1
|
Alcaraz AJ, Murray S, Ankley P, Park B, Raes K, Kurukulasuriya S, Crump D, Basu N, Brinkmann M, Hecker M, Hogan N. Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[ a]pyrene in Early-Life-Stage Rainbow Trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6971-6982. [PMID: 40167481 DOI: 10.1021/acs.est.4c11870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
New approach methods (NAMs) are urgently needed to address the significant ethical and economic concerns associated with live animal testing as well as the low throughput associated with current toxicity testing frameworks. NAMs such as rapid mechanistic early-life-stage fish assays are promising alternatives to current hazard assessment approaches, as they can be used to derive toxicity thresholds and guide decision-makers on identifying or prioritizing chemicals of concern. This study aimed to derive benchmark concentrations from RNaseq data (transcriptomic points-of-departure; tPOD) from a short-term exposure study with early life stages of rainbow trout (RBT; Oncorhynchus mykiss) using benzo[a]pyrene (B[a]P) as the model compound. tPODs were then calibrated with higher organizational-level responses observed during an extended 28 day exposure period. RBT were exposed from 1 to 28 days post-hatch (dph) to 0.079, 0.35, 1.5, 7.4, and 29 μg/L (28 d time weighted average measured) B[a]P, as well as 0.05% dimethyl sulfoxide and water only controls. Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[a]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPODEROD,28dph of 0.599 μg/L B[a]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPODlength,28dph of 1.77 μg/L B[a]P, with a notable decreasing trend in body weight. A toxicity pathway model constructed from genes and apical end points exhibiting concentration-dependent responses provided further evidence supporting the utility of tPODs from short-term RBT early-life-stage assay to support chemical risk assessment to guide decision-makers in chemical testing prioritization.
Collapse
Affiliation(s)
- Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 9B4, Canada
| | - Sydney Murray
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Phillip Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Shakya Kurukulasuriya
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3 V9, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
2
|
Solhaug A, Vlegels S, Eriksen GS. Atlantic salmon gill epithelial cell line ASG-10, an in vitro model for studying effects of microplastics in gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106946. [PMID: 38759525 DOI: 10.1016/j.aquatox.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Microplastics are ubiquitous environmental pollutants frequently detected in aquatic environments. Here we used the Atlantic salmon epithelial gill cell line (ASG-10) to investigate the uptake and effects of polystyrene (PS) microplastic. The ASG-10 cell line has phagocytotic/endocytic capacities and can take up clear PS particles at 0.2 and 1.0 µm, while PS at 10 µm was not taken up. As a response to the uptake, the ASG-10 cells increased their lysosomal activity. Furthermore, no effects on the mitochondria were found, neither on the mitochondrial membrane potential nor the mitochondria morphology (branch length and diameter). Interestingly, even a very high concentration of PS (200 µg/ml) with all tested particle sizes had no effects on cell viability or cell cycle. The environmental toxin Benzo(a)pyrene (B(a)P), a known inducer of CYP1A, is highly hydrophobic and thus sticks to the PS particles. However, co-exposure of B(a)P and PS the particles did not increase the induction of CYP1A activity compared to B(a)P alone. Our study contributes to the understanding of the cellular effects of PS particles using a highly relevant Atlantic salmon gill epithelium in vitro model.
Collapse
Affiliation(s)
- Anita Solhaug
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway.
| | - Sarah Vlegels
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway
| | | |
Collapse
|
3
|
Zebral YD, Righi BDP, Anni ISA, Escarrone ALV, Guillante T, Vieira CED, Costa PG, Bianchini A. Organic contamination and multi-biomarker assessment in watersheds of the southern Brazil: an integrated approach using fish from the Astyanax genus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30543-30554. [PMID: 38607488 DOI: 10.1007/s11356-024-33181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
We aimed to examine the responses of pollution biomarkers in feral fish from Astyanax genus collected at three hydrographic regions in southern Brazil and the capacity of these tools to differentiate between various levels of contamination. To achieve this, levels of organochlorine pesticides (liver), as well as the biomarkers AChE (muscle and brain), TBARS (liver), and EROD (liver) were assessed. Collections were conducted in four municipalities (Alegrete, Caraá, Lavras, and Santa Vitória) during 1 year, encompassing winter and summer. Fish from Alegrete were the most contaminated overall, but animals sampled in Caraá, and Lavras also displayed elevated levels of current-use pesticides. Elevated levels of endosulfans, DDTs, HCHs, and current-use pesticides were accompanied by elevated levels of TBARS in the liver. Conversely, fish from Santa Vitória exhibited the highest levels of PAHs, accompanied by elevated levels of EROD in the liver and reduced levels of AChE in muscle and brain. TBARS proved to be a reliable biomarker for assessing impacts arising from pesticide accumulation, while EROD and AChE served as valuable indicators of impacts resulting from PAHs accumulation. Ultimately, the results obtained in this study demonstrate the reliable use of the proposed biomarkers for tracking biological impacts stemming from aquatic pollution using feral Astyanax as biomonitoring species.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Bruna Duarte Pereira Righi
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Iuri Salim Abou Anni
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ana Laura Venquiaruti Escarrone
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Tainá Guillante
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Carlos Eduardo Delfino Vieira
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Patrícia Gomes Costa
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
4
|
Martin L, Marbach S, Zimba P, Liu Q, Xu W. Uptake of Nanoplastic particles by zebrafish embryos triggers the macrophage response at early developmental stage. CHEMOSPHERE 2023; 341:140069. [PMID: 37673181 DOI: 10.1016/j.chemosphere.2023.140069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Plastic pollution continues to erupt as a global ecological concern. As plastic debris is degraded into nanoscale and microscale particles via biodegradation, UV-irradiation, and mechanical processes, nanoplastic pollution arises as a threat to virtually every biological and ecological system on the planet. In this study, zebrafish (Danio rerio) embryos were exposed to fluorescently labeled plastic particles at nanoscales (30 nm and 100 nm). The uptake of both the nanoplastic particles (NPs) was found to exponentially increase with incubation time. Penetration of NPs through the natural barrier of the zebrafish embryos, the chorion, was observed prior to the hatching of the embryo. As a result, the NPs were found to accumulate on the body surface as well as inside the body of the zebrafish. The invasion of NPs into zebrafish embryos induced the upregulation of several stress and immune response genes including interleukins (il6 and il1b), cytochrome P450 (cyp1a and cyp51), and reactive oxygen species (ROS) removal protein-encoding genes (sod and cat). This suggested the initiation of ROS generation and removal as well as the activation of the immune response of zebrafish embryos. Colocalization of macrophages and NPs in zebrafish embryos indicated the involvement of macrophage response to the NP invasion at the early developmental stage of zebrafish.
Collapse
Affiliation(s)
- Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Sandra Marbach
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Paul Zimba
- Center for Coastal Studies, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA; Rice Rivers Center, VA Commonwealth University, Richmond, VA, USA
| | - Qianqian Liu
- Department of Health Sciences, College of Nursing and Health Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA; Center for Coastal Studies, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA.
| |
Collapse
|
5
|
Lungu-Mitea S, Han Y, Lundqvist J. Development, scrutiny, and modulation of transient reporter gene assays of the xenobiotic metabolism pathway in zebrafish hepatocytes. Cell Biol Toxicol 2023; 39:991-1013. [PMID: 34654992 PMCID: PMC10406726 DOI: 10.1007/s10565-021-09659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
The "toxicology in the twenty-first century" paradigm shift demands the development of alternative in vitro test systems. Especially in the field of ecotoxicology, coverage of aquatic species-specific assays is relatively scarce. Transient reporter gene assays could be a quick, economical, and reliable bridging technology. However, the user should be aware of potential pitfalls that are influenced by reporter vector geometry. Here, we report the development of an AhR-responsive transient reporter-gene assay in the permanent zebrafish hepatocytes cell line (ZFL). Additionally, we disclose how viral, constitutive promoters within reporter-gene assay cassettes induce squelching of the primary signal. To counter this, we designed a novel normalization vector, bearing an endogenous zebrafish-derived genomic promoter (zfEF1aPro), which rescues the squelching-delimited system, thus, giving new insights into the modulation of transient reporter systems under xenobiotic stress. Finally, we uncovered how the ubiquitously used ligand BNF promiscuously activates multiple toxicity pathways of the xenobiotic metabolism and cellular stress response in an orchestral manner, presumably leading to a concentration-related inhibition of the AhR/ARNT/XRE-toxicity pathway and non-monotonous concentration-response curves. We named such a multi-level inhibitory mechanism that might mask effects as "maisonette squelching." A transient reporter gene assay in zebrafish cell lines utilizing endogenous regulatory gene elements shows increased in vitro toxicity testing performance. Synthetic and constitutive promotors interfere with signal transduction ("squelching") and might increase cellular stress (cytotoxicity). The squelching phenomenon might occur on multiple levels (toxicity pathway crosstalk and normalization vector), leading to a complete silencing of the reporter signal.
Collapse
Affiliation(s)
- Sebastian Lungu-Mitea
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| | - Yuxin Han
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|
6
|
Shen C, Tang C, Zhu K, He C, Yang C, Zuo Z. Toxicity and ecological risk assessment for two AhR agonistic pesticides mepanipyrim and cyprodinil and their metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58944-58955. [PMID: 37002518 DOI: 10.1007/s11356-023-26735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Mepanipyrim and cyprodinil are widely used to control and/or prevent fungal diseases in fruit culture. They are frequently detected in the aquatic environment and some food commodities. Different from TCDD, mepanipyrim and cyprodinil are more easily metabolised in the environments. However, the risk of their metabolites to the ecological environment is unclear and needs to be further confirmed. In this study, we investigated the temporal pattern of mepanipyrim- and cyprodinil-induced CYP1A and AhR2 expression and EROD enzyme activity at different time frames during zebrafish embryonic and larval development. Then, we assessed the ecological risk of mepanipyrim, cyprodinil, and their metabolites to aquatic organisms. Our results showed that mepanipyrim and cyprodinil exposure could increase the expression level of cyp1a and ahr2 genes and EROD activity by a dynamic pattern in different developmental stages of zebrafish. Besides, their several metabolites showed strong AhR agonistic activity. Importantly, these metabolites could cause potential ecological risks to aquatic organisms and should be paid more attention to. Our results would provide an important reference value for environmental pollution control and the use management of mepanipyrim and cyprodinil.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
7
|
Liu G, Yan X, Li C, Hu S, Yan J, Yan B. Unraveling the joint toxicity of transition-metal dichalcogenides and per- and polyfluoroalkyl substances in aqueous mediums by experimentation, machine learning and molecular dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130303. [PMID: 36345062 DOI: 10.1016/j.jhazmat.2022.130303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The environmental fate of transition-metal dichalcogenides (TMDCs) may be further complicated by interacting with existing pollutants, especially per- and polyfluoroalkyl substances (PFAS). However, due to their sheer volume, it is impossible to explore all possible interactions by simply utilizing experimental methods. Herein, we used two model TMDC nanosheets, molybdenum disulfide (MoS2) and tungsten disulfide (WS2), and seven PFAS to explore their interactions and subsequent impacts on model cell lines and zebrafish. Utilizing experimental methods and machine learning approaches, we showed that TMDCs-PFAS interactions can pose unique challenges due to their interaction-specific toxicity niches towards cell lines. Further in vivo experiments, together with molecular dynamics simulation, suggested that TMDCs-PFAS interactions in aqueous environments significantly increased their bioaccumulation in zebrafish towards different target organs, mostly due to the differences in loading PFAS. Such enhanced bioaccumulation increased the oxidative stress in zebrafish liver and intestine, as demonstrated by the increased reactive oxygen species (ROS) level and other enzyme activities, which eventually led to obvious histopathological alterations in the liver and intestine. Our study highlights the importance of exploring interactions between emerging and existing contaminants with state-of-art techniques in aqueous environments and its significance in safeguarding aquatic environment health.
