1
|
Yang AX, Norbrun C, Sorkhdini P, Zhou Y. Phospholipid scramblase 1: a frontline defense against viral infections. Front Cell Infect Microbiol 2025; 15:1573373. [PMID: 40248364 PMCID: PMC12003403 DOI: 10.3389/fcimb.2025.1573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is the most studied member of the phospholipid scramblase protein family. Its main function is to catalyze calcium (Ca2+)-dependent, ATP-independent, bidirectional and non-specific translocation of phospholipids between inner and outer leaflets of plasma membrane. Additionally, PLSCR1 is identified as an interferon-stimulated gene (ISG) with antiviral activities, and its expression can be highly induced by all types of interferons in various viral infections. Indeed, numerous studies have reported the direct antiviral activities of PLSCR1 through interrupting the replication processes of a variety of viruses, including entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nuclear localization of influenza A virus (IAV), and transactivation of human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), human T-cell leukemia virus type-1 (HTLV1), human cytomegalovirus (HCMV) and hepatitis B virus (HBV). In addition to these direct antiviral activities, PLSCR1 also regulates endogenous immune components to defend against viruses in both nonimmune and immune cells. Such activities include potentiation of ISG transcription, activation of JAK/STAT pathway, upregulation of type 3 interferon receptor (IFN-λR1) and recruitment of Toll-like receptor 9 (TLR9). This review aims to summarize the current understanding of PLSCR1's multiple roles as a frontline defense against viral infections.
Collapse
Affiliation(s)
| | | | | | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
2
|
Chen X, Lai C, Cai L, Huang L. Cross one single body 49 tissues single-cell transcriptome reveals detailed macrophage heterogeneity during pig pregnancy. Front Immunol 2025; 16:1574120. [PMID: 40242774 PMCID: PMC12000058 DOI: 10.3389/fimmu.2025.1574120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Pregnancy involves complex physiological adaptations across maternal organs and the immune system to support fetal development. Macrophages play a dual role during pregnancy: defending against pathogens and supporting tissue adaptation. However, comprehensive and in-depth studies of cross-tissue transcriptional heterogeneity of macrophages during healthy pregnancy at the single-cell level remain elusive. Methods We performed single-cell RNA sequencing (scRNA-seq) to profile macrophages from a healthy pregnant pig across 49 tissues. Immunofluorescence was performed to verify the specific expression of transcription factors. Results In this study, we generated a macrophage atlas containing 114,881 macrophages from 49 tissues/organs within one single healthy pregnant pig, identified 33 subtypes, and revealed extensive tissue-specific diversity. We observed significant heterogeneity of macrophage subtypes across five different anatomical sites of adipose tissue. Notably, the Mφ MARCO+ subtype, primarily derived from mesenteric adipose tissue, showed higher activity in pattern recognition receptor signaling pathways compared to subtypes in other tissues, including different fat depots. Cross-tissue analysis revealed distinct expression patterns of transcription factors, cytokines, and cell surface receptors, including the transcription factor PLSCR1, specifically expressed in lung macrophages and verified by immunofluorescence. Cross-species analysis unveiled conservation and heterogeneity among macrophages in pigs, humans, and mice. Conclusion We constructed a multiple-tissue single-cell transcriptome atlas of macrophages in one single healthy pregnant pig, revealing their molecular differences and commonalities across tissues and species. Our study provides a valuable resource for understanding macrophage diversity and tissue-specific macrophage adaptations during pregnancy in pigs.
