1
|
Tao L, Wang L, Liu L, Cheng X, Zhang Q. Phosphorous accumulation associated with mitochondrial PHT3-mediated enhanced arsenate tolerance in Chlamydomonas reinhardtii. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135460. [PMID: 39151356 DOI: 10.1016/j.jhazmat.2024.135460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Arsenate is a highly toxic element and excessive accumulation of arsenic in the aquatic environment easily triggers a problem threatening the ecological health. Phytoremediation has been widely explored as a method to alleviate As contamination. Here, the green algae, Chlamydomonas reinhardtii was investigated by profiling the accumulation of arsenate and phosphorus, which share the same uptake pathway, in response to arsenic stress. Both C. reinhardtii wild type C30 and the Crpht3 mutant were cultured under arsenic stress, and demonstrated a similar growth phenotype under limited phosphate supply. Sufficient phosphate obviously increased the uptake of polyphosphate and intercellular phosphate in the Crpht3 mutant, which increased the arsenic tolerance of the Crpht3 mutant under stress from 500 µmol L-1 As(V). Upregulation of the PHT3 gene in the Crpht3 mutant increased accumulation of phosphate in the cytoplasm under arsenate stress, which triggered a regulatory role for the differentially expressed genes that mediated improvement of the glutathione redox cycle, antioxidant activity and detoxification. While the wild type C30 showed weak arsenate tolerance because of little phosphate accumulation. These results suggest that the enhanced arsenic tolerance of the Crpht3 mutant is regulated by the PHT3 gene mediation. This study provides insight onto the responsive mechanisms of the PHT3 gene-mediated in alleviating arsenic toxicity in plants.
Collapse
Affiliation(s)
- Leyuan Tao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Laihua Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Xianguo Cheng
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
He X, Lin G, Zeng J, Yang Z, Wang L. Construction of algal-bacterial consortia using green microalgae Chlorella vulgaris and As(III)-oxidizing bacteria: As tolerance and metabolomic profiling. J Environ Sci (China) 2024; 139:258-266. [PMID: 38105053 DOI: 10.1016/j.jes.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 12/19/2023]
Abstract
Bioremediation became a promising technology to resolve arsenic (As) contamination in aquatic environment. Since monoculture such as microalgae or bacteria was sensitive to environmental disturbance and vulnerable to contamination, green microalgae Chlorella vulgaris and arsenite (As(III)) - oxidizing bacteria Pseudomonas sp. SMS11 were co-cultured to construct algal-bacterial consortia in the current study. The effects of algae-bacteria (A:B) ratio and exposure As(III) concentration on algal growth, As speciation and metabolomic profile were investigated. Algal growth arrested when treated with 100 mg/L As(III) without the co-cultured bacteria. By contrast, co-cultured with strain SMS11 significantly enhanced As tolerance in C. vulgaris especially with A:B ratio of 1:10. All the As(III) in culture media of the consortia were oxidized into As(V) on day 7. Methylation of As was observed on day 14. Over 1% and 0.5% of total As were converted into dimethylarsinic acid (DMA) after 21 days cultivation when the initial concentrations of As(III) were 1 and 10 mg/L, respectively. Metabolomic analysis was further performed to reveal the response of consortia metabolites to external As(III). The enriched metabolomic pathways were associated with carbohydrate, amino acid and energy metabolisms. Tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism were upregulated under As stress due to their biological functions on alleviating oxidative stress and protecting cells. Both carbohydrate and amino acid metabolisms provided precursors and potential substrates for energy production and cell protection under abiotic stress. Alterations of the pathways relevant to carbohydrate or amino acid metabolism were triggered by energy requirement.
