1
|
Yang N, Qiao Z, Zhou Q, Chang X, Sun C, Zhang Y, Wei N, Wang K. Discovery of non-electrophilic TRPA1 channel agonists with anti-nociceptive effects via rapid current desensitization. Eur J Med Chem 2025; 291:117586. [PMID: 40209420 DOI: 10.1016/j.ejmech.2025.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/12/2025]
Abstract
Desensitizing transient receptor potential ankyrin 1 (TRPA1) cation channel through agonists emerges as an effective strategy for developing analgesics. Many TRPA1 agonists are electrophilic irritants, including BITC and iodoacetamide (IA), which covalently bind to cysteine residues in the cytoplasmic region of the channel. The electrophile JT010 is also recognized as a potent TRPA1 agonist via covalent modification of Cys621, whose irritant effects have been confirmed in humans, highlighting a commonly undesirable property of these electrophilic agonists. Cryo-electron microscopy (cryo-EM) structures have shown that these electrophiles induce a strong driving force for conformational change through electrophilic modification of TRPA1. However, the stable activated conformation induced by electrophiles might delay subsequent desensitization, leading to prolonged TRPA1-mediated nociception responses in vivo. Therefore, developing non-electrophilic TRPA1 agonists may mitigate the irritation associated with electrophilic agonists by accelerating the desensitizing process. To test this hypothesis, we designed and synthesized a series of novel TRPA1 agonists by removing the electrophilic functional group of JT010. Among these synthetic compounds, whole-cell patch clamp recording assays identified compound 21 as a selective TRPA1 agonist with an EC50 of 25.47 ± 1.56 μM for hTRPA1, exhibiting faster desensitization (τ = 20.02 ± 1.66 s) of mTRPA1 compared to electrophiles JT010 (41.71 ± 4.10 s) and BITC (68.05 ± 5.57 s). Importantly, compound 21 demonstrated effective analgesic properties without irritation in mice. Our findings support the hypothesis that facilitating rapid desensitization of TRPA1 by non-electrophilic channel agonists enhances anti-nociceptive effects. Compound 21 may serve as a promising lead for further optimization.
Collapse
Affiliation(s)
- Nan Yang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China
| | - Zhen Qiao
- Shandong Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Qiqi Zhou
- Department of Pharmacology, Qilu Medical University, Zibo, Shandong, 255300, China
| | - Xiuying Chang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China
| | - Chaoyue Sun
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China
| | - Yanru Zhang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China; Institute of Innovative Drug Discovery, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Ningning Wei
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China; Institute of Innovative Drug Discovery, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - KeWei Wang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, 266073, China; Institute of Innovative Drug Discovery, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
2
|
Mo S, Yue X, Qu Y, Zhang G, Wang L, Sun X. Echinacoside Ameliorates UVB-Induced Skin Damage Through Selective Inhibition of the Cutaneous TRPV3 Channel. Molecules 2025; 30:2026. [PMID: 40363831 PMCID: PMC12073194 DOI: 10.3390/molecules30092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Excessive exposure to ultraviolet B (UVB) radiation can lead to skin damage, such as erythema and swelling. Echinacoside is a key effective ingredient of medicinal plant Cistanche deserticola commonly used for therapies and treatments for anti-aging and irradiation-related skin diseases. However, the molecular mechanism underlying the action of echinacoside remains unclear. Here, we report that echinacoside ameliorates UVB-induced skin damage by directly acting on the Ca2+-permeable and thermosensitive transient receptor potential vanilloid 3 (TRPV3) channel. Topical application of echinacoside efficaciously suppresses skin lesions induced by UVB radiation in wild-type mice but has no additional benefit in Trpv3 knockout mice. In whole-cell patch clamp recordings, echinacoside selectively inhibits TRPV3 channel currents induced by 2-aminoethoxydiphenyl borate in a concentration-dependent manner with an IC50 value of 21.94 ± 1.28 μM. The single-channel patch clamp results show that echinacoside significantly reduces the open probability and open frequency without significantly altering TRPV3 channel unitary conductance. Molecular docking and site-specific mutagenesis indicate that residue T636 on the p-loop and residue T665 on the S6 segment of TRPV3 are critical for echinacoside binding to TRPV3. Taken together, our findings provide a molecular basis for further studies as use of natural echinacoside in irradiation-related skin care therapy, thus establishing a significant role of the TRPV3 channel in acute skin injury.
Collapse
Affiliation(s)
- Shilun Mo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, 1 Ningde Road, Qingdao 266073, China; (S.M.); (X.Y.); (L.W.)
| | - Xinying Yue
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, 1 Ningde Road, Qingdao 266073, China; (S.M.); (X.Y.); (L.W.)
| | - Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, 1 Ningde Road, Qingdao 266073, China; (Y.Q.); (G.Z.)
| | - Guoji Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, 1 Ningde Road, Qingdao 266073, China; (Y.Q.); (G.Z.)
| | - Liqin Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, 1 Ningde Road, Qingdao 266073, China; (S.M.); (X.Y.); (L.W.)
| | - Xiaoying Sun
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, 1 Ningde Road, Qingdao 266073, China; (S.M.); (X.Y.); (L.W.)
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
3
|
Roman BH, Muzykiewicz-Szymańska A, Florkowska K, Tkacz M, Wilk B, Kucharski Ł, Madalińska A, Nowak A. The Use of Plants That Seal Blood Vessels in Preparations Applied Topically to the Skin: A Review. Molecules 2025; 30:1973. [PMID: 40363780 PMCID: PMC12073798 DOI: 10.3390/molecules30091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Plants provide valuable compounds that positively influence the health of blood vessels, including those in the skin. Numerous plants exhibit anti-inflammatory, antioxidant, and vasodilating effects, which enhance blood circulation and may promote skin regeneration and suppleness. Botanical species like Camellia sinensis, Chrysanthellum indicum, Helichrysum italicum, Glycyrrhiza glabra, Ginkgo biloba, or Artemisia lavandulaefolia may positively influence the health of cutaneous blood vessels in the skin. The beneficial impact in this context is attributed to various secondary metabolites inherent to these plants, including phenolic acids, flavonoids, vitamins, or saponins, which can subsequently enhance microcirculation, diminish swelling, inhibit telangiectasia, occlude blood vessels, and enhance skin appearance. In addition, the high antioxidant activity of plants is also key here, which helps protect vessels from damage caused by oxidative stress. This article provides an overview of specific plants that may positively influence skin blood vessels, along with a discussion of particular active compounds within these plants that exhibit such effects. These herbs not only improve vascular health but also promote a more youthful appearance. By examining their distinct qualities, we can enhance our comprehension of their synergistic effects on skin vitality and resilience.