Collapse
Affiliation(s)
| | | | - Liping Cai
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
4
|
Montico B, Nigro A, Lamberti MJ, Martorelli D, Mastorci K, Ravo M, Giurato G, Steffan A, Dolcetti R, Casolaro V, Dal Col J. Phospholipid scramblase 1 is involved in immunogenic cell death and contributes to dendritic cell-based vaccine efficiency to elicit antitumor immune response in vitro. Cytotherapy 2024; 26:145-156. [PMID: 38099895 DOI: 10.1016/j.jcyt.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AIMS Whole tumor cell lysates (TCLs) obtained from cancer cells previously killed by treatments able to promote immunogenic cell death (ICD) can be efficiently used as a source of tumor-associated antigens for the development of highly efficient dendritic cell (DC)-based vaccines. Herein, the potential role of the interferon (IFN)-inducible protein phospholipid scramblase 1 (PLSCR1) in influencing immunogenic features of dying cancer cells and in enhancing DC-based vaccine efficiency was investigated. METHODS PLSCR1 expression was evaluated in different mantle-cell lymphoma (MCL) cell lines following ICD induction by 9-cis-retinoic acid (RA)/IFN-α combination, and commercial kinase inhibitor was used to identify the signaling pathway involved in its upregulation. A Mino cell line ectopically expressing PLSCR1 was generated to investigate the potential involvement of this protein in modulating ICD features. Whole TCLs obtained from Mino overexpressing PLSCR1 were used for DC loading, and loaded DCs were employed for generation of tumor antigen-specific cytotoxic T lymphocytes. RESULTS The ICD inducer RA/IFN-α combination promoted PLSCR1 expression through STAT1 activation. PLSCR1 upregulation favored pro-apoptotic effects of RA/IFN-α treatment and enhanced the exposure of calreticulin on cell surface. Moreover, DCs loaded with TCLs obtained from Mino ectopically expressing PLSCR1 elicited in vitro greater T-cell-mediated antitumor responses compared with DCs loaded with TCLs derived from Mino infected with empty vector or the parental cell line. Conversely, PLSCR1 knock-down inhibited the stimulating activity of DCs loaded with RA/IFN-α-treated TCLs to elicit cyclin D1 peptide-specific cytotoxic T lymphocytes. CONCLUSIONS Our results indicate that PLSCR1 improved ICD-associated calreticulin exposure induced by RA/IFN-α and was clearly involved in DC-based vaccine efficiency as well, suggesting a potential contribution in the control of pathways associated to DC activation, possibly including those involved in antigen uptake and concomitant antitumor immune response activation.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| | - Maria Julia Lamberti
- Departamento de Biología Molecular, INBIAS, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Katy Mastorci
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Maria Ravo
- Genomix4Life Srl, Baronissi, Salerno, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy.
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Riccardo Dolcetti
- Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia; Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| |
Collapse
|
5
|
Ashouri S, Khor SS, Hitomi Y, Sawai H, Nishida N, Sugiyama M, Kawai Y, Posuwan N, Tangkijvanich P, Komolmit P, Tsuiji M, Shotelersuk V, Poovorawan Y, Mizokami M, Tokunaga K. Genome-Wide Association Study for Chronic Hepatitis B Infection in the Thai Population. Front Genet 2022; 13:887121. [PMID: 35769989 PMCID: PMC9234442 DOI: 10.3389/fgene.2022.887121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
To identify novel host genetic variants that predispose to hepatitis B virus (HBV) persistence, we performed the first genome-wide association study in the Thai population involving 318 cases of chronic hepatitis B and 309 healthy controls after quality control measures. We detected the genome-wide significant association of the HLA class II region (HLA-DPA1/DPB1, rs7770370, p-value = 7.71 × 10-10, OR = 0.49) with HBV chronicity. Subsequent HLA allele imputation revealed HLA-DPA1*01:03 (Pc = 1.21 × 10-6, OR = 0.53), HLA-DPB1*02:01 (Pc = 2.17 × 10-3, OR = 0.50), and HLA-DQB1*06:09 (Pc = 2.17 × 10-2, OR = 0.07) as protective alleles, and HLA-DPA1*02:02 (Pc = 6.32 × 10-5, OR = 1.63), HLA-DPB1*05:01 (Pc = 1.13 × 10-4, OR = 1.72), HLA-DPB1*13:01 (Pc = 4.68 × 10-2, OR = 1.60), and HLA-DQB1*03:03 (Pc = 1.11 × 10-3, OR = 1.84) as risk alleles for HBV persistence. We also detected suggestive associations in the PLSCR1 (rs35766154), PDLIM5 (rs62321986), SGPL1 (rs144998273), and MGST1 (rs1828682) loci. Among single-nucleotide polymorphisms in the PLSCR1 locus, rs1061307 was identified as the primary functional variant by in silico/in vitro functional analysis. In addition to replicating the association of the HLA class II region, we detected novel candidate loci that provide new insights into the pathophysiology of chronic hepatitis B.