Collapse
Affiliation(s)
- Xiaoman He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guobing Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiayuan Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Liu YY, Li JM, Ji R, Zhang H, Zhang W, Miao AJ. Bioaccumulation determines the toxicity of carbon dots to two marine dinoflagellates. CHEMOSPHERE 2023; 321:138155. [PMID: 36791814 DOI: 10.1016/j.chemosphere.2023.138155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
With the ever-increasing application of carbon dots (CDs), a substantial amount will be released and assemble in the aquatic environment. Nevertheless, potential photodegradation of CDs in the aquatic environment, their accumulation and impacts in aquatic organisms remain unclear. Our study examined the toxicity of CDs to two marine dinoflagellates Prorocentrum micans and Prorocentrum donghaiense. Their bioaccumulation including the uptake and elimination kinetics was also determined. Significant photodegradation of CDs in seawater was observed. Moreover, both the degraded CDs and their photodegradation products were toxic to the dinoflagellates. Although P. donghaiense was more sensitive to CDs than P. micans with the median effect concentration 17.0 and 99.0 mg L-1, respectively, such sensitivity difference disappeared when the toxicity data were plotted against cellularly accumulated CDs instead of their concentration in the experimental medium. Therefore, the higher sensitivity of P. donghaiense was attributable to its higher accumulation of CDs. Overall, the photodegradation and bioaccumulation of CDs should be considered when evaluating their environmental risks.
Collapse
Affiliation(s)
- Yue-Yue Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia-Meng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
4
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
5
|
Ma Q, Chen L, Zhang L. Effects of phosphate on the toxicity and bioaccumulation of arsenate in marine diatom Skeletonema costatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159566. [PMID: 36265640 DOI: 10.1016/j.scitotenv.2022.159566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The effects of nutrient phosphate (P) at environmentally relevant levels on the toxicity of arsenic (As) in marine microalgae have been rarely known. In the present study, we explored the toxicity and bioaccumulation of As in a globally distributed diatom species Skeletonema costatum at different ambient P concentrations. The results showed that As toxicity was suppressed at elevated P concentrations. Intracellular As content ([As]intra) and the molar ratio of intracellular As to P ([As:P]) were negatively correlated with the ambient P concentrations. The trends of As bioaccumulation were substantially different between the relatively low (0, 0.5 and 1.5 μM) and high P concentrations (7.5 and 37.5 μM). Both [As]intra and [As:P] suggested that As bioaccumulation was a better factor to explain the As toxicity comparing to the ambient As concentration. The 4 h As uptake kinetics at different P concentrations followed Michaelis-Menten kinetic pattern. The maximum uptake rates (Vmax) decreased with the increase in P concentrations, and the half-saturation constants (Kd) remained constant except for that at extremely high P concentration (37.5 μM-P), suggesting the depression of P on As uptake was mainly due to the non-competitive effect. Overall, these results demonstrate that the P concentration in seawater is an important factor affecting As toxicity and bioaccumulation in the marine diatom. This study therefore helps us better understand the effects of eutrophication on the toxicity and biogeochemistry of As in the marine environment.
Collapse
Affiliation(s)
- Qunhuan Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
6
|
Zhao Y, Wang Z, Chen M, Huang X, Luo Z. Effects of nitrogen to phosphorus ratios on algal growth and arsenate metabolism by Microcystis aeruginosa with dissolved organic phosphorus and nitrate as nutrients. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Wang NX, Chen ZY, Zhou WQ, Zhang W. Influence of humic acid and fluvic acid on the altered toxicities of arsenite and arsenate toward two freshwater algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106218. [PMID: 35704967 DOI: 10.1016/j.aquatox.2022.106218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Arsenic pollution in freshwater poses a serious threat to aquatic organisms. However, dissolved organic matter (DOM) in water can modulate arsenic environmental toxicity by either suppressing or promoting its bioaccumulation. In this study, we investigated the toxicity, bioaccumulation, and biotransformation of inorganic arsenic (arsenite AsIII and arsenate AsV) combined with two types of DOM, i.e., humic acid (HA) and fulvic acid (FA), in the algae Chlamydomonas reinhardtii and Ochromonas danica. C. reinhardtii has a cell wall and cannot bioaccumulate arsenic complexation, whereas O. danica has no cell wall. Without DOM, AsV was more toxic than AsIII for C. reinhardtii, and AsV was less toxic than AsIII for O. danica. HA and FA addition reduced AsV and AsIII toxicities; the larger molecular weight (Mw) of HA contributed to the reduction in toxicity to an even greater extent, and reduced arsenic accumulation while promoting the biotransformation ability of C. reinhardtii, which has a cell wall. However, HA and FA addition increased AsV and AsIII toxicities and arsenic accumulation while relatively enhancing the biotransformation ability of O. danica, which has no cell wall. Coupling toxicity, bioaccumulation, and biotransformation, DOM (HA and FA) contributed to the altered toxicity of freshwater algae to AsV and AsIII through reduced/increased arsenic accumulation and enhanced biotransformation. Overall, our study considered the combined toxicity of inorganic arsenic and DOM in phytoplankton, helping estimate the potential environmental risk of arsenic in aqueous environments.