Collapse
Affiliation(s)
- Barbara Hanna Roman
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Katarzyna Florkowska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Magdalena Tkacz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Bartłomiej Wilk
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| | - Agata Madalińska
- Students’ Scientific Club at the Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland;
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (B.H.R.); (A.M.-S.); (K.F.); (M.T.); (B.W.); (Ł.K.)
| |
Collapse
|
4
|
Cheng J, Fu Y, Meng X, Tang G, Li L, Yusupov Z, Tojibaev K, He M, Sun M. Investigation of anti-inflammatory effect of essential oil extracted from Achillea alpina L. through multi-omics analysis in zebrafish tail fin amputation model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119519. [PMID: 39986357 DOI: 10.1016/j.jep.2025.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achillea alpina L. is a traditional herbal medicine with a long history, which is often used to detoxify and relieve pain. Achillea alpina L. essential oil (AHO) is extracted from the aboveground part of the Achillea alpina L. The role of AHO on the in vivo anti-inflammatory effects remains unclear. AIM OF THE STUDY To explore the anti-inflammatory effect and interaction mechanism of AHO in zebrafish tail fin model. MATERIALS AND METHODS The chemical components of AHO were first identified utilizing gas chromatography-mass spectrometry (GC-MS). A zebrafish tail fin model was employed to evaluate the anti-inflammatory effect of AHO by observing the numbers of neutrophils and the expression levels of pro-inflammatory cytokines. The combined application of transcriptomics and metabolomics helped us to explore the potential anti-inflammatory mechanism of AHO, and the expression of core gene was verified by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS The principal constituents of the AHO included bicyclo sesquiphellandrene (11.99%), α-thujene (6.19%), 1-methyl-7-isopropyl naphthalene (5.90%), and β-elemene (5.58%). AHO exhibited potent anti-inflammatory properties by dramatically inhibiting the migration of neutrophils to the tail fin amputation site, along with autophagy linked to inflammation. Moreover, AHO had an excellent regulatory influence on the expression of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin 6, and interleukin 1β. Furthermore, transcriptome and metabolomic analyses identified a crucial gene and fourteen significant metabolites influenced by AHO in relation to inflammation. The investigation demonstrated that AHO modulated the inflammatory response via influencing amino acid and glucose metabolism. CONCLUSION In this study, AHO has excellent anti-inflammatory effects and shown remarkable regulatory effects on the expression of immune cells and pro-inflammatory factors in vivo, which is highlighting the necessity for more research and development as a potential anti-inflammatory drug.
Collapse
Affiliation(s)
- Jie Cheng
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, China; The Jilin Province School-Enterprise Cooperation Technology Innovation Laboratory of Herbal Efficacy Evaluation Based on Zebrafish Model Organisms, Changchun University of Chinese Medicine, Jingyue Economic Development District, 130117, Changchun, China
| | - Yao Fu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, China; The Jilin Province School-Enterprise Cooperation Technology Innovation Laboratory of Herbal Efficacy Evaluation Based on Zebrafish Model Organisms, Changchun University of Chinese Medicine, Jingyue Economic Development District, 130117, Changchun, China
| | - Xianghe Meng
- The Jilin Province School-Enterprise Cooperation Technology Innovation Laboratory of Herbal Efficacy Evaluation Based on Zebrafish Model Organisms, Changchun University of Chinese Medicine, Jingyue Economic Development District, 130117, Changchun, China; Wish Technology, Building E11, Area B, Beihu Science and Technology Park, High-tech North District, 130102, Changchun, China
| | - Guicai Tang
- Baishan Institute of Science and Technology, No.228, Hunjiang Rd, Hunjiang District, 134399, Baishan, China
| | - Li Li
- Beijing Institute of Traditional Chinese Medicine, Shuiche Alley Xinjiekou, Xicheng District, 100035, Beijing, China; Capital Medical University Subsidiary Beijing Hospital of Traditional Chinese Medicine, No. 23 Backstreet of Art Gallery, Dongcheng District, 100010, Beijing, China
| | - Ziyoviddin Yusupov
- Institute of Botany, Academy of Sciences of Uzbekistan, 100125, Tashkent, Uzbekistan
| | - Komiljon Tojibaev
- Institute of Botany, Academy of Sciences of Uzbekistan, 100125, Tashkent, Uzbekistan
| | - Min He
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, China; The Jilin Province School-Enterprise Cooperation Technology Innovation Laboratory of Herbal Efficacy Evaluation Based on Zebrafish Model Organisms, Changchun University of Chinese Medicine, Jingyue Economic Development District, 130117, Changchun, China.
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, China; The Jilin Province School-Enterprise Cooperation Technology Innovation Laboratory of Herbal Efficacy Evaluation Based on Zebrafish Model Organisms, Changchun University of Chinese Medicine, Jingyue Economic Development District, 130117, Changchun, China.
| |
Collapse
|
5
|
Schiano Moriello A, Bossoni A, Mattoteia D, Caprioglio D, Minassi A, Appendino G, De Petrocellis L, Amodeo P, Vitale RM. The Impact of a Quinone Scaffold on Thermo-TRPs Modulation by Dimethylheptyl Phytocannabinoids. Int J Mol Sci 2025; 26:2682. [PMID: 40141324 PMCID: PMC11942486 DOI: 10.3390/ijms26062682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Phytocannabinoids (pCBs) from Cannabis sativa represent an important class of bioactive molecules, potentially useful for the treatment of a wide range of diseases. Their efficacy is due to their ability to interact with multiple targets of the endocannabinoid system, including the thermosensitive transient receptor potential (Thermo-TRPs), namely TRPV1-4, TRPA1, and TRPM8 channels. Previously, we demonstrated a shift in selectivity toward TRPA1 in the activity profile of the main pCBs, that is, CBD, ∆8-THC, CBG, CBC, and CBN, by swapping the pentyl chain with the α,α-dimethylheptyl (DMH) one. Using these derivatives as a starting point, here we investigate the effects on the thermo-TRPs activity profile of the integration of a quinone group into the resorcinol scaffold. We found that, while the activity on TRPA1 is substantially retained, an increase in potency/efficacy on the TRPV3 modulation is observed. Docking studies were used to elucidate the binding modes of the most active compounds toward this receptor, providing a rationale for this biological activity. In summary, we show that the quinone derivatives of DMH-pCBs are endowed with a TRPA1/TRPV3 desensitizing activity, potentially useful for the treatment of skin diseases sustained by inflammatory conditions.
Collapse
Affiliation(s)
- Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (A.S.M.); (L.D.P.); (P.A.)
- Epitech Group SpA, Via Leonardo Da Vinci 3, 35030 Saccolongo, PD, Italy
| | - Aurora Bossoni
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, NO, Italy; (A.B.); (D.M.); (D.C.); (A.M.); (G.A.)
| | - Daiana Mattoteia
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, NO, Italy; (A.B.); (D.M.); (D.C.); (A.M.); (G.A.)
| | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, NO, Italy; (A.B.); (D.M.); (D.C.); (A.M.); (G.A.)
| | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, NO, Italy; (A.B.); (D.M.); (D.C.); (A.M.); (G.A.)
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, NO, Italy; (A.B.); (D.M.); (D.C.); (A.M.); (G.A.)
| | - Luciano De Petrocellis
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (A.S.M.); (L.D.P.); (P.A.)
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (A.S.M.); (L.D.P.); (P.A.)