Collapse
Affiliation(s)
- Saeideh Ashouri
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nawarat Posuwan
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathum Thani, Thailand
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawat Komolmit
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Vorasuk Shotelersuk
- Department of Pediatrics, Center of Excellence for Medical Genomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Toyama, Tokyo,Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Dal Col J, Lamberti MJ, Nigro A, Casolaro V, Fratta E, Steffan A, Montico B. Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors. Cell Commun Signal 2022; 20:78. [PMID: 35650588 PMCID: PMC9158361 DOI: 10.1186/s12964-022-00895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 01/18/2023] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is the most studied protein of the scramblase family. Originally, it was identified as a membrane protein involved in maintaining plasma membrane asymmetry. However, studies conducted over the past few years have shown the involvement of PLSCR1 in several other cellular pathways. Indeed, PLSCR1 is not only embedded in the plasma membrane but is also expressed in several intracellular compartments where it interacts with a diverse repertoire of effectors, mediators, and regulators contributing to distinct cellular processes. Although most PLSCR1 interactors are thought to be cell-type specific, PLSCR1 often exerts its regulatory functions through shared mechanisms, including the trafficking of different molecules within intracellular vesicles such as endosomes, liposomes, and phagosomes. Intriguingly, besides endogenous proteins, PLSCR1 was also reported to interact with exogenous viral proteins, thereby regulating viral uptake and spread. This review aims to summarize the current knowledge about the multiple roles of PLSCR1 in distinct cellular pathways. Video Abstract
Collapse
Affiliation(s)
- Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Marìa Julia Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.,INBIAS, CONICET-UNRC, Río Cuarto, Córdoba, Argentina
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elisabetta Fratta
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
7
|
Luo J, Lian Q, Zhu D, Zhao M, Mei T, Shang B, Yang Z, Liu C, Xu W, Zhou L, Wu K, Liu X, Lai Y, Mao F, Li W, Zuo C, Zhang K, Lin M, Zhuo Y, Liu Y, Lu L, Zhao L. PLSCR1 Promotes Apoptosis and Clearance of Retinal Ganglion Cells in Glaucoma Pathogenesis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BMC Genomics 2021; 22:224. [PMID: 33781205 PMCID: PMC8007386 DOI: 10.1186/s12864-021-07528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice (Mus musculus). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells compared to olfactory sensory neurons. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07528-y.
Collapse
Affiliation(s)
- B Dnate' Baxter
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laetitia Merle
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paul Feinstein
- The Graduate Center Biochemistry, Biology and CUNY-Neuroscience-Collaborative Programs and Biological Sciences Department, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Arianna Gentile Polese
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Doug Shepherd
- Department of Pharmacology, University of Colorado Anschutz Medical Campus and Center for Biological Physics and Department of Physics, Arizona State University, Tempe, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
10
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511400 DOI: 10.1101/2020.05.14.096016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice ( Mus musculus ). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.