Collapse
Affiliation(s)
- Ning-Xin Wang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zheng-Yu Chen
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Wen-Qiang Zhou
- Academy of Environmental Planning & Design, Co., Ltd., Nanjing University, Nanjing 210093, China
| | - Wei Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Andersson B, Godhe A, Filipsson HL, Zetterholm L, Edler L, Berglund O, Rengefors K. Intraspecific variation in metal tolerance modulate competition between two marine diatoms. THE ISME JOURNAL 2022; 16:511-520. [PMID: 34446855 PMCID: PMC8776739 DOI: 10.1038/s41396-021-01092-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
Despite widespread metal pollution of coastal ecosystems, little is known of its effect on marine phytoplankton. We designed a co-cultivation experiment to test if toxic dose-response relationships can be used to predict the competitive outcome of two species under metal stress. Specifically, we took into account intraspecific strain variation and selection. We used 72 h dose-response relationships to model how silver (Ag), cadmium (Cd), and copper (Cu) affect both intraspecific strain selection and competition between taxa in two marine diatoms (Skeletonema marinoi and Thalassiosira baltica). The models were validated against 10-day co-culture experiments, using four strains per species. In the control treatment, we could predict the outcome using strain-specific growth rates, suggesting low levels of competitive interactions between the species. Our models correctly predicted which species would gain a competitive advantage under toxic stress. However, the absolute inhibition levels were confounded by the development of chronic toxic stress, resulting in a higher long-term inhibition by Cd and Cu. We failed to detect species differences in average Cu tolerance, but the model accounting for strain selection accurately predicted a competitive advantage for T. baltica. Our findings demonstrate the importance of incorporating multiple strains when determining traits and when performing microbial competition experiments.
Collapse
Affiliation(s)
- Björn Andersson
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden.
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | - Linda Zetterholm
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Lars Edler
- Doktorsg. 9d, Weaq Lab, Ängelholm, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Jiang Z, Sun Y, Guan H, Sun D, Fang S, Ma X, Wang Z, Li Z, Zhang C, Ge Y. Contributions of polysaccharides to arsenate resistance in Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113091. [PMID: 34922168 DOI: 10.1016/j.ecoenv.2021.113091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Polysaccharides supply energy for various metabolic processes in cells. However, their roles in the arsenate (As(V)) resistance in microalgae remain largely unknown. Here, we explored the synthesis and transformation of polysaccharides in Chlamydomonas reinhardtii upon various levels of As(V) stress, using a number of physiological indexes along with transmission electron microscopic (TEM) and proteomic analyses. When exposed to low concentration of As(V) (0-20 μg/L), C. reinhardtii accumulated starch and produced more extracellular polysaccharides. At 50 μg/L As(V) treatment, starch accumulation gradually shifted to polysaccharides decomposition in the algal cells. Under higher As(V) concentration (500 μg/L), significantly more proteins in fatty acid metabolic pathway were differentially expressed, indicating that cells redirected carbon flux and transformed lipids into polysaccharides. The findings of this study demonstrate that polysaccharides may be critically involved in the As(V) resistance of C. reinhardtii.