Collapse
Affiliation(s)
- Guohong Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Agriculture and Biological Sciences, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiliang Yan
- School of Agriculture and Biological Sciences, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Agriculture and Biological Sciences, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Song Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiachen Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
LaPlaca SB, Rice CD, van den Hurk P. Chronic toxicity of tire crumb rubber particles to mummichog (Fundulus heteroclitus) in episodic exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157447. [PMID: 35853528 DOI: 10.1016/j.scitotenv.2022.157447] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Microrubber (MR) encompasses all tire-related particles in the micro-scale and has recently drawn increased attention as a subclass of the broader group of microplastics. While tire particles entered the environment since the introduction of rubber tires for vehicles, the concern regarding tire wear particles (TWP) as an environmental contaminant is relatively new. Recent studies have examined physical and chemical toxicity of MR particles and leachates to a variety of organisms. However, there is a lack of information on the long-term effects of tire particle exposure under environmentally realistic conditions. The current study examined the chronic toxicity of crumb rubber (CR) particles to the estuarine fish species, mummichog (Fundulus heteroclitus) under episodic exposures at environmentally relevant concentrations. Immunohistochemistry (IHC) of fish gill, intestine, and liver was performed to assess CYP1A induction in these organs. Bile fluorescence was measured as an indicator of exposure to polycyclic aromatic hydrocarbons (PAHs) from CR. DNA damage was measured through the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) together with other oxidative stress measures as lipid peroxidation (TBARS assay), free glutathione (GSH), and oxidized glutathione (GSSG) concentrations. Upregulation of CYP1A in gill, intestine, and liver was observed especially in gill filaments and general vasculature. Increased bile fluorescence demonstrated exposure to aromatic compounds, especially pyrene-like PAHs. Data for DNA damage indicated greater plasma 8-OHdG concentrations as a result of increased DNA repair. There was a decrease in malondialdehyde (MDA) production and an increase in total GSH at higher concentrations of CR. It appeared that under long-term repeated dosing, antioxidant systems in mummichog were upregulated to deal with exogenous stressors released by the CR particles. Combined, these data demonstrate that fish exposed to tire crumb rubber particles illicit significant biomarker responses under environmentally relevant CR concentrations, but induced antioxidant and detoxification pathways may prevent mortality and serious physiological effects in F. heteroclitus when exposed to environmentally relevant concentrations of CR.
Collapse
Affiliation(s)
- Stephanie B LaPlaca
- Department of Biological Sciences, Clemson University, 230 Parkway Drive, Clemson, SC 29634, USA
| | - Charles D Rice
- Department of Biological Sciences, Clemson University, 230 Parkway Drive, Clemson, SC 29634, USA
| | - Peter van den Hurk
- Department of Biological Sciences, Clemson University, 230 Parkway Drive, Clemson, SC 29634, USA.
| |
Collapse
|
9
|
Pes K, Ortiz-Delgado JB, Sarasquete C, Laizé V, Fernández I. Short-term exposure to pharmaceuticals negatively impacts marine flatfish species: Histological, biochemical and molecular clues for an integrated ecosystem risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103822. [PMID: 35101594 DOI: 10.1016/j.etap.2022.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The marine habitat and its biodiversity can be impacted by released pharmaceuticals. The short-term (7 days) effect of 3 commonly used drugs - warfarin, dexamethasone and imidazole - on Senegalese sole (Solea senegalensis) juveniles was investigated. Occurrence of hemorrhages, histopathological alterations, antioxidant status, activity of antioxidant enzymes and expression of genes involved in the xenobiotic response (pxr, abcb1 and cyp1a), were evaluated. The results showed a time and drug-dependent effect. Warfarin exposure induced hemorrhages, hepatocyte vacuolar degeneration, and altered the activity of glutathione peroxidase (GPx) and the expression of all the studied genes. Dexamethasone exposure increased liver glycogen content, altered antioxidant status, GPx and superoxide dismutase activities, as well as abcb1 and cyp1a expression. Imidazole induced hepatocyte vacuolar degeneration and ballooning, and altered the antioxidant status and expression of the tested genes. The present work anticipates a deeper impact of pharmaceuticals on the aquatic environment than previously reported, thus underlining the urgent need for an integrated risk assessment.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain; Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), 36390 Vigo, Spain.
| |
Collapse
|
10
|
Chen B, Li L, Liu L, Cao J. Molecular simulation of adsorption properties of thiol-functionalized titanium dioxide (TiO2) nanostructure for heavy metal ions removal from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
He M, Wang X, Bian Y, Yang M, Deng Y, Liu T, Li Y, Chen F, Xu B, Xu M, Zhang F. Modeling the distribution of malachite green in zebrafish using matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Bioanal Chem 2021; 413:7021-7030. [PMID: 34642779 DOI: 10.1007/s00216-021-03664-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Here, a rapid and effective analysis strategy was introduced to study the distribution of veterinary drugs in aquatic products. Malachite green (MG), one of the most widely used veterinary drugs in aquaculture, was selected as the targeted compound. Zebrafish (Danio rerio) was used as a model organism. After an exposure test, the matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was applied to directly analyze the content changes of malachite green in zebrafish tissues. The reliable relationship of exposure time and content change of MG was described precisely by the extended Freundlich equation. The process of modeling was discussed in detail, and some important parameters or trend information was obtained, including the maximum content of MG in different fish tissues, time to maximum content, elimination time, equilibrium content, and so on. With a simplification of sample pretreatment, this research strategy can be used for monitoring the spatial distribution of veterinary drugs and related metabolites of laboratory-exposed fish. The obtained model can provide a perspective for rational drug use in aquaculture and precise drug residue detection in production activities.
Collapse
Affiliation(s)
- Muyi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yu Bian
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- College of Pharmacy, China Medical University, Shenyang, 110000, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yamei Deng
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- College of Pharmacy, China Medical University, Shenyang, 110000, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Bozhou Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Meixia Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
12
|
Loerracher AK, Braunbeck T. Cytochrome P450-dependent biotransformation capacities in embryonic, juvenile and adult stages of zebrafish (Danio rerio)-a state-of-the-art review. Arch Toxicol 2021; 95:2299-2334. [PMID: 34148099 PMCID: PMC8241672 DOI: 10.1007/s00204-021-03071-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Given the strong trend to implement zebrafish (Danio rerio) embryos as translational model not only in ecotoxicological, but also toxicological testing strategies, there is an increasing need for a better understanding of their capacity for xenobiotic biotransformation. With respect to the extrapolation of toxicological data from zebrafish embryos to other life stages or even other organisms, qualitative and quantitative differences in biotransformation pathways, above all in cytochrome P450-dependent (CYP) phase I biotransformation, may lead to over- or underestimation of the hazard and risk certain xenobiotic compounds may pose to later developmental stages or other species. This review provides a comprehensive state-of-the-art overview of the scientific knowledge on the development of the CYP1-4 families and corresponding phase I biotransformation and bioactivation capacities in zebrafish. A total of 68 publications dealing with spatiotemporal CYP mRNA expression patterns, activities towards mammalian CYP-probe substrates, bioactivation and detoxification activities, as well as metabolite profiling were analyzed and included in this review. The main results allow for the following conclusions: (1) Extensive work has been done to document mRNA expression of CYP isoforms from earliest embryonic stages of zebrafish, but juvenile and adult zebrafish have been largely neglected so far. (2) There is insufficient understanding of how sex- and developmental stage-related differences in expression levels of certain CYP isoforms may impact biotransformation and bioactivation capacities in the respective sexes and in different developmental stages of zebrafish. (3) Albeit qualitatively often identical, many studies revealed quantitative differences in metabolic activities of zebrafish embryos and later developmental stages. However, the actual relevance of age-related differences on the outcome of toxicological studies still needs to be clarified. (4) With respect to current remaining gaps, there is still an urgent need for further studies systematically assessing metabolic profiles and capacities of CYP isoforms in zebrafish. Given the increasing importance of Adverse Outcome Pathway (AOP) concepts, an improved understanding of CYP capacities appears essential for the interpretation and outcome of (eco)toxicological studies.
Collapse
Affiliation(s)
- Ann-Kathrin Loerracher
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Navarrete J, Wilson P, Allsing N, Gordon C, Margolis R, Schwartz AV, Cho C, Rogowski B, Topps J, George UZ, Sant KE. The ecotoxicological contaminant tris(4-chlorophenyl)methanol (TCPMOH) impacts embryonic development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105815. [PMID: 33838494 PMCID: PMC8113121 DOI: 10.1016/j.aquatox.2021.105815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Tris(4-chlorophenyl)methanol (TCPMOH) is a water contaminant with unknown etiology, but is believed to be a byproduct of DDT manufacturing. It is highly persistent in the environment, and bioaccumulates in marine species. TCPMOH has also been measured in human breast milk, which poses a risk for developing infants. However, almost no toxicity data is currently available. In this study, we investigate the hazard posed by developmental TCPMOH exposures using the zebrafish model (Danio rerio). Zebrafish (Danio rerio) embryos were exposed to 0, 0.1, 0.5, 1, or 5 µM TCPMOH beginning at 24 h post fertilization (hpf). Embryonic mortality and incidence of morphological deformities increased in a concentration-dependent manner with TCPMOH exposure. RNA sequencing assessed changes in gene expression associated with acute (4 hour) exposures to 50 nM TCPMOH. Developmental exposure to TCPMOH decreased expression of ahr2, as well as metabolic enzymes cyp1a1, cyp1b1, cyp1c1, cyp1c2, and cyp2y3 (p<0.05). These findings were concordant with decreased Cyp1a1 induction measured by the ethoxyresorufin-O-deethylase (EROD) assay (p<0.05). Pathways associated with xenobiotic metabolism, lipid metabolism, and transcriptional and translational regulation were decreased. Pathways involved in DNA replication and repair, carbohydrate metabolism, and endocrine function were upregulated. Overall, this study demonstrates that TCPMOH is acutely toxic to zebrafish embryos at elevated concentrations.