Collapse
|
11
|
Paim AC, Cummins NW, Natesampillai S, Garcia-Rivera E, Kogan N, Neogi U, Sönnerborg A, Sperk M, Bren GD, Deeks S, Polley E, Badley AD. HIV elite control is associated with reduced TRAILshort expression. AIDS 2019; 33:1757-1763. [PMID: 31149947 PMCID: PMC6873462 DOI: 10.1097/qad.0000000000002279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) dependent apoptosis has been implicated in CD4 T-cell death and immunologic control of HIV-1 infection. We have described a splice variant called TRAILshort, which is a dominant negative ligand that antagonizes TRAIL-induced cell death in the context of HIV-1 infection. HIV-1 elite controllers naturally control viral replication for largely unknown reasons. Since enhanced death of infected cells might be responsible, as might occur in situations of low (or inhibited) TRAILshort, we tested whether there was an association between elite controller status and reduced levels of TRAILshort expression. DESIGN Cohort study comparing TRAILshort and full length TRAIL expression between HIV-1 elite controllers and viremic progressors from two independent populations. METHODS TRAILshort and TRAIL gene expression in peripheral blood mononuclear cells (PBMCs) was determined by RNA-seq. TRAILshort and TRAIL protein expression in plasma was determined by antibody bead array and proximity extension assay respectively. RESULTS HIV-1 elite controllers expressed less TRAILshort transcripts in PBMCs (P = 0.002) and less TRAILshort protein in plasma (P < 0.001) than viremic progressors. CONCLUSION Reduced TRAILshort expression in PBMCs and plasma is associated with HIV-1 elite controller status.
Collapse
Affiliation(s)
- Ana C Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Ujjwal Neogi
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Gary D Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Steve Deeks
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, California
| | - Eric Polley
- Division of Biomedical Statistics and Informatics
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Wiwie C, Kuznetsova I, Mostafa A, Rauch A, Haakonsson A, Barrio-Hernandez I, Blagoev B, Mandrup S, Schmidt HHHW, Pleschka S, Röttger R, Baumbach J. Time-Resolved Systems Medicine Reveals Viral Infection-Modulating Host Targets. SYSTEMS MEDICINE 2019; 2:1-9. [PMID: 31119214 PMCID: PMC6524659 DOI: 10.1089/sysm.2018.0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Drug-resistant infections are becoming increasingly frequent worldwide, causing hundreds of thousands of deaths annually. This is partly due to the very limited set of protein drug targets known for human-infecting viral genomes. The eleven influenza virus proteins, for instance, exploit host cell factors for replication and suppression of the antiviral immune responses. A systems medicine approach to identify relevant and druggable host factors would dramatically expand therapeutic options. Therapeutic target identification, however, has hitherto relied on static molecular networks, whereas in reality the interactome, in particular during an infection, is subject to constant change. Methods: We developed time-course network enrichment (TiCoNE), an expert-centered approach for discovering temporal response pathways. In the first stage of TiCoNE, time-series expression data is clustered in a human-augmented manner to identify groups of biological entities with coherent temporal responses. Throughout this process, the expert can add, remove, merge, or split temporal patterns. The resulting groups can then be mapped to an interaction network to identify enriched pathways and to analyze cross-talk enrichments and depletions between groups. Finally, temporal response groups of two experiments can be intersected, to identify condition-variant response patterns that represent promising drug-target candidates. Results: We applied TiCoNE to human gene expression data for influenza A virus infection and rhino virus infection, respectively. We then identified coherent temporal response patterns and employed our cross-talk analysis to establish two potential timelines of systems-level host responses for either infection. Next, we compared the two phenotypes and unraveled condition-variant temporal groups interacting on a networks level. The highest-ranking ones we then validated via literature search and wet-lab experiments. This not only confirmed many of our candidates as previously known, but we also identified phospholipid scramblase 1 (encoded by PLSCR1) as a previously not recognized host factor that is essential for influenza A virus infection. Conclusion: With TiCoNE we developed a novel approach for conjointly analyzing molecular networks with time-series expression data and demonstrated its power by identifying temporal drug-targets. We provide proof-of-concept that not only novel targets can be identified using our approach, but also that anti-infective drug target discovery can be enhanced by investigating temporal molecular networks of the host in response to viral infection.