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (A.S.M.); (L.D.P.); (P.A.)
| |
Collapse
|
6
|
Wang L, Mo S, Zhang G, Yue X, Qu Y, Sun X, Wang K. Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice. Eur J Pharmacol 2025; 990:177264. [PMID: 39805487 DOI: 10.1016/j.ejphar.2025.177264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/14/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice. However, the molecular mechanism underlying the action of forsythoside A remains unclear. Here, we report that the alleviation of androgenetic alopecia by natural phenylethanoid glycoside forsythiaside A involves the selective inhibition of warmth-sensitive Ca2+-permeable transient receptor potential vanilloid-3 (TRPV3) channels. TRPV3 mRNA and protein expressions are upregulated in the skin of a mouse model of androgenetic alopecia induced by DHT. Ablation of the Trpv3 gene or subcutaneous injection of forsythoside A alleviates DHT-induced hair regrowth inhibition. In whole-cell patch clamp recordings, forsythoside A selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC50 value of 40.1 ± 4.8 μM. At the single-channel level, forsythoside A also reduces the channel open probability and open frequency without significantly altering the channel unitary conductance. Molecular docking combined with site-directed mutagenesis reveals two residues T636 and T665 critical for forsythoside A-mediated inhibition of TRPV3. Taken together, our findings demonstrate that TRPV3 inhibition is an important a mechanism by which natural forsythoside A ameliorates DHT-induced hair regrowth. Topical TRPV3 inhibitors may hold promise as a new therapeutic approach for treating androgenetic alopecia.
Collapse
Affiliation(s)
- Liqin Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Shilun Mo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Guoji Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Xinying Yue
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Xiaoying Sun
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Sun M, Chen ZR, Ding HJ, Feng J. Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets. Acta Pharmacol Sin 2025; 46:539-553. [PMID: 39424975 PMCID: PMC11845708 DOI: 10.1038/s41401-024-01400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Itch is an uncomfortable feeling that evokes a desire to scratch. This protective reflex can effectively eliminate parasites that invade the skin. When itchy skin becomes severe or lasts for more than six weeks, it has deleterious effects on both quality of life and productivity. Despite decades of research, the complete molecular and cellular coding of chronic itch remains elusive. This persistent condition often defies treatment, including with antihistamines, and poses a significant societal challenge. Obtaining pathophysiological insights into the generation of chronic itch is essential for understanding its mechanisms and the development of innovative anti-itch medications. In this review we provide a systematic overview of the recent advancement in itch research, alongside the progress made in drug discovery within this field. We have examined the diversity and complexity of the classification and mechanisms underlying the complex sensation of itch. We have also delved into recent advancements in the field of itch mechanism research and how these findings hold potential for the development of new itch treatment medications. But the treatment of clinical itch symptoms still faces significant challenges. Future research needs to continue to delve deeper, not only to discover more itch-related pathways but also to explore how to improve treatment efficacy through multitarget or combination therapy.
Collapse
Affiliation(s)
- Meng Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-Ru Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Nie W, Fu H, Zhang Y, Yang H, Liu B. Chinese Herbal Medicine and Their Active Ingredients Involved in the Treatment of Atopic Dermatitis Related Signaling Pathways. Phytother Res 2025; 39:1190-1237. [PMID: 39764710 DOI: 10.1002/ptr.8409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/19/2025]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management. Chinese herbal medicine (CHM) and its active ingredients exhibit both prophylactic and therapeutic promise against AD by modulating inflammatory response, orchestrating immune system functions, and enhancing antioxidant activities. A comprehensive exploration of the underlying mechanisms involved in CHM treatment can enhance the comprehension of AD pathogenesis and facilitate the development of innovative drugs for AD. This study aims to elucidate the signaling pathways and potential targets implicated in CHM-based treatment of AD, providing a systematic theoretical framework for its application in therapy while serving as a valuable reference for developing more effective and safer AD therapeutic agents.
Collapse
Affiliation(s)
- Wenkai Nie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
9
|
Lu A, Li K, Huang C, Yu B, Zhong W. Pathogenesis and management of TRPV3-related Olmsted syndrome. Front Genet 2024; 15:1459109. [PMID: 39748945 PMCID: PMC11694452 DOI: 10.3389/fgene.2024.1459109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Olmsted syndrome is characterized by symmetrically distributed, destructive, inflammatory palmoplantar keratoderma with periorificial keratotic plaques, most commonly due to gain-of-function mutations in the transient receptor potential vanilloid 3 (TRPV3) gene, which involves multiple pathological functions of the skin, such as hyperkeratosis, dermatitis, hair loss, itching, and pain. Recent studies suggest that mutations of TRPV3 located in different structural domains lead to cases of varying severity, suggesting a potential genotype-phenotype correlation resulting from TRPV3 gene mutations. This paper reviews the genetics and pathogenesis of Olmsted syndrome, as well as the potential management and treatment. This review will lay a foundation for further developing the individualized treatment for TRPV3-related Olmsted syndrome.
Collapse
Affiliation(s)
- Antong Lu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Kezhen Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| | - Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
- Shenzhen University Medical School, Shenzhen, China
| | - Weilong Zhong
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
10
|
Han X, Wu X, Liu F, Chen H, Hou H. Inhibition of LPS-induced inflammatory response in RAW264.7 cells by natural Chlorogenic acid isomers involved with AKR1B1 inhibition. Bioorg Med Chem 2024; 114:117942. [PMID: 39396466 DOI: 10.1016/j.bmc.2024.117942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Inflammation is the physiological response of the immune system to injury or infection, typically manifested by local tissue congestion, swelling, heat, and pain. Prolonged or excessive inflammation can lead to tissue damage and the development of many diseases. The anti-inflammatory effects of natural ingredients have been extensively researched and confirmed. This study investigated the effects of Chlorogenic acid (CGA) isomers -- 3-Caffeolyquninic acid (3-CQA), 4-Caffeolyquninic acid (4-CQA), and 5-Caffeolyquninic acid (5-CQA) -- on the inflammatory response and oxidative stress reaction induced by LPS in RAW264.7 cells. Overall, 3-CQA exhibited the most significant reduction in levels of TNF-α, IL-6, NO, and ROS. 4-CQA showed superior inhibition of TNF-α compared to 5-CQA (p < 0.05), while no significant difference in other parameters. We further used DARTS and CETSA to demonstrate that CGA isomers have stable affinity with AKR1B1. As a positive control, the AKR1B1 antagonist epalrestat exhibited similar effects to the CGA isomers. 3-CQA having the smallest half-inhibitory concentration (IC50) for AKR1B1, while 4-CQA and 5-CQA have similar values. AutoDock simulations of the docking conformations revealed minimal differences in the average binding energies of the CGA isomers. The main differences were that VAL47 formed a hydrogen bond with 3-CQA, whereas GLN49 formed hydrogen bonds with 4-CQA and 5-CQA. Additionally, the number of hydrophobic bonds involving PHE122 and LEU300 varies. Our conclusion is that differences in non-covalent interactions result in the varying inhibitory abilities of CGA isomers on AKR1B1, which further affect the anti-inflammatory and antioxidant effects of CGA isomers.