Collapse
Affiliation(s)
- Julian Navarrete
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Peyton Wilson
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Nicholas Allsing
- San Diego State University Biology Department, San Diego, CA, 92182, USA
| | - Chandi Gordon
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Rachel Margolis
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Ashley V Schwartz
- San Diego State University Department of Mathematics, San Diego, CA, 92182, USA
| | - Christine Cho
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Brynn Rogowski
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Jennifer Topps
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Uduak Z George
- San Diego State University Department of Mathematics, San Diego, CA, 92182, USA
| | - Karilyn E Sant
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA.
| |
Collapse
|
14
|
Xu K, Zhang Y, Huang Y, Wang J. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143730. [PMID: 33277007 DOI: 10.1016/j.scitotenv.2020.143730] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 05/12/2023]
Abstract
The toxicology of microplastics in combination with other pollutants has attracted widespread attention. In this study, zebrafish were exposed to 3 mg/L polystyrene microplastic, 0.2 mg/L phenanthrene, and a combination of both. Zebrafish microplastic uptake, phenanthrene accumulation, antioxidant-associated enzyme activity and related gene expression, immune-associated gene expression, and the gut microflora were measured after 12 and 24 days of exposure. Phenanthrene and microplastic accumulation increased with exposure time and was also greater in the combined exposure group than in the single exposure group. Combined analysis of antioxidant enzyme activity and immune and antioxidant-related genes shows that exposure alone causes oxidative stress in zebrafish, ultimately increasing immunity and the expression of oxidative stress genes, while combined exposure exacerbates these changes. Fusobacteria decreased and Proteobacteria and Bacteroidetes increased in the three exposure groups of gut microorganisms. Overall, our study demonstrates that microplastics enhance the toxicity of phenanthrene and that the two have a synergistic effect.
Collapse
Affiliation(s)
- Kaihang Xu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yindan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
15
|
Adsorption of Cd to TiO 2-NPs Forms Low Genotoxic AGGREGATES in Zebrafish Cells. Cells 2021; 10:cells10020310. [PMID: 33546308 PMCID: PMC7913537 DOI: 10.3390/cells10020310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/06/2023] Open
Abstract
The aquatic environment is involved in the pollutants spreading mechanisms, including nanomaterials and heavy metals. The aims of this study were to assess the in vivo genotoxicity of Cd (1 mg/L) and to investigate the genomic effects generated by its co-exposure with TiO2-NPs (10 µg/L). The study was performed using zebrafish as a model for 5, 7, 14, 21, and 28 days of exposure. The genotoxic potential was assessed by three experimental approaches: DNA integrity, degree of apoptosis, and molecular alterations at the genomic level by genomic template stability (% GTS) calculation. Results showed an increased in DNA damage after Cd exposure with a decrease in % GTS. The co-exposure (TiO2-NPs + Cd) induced a no statistically significant loss of DNA integrity, a reduction of the apoptotic cell percentage and the recovery of genome stability for prolonged exposure days. Characterization and analytical determinations data showed Cd adsorption to TiO2-NPs, which reduced free TiO2-NPs levels. The results of our study suggest that TiO2-NPs could be used for the development of controlled heavy metal bioremediation systems.
Collapse
|
16
|
Hanslik L, Sommer C, Huppertsberg S, Dittmar S, Knepper TP, Braunbeck T. Microplastic-associated trophic transfer of benzo(k)fluoranthene in a limnic food web: Effects in two freshwater invertebrates (Daphnia magna, Chironomus riparius) and zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108849. [PMID: 32768657 DOI: 10.1016/j.cbpc.2020.108849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
The continuously growing plastic production and incomplete recycling processes open manifold entry routes for microplastic particles (MPs) into the environment. Since knowledge on trophic transfer of contaminants sorbed to MPs is still insufficient for freshwater systems, the transfer of the model pollutant benzo(k)fluoranthene (BkF) sorbed to polymethyl methacrylate (PMMA) particles in a limnic food web was investigated: Two freshwater invertebrates (Daphnia magna and Chironomus riparius larvae) were selected and either left untreated, exposed to pristine PMMA, PMMA-associated BkF, or exposed to dissolved BkF (BkFaq). As second-level consumers, zebrafish (Danio rerio) were fed twice daily with pre-treated invertebrates over two days. Induction of hepatic cytochrome P450 by BkF was determined as 7-ethoxy-O-resorufin deethylase (EROD) activity. Both invertebrate species readily ingested PMMA particles, tracked via fluorescence microscopy and accumulated BkFaq, measured via GC-MS. Fluorescence signals in gastrointestinal tracts of zebrafish were quantified with confocal laser scanning microscopy (CLSM). The fluorescence signal in gastrointestinal tracts of zebrafish was not altered, whereas, EROD activity was significantly induced when zebrafish were fed with Chironomus riparius, pre-exposed to BkFaq. Trophic exposure scenarios with BkF sorbed to PMMA did not result in any alterations of investigated endpoints in both invertebrate species and zebrafish compared to controls. Given that BkF amounts were in the low ng-range, as detected by GC-MS, the transport of MP-sorbed BkF to zebrafish was less effective than direct exposure to waterborne BkFaq, and the potential threat of trophic transfer of substances such as BkF in limnic food webs may have been overestimated.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Carmen Sommer
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, D-65510 Idstein, Germany
| | - Stefan Dittmar
- Chair of Water Quality Control, Technical University of Berlin, Str. des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, D-65510 Idstein, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Woo SJ, Chung JK. Cytochrome P450 1 enzymes in black rockfish, Sebastes schlegelii: Molecular characterization and expression patterns after exposure to benzo[a]pyrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105566. [PMID: 32682194 DOI: 10.1016/j.aquatox.2020.105566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 (CYP) enzymes play important roles in the detoxification and bioactivation of environmental contaminants and are involved in the responses to pollution in fish. In this study, we cloned four new CYP1 genes, CYP1A, CYP1B, CYP1C1, and CYP1C2, from black rockfish (Sebastes schlegelii), a dominant and economically important fish species in Korea. This species is at a significant risk of exposure to petrohydrocarbons, such as benzo[a]pyrene(B[a]P), due to frequent oil spills along the Korean coast. Quantitative PCR analysis of CYP1 gene transcription in 12 organs of the fish revealed tissue-specific expression patterns. CYP1A was significantly expressed in the liver, heart, kidneys, and muscle, and CYP1B was significantly expressed in the gills, muscle, and heart. CYP1C1 and CYP1C2 showed similar tissue expression patterns, with the highest levels in the muscle. Furthermore, exposure to an aryl hydrocarbon receptor (AHR) agonist, B[a]P, at 2, 20, and 200 mg/kg body weight showed significant dysregulation of the CYP1A, CYP1B, CYP1C1, and CYP1C2 expression levels in the gills, liver, kidneys, and spleen. The mRNA expression levels of CYP1A and CYP1B were upregulated by 450- and 17-fold, respectively, in the spleen. Compared with their levels in the control, CYP1C1 increased by 45-fold, while CYP1C2 remained unchanged in the gills, indicating differential effects of the polycyclic aromatic hydrocarbon on CYP1 expression in different fish organs. The results suggested that expression profiles of inducible CYP1 enzymes in S. schlegelii might be used as indicators for assessing aquatic contamination by AHR agonists. Determination of the basal and induced expression levels, as well as substrate specificity, of the four CYP1 enzymes may contribute to a better understanding of their roles in the metabolization of toxicants or drugs.
Collapse
Affiliation(s)
- Soo Ji Woo
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea; Pathology Division, National Instititue of Fisheries Science, Busan 46083, South Korea
| | - Joon Ki Chung
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
18
|
Liu J, Lu G, Yang H, Dang T, Yan Z. Ecological impact assessment of 110 micropollutants in the Yarlung Tsangpo River on the Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110291. [PMID: 32094108 DOI: 10.1016/j.jenvman.2020.110291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, the occurrences of 110 micropollutants in the surface waters and sediments collected at eight sampling sites along the middle reaches of the Yarlung Tsangpo River were investigated in winter. A total of 47 and 45 micropollutants were detected in at least one water or sediment sample, respectively, and their total concentrations reached 790.2 ng/L and 186.5 ng/g on a dry weight basis, respectively. Their composition profiles demonstrated that the majority of micropollutants were polycyclic aromatic hydrocarbons (PAHs) and UV filters. The mixture risk quotient (MRQ) values of the detected micropollutants regularly exceeded 1 for aquatic organisms at all sampling sites, and fish and invertebrates are the more sensitive organisms. The diversity and evenness of the zooplankton levels had a clear negative correlation with the micropollutant occurrences in water. The top 10 mixture components belonging to the UV filter and PAH categories explained more than 80% and 95% of the mixture risk for chronic and acute toxicology, respectively. This study is the first investigation of the presence and risk assessment of 110 micropollutants in the Yarlung Tsangpo River Basin and offers new insights into the ecological security of the water resources of the Tibetan Plateau.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tianjian Dang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
19
|
Batel A, Baumann L, Carteny CC, Cormier B, Keiter SH, Braunbeck T. Histological, enzymatic and chemical analyses of the potential effects of differently sized microplastic particles upon long-term ingestion in zebrafish (Danio rerio). MARINE POLLUTION BULLETIN 2020; 153:111022. [PMID: 32275568 DOI: 10.1016/j.marpolbul.2020.111022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
In microplastics (MPs) research, there is an urgent need to critically reconsider methodological approaches and results published, since public opinion and political decisions might be based on studies using debatable methods and reporting questionable results. For instance, recent studies claim that MPs induce intestinal damage and that relatively large MPs are transferred to, e.g., livers in fish. However, there is methodological criticism and considerable concern whether MP transfer to surrounding tissues is plausible. Likewise, there is an ongoing discussion in MP research if MPs act as vectors for adsorbed hazardous chemicals. In this study, effects of very small (4-6 μm) and very large (125-500 μm) benzo(a) pyrene (BaP)-spiked polyethylene (PE) particles administered via different uptake routes (food chain vs. direct uptake) were compared in a 21-day zebrafish (Danio rerio) feeding experiment. Particular care was taken to prevent cross-contamination of MPs during dissection and histological sample preparation. In contrast to numerous reports in literature describing similar approaches, independent of exposure route and MP size, no adverse effects could be detected. Likewise, no BaP accumulation could be documented, and MPs were exclusively seen in the lumen of the intestinal tract, which, however, did not induce any histopathological effects. Results indicate that in fish MPs are taken up, pass along the intestinal lumen and are excreted without any symptoms of adverse effects.