Collapse
Affiliation(s)
- Christian Wiwie
- Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Irina Kuznetsova
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Cairo, Egypt
| | - Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anders Haakonsson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Inigo Barrio-Hernandez
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Richard Röttger
- Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Department of Experimental Bioinformatics, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Tsai MH, Lee CK. STAT3 Cooperates With Phospholipid Scramblase 2 to Suppress Type I Interferon Response. Front Immunol 2018; 9:1886. [PMID: 30158934 PMCID: PMC6104169 DOI: 10.3389/fimmu.2018.01886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
Type I interferon (IFN-I) is a pluripotent cytokine that modulates innate and adaptive immunity. We have previously shown that STAT3 suppresses IFN-I response in a manner dependent on its N-terminal domain (NTD), but independent of its DNA-binding and transactivation ability. Using the yeast two-hybrid system, we have identified phospholipid scramblase 2 (PLSCR2) as a STAT3 NTD-binding partner and a suppressor of IFN-I response. Overexpression of PLSCR2 attenuates ISRE-driven reporter activity, which is further aggravated by co-expression of STAT3. Moreover, PLSCR2 deficiency enhances IFN-I-induced gene expression and antiviral activity without affecting the activation or nuclear translocation of STAT1 and STAT2 or the assembly of ISGF3 complex. Instead, PLSCR2 impedes promoter occupancy by ISGF3, an effect further intensified by the presence of STAT3. Moreover, palmitoylation of PLSCR2 is required for its binding to STAT3 and for this suppressive activity. In addition to STAT3, PLSCR2 also interacts with STAT2, which facilitates the suppressive effect on ISGF3-mediated transcriptional activity. Together, these results define the role of a novel STAT3–PLSCR2 axis in fine-tuning IFN-I response.
Collapse
Affiliation(s)
- Ming-Hsun Tsai
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Luo W, Zhang J, Liang L, Wang G, Li Q, Zhu P, Zhou Y, Li J, Zhao Y, Sun N, Huang S, Zhou C, Chang Y, Cui P, Chen P, Jiang Y, Deng G, Bu Z, Li C, Jiang L, Chen H. Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathog 2018; 14:e1006851. [PMID: 29352288 PMCID: PMC5792031 DOI: 10.1371/journal.ppat.1006851] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/31/2018] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription and replication of the influenza A virus (IAV) genome occur in the nucleus of infected cells and are carried out by the viral ribonucleoprotein complex (vRNP). As a major component of the vRNP complex, the viral nucleoprotein (NP) mediates the nuclear import of the vRNP complex via its nuclear localization signals (NLSs). Clearly, an effective way for the host to antagonize IAV infection would be by targeting vRNP nuclear import. Here, we identified phospholipid scramblase 1 (PLSCR1) as a binding partner of NP by using a yeast two-hybrid (Y2H) screen. The interaction between NP and PLSCR1 in mammalian cells was demonstrated by using co-immunoprecipitation and pull-down assays. We found that the stable overexpression of PLSCR1 suppressed the nuclear import of NP, hindered the virus life cycle, and significantly inhibited the replication of various influenza subtypes. In contrast, siRNA knockdown or CRISPR/Cas9 knockout of PLSCR1 increased virus propagation. Further analysis indicated that the inhibitory effect of PLSCR1 on the nuclear import of NP was not caused by affecting the phosphorylation status of NP or by stimulating the interferon (IFN) pathways. Instead, PLSCR1 was found to form a trimeric complex with NP and members of the importin α family, which inhibited the incorporation of importin β, a key mediator of the classical nuclear import pathway, into the complex, thus impairing the nuclear import of NP and suppressing virus replication. Our results demonstrate that PLSCR1 negatively regulates virus replication by interacting with NP in the cytoplasm and preventing its nuclear import.