Collapse
Affiliation(s)
- Xu Han
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China
| | - Xiaqing Wu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China
| | - Fanglin Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China.
| |
Collapse
|
11
|
Zhang B, Xie B, Xu W, Wei D, Zhang L, Sun J, Shi Y, Feng J, Yang F, Zhang H, Song X. Inhibition of transient receptor potential vanilloid 3 channels by antimalarial hydroxychloroquine alleviates TRPV3-dependent dermatitis. J Biol Chem 2024; 300:107733. [PMID: 39233228 PMCID: PMC11460631 DOI: 10.1016/j.jbc.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
Transient receptor potential vanilloid 3 channel (TRPV3) is closely associated with skin inflammation, but there is a lack of effective and specific inhibitors for clinical use. In this study, we identified antimalarial hydroxychloroquine (HCQ) as a selective TRPV3 inhibitor following the prediction by network pharmacology data analysis. In whole-cell patch-clamp recordings, HCQ inhibited the current of the TRPV3 channel, with an IC50 of 51.69 ± 4.78 μM. At the single-channel level, HCQ reduced the open probability of TRPV3 and decreased single-channel conductance. Molecular docking and site-directed mutagenesis confirmed that residues in the pore domain were critical for the activity of HCQ. In vivo, HCQ effectively reduced carvacrol-induced epidermal thickening, erythema, and desquamation. Additionally, the serum immunoglobulin E and inflammatory factors such as tumor necrosis factor-α and interleukin-6 were markedly decreased in the dorsal skin tissues in the HCQ treatment group, as compared to the model group. Our results suggested the antimalarial HCQ may represent a potential alleviator for treating skin inflammation by inhibiting TRPV3 channels.
Collapse
Affiliation(s)
- Beilei Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfan Wei
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Sun
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yetan Shi
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangfeng Feng
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| | - Heng Zhang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Hufnagel M, Rademaekers A, Weisert A, Häberlein H, Franken S. Pharmacological profile of dicaffeoylquinic acids and their role in the treatment of respiratory diseases. Front Pharmacol 2024; 15:1371613. [PMID: 39239645 PMCID: PMC11374715 DOI: 10.3389/fphar.2024.1371613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dicaffeoylquinic acids (DCQAs) are polyphenolic compounds found in various medicinal plants such as Echinacea species and Hedera helix, whose multi-constituent extracts are used worldwide to treat respiratory diseases. Besides triterpenes, saponins, alkamides, and other constituents, DCQAs are an important group of substances for the pharmacological activity of plant-derived extracts. Therefore, the pharmacological properties of DCQAs have been studied over the last decades, suggesting antioxidative, anti-inflammatory, antimicrobial, hypoglycaemic, cardiovascular protective, neuroprotective, and hepatoprotective effects. However, the beneficial pharmacological profile of DCQAs has not yet been linked to their use in treating respiratory diseases such as acute or even chronic bronchitis. The aim of this review was to assess the potential of DCQAs for respiratory indications based on published in vitro and in vivo pharmacological and pre-clinical data, with particular focus on antioxidative, anti-inflammatory, and respiratory-related effects such as antitussive or antispasmodic properties. A respective literature search revealed a large number of publications on the six DCQA isoforms. Based on this search, a focus was placed on 1,3-, 3,4-, 3,5-, and 4,5-DCQA, as the publications focused mainly on these isomers. Based on the available pre-clinical data, DCQAs trigger cellular mechanisms that are important in the treatment of respiratory diseases such as decreasing NF-κB activation, reducing oxidative stress, or activating the Nrf2 pathway. Taken together, these data suggest an essential role for DCQAs within herbal medicines used for the treatment of respiratory diseases and highlights the need for the identifications of DCQAs as lead substances within such extracts.
Collapse
Affiliation(s)
| | | | - Anika Weisert
- Engelhard Arzneimittel GmbH & Co. KG, Niederdorfelden, Germany
| | - Hanns Häberlein
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Zhang G, Wang L, Qu Y, Mo S, Sun X, Wang K. Inhibition of Cutaneous TRPV3 Channels by Natural Caffeic Acid for the Alleviation of Skin Inflammation. Molecules 2024; 29:3728. [PMID: 39202808 PMCID: PMC11357638 DOI: 10.3390/molecules29163728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Natural caffeic acid (CA) and its analogues have been studied for their potential applications in the treatment of various inflammatory and infectious skin diseases. However, the molecular mechanism underlying the effects of the CA remains largely unknown. Here, we report that CA and its two analogues, caffeic acid phenethyl ester (CAPE) and caffeic acid methyl caffeate (CAMC), inhibit TRPV3 currents in their concentration- and structure-dependent manners with IC50 values ranging from 102 to 410 μM. At the single-channel level, CA reduces the channel open probability and open frequency without alteration of unitary conductance. CA selectively inhibits TRPV3 relative to other subtypes of thermo-TRPs, such as TRPA1, TRPV1, TRPV4, and TRPM8. Molecular docking combined with site-specific mutagenesis reveals that a residue T636 in the Pore-loop is critical for CA binding to TRPV3. Further in vivo evaluation shows that CA significantly reverses TRPV3-mediated skin inflammation induced by skin sensitizer carvacrol. Altogether, our findings demonstrate that CA exerts its anti-inflammatory effects by selectively inhibiting TRPV3 through binding to the pocket formed by the Pore-loop and the S6. CA may serve as a lead for further modification and identification of specific TRPV3 channel inhibitors.
Collapse
Affiliation(s)
- Guoji Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Liqin Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Shilun Mo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Xiaoying Sun
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
14
|
Martin LS, Josset-Lamaugarny A, El Jammal T, Ducreux S, Chevalier FP, Fromy B. Aging is associated with impaired triggering of TRPV3-mediated cutaneous vasodilation: a crucial process for local heat exposure. GeroScience 2024; 46:3567-3580. [PMID: 37855862 PMCID: PMC11226586 DOI: 10.1007/s11357-023-00981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Sensing temperature is vitally important to adapt our body to environmental changes. Local warm detection is required to initiate regulation of cutaneous blood flow, which is part of the peripheral thermoregulatory mechanisms, and thus avoid damage to surrounding tissues. The mechanisms mediating cutaneous vasodilation during local heat stress are impaired with aging. However, the impact of aging on the ability of the skin to detect subtle thermal changes is unknown. Among heat-activated cation channels, transient receptor potential vanilloid 3 (TRPV3) is a thermo-sensor predominantly expressed on keratinocytes and involved in local vascular thermoregulatory mechanisms of the skin in young mice. In the present study, using a murine in vivo model of local heat exposure of the skin, we showed that heat-induced vasodilation was reduced in old mice associated with reduced expression of TRPV3 channels. We also found a decrease in expression and activity of TRPV3 channel, as well as reduced TRPV3-dependent adenosine tri-phosphate release in human primary keratinocytes from old donors. This study shows that aging alters the epidermal TRPV3 channels, which might delay the detection of changes in skin temperature, thereby limiting the mechanisms triggered for local vascular thermoregulation in the old skin.