Collapse
Affiliation(s)
- Zhongquan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yutong Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huize Guan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Danqing Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shu Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuening Ma
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhongyang Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
10
|
De Francisco P, Martín-González A, Rodriguez-Martín D, Díaz S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12226. [PMID: 34831982 PMCID: PMC8618186 DOI: 10.3390/ijerph182212226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
Collapse
Affiliation(s)
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Daniel Rodriguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain;
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| |
Collapse
|
11
|
Li X, Pan JF, Lu Z, Wei M, Gao Z, Yan Z. Arsenate toxicity to the marine microalga Chlorella vulgaris increases under phosphorus-limited condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50908-50918. [PMID: 33973122 DOI: 10.1007/s11356-021-14318-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
To understand the arsenic (As) toxicity to aquatic organisms in the phosphors-polluted aquatic ecosystem, the growth, the physiological response of Chlorella vulgaris exposed to As (V), and the underlying mechanism were investigated under different phosphorus (P) levels (0, 6, 13, 32 μM). Results showed that As toxicity to the marine microalga C. vulgaris was enhanced under P-limited condition. P supply distinctly altered the effect of As on the light-harvesting efficiency of photosystem. Insufficient P supply also resulted in an enhanced level of membrane integrity loss, which probably facilitated As entering cells and led to stronger toxicity to C. vulgaris under low P supply. At high concentrations of As, the relative superoxide dismutase (SOD) activity was significantly enhanced. When phosphorus was limited, the activation of peroxidase (POD) was significantly enhanced after adding As (V). When intracellular SOD activity was at its highest level, the level of membrane peroxidation (MDA) was also at the highest level, and membrane peroxidation level was positively related to the level of membrane integrity loss (Pearson R2=0.8977). These results suggested that alternation of light-harvesting efficiency of photosystem and As-induced oxidative damage, resulting in membrane peroxidation and integrity loss, were the possible mechanism of As toxicity to C. vulgaris. This study provided insight into the understanding of As toxicity to algae in the eutrophication aquatic system and the potential application of algae in As remediation.
Collapse
Affiliation(s)
- Xinya Li
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Jin-Fen Pan
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA.
| | - Ming Wei
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Zhongsheng Gao
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| |
Collapse
|
12
|
Hussain MM, Bibi I, Niazi NK, Shahid M, Iqbal J, Shakoor MB, Ahmad A, Shah NS, Bhattacharya P, Mao K, Bundschuh J, Ok YS, Zhang H. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145040. [PMID: 33581647 DOI: 10.1016/j.scitotenv.2021.145040] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination is a well-recognized environmental and health issue, threatening over 200 million people worldwide with the prime cases in South and Southeast Asian and Latin American countries. Rice is mostly cultivated under flooded paddy soil conditions, where As speciation and accumulation by rice plants is controlled by various geo-environmental (biotic and abiotic) factors. In contrast to other food crops, As uptake in rice has been found to be substantially higher due to the prevalence of highly mobile and toxic As species, arsenite (As(III)), under paddy soil conditions. In this review, we discussed the biogeochemical cycling of As in paddy soil-rice system, described the influence of critical factors such as pH, iron oxides, organic matter, microbial species, and pathways affecting As transformation and accumulation by rice. Moreover, we elucidated As interaction with organic and inorganic amendments and mineral nutrients. The review also elaborates on As (im)mobilization processes and As uptake by rice under the influence of different mineral nutrients and amendments in paddy soil conditions, as well as their role in mitigating As transfer to rice grain. This review article provides critical information on As contamination in paddy soil-rice system, which is important to develop suitable strategies and mitigation programs for limiting As exposure via rice crop, and meet the UN's key Sustainable Development Goals (SDGs: 2 (zero hunger), 3 (good health and well-being), 12 (responsible consumption and production), and 13 (climate action)).