Collapse
Affiliation(s)
- Weiyu Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qibing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengyang Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junping Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shanyu Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenchen Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
15
|
Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel) 2017; 5:E24. [PMID: 28862649 PMCID: PMC5620555 DOI: 10.3390/vaccines5030024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
16
|
Sivagnanam U, Palanirajan SK, Gummadi SN. The role of human phospholipid scramblases in apoptosis: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2261-2271. [PMID: 28844836 DOI: 10.1016/j.bbamcr.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Human phospholipid scramblases (hPLSCRs) are a family of four homologous single pass transmembrane proteins (hPLSCR1-4) initially identified as the proteins responsible for Ca2+ mediated bidirectional phospholipid translocation in plasma membrane. Though in-vitro assays had provided evidence, the role of hPLSCRs in phospholipid translocation is still debated. Recent reports revealed a new class of proteins, TMEM16 and Xkr8 to exhibit scramblase activity challenging the function of hPLSCRs. Apart from phospholipid scrambling, numerous reports have emphasized the multifunctional roles of hPLSCRs in key cellular processes including tumorigenesis, antiviral defense, protein and DNA interactions, transcriptional regulation and apoptosis. In this review, the role of hPLSCRs in mediating cell death through phosphatidylserine exposure, interaction with death receptors, cardiolipin exposure, heavy metal and radiation induced apoptosis and pathological apoptosis followed by their involvement in cancer cells are discussed. This review aims to connect the multifunctional characteristics of hPLSCRs to their decisive involvement in apoptotic pathways.
Collapse
Affiliation(s)
- Ulaganathan Sivagnanam
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Santosh Kumar Palanirajan
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
17
|
Kassas-Guediri A, Coudrat J, Pacreau E, Launay P, Monteiro RC, Blank U, Charles N, Benhamou M. Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo. PLoS One 2017; 12:e0173815. [PMID: 28282470 PMCID: PMC5345872 DOI: 10.1371/journal.pone.0173815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Mast cells are critical actors of hypersensitivity type I (allergic) reactions by the release of vasoactive and proinflammatory mediators following their activation by aggregation of the high-affinity receptor for immunoglobulin E (FcεRI). We have previously identified Phospholipid Scramblase 1 (PLSCR1) as a new molecular intermediate of FcεRI signaling that amplifies degranulation of the rat mast cell line RBL-2H3. Here we characterized primary mast cells from Plscr1-/- mice. The absence of PLSCR1 expression did not impact mast cell differentiation as evidenced by unaltered FcεRI expression, general morphology, amount of histamine stored and expression of FcεRI signal effector molecules. No detectable mast cell deficiency was observed in Plscr1-/- adult mice. In dose-response and time-course experiments, primary cultures of mast cells (bone marrow-derived mast cells and peritoneal cell-derived mast cells) generated from Plscr1-/- mice exhibited a reduced release of β-hexosaminidase upon FcεRI engagement as compared to their wild-type counterparts. In vivo, Plscr1-/- mice were protected in a model of passive systemic anaphylaxis when compared to wild-type mice, which was consistent with an observed decrease in the amounts of histamine released in the serum of Plscr1-/- mice during the reaction. Therefore, PLSCR1 aggravates anaphylactic reactions by increasing FcεRI-dependent mast cell degranulation. PLSCR1 could be a new therapeutic target in allergy.
Collapse
Affiliation(s)
- Asma Kassas-Guediri
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Julie Coudrat
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Emeline Pacreau
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Pierre Launay
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Renato C. Monteiro
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Ulrich Blank
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Nicolas Charles
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Marc Benhamou
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Han Y, Li A, Gao L, Wu W, Deng H, Hu W, Li N, Sun S, Zhang X, Zhao B, Liu B, Pang Q. Identification and characterization of a phospholipid scramblase encoded by planarian Dugesia japonica. Gene 2017; 602:43-49. [DOI: 10.1016/j.gene.2016.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 01/02/2023]
|
19
|
Tufail Y, Cook D, Fourgeaud L, Powers CJ, Merten K, Clark CL, Hoffman E, Ngo A, Sekiguchi KJ, O'Shea CC, Lemke G, Nimmerjahn A. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron 2017; 93:574-586.e8. [PMID: 28111081 DOI: 10.1016/j.neuron.2016.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled.