Collapse
Affiliation(s)
- Annika Batel
- University of Heidelberg, Aquatic Ecology and Toxicology, Center for Organismal Studies, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Lisa Baumann
- University of Heidelberg, Aquatic Ecology and Toxicology, Center for Organismal Studies, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Camilla Catarci Carteny
- Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Bettie Cormier
- Man-Technology-Environment Research Centre, School of Science and Technology, University of Örebro, Fakultetsgatan 1, S-70182 Örebro, Sweden; Univ. Bordeaux, EPOC UMR CNRS 5805, Allée Geoffroy Saint-Hilaire, F-33615 Pessac Cedex, France
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, University of Örebro, Fakultetsgatan 1, S-70182 Örebro, Sweden
| | - Thomas Braunbeck
- University of Heidelberg, Aquatic Ecology and Toxicology, Center for Organismal Studies, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Loerracher AK, Grethlein M, Braunbeck T. In vivo fluorescence-based characterization of cytochrome P450 activity during embryonic development of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110330. [PMID: 32078841 DOI: 10.1016/j.ecoenv.2020.110330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Zebrafish (Danio rerio) early life-stages are increasingly gaining attention as an alternative model in both human and environmental toxicology. Whereas there is amble knowledge about the transcription of various cytochrome P450 isoforms, the level of information about functional implications is still limited. This study investigated the development of CYP2-dependent 7-methoxycoumarin-O-demethylase (MCOD) activity throughout the early zebrafish development from 5 to 118 h post-fertilization (hpf) via confocal laser scanning microscopy. Results demonstrate that zebrafish embryos exhibit constitutive MCOD activity from as early as 5.5 hpf. Characteristic spatiotemporal patterns were documented with MCOD activities localized in several tissues and organs, namely the cardiovascular system, the brain, the digestive system, and the urinary tract. The study thereby contributes to a better understanding of the development and functional role of CYP enzymes in zebrafish early life-stages.
Collapse
Affiliation(s)
- Ann-Kathrin Loerracher
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Martin Grethlein
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| |
Collapse
|
21
|
Chu P, He L, Zhu D, Huang R, Liao L, Li Y, Zhu Z, Wang Y. Identification, expression and functional characterisation of CYP1A in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 95:35-43. [PMID: 31610292 DOI: 10.1016/j.fsi.2019.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
In mammal, CYP1A has attracted special attention due to its important roles in the oxidative metabolism. In fish, the researches on CYP1A are more focus on its roles in pollution in water environments, but the immune function is unclear. In the study, CiCYP1A gene was cloned from grass carp (Ctenopharyngodon idella). Tissue distribution exhibited an overwhelmingly high basal expression levels in the liver. After GCRV infection, CiCYP1A showed a potent response, indicating CiCYP1A was involved in GCRV-induced immunity. Subcellular localisation showed CiCYP1A was distributed in the cytoplasm. Besides, dual-luciferase activity assays revealed CYP1A was relevant for IFN-I signaling pathway modulation, furthermore, overexpressed CYP1A potently suppressed the mRNA expression of IRF3 and IFN-I but not IRF7. The results provide new sights into exploring immune function of CiCYP1A in teleosts.
Collapse
Affiliation(s)
- Pengfei Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
22
|
Mai Y, Peng S, Li H, Lai Z. Histological, biochemical and transcriptomic analyses reveal liver damage in zebrafish (Danio rerio) exposed to phenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108582. [PMID: 31374294 DOI: 10.1016/j.cbpc.2019.108582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/05/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023]
Abstract
Phenanthrene (PHE) is a common polycyclic aromatic hydrocarbon (PAH) in aquatic environments, and this contaminant can cause adverse effects on teleostean performance. In this study, we exposed the model freshwater fish (zebrafish; Danio rerio) to 300 μg/L PHE for 15 days. Histological analysis demonstrated that liver morphology deteriorated in PHE-exposed zebrafish, and cellular damage in the liver increased. Biological analysis revealed that exposure to PHE elicited significant changes in glutathione S-transferases (GST) and superoxide dismutase (SOD) activities. 476 differentially expressed genes (DEGs) were identified in liver between control and PHE treated groups through the transcriptomic analysis. Gene Ontology enrichment analysis (GO) suggested that PHE exposure induced changes in the expression of genes associated with "lipid transporter activity", "catalytic activity", "metal ion binding", "lipid transport" and "transmembrane transport". Furthermore, the "vitamin digestion and absorption" and "fat digestion and absorption" pathways enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG). Additionally, five candidate biomarkers associated with the PHE response in zebrafish were identified. In conclusion, our results elucidate the physiological and molecular responses to PHE exposure in the liver of zebrafish, and provide a framework for further studies of the mechanisms underlying the toxic effects of polycyclic aromatic hydrocarbons (PAHs) on aquatic organisms.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
23
|
Ghribi R, Correia AT, Elleuch B, Nunes B. Testing the impact of contaminated sediments from the southeast marine coast of Tunisia on biota: a multibiomarker approach using the flatfish Solea senegalensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29704-29721. [PMID: 31407260 DOI: 10.1007/s11356-019-05872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Coastal marine areas are highly vulnerable to the exposure to various types of stressors and impact of chemical pollution resulting from increasing anthropogenic activities, namely pollution by metals and polycyclic aromatic hydrocarbons (PAHs). To assess ecosystem quality and functions, biomarkers can provide information about the presence and adverse effects of pollutants. Accordingly, the present study was conducted to evaluate the chronic (28 days) biologic effects of putatively contaminated sediments from the Zarzis area, located in the south of the Gulf of Gabes on the Southern Tunisian coast, on the marine flatfish Solea senegalensis. Sediments were collected at three sampling sites, impacted by wastewater discharges, aquaculture activities, and industrial contamination, and then surveyed for metals (Cd, Cu, Cr, Hg, Zn, and Pb) and organic contaminants (polycyclic aromatic hydrocarbons). The quantified biomarkers involved the determination of oxidative stress, phase II metabolism, and the extent of lipid peroxidation (catalase, CAT; glutathione peroxidase activity: total and selenium-dependent, T-GPx and Se-GPx; activities of glutathione-S-transferases, GSTs; levels of lipid peroxidation, by means of the thiobarbituric acid reactive substances assay, TBARS) and neurotoxicity (activity of acetylcholinesterase, AChE). S. senegalensis exposed to potentially contaminated sediments, collected near the aquaculture facility, presented the highest values for the generality of biomarkers tested, and a significant inhibition of AChE activity. A few lesions have been also recorded in the gills and liver tissues of S. senegalensis following chronic exposure. However, the observed lesions in gills (e.g., epithelial lifting, lamellar fusion, gills hyperplasia and hypertrophy, and leukocyte infiltration) and liver (cytoplasmic vacuolation, enlargement of sinusoids, foci of necrosis, and eosinophilic bodies) were of minimal pathological importance and/or low prevalence that did not significantly affect the weighted histopathological indices. Finally, the biological responses evidenced by this flatfish can be potentially caused by metal and PAH pollution occurring in specific areas in the southeast of Tunisia. The type and extent of the observed biochemical alterations strongly suggest that the contaminated sediments from the surveyed areas could cause early adverse biological effects on exposed biota.
Collapse
Affiliation(s)
- Rayda Ghribi
- Laboratoire d'Ingénierie de l'Environnement et d'Ecotechnologie, ENIS, Université de Sfax, BP 1173, 3038, Sfax, Tunisia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Porto, Matosinhos, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Porto, Matosinhos, Portugal
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS/UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - Boubaker Elleuch
- Laboratoire d'Ingénierie de l'Environnement et d'Ecotechnologie, ENIS, Université de Sfax, BP 1173, 3038, Sfax, Tunisia
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
Xu C, Niu L, Guo H, Sun X, Chen L, Tu W, Dai Q, Ye J, Liu W, Liu J. Long-term exposure to the non-steroidal anti-inflammatory drug (NSAID) naproxen causes thyroid disruption in zebrafish at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:387-395. [PMID: 31048169 DOI: 10.1016/j.scitotenv.2019.04.323] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
The presence of trace levels of pharmaceuticals is an emerging issue impacting the aquatic ecosystem. Naproxen (NPX) is a nonsteroidal anti-inflammatory drug (NSAID) that has been frequently detected in aquatic environments worldwide. Recently, concerns regarding endocrine disruption by NSAIDs have increased; however, their effects on the thyroid system have yet to be understood. In this study, zebrafish were utilized to evaluate the thyroid-disrupting effects of NPX. After a 60-day exposure to various concentrations of NPX (0.1, 1, 10 and 100 μg/L), the body length and weight of the zebrafish were significantly decreased. The decrease of cytochrome P450 gene expression and enzyme activity might inhibit the metabolism of NPX, which might result in the significant bioconcentration in zebrafish. Thyroid hormone (TH) analysis showed that both triiodothyronine (T3) and thyroxine (T4) levels were substantially decreased. Gene transcription expressions along the hypothalamic-pituitary-thyroid (HPT) axis were also markedly affected. Significant downregulation of dio1, dio2, nis, nkx2.1, pax8, tg, tpo, trβ and ttr levels, along with the stimulation of the tshβ gene, were also observed in exposed fish compared to controls. Western blot analysis indicated that expression of the TTR protein was significantly decreased, which coincides with the results of the gene expression analysis. Collectively, our observations show that NPX increases the risk of bioconcentration and thyroid disruption in zebrafish. Given the continued increasing consumption and emission of pharmaceuticals, thyroid disruption should be considered when assessing the aquatic risk of long-term exposure to environmentally relevant concentrations of pharmaceuticals.
Collapse
Affiliation(s)
- Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lili Niu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangqin Guo
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Center, Hangzhou 310012, China
| | - Lihui Chen
- Hydrology Bureau of Zhejiang Province, Hangzhou 310000, China
| | - Wenqing Tu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Liu
- Zhejiang Environmental Monitoring Center, Hangzhou 310012, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
25
|
Xu C, Niu L, Liu J, Sun X, Zhang C, Ye J, Liu W. Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring: Indication for an overlooked risk in maternal transfer? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:876-884. [PMID: 31159137 DOI: 10.1016/j.envpol.2018.12.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Ecotoxicological studies show the association between pesticide pollution and transgenerational toxicity in aquatic organisms. However, a less considered risk is that many pesticides can be metabolized and transferred to offspring as new toxicants. In this study, we used zebrafish to evaluate the maternal transfer risk of fipronil (FIP), which is a great threat to aquatic organisms with toxic metabolite formation. After 28-day exposure to environmentally relevant concentrations (1.0, 5.0 and 10.0 μg/L) of FIP in adult female zebrafish (F0), the toxicants off-loading and transgenerational toxicity in offspring were studied. High burdens of FIP and its sulfone metabolite were found in both F0 and the embryos (F1), resulting in increased CYP450 activity. The residual levels of the metabolite were higher than those of the parent compound. Chiral analysis further showed a preferential accumulation of S-enantiomer of FIP in both F0 and F1. Maternal exposure to FIP increased the malformation rate and decreased the swim speed in larvae. Additionally, after exposure, the levels of thyroid hormones (THs), including triiodothyronine (T3) and thyroxine (T4), decreased in both generations, particularly in the F1. Gene transcription expression along the hypothalamic-pituitary-thyroid (HPT) axis was also significantly affected. Maternal exposure to FIP increased sulfone metabolite enrichment and cause multiple toxic effects in F1. Findings from this study highlight the key role of biologically active product formation in the maternal transfer of pollutants and associated risk assessment.