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Muhammad Bilal Shakoor
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands; KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program, & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
13
|
Dong Y, Gao M, Qiu W, Song Z. Effects of microplastic on arsenic accumulation in Chlamydomonas reinhardtii in a freshwater environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124232. [PMID: 33087286 DOI: 10.1016/j.jhazmat.2020.124232] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Chlamydomonas reinhardtii plays a critical role in the biogeochemical cycling of arsenic (As) and purification of water bodies contaminated with As. We investigated the effects of microplastic pollution on the ability of C. reinhardtii to accumulate As. We revealed that different sized [100 nm (S) and 5 µm (L)] polystyrene microplastics (PSMP) at different concentrations (50 and 100 mg L-1) interacted with the phospholipid structure in C. reinhardtii. Dispersion forces disrupted the structure and function of membrane proteins, reducing the accumulation and efflux of As(III) and inhibiting the As(V)-As(III)-MMA-DMA detoxification process in C. reinhardtii cells. The maximum As accumulation rates of C. reinhardtii in the control groups, L50, L100, S50, and S100 treatments were 53.71, 50.95, 48.42, 43.83, and 39.11 μg g-1 h-1, respectively. Further, PSMPs and As(III) triggered "oxidative bursts" in cells, damaging cell membranes and reducing chlorophyll content and Rubisco activity. As a result, photosynthesis, respiration, and growth were inhibited. When compared with an absence of PSMP, the addition of L- (S-) sized PSMP to the As-containing solution would result in a lower (higher) impact on C. reinhardtii. Overall, this study demonstrated that microplastics significantly affect As accumulation in C. reinhardtii. Our results indicate that the critical role of this algal species in As cycling in earth's pedo- and hydrosphere may be impeded by microplastic pollution.
Collapse
Affiliation(s)
- Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
14
|
Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, Hina K, Rinklebe J. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124027. [PMID: 33265048 DOI: 10.1016/j.jhazmat.2020.124027] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
The contamination of aquatic systems with arsenic (As) is considered to be an internationally-important health and environmental issue, affecting over 115 countries globally. Arsenic contamination of aquatic ecosystems is a global threat as it can enter the food chain from As-rich water and cause harmful impacts on the humans and other living organisms. Although different factors (e.g., pH, redox potential, iron/manganese oxides, and microbes) control As biogeochemical cycling and speciation in water systems, the significance of algal species in biotransformation of As is poorly understood. The overarching attribute of this review is to briefly elaborate various As sources and its distribution in water bodies and factors affecting As biogeochemical behavior in aqueous ecosystems. This review elucidates the intriguing role of algae in biotransformation/volatilization of As in water bodies under environmentally-relevant conditions. Also, we critically delineate As sorption, uptake, oxidation and reduction pathways of As by algae and their possible role in bioremediation of As-contaminated water (e.g., drinking water, wastewater). The current review provides the updated and useful framework for government and water treatment agencies to implement algae in As remediation programs globally.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture Peshawar, Pakistan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Kingdom of Saudi Arabia; Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Safdar Bashir
- University of Agriculture Faisalabad, Sub-campus Depalpur, Okara 56130, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Kiran Hina
- Department of Environmental Sciences, University of Gujrat, Gujrat, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
15
|
Awoyemi OM, Subbiah S, Velazquez A, Thompson KN, Peace AL, Mayer GD. Nitrate-N-mediated toxicological responses of Scenedesmus acutus and Daphnia pulex to cadmium, arsenic and their binary mixture (Cd/As mix) at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123189. [PMID: 32947745 DOI: 10.1016/j.jhazmat.2020.123189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Several biomarkers used for ecological risk assessment have been established for single contaminant toxicity, many of which are less predictive of the influence of media and/or dietary nutrients on toxicity outcomes of contaminant mixtures. In this study, we investigate toxicological responses and life traits of Scenedesmus acutus and Daphnia pulex to heavy metals (cadmium-Cd, arsenic-As, binary mixture-Cd/Asmix) in media and diets with varied nutrient (nitrate-N) conditions (low-LN, median-MN, optimum-COMBO). Results showed that nitrate-N-mediated metal inhibitory effects on growth and productivity of primary producer (S. acutus) were significantly interactive (p < 0.05; effect size, ƞ2≤56 %). Cadmium toxicities (Cd-IC50s) in S. acutus were 1.2×, 5.3×, and 4.3× As-IC50s in LN, MN and COMBO media, respectively, while mixture (Cd/Asmix) toxicities were synergistic in MN medium and partial additivity in COMBO and LN media. Nitrate-N and metal exposure effects on S. acutus nutrient stoichiometry, metal uptake and bioaccumulation were significantly interactive (p < 0.05, ƞ2≤100 %). Moreover, survival of primary consumer (D. pulex) was significantly impaired by single and mixed dietary-metal exposures with greater effect under LN condition coupled with significant interactive effects on reproductive capacity (p < 0.05, ƞ2≤21.2 %) but not on swimming activity. We recommend that nitrate-N-mediated metal exposure effects/toxicity in bioindicator species should be considered during ecological risk assessments.