Collapse
Affiliation(s)
- Yusuf Tufail
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniela Cook
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Colin J Powers
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katharina Merten
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles L Clark
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Hoffman
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexander Ngo
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kohei J Sekiguchi
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Sivagnanam U, Narayana Murthy S, Gummadi SN. Identification and characterization of the novel nuclease activity of human phospholipid scramblase 1. BMC BIOCHEMISTRY 2016; 17:10. [PMID: 27206388 PMCID: PMC4875679 DOI: 10.1186/s12858-016-0067-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Background Human phospholipid scramblase 1 (hPLSCR1) was initially identified as a Ca2+ dependent phospholipid translocator involved in disrupting membrane asymmetry. Recent reports revealed that hPLSCR1 acts as a multifunctional signaling molecule rather than functioning as scramblase. hPLSCR1 is overexpressed in a variety of tumor cells and is known to interact with a number of protein molecules implying diverse functions. Results In this study, the nuclease activity of recombinant hPLSCR1 and its biochemical properties have been determined. Point mutations were generated to identify the critical region responsible for the nuclease activity. Recombinant hPLSCR1 exhibits Mg2+ dependent nuclease activity with an optimum pH and temperature of 8.5 and 37 °C respectively. Experiments with amino acid modifying reagents revealed that histidine, cysteine and arginine residues were crucial for its function. hPLSCR1 has five histidine residues and point mutations of histidine residues to alanine in hPLSCR1 resulted in 60 % loss in nuclease activity. Thus histidine residues could play a critical role in the nuclease activity of hPLSCR1. Conclusions This is the first report on the novel nuclease activity of the multi-functional hPLSCR1. hPLSCR1 shows a metal dependent nuclease activity which could play a role in key cellular processes that needs to be further investigated.
Collapse
Affiliation(s)
- Ulaganathan Sivagnanam
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Shweta Narayana Murthy
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Sathyanarayana N Gummadi
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
21
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
22
|
Kodigepalli KM, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS One 2015; 10:e0117464. [PMID: 25658875 PMCID: PMC4320088 DOI: 10.1371/journal.pone.0117464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA). TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs)). Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs). Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126) did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA) significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid) suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma) cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.
Collapse
Affiliation(s)
- Karthik M. Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kodigepalli KM, Bowers K, Sharp A, Nanjundan M. Roles and regulation of phospholipid scramblases. FEBS Lett 2014; 589:3-14. [PMID: 25479087 DOI: 10.1016/j.febslet.2014.11.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
Phospholipid scramblase activity is involved in the collapse of phospholipid (PL) asymmetry at the plasma membrane leading to externalization of phosphatidylserine. This activity is crucial for initiation of the blood coagulation cascade and for recognition/elimination of apoptotic cells by macrophages. Efforts to identify gene products associated with this activity led to the characterization of PL scramblase (PLSCR) and XKR family members which contribute to phosphatidylserine exposure in response to apoptotic stimuli. Meanwhile, TMEM16 family members were identified to externalize phosphatidylserine in response to elevated calcium in Scott syndrome platelets, which is critical for activation of the coagulation cascade. Herein, we report their mechanisms of gene regulation, molecular functions independent of their scrambling activity, and their potential roles in pathogenic conditions.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Kiah Bowers
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Arielle Sharp
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
24
|
Yuan Y, Tian C, Gong Q, Shang L, Zhang Y, Jin C, He F, Wang J. Interactome map reveals phospholipid scramblase 1 as a novel regulator of hepatitis B virus x protein. J Proteome Res 2014; 14:154-63. [PMID: 25365352 DOI: 10.1021/pr500943x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HBV X protein plays crucial roles during viral infection and hepatocellular carcinoma (HCC) development through interaction with various host factors. Here, we mapped the interactome of HBx using a yeast two-hybrid screen. Nine human proteins were identified as novel interacting partners of HBx, one of which is phospholipid scramblase 1 (PLSCR1). PLSCR1 is an interferon-inducible protein that mediates antiviral activity against DNA and RNA viruses. However, the molecular mechanisms of PLSCR1 activity against HBV remain unclear. Here, we reported that PLSCR1 promotes HBx degradation by a proteasome- and ubiquitin-dependent mechanism. Furthermore, we found that PLSCR1 inhibits HBx-mediated cell proliferation. After HBV infection, the protein level of PLSCR1 in plasma is elevated, and chronic hepatitis B patients with low plasma levels of PLSCR1 have a high risk of developing HCC. These results suggest that the nuclear trafficking of PLSCR1 mediates the antiviral activity and anticarcinogenesis against HBV by regulating HBx stability.