Collapse
Affiliation(s)
- Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Lili Niu
- College of Life and Environmental Sciences, Hangzhou Normal University, 310036, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Liu
- Zhejiang Environmental Monitoring Centre, Hangzhou, 310012, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou, 310012, China
| | - Chaonan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Chen YY, Chan KM. Modulations of TCDD-mediated induction of zebrafish cyp1a1 and the AHR pathway by administering Cd 2+in vivo. CHEMOSPHERE 2018; 210:577-587. [PMID: 30029150 DOI: 10.1016/j.chemosphere.2018.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Trace metal ions such as cadmium (Cd2+) and trace organics typified by 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) are common co-contaminants in the environment and cause toxic effects in aquatic organisms that pose serious health risks. We studied the effects of Cd2+ on the regulation of cytochrome P450 1A1 (cyp1a1) gene-induction by TCDD using zebrafish embryos and larvae and adult zebrafish tissues. Our results showed that TCDD induced the cyp1a1 gene in all developmental stages and tissues of zebrafish, and the induction was higher in females than males. However, for the upstream genes (ahr2 and arnt2b) that mediate cyp1a1 gene induction in the zebrafish liver cell line was not induced by TCDD similar to the pattern of cyp1a1 in all investigated groups. After co-treatment with Cd2+, induction of the aryl hydrocarbon receptor pathway by TCDD was inhibited in the zebrafish larvae and the livers, intestines, kidneys and gills of adult zebrafish, but not in the embryos or brains of adult zebrafish, indicating that the toxicological effects of Cd2+ on TCDD are dependent on the developmental stages and tissue types. The present study confirms that Cd2+ blocks the TCDD-induced cyp1a1 gene in vivo but emphasizes that the effects are specific to the developmental stage, type of tissue and sex. The combined effects of Cd2+ and TCDD must be taken into consideration together with these parameters to accurately predict and assess cadmium and TCDD-induced toxicity in fish and carcinogenesis in animals in general.
Collapse
Affiliation(s)
- Ying Ying Chen
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| |
Collapse
|
27
|
Boehler S, Lörracher AK, Schubert J, Braunbeck T. Comparative live-imaging of in vivo EROD (ethoxyresorufin-O-deethylase) induction in zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) embryos after exposure to PAHs and river sediment extracts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:827-838. [PMID: 29202294 DOI: 10.1016/j.scitotenv.2017.11.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
The measurement of EROD (ethoxyresorufin-O-deethylase) activity to determine the induction of CYP1A after exposure to dioxin-like substances is a well-established biomarker in fish. For reasons of animal welfare and implementations of new chemicals regulations (REACh), in vivo methods using zebrafish (Danio rerio) and medaka (Oryzias latipes) embryos have recently been developed to quantify CYP1A induction, which is visualized as mean intensity of the autofluorescent resorufin formed in living anaesthetized embryos. In the present study, concentration ranges of three PAHs (benzo[a]pyrene, β-naphthoflavone, benzo[k]fluoranthene) as examples of known CYP1A inducers as well as extracts of two well-characterized sediment samples of the lower Neckar river (Southern Germany) were used to determine the suitability of the fathead minnow (Pimephales promelas) embryo for the in vivo EROD assay. Data for zebrafish embryos were generated for comparison. Fathead minnow embryos were principally suitable to show in vivo EROD induction via live-imaging. Since in fathead minnow embryos both signal area and fluorescence intensities are lower than in zebrafish embryos, the induction potentials of the three model PAHs and the environmental samples proved to be species-dependent. Among the three PAHs tested, benzo[k]fluoranthene lead to the strongest EROD signal followed by β-naphthoflavone and benzo[a]pyrene in comparison to the positive control. Whereas benzo[k]fluoranthene and β-naphthoflavone showed a dose-response relationship for the EROD induction, benzo[a]pyrene failed to induce a significant signal in fathead minnow embryos. If compared to the model PAHs, the extracts of both sediments from the lower Neckar River induced stronger EROD signals in both fathead minnow and zebrafish embryos. Observations thus documented fathead minnow embryos to be as suitable for biomonitoring purposes as are zebrafish embryos.
Collapse
Affiliation(s)
- Svenja Boehler
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Ann-Kathrin Lörracher
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Janine Schubert
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Batel A, Borchert F, Reinwald H, Erdinger L, Braunbeck T. Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:918-930. [PMID: 29751397 DOI: 10.1016/j.envpol.2018.01.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Since only a few studies have investigated effects of microplastics (MPs) by routes other than ingestion, this study was designed to analyze the accumulation patterns and transfer of toxic substances associated with microplastic exposure by simple attachment to (1) adult zebrafish (Danio rerio) gills and (2) zebrafish embryos. Two sizes of fluorescently labelled polymers (1-5 and 10-20 μm) loaded with the model polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP) were used to analyze fate, accumulation and transfer of microplastic-associated persistent organic pollutants (POPs) on gills and embryos. Results indicate that microplastics did not permanently accumulate at high amounts in adult zebrafish gills after 6 nor 24 h of incubation: Most particles only superficially adhered to the mucus layer on the filaments, which is constantly being excreted. In contrast, the smaller and heavier MPs (1-5 μm) accumulated in high numbers on the surface of zebrafish egg chorions. In both exposure scenarios, transfer of BaP could be visualized with fluorescence microscopy: A prominent BaP signal was visible both in gill filaments and arches after 6 and 24 h incubation and in zebrafish embryos after exposure to BaP-spiked microplastics. Furthermore, the gill EROD (Ethoxyresorufin-O-deethylase) assay showed a clear trend to CYP 1A (Cytochrom P450 1 A) induction via exposure to BaP-spiked microplastics. However, BaP from spiked microplastics did not reach sufficiently high concentrations to be able to induce morphological effects in the fish embryo toxicity test (FET). In contrast, control exposure to waterborne BaP did induce effects in the FET. As a conclusion, microplastics can also transfer POPs not only via ingestion, but also by simple attachment to epithelia or via the water column. However, further studies are needed to clarify if these interactions are of environmental concern relative to waterborne exposure to toxic substances.
Collapse
Affiliation(s)
- Annika Batel
- Aquatic Ecology and Toxicology, University of Heidelberg, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Flora Borchert
- Aquatic Ecology and Toxicology, University of Heidelberg, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Hannes Reinwald
- Aquatic Ecology and Toxicology, University of Heidelberg, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Lothar Erdinger
- Department of Hygiene and Medical Microbiology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, University of Heidelberg, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
29
|
Zhou Z, Yang J, Chan KM. Toxic effects of triclosan on a zebrafish (Danio rerio) liver cell line, ZFL. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:175-188. [PMID: 28843737 DOI: 10.1016/j.aquatox.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/03/2017] [Accepted: 08/15/2017] [Indexed: 05/15/2023]
Abstract
Triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy) phenol) is an antimicrobial agent widely used in personal care products. It has been detected in surface water, soil, aquatic species, and even humans. In this study, we used zebrafish (Danio rerio) as a model to test the hypothesis that TCS exhibits toxic effects by interacting with thyroid hormone receptor β (TRβ) and aryl hydrocarbon receptor (AhR) and by inducing the transcription of thyroid hormone (TH)-associated genes and affecting phase I and phase II enzymes. The median lethal concentrations (LC50) of TCS in zebrafish embryos/larvae and a zebrafish liver cell line (ZFL) were first determined. Hatched larvae were most sensitive to TCS exposure, with LC50 values ranging from 1.26 to 1.46μM for 96h after hatching exposure. The major effect of TCS was delayed hatching which occurred from 1.13μM. The constructed GFP-zfTRβ fusion protein revealed the subcellular location of zfTRβ as the nucleus in both T3-induced and uninduced states, adding to the difficulty of studying TCS action on thyroid hormone receptors in ZFL cells. TCS had neither agonistic nor antagonistic effects on zfTRβLBD or AhR from the reporter gene systems. Ethoxyresorufin-o-deethylase (EROD) assay suggested that TCS is a weak P4501a (Cyp1a) agonist at 5μM and that it inhibits cytochrome Cyp1a activity induced by benzo(a)pyrene (BaP). In time course-based mRNA profiling in ZFL cells, 4-h exposure to TCS caused a significant (up to 37.5-fold) inhibition of Cyp1a at 2.5μM. An overall inhibition of liver phase I and II gene transcription at 4h exposure indicates the possible quick catabolism of TCS. Our findings suggest that TCS is not a TH mimic that affects TH-related gene expression. The impairment of Cyp1a mRNA expression could be due to stimulation by other stressors such as oxidative stress, warranting further investigation into the underlying mechanism in zebrafish.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - Jie Yang
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China.
| |
Collapse
|
30
|
Okay OS, Karacık B, Güngördü A, Yılmaz A, Koyunbaba NC, Yakan SD, Henkelmann B, Schramm KW, Ozmen M. Monitoring of organic pollutants in marine environment by semipermeable membrane devices and mussels: accumulation and biochemical responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19114-19125. [PMID: 28660514 DOI: 10.1007/s11356-017-9594-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
This study involves the monitoring of organic pollutants using transplanted mussels (Mytilus galloprovincialis) as bioindicator organisms and semipermeable membrane devices (SPMDs) as passive samplers. Mussels and SPMDs were deployed to marinas, shipyards and shipbreaking yards on the coastal area of Turkey and retrieved after 60 days. Polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticide (OCP) compounds were analysed with high-resolution GC-MS. Total PAH concentrations in SPMDs and mussels ranged from 200 to 4740 ng g sampler-1 and from 7.0 to 1130 ng g-1 in wet weight (ww). PCB and OCP concentrations in SPMDs changed between 0.04-200 and 4.0-26 ng g sampler-1, respectively. The highest PCB (190 ng g-1 ww) and OCP (200 ng g-1 ww) concentrations in mussels were measured at shipyard stations. A strong correlation was observed between the PAH and PCB concentrations in SPMDs and mussels. Enzyme assays (acetylcholinesterase, ethoxyresorufin-O-deethylase, glutathione S-transferase, glutathion reductase and carboxylesterase activities) were performed as biomarkers to reveal the effects of pollution on the mussels. There was no clear relationship found between the enzyme levels and the pollutant concentrations in mussels. Integrated biomarker responses were calculated to interpret the overall effect of pollutants.