Collapse
Affiliation(s)
- Olushola M Awoyemi
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA.
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| | - Anahi Velazquez
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| | - Kelsey N Thompson
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| | - Angela L Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Gregory D Mayer
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| |
Collapse
|
16
|
Wang Y, Zhang C, Yu X, Ge Y. Arsenite Oxidation by Dunaliella salina is Affected by External Phosphate Concentration. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:868-873. [PMID: 33211134 DOI: 10.1007/s00128-020-03045-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) contamination in terrestrial and aquatic environments is a well-known global environmental problem. The biooxidation of arsenite [As(III)] and subsequent arsenate [As(V)] removal have increasingly been used for remediation of As-polluted groundwater. However, little is known about As(III) oxidation by microalgae, especially those from saltwater environments. In this study, we investigated As(III) toxicity and oxidation in the marine microalga Dunaliella salina in the presence of different phosphate concentrations. The results of the As(III) toxicity experiments showed that D. salina was tolerant to As(III) (5.4 ± 0.31 mg As L-1 at 72 h of culture). The As(V) percentage in the P-enriched (11.2 mg L-1) medium was 7.2-fold greater than in the P-deficient one after 24-h exposure, indicating As(III) oxidation by D. salina was more pronounced with increased phosphate levels. Treatment of As(III) with and without 2,4-dinitrophenol (DNP) on the algal cells showed that As(III) oxidation occurred mainly on the cell surface and in the cytoplasm of D. salina. The results of this study suggest that transformation of As(III) into As(V) may be an important pathway of detoxification in D. salina and that phosphate plays a key role in this oxidation process.
Collapse
Affiliation(s)
- Ya Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ying Ge
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Zhao Y, Yan C, Zhen Z. Influence of environmental factors on arsenite transformation and fate in the Hydrilla verticillata (L.f.) royle - Medium system. CHEMOSPHERE 2020; 259:127442. [PMID: 32593827 DOI: 10.1016/j.chemosphere.2020.127442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Hydrilla verticillata (L.f.) Royle has a great ability to accumulate large amounts of arsenic (As). We studied the influence of phosphorus (P), nitrogen (N), pH, and arsenite (As(III)) on As transformation and fate in the H. verticillata - medium system via orthogonal experimental design. The results showed highest plant growth was under intermediate As(III) in the medium, with Chlorophyll a and Chlorophyll b contents in plant diminishing after 96 h treatment. Exposure to high N, high As(III), intermediate P, and low pH in the medium, the highest total arsenic uptake by plants were 169.1 ± 5.5 μg g-1 dry weight, with As(III) as the predominant speciation (49.1 ± 4.8% to 88.5 ± 0.2%) in plants. Meanwhile, trace As (mainly arsenate (As(V))) was adsorbed on the surface of H. verticillata, and the adsorption amounts of As(V) increased with increasing As(III) concentrations in the medium. The dominant As species was As(V) in the medium although plant was supplied with As(III), and highest As(III) oxidation proportion in the medium would occur when low N and pH associated with high P and As(III). Collectively, As(III) uptake and transformation by H. verticillata cannot be overlooked in the biogeochemical cycling of As in aquatic environment.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Andersson B, Godhe A, Filipsson HL, Rengefors K, Berglund O. Differences in metal tolerance among strains, populations, and species of marine diatoms - Importance of exponential growth for quantification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105551. [PMID: 32707232 DOI: 10.1016/j.aquatox.2020.105551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 05/21/2023]
Abstract