Collapse
Affiliation(s)
- Yanzhi Yuan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
The C-terminal transmembrane domain of human phospholipid scramblase 1 is essential for the protein flip-flop activity and Ca²⁺-binding. J Membr Biol 2013; 247:155-65. [PMID: 24343571 DOI: 10.1007/s00232-013-9619-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Human phospholipid scramblase 1 (SCR) is a 318 amino acid protein that was originally described as catalyzing phospholipid transbilayer (flip-flop) motion in plasma membranes in a Ca²⁺-dependent, ATP-independent way. Further studies have suggested an intranuclear role for this protein in addition. A putative transmembrane domain located at the C terminus (aa 291-309) has been related to the flip-flop catalysis. In order to clarify the role of the C-terminal region of SCR, a mutant was produced (SCRΔ) in which the last 28 amino acid residues were lacking, including the α-helix. SCRΔ had lost the scramblase activity and its affinity for Ca²⁺ was decreased by one order of magnitude. Fluorescence and IR spectroscopic studies revealed that the C-terminal region of SCR was essential for the proper folding of the protein. Moreover, it was found that Ca²⁺ exerted an overall destabilizing effect on SCR, which might facilitate its binding to membranes.
Collapse
|
26
|
Kusano S, Eizuru Y. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription. Biochem Biophys Res Commun 2013; 433:438-44. [PMID: 23501106 DOI: 10.1016/j.bbrc.2013.02.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/30/2022]
Abstract
Human phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)-stimulated gene and possesses an IFN-mediated antiviral function. We show here that PLSCR1 directly interacts with human immunodeficiency virus type-1 (HIV-1) Tat. This interaction occurs both in vitro and in vivo through amino acids 160-250 of PLSCR1. Overexpression of PLSCR1 efficiently represses the Tat-dependent transactivation of the HIV-1 long terminal repeat (LTR) and reduces the nuclear translocation of Tat. In addition, shRNA-mediated suppression of endogenous PLSCR1 expression enhances the levels of gag mRNA in an HIV-1-infected T-cell line. These findings indicate that PLSCR1 negatively regulates the Tat-dependent transactivation of the HIV-1 LTR during HIV-1 infection.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | | |
Collapse
|
27
|
Kusano S, Eizuru Y. Human phospholipid scramblase 1 interacts with and regulates transactivation of HTLV-1 Tax. Virology 2012; 432:343-52. [PMID: 22789739 DOI: 10.1016/j.virol.2012.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/21/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022]
Abstract
Human phospholipid scramblase (PLSCR) 1 expression is strongly activated in response to interferon (IFN) treatment and viral infection, and PLSCR1 is necessary for the IFN-dependent induction of gene expression and antiviral activity. We show here that PLSCR1 directly interacts with human T-cell leukemia virus type-1 (HTLV-1) Tax in vitro and in vivo. This interaction reduced the cytoplasmic distribution of Tax. PLSCR1 efficiently repressed the Tax-mediated transactivation of the HTLV-1 long terminal repeat and the NF-κB binding site reporter constructs in an interaction-dependent manner in COS-1 and Tax-producing HTLV-1-infected T cell lines. Furthermore, we show that PLSCR1 repressed the homodimerization of Tax in vitro. These data reveal for the first time that PLSCR1 specifically interacts with HTLV-1 Tax and negatively regulates its transactivation activity by altering the subcellular distribution and the homodimerization of Tax. PLSCR1 may play an important role in the IFN-mediated repression of Tax-dependent transactivation during HTLV-1 infection.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | | |
Collapse
|