Collapse
Affiliation(s)
- Oya S Okay
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Burak Karacık
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Abbas Güngördü
- Arts and Sciences Faculty, Department of Biology, Laboratory of Environmental Toxicology, Inönü University, 44069, Malatya, Turkey
| | - Atilla Yılmaz
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Nazmi C Koyunbaba
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sevil D Yakan
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bernhard Henkelmann
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Ecological Chemistry, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Ecological Chemistry, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Department für Biowissenschaften, TUM, Wissenschaftszentrum Weihenstephan für Ernährung und Landnutzung, Weihenstephaner Steig 23, 85350, Freising, Germany
| | - Murat Ozmen
- Arts and Sciences Faculty, Department of Biology, Laboratory of Environmental Toxicology, Inönü University, 44069, Malatya, Turkey
| |
Collapse
|
31
|
Aguirre-Martínez GV, Reinardy HC, Martín-Díaz ML, Henry TB. Response of gene expression in zebrafish exposed to pharmaceutical mixtures: Implications for environmental risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:471-479. [PMID: 28458231 DOI: 10.1016/j.ecoenv.2017.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 05/26/2023]
Abstract
Complex mixtures of pharmaceutical chemicals in surface waters indicate potential for mixture effects in aquatic organisms. The objective of the present study was to evaluate whether effects on target gene expression and enzymatic activity of individual substances at environmentally relevant concentrations were additive when mixed. Expression of zebrafish cytochrome P4501A (cyp1a) and vitellogenin (vtg) genes as well as activity of ethoxyresorufin-O-deethylase (EROD) were analyzed after exposure (96h) to caffeine-Caf, ibuprofen-Ibu, and carbamazepine-Cbz (0.05 and 5µM), tamoxifen-Tmx (0.003 and 0.3µM), and after exposure to pharmaceutical mixtures (low mix: 0.05µM of Caf, Ibu, Cbz and 0.003µM of Tmx, and high mix: 5µM of Caf, Ibu, Cbz and 0.3µM of Tmx). Pharmaceuticals tested individually caused significant down regulation of both cyp1a and vtg, but EROD activity was not affected. Exposure to low mix did not cause a significant change in gene expression; however, the high mix caused significant up-regulation of cyp1a but did not affect vtg expression. Up-regulation of cyp1a was consistent with induction of EROD activity in larvae exposed to high mix. The complex mixture induced different responses than those observed by the individual substances. Additive toxicity was not supported, and results indicate the need to evaluate complex mixtures rather than models based on individual effects, since in environment drugs are not found in isolation and the effects of their mixtures is poorly understood.
Collapse
Affiliation(s)
- Gabriela V Aguirre-Martínez
- School of Biomedical and Biological Science, 411 Davy Building, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom; Health Science Faculty, Arturo Prat University, Casilla 121, 1110939 Iquique, Chile; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain.
| | - Helena C Reinardy
- School of Biomedical and Biological Science, 411 Davy Building, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom; Department of Arctic Technology, UNIS, Longyearbyen N-9171, Norway
| | - M Laura Martín-Díaz
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain; Facultad Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain
| | - Theodore B Henry
- School of Biomedical and Biological Science, 411 Davy Building, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom; School of Life Sciences, Heriot-Watt University, 3.05 William Perkin Building, Edinburgh EH14 4AS, United Kingdom; Center for Environmental Biotechnology, University of Tennessee, Knoxville TN 37996, USA; Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
32
|
Nathiga Nambi KS, Abdul Majeed S, Taju G, Sivasubbu S, Sarath Babu V, Sahul Hameed AS. Effects of nicotine on zebrafish: A comparative response between a newly established gill cell line and whole gills. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:68-77. [PMID: 28257922 DOI: 10.1016/j.cbpc.2017.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
A novel cell line, Danio rerio gill (DrG), derived from the gill tissue of zebrafish, was established and characterized. The cells were able to grow at a wide range of temperatures from 25°C to 32°C in Leibovitz's L-15 medium. The DrG cell line consists of epithelial-like cells with a diameter of 18-22μm. The cell line was characterized by mitochondrial 12S rRNA gene. Acute toxicity tests were conducted on D. rerio by exposing them to nicotine for 96h under static conditions. In vitro cytotoxicity of nicotine was assessed in DrG cell line using multiple endpoints such as 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Neutral Red assay, Alamar Blue assay and Coomassie Blue protein assay. Linear correlations between each in vitro cytotoxicity assay and the in vivo mortality data were highly significant. Nicotine induced intracellular reactive oxygen species generation in DrG cell line in a concentration dependent manner. DrG cell line and zebrafish exposed to nicotine significantly increased the elevation of lipid peroxidation (LPO) while depletion of reduced glutathione (GSH), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidise(GPx1a) was observed. In nicotine treated fish and cells a negative correlation between reduced glutathione and LPO was observed. In addition, the production of ROS and the resulting oxidative stress resulted in increased expression of apoptosis related genes p53 and cas3.Collectively, our result suggests that nicotine has the potential to induce reactive oxygen species (ROS) production, oxidative stress and apoptosis in DrG cell line and zebrafish.
Collapse
Affiliation(s)
- K S Nathiga Nambi
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India; Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - S Abdul Majeed
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India
| | - G Taju
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India
| | - Sridhar Sivasubbu
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - V Sarath Babu
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India
| | - A S Sahul Hameed
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam - 632 509, Vellore District, Tamil Nadu, India.
| |
Collapse
|
33
|
Tang YM, Junaid M, Niu A, Deng S, Pei DS. Diverse toxicological risks of PAHs in surface water with an impounding level of 175m in the Three Gorges Reservoir Area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1085-1096. [PMID: 27989471 DOI: 10.1016/j.scitotenv.2016.12.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
The impounding level of 175m for the Three Gorges Reservoir (TGR) is of vital importance for efficient flood control, power generation and convenient navigation in China. However, little is known about the spatial distribution and toxicological risks of major pollutants in the Three Gorges Reservoir Area (TGRA) at that stage. The aim of this study is to probe the ubiquitous polycyclic aromatic hydrocarbons (PAHs) contamination and toxicological impacts in the surface water of the TGRA at the highest water impoundment level of 175m. Our results showed that the ƩPAHs levels ranged from 83 to 1631ng/L in the upper reaches, 354 to 1159ng/L in the middle reaches, and 23 to 747ng/L in the lower reaches of the TGRA. Source apportionment of PAHs indicated that coal combustion, industrial emissions, heavy traffic, agriculture and shipping activities were the primary sources. Compositional pattern highlighted >85% dominancy of low molecular weight (LMW) PAHs in the reservoir. Risk assessment based on risk quotients (RQs) implied moderate to high ecological risks: the upper reaches>the middle reaches>the lower reaches. However, gene expression profiles portrayed contrary scenario because of the presence of relatively higher footprints of high molecular weight (HMW) PAHs in the middle and the lower reaches, which was confirmed by Cox hazard proportional model. Moreover, the transgenic zebrafish Tg(cyp1a:gfp) induced by PAHs also expressed stronger fluorescent signals in the middle and lower reaches. Taken together, different approaches were employed to firstly reveal the real status of ecological toxicity of PAHs and explore the underlying mechanisms at the highest impounding level of 175m in the TGRA.
Collapse
Affiliation(s)
- Yu-Mei Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aping Niu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shun Deng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
34
|
Zheng R, Chen H, Bo J, Xie Q, Hong F, Zhang Y. Joint effects of crude oil and heavy metals on the gill filament EROD activity of marbled rockfish Sebastiscus marmoratus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:116-122. [PMID: 27290642 DOI: 10.1016/j.ecoenv.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to characterize dose- and time-dependent responses of gill 7-ethoxyresorufin O-deethylase (EROD) activity from Juvenile marbled rockfish (Sebastiscus marmoratus) exposed to the water-accommodated fraction (WAF) of crude oil and heavy metal Cd(Ⅱ) or Pb(Ⅱ) alone or in mixture. Compared to the control group, gill filament EROD activity in S. marmoratus was significantly induced after exposure to the WAF from 80 to 320μg/L for 5 days in dose response experiment and after exposure to 40μg/L WAF for 6-10 days in time course experiment, respectively. In the other hand, gill filament EROD activity were not significantly affected compared to the control group or related WAF groups no matter in the dose response experiment or in the time course experiment of Cd(Ⅱ), Pb(Ⅱ) or its mixture with WAF. The results suggest the use of gill filament EROD activity as a biomarker of exposure to waterborne AhR agonists in marine ecosystems while simultaneously being exposed to environmental concentrations of Cd(Ⅱ) or Pb(Ⅱ).
Collapse
Affiliation(s)
- Ronghui Zheng
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Huanbin Chen
- Xiaocuo Office of Quanzhou Entry-Exit Inspection & Quarantine Bureau of P.R.China, PR China
| | - Jun Bo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Qing Xie
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Fukun Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Yusheng Zhang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China.
| |
Collapse
|
35
|
In vitro CYP1A activity in the zebrafish: temporal but low metabolite levels during organogenesis and lack of gender differences in the adult stage. Reprod Toxicol 2016; 64:50-6. [DOI: 10.1016/j.reprotox.2016.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
|
36
|
Batel A, Linti F, Scherer M, Erdinger L, Braunbeck T. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1656-66. [PMID: 26752309 DOI: 10.1002/etc.3361] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/14/2015] [Accepted: 12/24/2015] [Indexed: 05/02/2023]
Abstract
The uptake of microplastic particles and the transfer of potential harmful substances along with microplastics has been studied in a variety of organisms, especially invertebrates. However, the potential accumulation of very small microplastic particles along food webs ending with vertebrate models has not been investigated so far. Therefore, a simple artificial food chain with Artemia sp. nauplii and zebrafish (Danio rerio) was established to analyze the transfer of microplastic particles and associated persistent organic pollutants (POPs) between different trophic levels. Very small (1-20 μm) microplastic particles accumulated in Artemia nauplii and were subsequently transferred to fish. Virgin particles not loaded with POPs did not cause any observable physical harm in the intestinal tracts of zebrafish, although parts of the particles were retained within the mucus of intestinal villi and might even have been taken up by epithelial cells. The transfer of associated POPs was tested with the polycyclic aromatic hydrocarbon benzo[a]pyrene and an ethoxyresorufin-O-deethylase (EROD) assay for CYP1A induction in zebrafish liver as well as via fluorescence analyses. Whereas a significant induction in the EROD assay could not be shown, because of high individual variation and low sensitivity regarding substance concentration, the fluorescence tracking of benzo[a]pyrene indicates that food-borne microplastic-associated POPs may actually desorb in the intestine of fish and are thus transferred to the intestinal epithelium and liver. Environ Toxicol Chem 2016;35:1656-1666. © 2016 SETAC.
