inhibitor classes showed additive effects against wild-type HCV. CONCLUSION These observations support the notion that p7 inhibitor combinations could be a useful addition to future HCV-specific therapies.
Collapse
Affiliation(s)
- Toshana L Foster
- Section of Oncology and Clinical Research, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Khaliq S, Jahan S, Hassan S. Hepatitis C virus p7: molecular function and importance in hepatitis C virus life cycle and potential antiviral target. Liver Int 2011; 31:606-17. [PMID: 21457434 DOI: 10.1111/j.1478-3231.2010.02442.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
p7, a 63-residue peptide encoded by hepatitis C virus (HCV), a major pathogen associated with a risk of developing severe liver disease, is involved in ion channel activity in lipid bilayer membranes both in in vitro and cell-based assays. p7 protein consists of two transmembrane α-helices, TM1 and TM2 connected by a loop oriented towards the cytoplasm. HCV relies on p7 function in addition to ion channel formation for efficient assembly, release and production of infectious progeny virions from liver cells. p7 activity is strictly sequence specific as mutation analysis showed the loss of ion channel function. Moreover, p7 ion channel activity can be specifically inhibited by different drugs suggesting the protein as a new target for future antiviral chemotherapy. In the present review, we focused to bring together the recent development to explore the potential role of p7 protein in HCV infection and its inhibition as a therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Functional and Applied Genomics Laboratory, National Center of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan.
| | | | | |
Collapse
|
48
|
Gervais C, Dô F, Cantin A, Kukolj G, White PW, Gauthier A, Vaillancourt FH. Development and validation of a high-throughput screening assay for the hepatitis C virus p7 viroporin. ACTA ACUST UNITED AC 2011; 16:363-9. [PMID: 21343600 DOI: 10.1177/1087057110396215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The HCV p7 protein is not involved in viral RNA replication but is essential for production of infectious virus. Based on its putative ion channel activity, p7 belongs to a family of viral proteins known as viroporins that oligomerize after insertion into a lipid membrane. To screen for compounds capable of interfering with p7 channel function, a low-throughput liposome-based fluorescent dye permeability assay was modified and converted to a robust high-throughput screening assay. Escherichia coli expressing recombinant p7 were grown in high-density fed-batch fermentation followed by a detergent-free purification using a combination of affinity and reversed-phase chromatography. The phospholipid composition of the liposomes was optimized for both p7 recognition and long-term stability. A counterscreen was developed using the melittin channel-forming peptide to eliminate nonspecific screening hits. The p7 liposome-based assay displayed robust statistics (Z' > 0.75), and sensitivity to inhibition was confirmed using known inhibitors.
Collapse
Affiliation(s)
- Christian Gervais
- Department of Biological Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., Laval, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Weiss VU, Bilek G, Pickl-Herk A, Subirats X, Niespodziana K, Valenta R, Blaas D, Kenndler E. Liposomal leakage induced by virus-derived peptides, viral proteins, and entire virions: rapid analysis by chip electrophoresis. Anal Chem 2011; 82:8146-52. [PMID: 20806784 DOI: 10.1021/ac101435v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Permeabilization of model lipid membranes by virus-derived peptides, viral proteins, and entire virions of human rhinovirus was assessed by quantifying the release of a fluorescent dye from liposomes via a novel chip electrophoretic assay. Liposomal leakage readily occurred upon incubation with the pH-sensitive synthetic fusogenic peptide GALA and, less efficiently, with a 24mer peptide (P1-N) derived from the N-terminus of the capsid protein VP1 of human rhinovirus 2 (HRV2) at acidic pH. Negative stain transmission electron microscopy showed that liposomes incubated with the rhinovirus-derived peptide remained largely intact. At similar concentrations, the GALA peptide caused gross morphological changes of the liposomes. On a molar basis, the leakage-inducing efficiency of the P1 peptide was by about 2 orders of magnitude inferior to that of recombinant VP1 (from HRV89) and entire HRV2. This underscores the role in membrane destabilization of VP1 domains remote from the N-terminus and the arrangement of the peptide in the context of the icosahedral virion. Our method is rapid, requires tiny amounts of sample, and allows for the parallel determination of released and retained liposomal cargo.
Collapse
Affiliation(s)
- Victor U Weiss
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tedbury P, Welbourn S, Pause A, King B, Griffin S, Harris M. The subcellular localization of the hepatitis C virus non-structural protein NS2 is regulated by an ion channel-independent function of the p7 protein. J Gen Virol 2010; 92:819-30. [PMID: 21177929 PMCID: PMC3133701 DOI: 10.1099/vir.0.027441-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hepatitis C virus (HCV) p7 ion channel and non-structural protein 2 (NS2) are both required for efficient assembly and release of nascent virions, yet precisely how these proteins are able to influence this process is unclear. Here, we provide both biochemical and cell biological evidence for a functional interaction between p7 and NS2. We demonstrate that in the context of a genotype 1b subgenomic replicon the localization of NS2 is affected by the presence of an upstream p7 with its cognate signal peptide derived from the C terminus of E2 (SPp7). Immunofluorescence analysis revealed that the presence of SPp7 resulted in the targeting of NS2 to sites closely associated with viral replication complexes. In addition, biochemical analysis demonstrated that, in the presence of SPp7, a significant proportion of NS2 was found in a detergent (Triton X-100)-insoluble fraction, which also contained a marker of detergent resistant rafts. In contrast, in replicons lacking p7, NS2 was entirely detergent soluble and the altered localization was lost. Furthermore, we found that serine 168 within NS2 was required for its localization adjacent to replication complexes, but not for its accumulation in the detergent-insoluble fraction. NS2 physically interacted with NS5A and this interaction was dependent on both p7 and serine 168 within NS2. Mutational and pharmacological analyses demonstrated that these effects were not a consequence of p7 ion channel function, suggesting that p7 possesses an alternative function that may influence the coordination of virus genome replication and particle assembly.
Collapse
Affiliation(s)
- Philip Tedbury
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|