Collapse
Affiliation(s)
- Lisa S Martin
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
| | - Audrey Josset-Lamaugarny
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
| | - Thomas El Jammal
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
- Department of Internal Medicine, University Hospital Lyon Croix-Rousse, Claude Bernard University Lyon 1, Lyon, France
| | - Sylvie Ducreux
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Claude Bernard University Lyon 1, 69500, Bron, France
| | - Fabien P Chevalier
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
| | - Bérengère Fromy
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France.
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France.
| |
Collapse
|
15
|
Lei J, Tominaga M. Unlocking the therapeutic potential of TRPV3: Insights into thermosensation, channel modulation, and skin homeostasis involving TRPV3. Bioessays 2024; 46:e2400047. [PMID: 38769699 DOI: 10.1002/bies.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Recent insights reveal the significant role of TRPV3 in warmth sensation. A novel finding elucidated how thermosensation is affected by TRPV3 membrane abundance that is modulated by the transmembrane protein TMEM79. TRPV3 is a warmth-sensitive ion channel predominantly expressed in epithelial cells, particularly skin keratinocytes. Multiple studies investigated the roles of TRPV3 in cutaneous physiology and pathophysiology. TRPV3 activation by innocuous warm temperatures in keratinocytes highlights its significance in temperature sensation, but whether TRPV3 directly contributes to warmth sensations in vivo remains controversial. This review explores the electrophysiological and structural properties of TRPV3 and how modulators affect its intricate regulatory mechanisms. Moreover, we discuss the multifaceted involvement of TRPV3 in skin physiology and pathology, including barrier formation, hair growth, inflammation, and itching. Finally, we examine the potential of TRPV3 as a therapeutic target for skin diseases and highlight its diverse role in maintaining skin homeostasis.
Collapse
Affiliation(s)
- Jing Lei
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
16
|
Song Z, Gao M, Li T, Zhang Y, Chen Z, Hu L, Liu J, Li Y, Wang X, Liu Y, Mo R, Xiang R, Hua D, Chen H, Zhao M, Chen X, Yao X, Yang Y. TRPV3-Activated PARP1/AIFM1/MIF Axis through Oxidative Stress Contributes to Atopic Dermatitis. J Invest Dermatol 2024:S0022-202X(24)00384-1. [PMID: 38823435 DOI: 10.1016/j.jid.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 06/03/2024]
Abstract
TRPV3 is a temperature-sensitive calcium-permeable channel. In previous studies, we noticed prominent TUNEL-positive keratinocytes in patients with Olmsted syndrome and Trpv3+/G568V mice, both of which carry gain-of-function variants in the TRPV3 gene. However, it remains unclear how the keratinocytes die and whether this process contributes to more skin disorders. In this study, we showed that gain-of-function variant or pharmacological activation of TRPV3 resulted in poly(ADP-ribose) polymerase 1 (PARP1)/AIFM1/macrophage migration inhibitory factor axis-mediated parthanatos, which is an underestimated form of cell death in skin diseases. Chelating calcium, scavenging ROS, or inhibiting nitric oxide synthase effectively rescued the parthanatos, indicating that TRPV3 regulates parthanatos through calcium-mediated oxidative stress. Furthermore, inhibiting PARP1 downregulated TSLP and IL33 induced by TRPV3 activation in HaCaT cells, reduced immune cell infiltration, and ameliorated epidermal thickening in Trpv3+/G568V mice. Marked parthanatos was also detected in the skin of MC903-treated mice and patients with atopic dermatitis, whereas inhibiting PARP1 largely alleviated the MC903-induced dermatitis. In addition, stimulating parthanatos in mouse skin with methylnitronitrosoguanidine recapitulated many features of atopic dermatitis. These data demonstrate that the TRPV3-regulated parthanatos-associated PARP1/AIFM1/macrophage migration inhibitory factor axis is a critical contributor to the pathogenesis of Olmsted syndrome and atopic dermatitis, suggesting that modulating the PARP1/AIFM1/macrophage migration inhibitory factor axis is a promising therapy for these conditions.
Collapse
Affiliation(s)
- Zhongya Song
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Meng Gao
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Tianxiao Li
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yi Zhang
- Department of Plastic and Reconstructive Surgery, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Zhiming Chen
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Linghan Hu
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Juan Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingshi Li
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xi Wang
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yihe Liu
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ran Mo
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ruiyu Xiang
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Di Hua
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Hao Chen
- Department of Pathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yong Yang
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
17
|
Porro C, Benameur T, Cianciulli A, Vacca M, Chiarini M, De Angelis M, Panaro MA. Functional and Therapeutic Potential of Cynara scolymus in Health Benefits. Nutrients 2024; 16:872. [PMID: 38542782 PMCID: PMC10974306 DOI: 10.3390/nu16060872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
Dietary supplements enriched with bioactive compounds represent a promising approach to influence physiological processes and enhance longevity and overall health. Cynara cardunculus var. scolymus serves as a functional food supplement with a high concentration of bioactive compounds, which offers various health-promoting benefits. Several chronic diseases have metabolic, genetic, or inflammatory origins, which are frequently interconnected. Pharmacological treatments, although effective, often result in undesirable side effects. In this context, preventive approaches are gaining increased attention. Recent literature indicates that the consumption of bioactive compounds in the diet can positively influence the organism's biological functions. Polyphenols, well-known for their health benefits, are widely recognized as valuable compounds in preventing/combating various pathologies related to lifestyle, metabolism, and aging. The C. scolymus belonging to the Asteraceae family, is widely used in the food and herbal medicine fields for its beneficial properties. Although the inflorescences (capitula) of the artichoke are used for food and culinary purposes, preparations based on artichoke leaves can be used as an active ingredient in herbal medicines. Cynara scolymus shows potential benefits in different domains. Its nutritional value and health benefits make it a promising candidate for improving overall well-being. C. scolymus exhibits anti-inflammatory, antioxidant, liver-protective, bile-expelling, antimicrobial, and lipid-lowering neuroprotective properties. Different studies demonstrate that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. The large amount of polyphenol found in C. scolymus has an antioxidant activity, enabling it to neutralize free radicals, preventing cellular damage. This reduces the subsequent risk of developing conditions such as cancer, diabetes, and cardiovascular diseases. Additionally, these polyphenols demonstrate anti-inflammatory activity, which is closely associated with their antioxidant properties. As a result, C. scolymus has the potential to contribute to the treatment of chronic diseases, including intestinal disorders, cardiovascular diseases, and neurodegenerative pathologies. The current review discussed the nutritional profiles, potential benefits, and pharmacological effects of C. scolymus.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Margherita Chiarini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| |
Collapse
|
18
|
Xu Y, Qu Y, Zhang C, Niu C, Tang X, Sun X, Wang K. Selective inhibition of overactive warmth-sensitive Ca 2+-permeable TRPV3 channels by antispasmodic agent flopropione for alleviation of skin inflammation. J Biol Chem 2024; 300:105595. [PMID: 38154600 PMCID: PMC10828444 DOI: 10.1016/j.jbc.2023.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/29/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
The temperature-sensitive Ca2+-permeable TRPV3 ion channel is robustly expressed in the skin keratinocytes, and its gain-of-function mutations are involved in the pathology of skin lesions. Here, we report the identification of an antispasmodic agent flopropione that alleviates skin inflammation by selective inhibition of TRPV3. In whole-cell patch clamp recordings, flopropione selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC50 value of 17.8 ± 3.5 μM. At the single-channel level, flopropione inhibits TRPV3 channel open probability without alteration of its unitary conductance. In an in vivo mouse model of skin inflammation induced by the skin sensitizer DNFB, flopropione also alleviates dorsal skin lesions and ear skin swelling. Further molecular docking combined with site-directed mutagenesis reveals that two residues E501 and I505 in the channel S2-helix are critical for flopropione-mediated inhibition of TRPV3. Taken together, our findings demonstrate that the spasmolytic drug flopropione as a selective inhibitor of TRPV3 channel not only provides a valuable tool molecule for understanding of TRPV3 channel pharmacology but also holds repurposing potential for therapy of skin disorders, such as dermatitis and pruritus.