Collapse
Affiliation(s)
- Annika Batel
- Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Frederic Linti
- Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martina Scherer
- Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lothar Erdinger
- Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Bettim FL, Galvan GL, Cestari MM, Yamamoto CI, de Assis HCS. Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline. CHEMOSPHERE 2016; 144:1467-1474. [PMID: 26495832 DOI: 10.1016/j.chemosphere.2015.09.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The water-soluble fraction of gasoline (WSFG) is a complex mixture of mono-polycyclic aromatic hydrocarbons. The study aimed to evaluate the effects of WSFG diluted 1.5% on freshwater fish. Astyanax altiparanae were exposed to the WSFG for 96 h, under a semi-static system, with renewal of 25% of the gasoline test solution every 24 h. In addition, a decay of the contamination (DC) was carried out. During DC, the fish was exposed to the WSFG for 8 d, followed by another 7 d with renewal of 25% of volume aquaria with clean water every 24 h. For depuration, fish were transferred to aquaria with clean water, and in addition, 25% of the water was replaced every 24 h. The liver and kidney biotransformation, antioxidant defenses and lipid peroxidation (LPO) levels were evaluated. In the liver, the WSFG 1.5% caused reduction of glutathione S-transferase (GST) after 96 h and DC. In the kidney, only in depuration an increased GST activity was observed, and after DC a higher LPO levels. An increase of the superoxide dismutase (SOD) activity occurred at 96 h in both tissues; however, in the liver was also observed during the depuration. In WSFG 96 h, the glutathione peroxidase (GPx) activity in the kidney increased. As biomarkers of neurotoxicity, the brain and muscle acetylcholinesterase activities were measured, but the WSFG 1.5% did not change them. Therefore, this study brought forth more data about WSFG effects on freshwater fish after lower concentrations exposure and a DC, simulating an environmental contamination.
Collapse
Affiliation(s)
- Franciele Lima Bettim
- Departamento de Farmacologia, Universidade Federal do Paraná, 81531-980 Curitiba-Paraná, Brazil
| | | | | | - Carlos Itsuo Yamamoto
- Departamento de Engenharia Química, Universidade Federal do Paraná, 81531-980 Curitiba-Paraná, Brazil
| | | |
Collapse
|
38
|
Gao D, Wu M, Wang C, Wang Y, Zuo Z. Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:200-208. [PMID: 26349946 DOI: 10.1016/j.aquatox.2015.08.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
Previous epidemiological and animal studies report that exposure to environmental pollutant exposure links to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Benzo[a]pyrene (BaP), a neurotoxic polycyclic aromatic hydrocarbon, has been increasingly released into the environment during recent decades. So far, the role of BaP on the development of neurodegenerative diseases remaind unclear. This study aimed to determine whether chronic exposure to low dose BaP would cause neurodegenerative disease-like syndromes in zebrafish (Danio rerio). We exposed zebrafish, from early embryogenesis to adults, to environmentally relevant concentrations of BaP for 230 days. Our results indicated that BaP decreased the brain weight to body weight ratio, locomotor activity and cognitive ability; induced the loss of dopaminergic neurons; and resulted in neurodegeneration. In addition, obvious cell apoptosis in the brain was found. Furthermore, the neurotransmitter levels of dopamine and 3,4-dihydroxyphenylacetic acid, the mRNA levels of the genes encoding dopamine transporter, Parkinson protein 7, phosphatase and tensin-induced putative kinase 1, ubiquitin carboxy-terminal hydrolase L1, leucine-rich repeat serine/threonine kinase 2, amyloid precursor protein b, presenilin 1 and presenilin 2 were significantly down-regulated by BaP exposure. These findings suggest that chronic exposure to low dose BaP could cause the behavioral, neuropathological, neurochemical, and genetic features of neurodegenerative diseases. This study provides clues that BaP may constitute an important environmental risk factor for neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Dongxu Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Meifang Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuanchuan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
39
|
Du M, Fang C, Qiu L, Dong S, Zhang X, Yan C. Diastereoisomer-specific effects of hexabromocyclododecanes on hepatic aryl hydrocarbon receptors and cytochrome P450s in zebrafish (Danio rerio). CHEMOSPHERE 2015; 132:24-31. [PMID: 25770833 DOI: 10.1016/j.chemosphere.2015.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
In order to elucidate the mechanism for diastereoisomer-specific toxicity and metabolism of hexabromocyclododecanes (HBCDs) in biota, zebrafish (Danio rerio) were exposed to different concentrations of individual HBCD diastereoisomers (α-, β- and γ-HBCD) in water for 7 and 21d. We examined the gene expression of aryl hydrocarbon receptor (AHR) and cytochrome P450 (CYP), as well as ethoxyresorufin-O-deethylase (EROD) activity in zebrafish livers. Exposure to different HBCD diastereoisomers caused different expression of AHRs in zebrafish livers. For instance, 10 and 100μgL(-1) of α- and β-HBCD up-regulated the expressions of ahr1a and ahr1b in zebrafish liver, whereas 10 and 100μgL(-)(1) of γ-HBCD down-regulated them after 7d exposure. α-HBCD showed the most significant up-regulation of ahr1a and ahr1b expression, whereas γ-HBCD showed the most significant down-regulation of their expression among three HBCD diastereoisomers. Moreover, HBCDs could affect the expression of CYP1s as well as EROD activity in a gene-specific and diastereoisomer-specific manner. α-, β- and γ-HBCD inhibited cyp1a expression but enhanced the expression of cyp1b1 and cyp1c1. α-, β- and γ-HBCD showed different degrees of effect on the same CYP1 gene in a concentration-dependent way. The different effects of HBCD diastereoisomers on these genes we examined and EROD activity not only indicate diastereoisomer-specific toxic effect, but also in turn explain diastereoisomer-specific accumulation of HBCDs in zebrafish.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Fang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Qiu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sijun Dong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
40
|
Agus HH, Sümer S, Erkoç F. Toxicity and molecular effects of di-n-butyl phthalate (DBP) on CYP1A, SOD, and GPx in Cyprinus carpio (common carp). ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:423. [PMID: 26065888 DOI: 10.1007/s10661-015-4622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Di-n-butyl phthalate (DBP), a widely used plasticizer in the plastic industry, affects regulation of the endocrine system and causes toxicity in animals. In the present study, we evaluated a series of ecotoxicological stress biomarkers in the common carp (Cyprinus carpio) as an experimental model to test for alterations in gene expression at a sublethal concentration of 1 mg/L DBP for 4, 24, and 96 h. In gills, an immediate increase in CYP1A messenger RNA (mRNA) levels was observed within the first 4 h and persisted for 96 h. Protein levels were nearly consistent with mRNA levels. However, a time-dependent inhibition was observed in CYP1A levels in the liver within 96 h. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased gradually in liver with exposure time to a maximum level of 11-fold. Varied responses of different tissues were likely due to xenobiotic metabolism of DBP. In conclusion, evaluating the tissue-specific alterations of CYP1A, SOD, and GPx levels can be used as specific and effective biomarkers for ecotoxicological monitoring of DBP pollution. We strongly recommend using molecular tools to ecotoxicologists for aquatic monitoring of newly emerging pollutants.
Collapse
Affiliation(s)
- Hizlan H Agus
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey,
| | | | | |
Collapse
|
41
|
Li FJ, Duggal RN, Oliva OM, Karki S, Surolia R, Wang Z, Watson RD, Thannickal VJ, Powell M, Watts S, Kulkarni T, Batra H, Bolisetty S, Agarwal A, Antony VB. Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species. PLoS One 2015; 10:e0122275. [PMID: 25835394 PMCID: PMC4383564 DOI: 10.1371/journal.pone.0122275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/13/2015] [Indexed: 11/18/2022] Open
Abstract
The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its reaction products protect against oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ryan N. Duggal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Octavio M. Oliva
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Suman Karki
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - R. Douglas Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Victor J. Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Mickie Powell
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Hitesh Batra
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Veena B. Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
42
|
Zanette J, Jenny MJ, Goldstone JV, Parente T, Woodin BR, Bainy ACD, Stegeman JJ. Identification and expression of multiple CYP1-like and CYP3-like genes in the bivalve mollusk Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:101-12. [PMID: 23277104 PMCID: PMC3846546 DOI: 10.1016/j.aquatox.2012.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/16/2012] [Accepted: 11/22/2012] [Indexed: 05/06/2023]
Abstract
Various sequencing projects over the last several years have aided the discovery of previously uncharacterized invertebrate sequences, including new cytochrome P450 genes (CYPs). Here we present data on the identification and characterization of two CYP1-like and three CYP3-like genes from the bivalve mollusk Mytilus edulis, and assess their potential as biomarkers based on their responses to several known vertebrate aryl hydrocarbon receptor (AHR) agonists. Quantitative real-time PCR was used to measure CYP transcript levels in digestive gland, labial palps, adductor muscle, gill, foot, and different regions of the mantle. Levels of both CYP1-like genes were highest in digestive gland, whereas labial palps had the highest expression levels of the three CYP3-like genes followed by digestive gland and outer margin of the mantle. Mussels were exposed by injection to the AHR agonists, β-naphthoflavone (BNF; 25 μg g(-1)), 3,3',4,4',5-polychlorinated biphenyl (PCB126; 2 μg g(-1)), or 6-formylindolo[3,2-b]carbazole (FICZ; 0.1 μg g(-1)), or to Aroclor 1254 (a mixture of PCBs; 50 μg g(-1)) for 24 h, followed by CYP expression analysis. There was no statistically significant change in expression of either of the CYP1-like genes after exposure to the various AHR agonists. The CYP3-like-1 gene was significantly up-regulated by BNF in gill tissues and the CYP3-like-2 gene was up-regulated in digestive gland by PCB126 and in gill tissue by BNF. These results suggest that distinct mechanisms of CYP gene activation could be present in M. edulis, although the importance of the CYP1-like and CYP3-like genes for xenobiotic and endogenous lipids biotransformation requires additional investigation.
Collapse
Affiliation(s)
- Juliano Zanette
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis SC, Brazil
| | - Matthew J. Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Department of Biological Sciences, University of Alabama, Tuscaloosa AL 35487
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
| | - Thiago Parente
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruce R. Woodin
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
| | - Afonso C. D. Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis SC, Brazil
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Correspondence to: John J. Stegeman, Biology Department, MS 32, Woods Hole Oceanographic Institution, Woods Hole MA USA 02543,
| |
Collapse
|
43
|
Tian W, Xie HQ, Fu H, Pei X, Zhao B. Immunoanalysis methods for the detection of dioxins and related chemicals. SENSORS 2012; 12:16710-31. [PMID: 23443395 PMCID: PMC3571807 DOI: 10.3390/s121216710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 12/25/2022]
Abstract
With the development of biotechnology, approaches based on antibodies, such as enzyme-linked immunosorbent assay (ELISA), active aryl hydrocarbon immunoassay (Ah-I) and other multi-analyte immunoassays, have been utilized as alternatives to the conventional techniques based on gas chromatography and mass spectroscopy for the analysis of dioxin and dioxin-like compounds in environmental and biological samples. These screening methods have been verified as rapid, simple and cost-effective. This paper provides an overview on the development and application of antibody-based approaches, such as ELISA, Ah-I, and multi-analyte immunoassays, covering the sample extraction and cleanup, antigen design, antibody preparation and immunoanalysis. However, in order to meet the requirements for on-site fast detection and relative quantification of dioxins in the environment, further optimization is needed to make these immuno-analytical methods more sensitive and easy to use.