Collapse
Affiliation(s)
- Yimei Xu
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Yaxuan Qu
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Congxiao Zhang
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China.
| | - Canyang Niu
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaowen Tang
- Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China; Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Wang L, Zhang L, Liu R, Xu Y, Tang Z, Zhang C, Zhang Z. Discovery of flavone-derivatives as the new skeleton of transient receptor potential vanilloid 3 channel antagonists. Bioorg Med Chem Lett 2024; 98:129577. [PMID: 38065293 DOI: 10.1016/j.bmcl.2023.129577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Transient receptor potential vanilloid 3 (TRPV3) channel is a temperature-sensitive and Ca2+-permeable nonselective cation channel, which is abundantly expressed in skin keratinocyte and plays an important role in skin homeostasis and repair. However, only a few TRPV3 inhibitors were reported. Few selective and potent modulators of the TRPV3 channel have hindered the progress of the investigation and clinical application. TRPV3 channel research still faces challenges and requires the new inhibitors. Flavonoids are a kind of natural compounds with various biological and pharmacological activities including anti-inflammatory and anti allergic effects, which is associated with some physiological effects mediated by TRPV3 channel. Herein, our group designed and synthesized a range of flavone derivatives, and investigated their inhibitory properties on the human TRPV3 channel by electrophysiology technique. Then, we identified a new potent TRPV3 antagonist 2d with IC50 of 0.62 μM. It also showed good selectivity on TRPV1, TRPV4, TRPA1 and TRPM8.
Collapse
Affiliation(s)
- Lili Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China; Department of Pharmacy, Maternity and Child Health Care of Zaozhuang, Zaozhuang, Shandong, China
| | - Ling Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Rongfeng Liu
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yimei Xu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhifeng Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Congxiao Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China.
| | - Zhongyin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Go EJ, Lee JY, Kim YH, Park CK. Site-Specific Transient Receptor Potential Channel Mechanisms and Their Characteristics for Targeted Chronic Itch Treatment. Biomolecules 2024; 14:107. [PMID: 38254707 PMCID: PMC10813675 DOI: 10.3390/biom14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic itch is a debilitating condition with limited treatment options, severely affecting quality of life. The identification of pruriceptors has sparked a growing interest in the therapeutic potential of TRP channels in the context of itch. In this regard, we provided a comprehensive overview of the site-specific expression of TRP channels and their associated functions in response to a range of pruritogens. Although several potent antipruritic compounds that target specific TRP channels have been developed and have demonstrated efficacy in various chronic itch conditions through experimental means, a more thorough understanding of the potential for adverse effects or interactions with other TRP channels or GPCRs is necessary to develop novel and selective therapeutics that target TRP channels for treating chronic itch. This review focuses on the mechanism of itch associated with TRP channels at specific sites, from the skin to the sensory neuron, with the aim of suggesting specific therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea;
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| |
Collapse
|
21
|
Zou W, Zhang L, Hu Y, Gao Y, Zhang J, Zheng J. The role of TRPV ion channels in adipocyte differentiation: What is the evidence? Cell Biochem Funct 2024; 42:e3933. [PMID: 38269518 DOI: 10.1002/cbf.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Obesity is a complex disorder, and the incidence of obesity continues to rise at an alarming rate worldwide. In particular, the growing incidence of overweight and obesity in children is a major health concern. However, the underlying mechanisms of obesity remain unclear and the efficacy of several approaches for weight loss is limited. As an important calcium-permeable temperature-sensitive cation channel, transient receptor potential vanilloid (TRPV) ion channels directly participate in thermo-, mechano-, and chemosensory responses. Modulation of TRPV ion channel activity can alter the physiological function of the ion channel, leading to neurodegenerative diseases, chronic pain, cancer, and skin disorders. In recent years, increasing studies have demonstrated that TRPV ion channels are abundantly expressed in metabolic organs, including the liver, adipose tissue, skeletal muscle, pancreas, and central nervous system, which has been implicated in various metabolic diseases, including obesity and diabetes mellitus. In addition, as an important process for the pathophysiology of adipocyte metabolism, adipocyte differentiation plays a critical role in obesity. In this review, we focus on the role of TRPV ion channels in adipocyte differentiation to broaden the ideas for prevention and control strategies for obesity.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Qu Y, Sun X, Wei N, Wang K. Inhibition of cutaneous heat-sensitive Ca 2+ -permeable transient receptor potential vanilloid 3 channels alleviates UVB-induced skin lesions in mice. FASEB J 2023; 37:e23309. [PMID: 37983944 DOI: 10.1096/fj.202301591rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet B (UVB) radiation causes skin injury by trigging excessive calcium influx and signaling cascades in the skin keratinocytes. The heat-sensitive Ca2+ -permeable transient receptor potential vanilloid 3 (TRPV3) channels robustly expressed in the keratinocytes play an important role in skin barrier formation and wound healing. Here, we report that inhibition of cutaneous TRPV3 alleviates UVB radiation-induced skin lesions. In mouse models of ear swelling and dorsal skin injury induced by a single exposure of weak UVB radiation, TRPV3 genes and proteins were upregulated in quantitative real-time PCR and Western blot assays. In accompany with TRPV3 upregulations, the expressions of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were also increased. Knockout of the TRPV3 gene alleviates UVB-induced ear swelling and dorsal skin inflammation. Furthermore, topical applications of two selective TRPV3 inhibitors, osthole and verbascoside, resulted in a dose-dependent attenuation of skin inflammation and lesions. Taken together, our findings demonstrate the causative role of overactive TRPV3 channel function in the development of UVB-induced skin injury. Therefore, topical inhibition of TRPV3 may hold potential therapy or prevention of UVB radiation-induced skin injury.
Collapse
Affiliation(s)
- Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Shi JX, Cheng C, Ruan HN, Li J, Liu CM. Isochlorogenic acid B alleviates lead-induced anxiety, depression and neuroinflammation in mice by the BDNF pathway. Neurotoxicology 2023; 98:1-8. [PMID: 37385299 DOI: 10.1016/j.neuro.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Lead (Pb) can cause neurobehavioral abnormalities. Isochlorogenic acid B (ICAB), a dietary flavonoid found in tea, sweet potato, artichoke, propolis and several plants, exhibited potential neuroprotective properties. In this study, we aimed to investigate the mechanisms of Pb-induced anxiety, depression and neuroinflammation, and the neuroprotective effect of ICAB in mouse brains. We found that ICAB supplementation significantly improved behavioral abnormalities, neuroinflammation and oxidative stress induced by Pb. ICAB attenuated Pb-induced anxiety and depression behavior in mice, as indicated by decreasing the duration of immobility in tail suspension test and increasing the crossing number, rearing number and time in center in open field test. Accordingly, ICAB inhibited oxidative stress by decreasing malondialdehyde (MDA) level and increasing the antioxidant enzyme activity. ICAB also inhibited Pb-induced inflammation in brain, as indicated by decreasing the tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. ICAB increased the expression levels of brain derived neurotrophic factor (BDNF) and the phosphorylation of cAMP-responsive element binding protein (CREB), phosphoinositide 3-kinases-protein kinase B (PI3K/AKT). Furthermore, ICAB decreased the levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), glycogen synthase kinase-3 beta (GSK-3β) and p38. Collectively, this study demonstrated that ICAB improved Pb-induced anxiety, depression, neuroinflammation and oxidative stress by regulating the BDNF signaling pathway.
Collapse
Affiliation(s)
- Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China.
| |
Collapse
|
24
|
Dang TH, Kim JY, Kim HJ, Kim BJ, Kim WK, Nam JH. Alpha-Mangostin: A Potent Inhibitor of TRPV3 and Pro-Inflammatory Cytokine Secretion in Keratinocytes. Int J Mol Sci 2023; 24:12930. [PMID: 37629111 PMCID: PMC10455244 DOI: 10.3390/ijms241612930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The TRPV3 calcium ion channel is vital for maintaining skin health and has been associated with various skin-related disorders. Since TRPV3 is involved in the development of skin inflammation, inhibiting TRPV3 could be a potential treatment strategy. Alpha-mangostin isolated from Garcinia mangostana L. extract exhibits diverse positive effects on skin health; however, the underlying mechanisms remain obscure. This study investigated the TRPV3-inhibitory properties of alpha-mangostin on TRPV3 hyperactive mutants associated with Olmsted syndrome and its impact on TRPV3-induced cytokine secretion and cell death. Our findings demonstrate that alpha-mangostin effectively inhibits TRPV3, with an IC50 of 0.077 ± 0.013 μM, showing inhibitory effects on both wild-type and mutant TRPV3. TRPV3 inhibition with alpha-mangostin decreased calcium influx and cytokine release, protecting cells from TRPV3-induced death. These results indicate that alpha-mangostin reduced inflammation in TRPV3-activated skin keratinocytes, suggesting that alpha-mangostin could be potentially used for improving inflammatory skin conditions such as dermatitis.
Collapse
Affiliation(s)
- Thi Huyen Dang
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Ji Yeong Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| | - Woo Kyung Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
25
|
Liu T, Xia Q, Lv Y, Wang Z, Zhu S, Qin W, Yang Y, Liu T, Wang X, Zhao Z, Ma H, Jia L, Zhang H, Xu Z, Li N. ErZhiFormula prevents UV-induced skin photoaging by Nrf2/HO-1/NQO1 signaling: An in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:115935. [PMID: 36414213 DOI: 10.1016/j.jep.2022.115935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ErZhiFormula (EZF) is a classical traditional Chinese medicinal formulation. It can be used to treat liver and kidney yin deficiency, dizziness, lumbar debility, insomnia, nocturnal emission, lower extremity weakness, and other aging-related diseases. However, the protective effect of EZF in skin photoaging and its potential mechanism has not been clarified. AIM OF THE STUDY This study aims to explore the role of EZF in the skin photoaging mechanism induced by UV radiation. MATERIALS AND METHODS Ultra Performance Liquid Chromatography (UPLC) was used to identify the fingerprint of EZF. The mice were irradiated with UVA and UVB to establish the photoaging model in vivo. Human immortalized keratinocytes (HaCaT) were irradiated with UVB to establish the photoaging model in vitro. The activity of cells was detected by CCK-8 and LDH kits, the level of reactive oxygen species was detected by DCF fluorescent probe, and the apoptosis was detected by PE annexin V and 7-Amino-Actinomycin (7-AAD) staining. Comet assay was used to detect cell DNA damage. The antioxidant enzyme levels in cell and mouse serum were detected by antioxidant kit, and Western blot was used to detect protein expression. RESULTS We found that EZF contain many active ingredients, including salidroside, specnuezhenide, isoquercitrin, etc. EZF can improve the photoaging of HaCaT cells and mouse skin caused by UV radiation. The results of animal experiments are consistent with those of cell experiments. Combined with Western blot analysis, we found that EZF finally played an anti-skin photoaging role by regulating the Nrf2/HO-1/NQO1 pathway. CONCLUSIONS EZF can protect skin from UV-induced photoaging by regulating the Nrf2/HO-1/NQO1 signal pathway. EZF may become a traditional Chinese medicine with the potential to prevent skin photoaging.
Collapse
Affiliation(s)
- Tao Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - QingMei Xia
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingshuang Lv
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zijing Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shan Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenxiao Qin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhiyue Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongfei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Linlin Jia
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zongpei Xu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Nan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
26
|
Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci 2023; 24:ijms24108601. [PMID: 37239947 DOI: 10.3390/ijms24108601] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel with a sensory function that is most abundantly expressed in keratinocytes and peripheral neurons. TRPV3 plays a role in Ca2+ homeostasis due to non-selective ionic conductivity and participates in signaling pathways associated with itch, dermatitis, hair growth, and skin regeneration. TRPV3 is a marker of pathological dysfunctions, and its expression is increased in conditions of injury and inflammation. There are also pathogenic mutant forms of the channel associated with genetic diseases. TRPV3 is considered as a potential therapeutic target of pain and itch, but there is a rather limited range of natural and synthetic ligands for this channel, most of which do not have high affinity and selectivity. In this review, we discuss the progress in the understanding of the evolution, structure, and pharmacology of TRPV3 in the context of the channel's function in normal and pathological states.
Collapse
Affiliation(s)
- Aleksandr P Kalinovskii
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lyubov L Utkina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Yuliya V Korolkova
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yaroslav A Andreev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| |
Collapse
|
27
|
TRPV3: Structure, Diseases and Modulators. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020774. [PMID: 36677834 PMCID: PMC9865980 DOI: 10.3390/molecules28020774] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Transient receptor potential vanillin 3 (TRPV3) is a member of the transient receptor potential (TRP) superfamily. As a Ca2+-permeable nonselective cation channel, TRPV3 can recognize thermal stimulation (31-39 °C), and it plays an important regulatory role in temperature perception, pain transduction, skin physiology, inflammation, cancer and other diseases. TRPV3 is not only activated by the changes in the temperature, but it also can be activated by a variety of chemical and physical stimuli. Selective TRPV3 agonists and antagonists with regulatory effects and the physiological functions for clinical application are highly demanded. In recent years, significant progress has been made in the study of TRPV3, but there is still a lack of modulators with a strong affinity and excellent selectivity. This paper reviews the functional characteristics of TRPV3 in terms of the structure, diseases and the research on TRPV3 modulators.