Collapse
Affiliation(s)
- Wenjing Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | |
Collapse
|
44
|
Chen Y, Zeng SF, Cao YF. Oxidative stress response in zebrafish (Danio rerio) gill experimentally exposed to subchronic microcystin-LR. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:6775-6787. [PMID: 22131016 DOI: 10.1007/s10661-011-2457-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
The worldwide occurrence of cyanobacterial blooms makes it necessary to perform environmental risk assessment procedures to monitor the effects of microcytins on fish. Oxidative stress biomarkers are valuable tools in this regard. Considering that zebrafish (Danio rerio) is a common model species in fish toxicology and the zebrafish gill is potentially useful in screening waterborne pollutants, this study investigated the oxidative stress response in zebrafish gill exposed to subchronic microcystin-LR (MCLR) concentrations (2 or 20 μg/l) via measurement of toxin accumulation, protein phosphatase (PP) activity, and the antioxidant parameters (glutathione-S-transferase-GST; glutathione-GSH; superoxide dismutase-SOD; catalase-CAT; glutathione peroxide-GPx; glutathione reductase-GR), as well as levels of hydroxyl radical (OH) and lipid peroxidation (LPO). The results showed that after 30 days exposure, MCLR accumulated in zebrafish gill and MCLR exposure induced PP activity in gill. A linear inhibition of GST activity and GSH content was observed in the gills, revealing that they were involved in the first step of MCLR detoxification. The 2 μg/l MCLR treatment neglectably affected OH content and the antioxidant enzymes (SOD, CAT, GPx, and GR), however oxidative stress was induced under the 20 μg/l MCLR treatment in which an enhanced OH content and alterations of the antioxidant enzymes were observed in the treated gills, although both treatments exerted little effect on LPO level. The principal component analysis results indicated that the most sensitive biomarkers of MCLR exposure were GST and GSH in zebrafish gill. So, D. rerio could be regarded as a suitable bioindicator of MCLR exposure by measuring CAT, GR, GST, and GSH as biomarkers.
Collapse
Affiliation(s)
- Yao Chen
- Xiamen Marine Environmental Monitoring Center, Xiamen 361008, China.
| | | | | |
Collapse
|
45
|
Garcia CZ, Martinez CBR. Biochemical and genetic alterations in the freshwater neotropical fish Prochilodus lineatus after acute exposure to Microcystis aeruginosa. NEOTROPICAL ICHTHYOLOGY 2012. [DOI: 10.1590/s1679-62252012000300015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microcystins are secondary metabolites produced by different species of cyanobacteria, such as Microcystis aeruginosa (MA). In this study, the biochemical and genetic effects of lyophilized MA were evaluated in the neotropical fish Prochilodus lineatus exposed to 1 or 2 mg L-1 lyophilized MA (treated group) or only water (control group) in static toxicity tests for 24 and 96 h. The gills and liver were used in the analysis of biotransformation enzymes and antioxidant defenses, blood and gill cells in genetic analysis and in brain and muscle it was determined the activity of acetylcholinesterase (AChE). The results showed the biotransformation pathway activation due to the increase in hepatic CYP1A and in branchial and hepatic glutathione S-transferase (GST). The antioxidant defense proved to be greatly affected by MA exposure leading to changes, both in gills and liver, in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and in the content of tripeptide glutathione (GSH). Lipid peroxidation was not detected, but damage to DNA molecule was observed in blood cells. In conclusion, it can be state the lyophilized MA is able to promote changes in the biochemical and genetic parameters of P. lineatus.
Collapse
|
46
|
Ko SK, Shin I. Cardiosulfa induces heart deformation in zebrafish through the AhR-mediated, CYP1A-independent pathway. Chembiochem 2012; 13:1483-9. [PMID: 22692990 DOI: 10.1002/cbic.201200177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Indexed: 11/07/2022]
Abstract
Heart development is a complicated and elaborate biological process. To study this and similar complicated process and diseases, the discovery and use of small molecules for probing biological events is invaluable. As part of such an investigation, we have identified cardiosulfa, a small molecule that induces severely impaired heart morphology and function in zebrafish. The results of the present study show that cardiosulfa-promoted heart deformation is protected by negative regulators of the aryl hydrocarbon receptor (AhR) signaling pathway, such as the AhR antagonist CH-223191 and an AhR2-morpholino antisense oligonucleotide, zfahr2-MO. However, the toxic effect of cardiosulfa is not alleviated by zfcyp1a-MO, a morpholino antisense oligo for cytochrome P450 1A (CYP1A), which is the most well-characterized gene of the AhR pathway. Similar results were obtained for the known AhR agonist PCB126. These observations suggest that cardiosulfa causes heart deformation in zebrafish through the AhR-mediated, CYP1A-independent pathway. Our results indicate that cardiosulfa has potential as a novel type of a biological probe to investigate the AhR pathway.
Collapse
Affiliation(s)
- Sung-Kyun Ko
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, 120-749 Seoul, Korea
| | | |
Collapse
|
47
|
van Soest JJ, Stockhammer OW, Ordas A, Bloemberg GV, Spaink HP, Meijer AH. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunol 2011; 12:58. [PMID: 22003892 PMCID: PMC3206475 DOI: 10.1186/1471-2172-12-58] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022] Open
Abstract
Background The zebrafish embryo is an important in vivo model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, Edwardsiella tarda, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by E. tarda immersion and injection. Results Mortality rates after static immersion of embryos in E. tarda suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes il1b and mmp9 was induced only in some embryos that were exposed to E. tarda in the immersion system, whereas intravenous injection of E. tarda led to il1b and mmp9 induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. E. tarda-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. E. tarda-immersed embryos showed transient induction of the cytochrome P450 gene cyp1a. This gene was also induced after immersion in Escherichia coli and Pseudomonas aeruginosa suspensions, but, in contrast, was not induced upon intravenous E. tarda injection. One of the rare common responses in the immersion and injection systems was induction of irg1l, a homolog of a murine immunoresponsive gene of unknown function. Conclusions Based on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to E. tarda in the immersion system. Induction of il1b and mmp9 was consistently observed in embryos that had been systemically infected by intravenous injection, while the early transcriptional induction of cyp1a and irg1l in the immersion system may reflect an epithelial or other tissue response towards cell membrane or other molecules that are shed or released by bacteria. Our microarray expression data provide a useful reference for future analysis of signal transduction pathways underlying the systemic innate immune response versus those underlying responses to external bacteria and secreted virulence factors and toxins.
Collapse
Affiliation(s)
- Joost J van Soest
- Institute of Biology, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Costa J, Ferreira M, Rey-Salgueiro L, Reis-Henriques MA. Comparision of the waterborne and dietary routes of exposure on the effects of Benzo(a)pyrene on biotransformation pathways in Nile tilapia (Oreochromis niloticus). CHEMOSPHERE 2011; 84:1452-1460. [PMID: 21561639 DOI: 10.1016/j.chemosphere.2011.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/17/2011] [Indexed: 05/30/2023]
Abstract
BaP is one of the most studied PAH, due to its ubiquitous presence in aquatic environments and toxicity to aquatic organisms. The main goal of this study was to assess BaP effects in Nile Tilapia after waterborne and dietary exposures, through the evaluation of EROD and GST activities in liver, gills and intestine, and BaP metabolites in bile; and also to evaluate the usefulness of these commonly used biomarkers after two different routes of exposure. Waterborne exposure to BaP led to a significant induction of EROD in all tissues analyzed (644%, 1640% and 2880% in relation to solvent in liver, gill and intestine respectively) while in dietary exposures EROD was induced only in intestine (3143%) after exposure to high BaP concentrations. GST activities with CDNB were slightly induced in liver (40%) and in gill (66%) after water exposure to BaP, and in intestine after dietary exposure to low BaP concentrations (182%). BaP metabolites in bile increased after both exposure routes, and were highly correlated with EROD activity after water exposure. In summary, this work has shown that the effects of BaP on biotransformation pathways depend on the route of exposure. Moreover, barrier tissues like gills and intestine also have an important role in the first-pass metabolism of BaP, reducing the amount of parent compound that reaches the liver to be metabolized. For that reason, EROD activity as a biomarker of exposure should also be applied in extrahepatic organs, like gills and intestine, in monitoring studies. Biliary BaP type metabolites are good reflectors of contamination levels under both exposure routes, while GST activity with CDNB as substrate, as a phase II enzyme, does not seem a reliable biomarker of exposure to BaP regardless the route of exposure.
Collapse
Affiliation(s)
- Joana Costa
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
| | | | | | | |
Collapse
|
49
|
Structural features of cytochrome P450 1A associated with the absence of EROD activity in liver of the loricariid catfish Pterygoplichthys sp. Gene 2011; 489:111-8. [PMID: 21840383 DOI: 10.1016/j.gene.2011.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/19/2011] [Accepted: 07/10/2011] [Indexed: 11/20/2022]
Abstract
The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acid substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrate.
Collapse
|
50
|
Simonato JD, Fernandes MN, Martinez CBR. Gasoline effects on biotransformation and antioxidant defenses of the freshwater fish Prochilodus lineatus. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1400-1410. [PMID: 21560013 DOI: 10.1007/s10646-011-0697-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Biochemical biomarkers in the Neotropical freshwater fish Prochilodus lineatus were evaluated following acute exposures to the water-soluble fraction of gasoline (WSFG). Fish were exposed to the WSFG diluted to 5% in water (WSFG group) or only to water (Control group) for 6, 24 and 96 h and the gills and liver were removed for the biochemical analyses. Fish exposed to WSFG for 24 and 96 h showed significant increase in the activity of 7-ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) both in liver and gills, pointing toward phase I and phase II biotransformation of the compounds present in the WSFG. The results also indicated the activation of antioxidant defenses in both the liver and gills after fish exposure to WSFG. The liver showed activation of catalase (CAT) and glutathione peroxidase (GPx) after 96 h exposure. An increase in hepatic content of reduced glutathione (GSH) together with decreased glutathione reductase (GR) activity was observed after 24 and 96 h of exposure to WSFG. In the gills, only catalase (CAT) activity augmented after 6 and 24 h of exposure and GSH content increased after 24 h of WSFG exposure. However, in both the organs, activation of the antioxidant defenses was not enough to prevent oxidative damage since they showed lipid peroxidation (LPO) at one of the experimental times: the liver after 6 h and the gills only after 96 h of exposure to WSFG. This may indicate better adaptation of the liver to longer exposures, starting from 24 h. As the gills are the first organ to be exposed to xenobiotics, the antioxidant defenses were triggered immediately upon exposure to WSFG and were able to prevent the occurrence of LPO during the initial times.
Collapse
Affiliation(s)
- Juliana D Simonato
- Department of Physiological Sciences, State University of Londrina, CP 6001, Londrina, PR, 86051-990, Brazil
| | | | | |
Collapse
|