Collapse
|
28
|
TRPV3 and Itch: The Role of TRPV3 in Chronic Pruritus according to Clinical and Experimental Evidence. Int J Mol Sci 2022; 23:ijms232314962. [PMID: 36499288 PMCID: PMC9737326 DOI: 10.3390/ijms232314962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Itching is a sensory phenomenon characterized by an unpleasant sensation that makes you want to scratch the skin, and chronic itching diminishes the quality of life. In recent studies, multiple transient receptor potential (TRP) channels present in keratinocytes or nerve endings have been shown to engage in the propagation of itch signals in chronic dermatological or pruritic conditions, such as atopic dermatitis (AD) and psoriasis (PS). TRPV3, a member of the TRP family, is highly expressed in the epidermal keratinocytes. Normal TRPV3 signaling is essential for maintaining epidermal barrier homeostasis. In recent decades, many studies have suggested that TRPV3 contributes to detecting pruritus signals. Gain-of-function mutations in TRPV3 in mice and humans are characterized by severe itching, hyperkeratosis, and elevated total IgE levels. These studies suggest that TRPV3 is an important channel for skin itching. Preclinical studies have provided evidence to support the development of TRPV3 antagonists for treating inflammatory skin conditions, itchiness, and pain. This review explores the role of TRPV3 in chronic pruritus, collating clinical and experimental evidence. We also discuss underlying cellular and molecular mechanisms and explore the potential of TRPV3 antagonists as therapeutic agents.
Collapse
|
29
|
Wang Y, Tan L, Jiao K, Xue C, Tang Q, Jiang S, Ren Y, Chen H, El-Aziz TMA, Abdelazeem KNM, Yu Y, Zhao F, Zhu MX, Cao Z. Scutellarein Attenuates Atopic Dermatitis by Selectively Inhibiting Transient Receptor Potential Vanilloid 3. Br J Pharmacol 2022; 179:4792-4808. [PMID: 35771623 DOI: 10.1111/bph.15913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Atopic dermatitis (AD) is one of the most common chronic inflammatory cutaneous diseases with unmet clinical needs. As a common ingredient found in several medicinal herbs with efficacy on cutaneous inflammatory diseases, Scutellarein (Scu) has been shown to possess anti-inflammatory and anti-proliferative activities. We aimed to evaluate the therapeutic efficacy of Scu against AD and its underlying molecular mechanism. EXPERIMENTAL APPROACH Efficacy of Scu on AD was evaluated in 2,4-dinitrofluorobenzene (DNFB) and carvacrol-induced dermatitis mouse models. Cytokine mRNA and serum IgE levels were examined using qPCR and ELISA, respectively. Voltage clamp recordings were used to measure currents mediated by transient receptor potential (TRP) channels. In silico docking, site-direct mutagenesis, and covalent modification were used to explore the binding pocket of Scu on TRPV3. KEY RESULTS Subcutaneous administration of Scu efficaciously suppresses DNFB and carvacrol-induced pruritus, epidermal hyperplasia and skin inflammation in wild type mice but has no additional benefit in Trpv3 knockout mice in the carvacrol model. Scu is a potent and selective TRPV3 channel allosteric negative modulator with an apparent affinity of 1.18 μM. Molecular docking coupled with site-direct mutagenesis and covalent modification of incorporated cysteine residues demonstrate that Scu targets the cavity formed between the pore helix and transmembrane helix S6. Moreover, Scu attenuates endogenous TRPV3 activity in human keratinocytes and inhibits carvacrol-induced proliferative and proinflammatory responses. CONCLUSIONS AND IMPLICATIONS Collectively, these data demonstrate that Scu ameliorates carvacrol-induced skin inflammation by directly inhibiting TRPV3, and TRPV3 represents a viable therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Yujing Wang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liaoxi Tan
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejun Jiao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chu Xue
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shan Jiang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | | | - Khalid N M Abdelazeem
- Radiation Biology Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ye Yu
- Department of Basic Medicine, School of Basic Medicine and Clinic Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Rapid Identification of Constituents in Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2022; 27:molecules27134038. [PMID: 35807284 PMCID: PMC9268514 DOI: 10.3390/molecules27134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. (CT) belongs to the Rubiaceae family. Its dried leaves are widely used in traditional Chinese medicine to treat enteritis, dysentery, toothache, furuncles, swelling, traumatic injury, fracture, bleeding, and scalding. In order to further clarify the unknown chemical composition of CT, a rapid strategy based on UHPLC-Q-exactive orbitrap was established for this analysis using a Thermo Scientific Hypersil GOLDTM aQ (100 mm × 2.1 mm, 1.9 µm) chromatographic column. The mobile phase was 0.1% formic acid water–acetonitrile, with a flow rate of 0.3 mL/min and injection volume of 2 µL; for mass spectrometry, an ESI ion source in positive and negative ion monitoring modes was adopted. A total of 135 chemicals comprising 67 chlorogenic acid derivatives, 48 flavonoids, and 20 anthocyanin derivatives were identified by comparing the mass spectrum information with standard substances, public databases, and the literature, which were all discovered for the first time in this plant. This result broadly expands the chemical composition of CT, which will contribute to understanding of its effectiveness and enable quality control.
Collapse
|
31
|
WANG Y. The recovery effect of Feixingcao tea (Teucrium viscidum Bl.) on inhibiting the decreased exercise ability caused by chronic alcoholic liver injury. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.80822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Phytochemistry and Evidence-Based Traditional Uses of the Genus Achillea L.: An Update (2011–2021). Sci Pharm 2021. [DOI: 10.3390/scipharm89040050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge within the field of phytochemistry research has accelerated at a tremendous speed. The excess of literature reports featuring plants of high ethnopharmacological importance, in combination with our interest in the Asteraceae family and traditional medicine, led us to acknowledge the value of the Achillea L. genus. In a broad context, the various Achillea species are used around the globe for the prevention and treatment of different diseases, including gastrointestinal problems, haemorrhages, pneumonia, rheumatic pains, diuresis, inflammation, infections, and wounds, as well as menstrual and gynaecologic abnormalities. The present review aims to provide and summarize the recent literature (2011–2021) on the phytochemistry of the Achillea genus. In parallel, this study attempts to bridge the reports on the traditional uses with modern pharmacological data. Research articles that focused on secondary metabolites, traditional uses and pharmacological activities were collected from various scientific databases such as Pubmed, ScienceDirect, Reaxys and Google Scholar. This study revealed the presence of 141 phytochemicals, while 24 traditionally used Achillea spp. were discussed in comparison to current data with an experimental basis.
Collapse
|