Strains of microalgae vary in traits between species and populations due to adaptation or stochastic processes. Traits of individual strains may also vary depending on the acclimatization state and external forces, such as abiotic stress. In this study we tested how metal tolerance differs among marine diatoms at three organizational levels: species, populations, and strains. At the species level we compared two pelagic Baltic Sea diatoms (Skeletonema marinoi and Thalassiosira baltica). We found that the between-species differences in tolerance (EC50) to the biologically active metals (Cu, Co, Ni, and Zn) was similar to that within-species. In contrast, the two species differed significantly in tolerance towards the non-essential metals, Ag (three-fold higher in T. baltica), Pb and Cd (two and three-fold higher in S. marinoi). At the population level, we found evidence that increased tolerance against Cu and Co (17 and 41 % higher EC50 on average, respectively) had evolved in a S. marinoi population subjected to historical mining activity. On a strain level we demonstrate how the growth phase of cultures (i.e., cellular densities above exponential growth) modulated dose-response relationships to Ag, Cd, Co, Cu, and Zn. Specifically, the EC50's were reduced by 10-60 % in non-exponentially growing S. marinoi (strain RO5AC), depending on metal. For the essential metals these differences were often larger than the average differences between the two species and populations. Consequently, without careful experimental design, interactions between nutrient limitation and metal stress may interfere with detection of small, but evolutionary and ecologically important, differences in tolerance between microalgae. To avoid such artifacts, we outline a semi-continuous cultivation approach that maintains, and empirically tests, that exponential growth is achieved. We argue that such an approach is essential to enable comparison of population or strain differences in tolerance using dose-response tests on cultures of microalgae.
Collapse
Affiliation(s)
- Björn Andersson
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden.
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | | | - Olof Berglund
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Leong YK, Chang JS. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. BIORESOURCE TECHNOLOGY 2020; 303:122886. [PMID: 32046940 DOI: 10.1016/j.biortech.2020.122886] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/22/2023]
Abstract
Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Center for Nanotechnology, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
20
|
Zhao Y, Zhen Z, Wang Z, Zeng L, Yan C. Influence of environmental factors on arsenic accumulation and biotransformation using the aquatic plant species Hydrilla verticillata. J Environ Sci (China) 2020; 90:244-252. [PMID: 32081320 DOI: 10.1016/j.jes.2019.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Hydrilla verticillata (waterthyme) has been successfully used for phytoremediation in arsenic (As) contaminated water. To evaluate the effects of environmental factors on phytoremediation, this study conducted a series of orthogonal design experiments to determine optimal conditions, including phosphorus (P), nitrogen (N), and arsenate (As(V)) concentrations and initial pH levels, for As accumulation and biotransformation using this aquatic plant species, while also analyzing As species transformation in culture media after 96-hr exposure. Analysis of variance and the signal-to-noise ratio were used to identify both the effects of these environmental factors and their optimal conditions for this purpose. Results indicated that both N and P significantly impacted accumulation, and N was essential in As species transformation. High N and intermediate P levels were critical to As accumulation and biotransformation by H. verticillata, while high N and low P levels were beneficial to As species transformation in culture media. The highest total arsenic accumulation was (197.2 ± 17.4) μg/g dry weight when As(V) was at level 3 (375 μg/L), N at level 2 (4 mg/L), P at level 1 (0.02 mg/L), and pH at level 2 (7). Although H. verticillata is highly efficient in removing As(V) from aquatic environments, its use could be potentially harmful to both humans and the natural environment due to its release of highly toxic arsenite. For cost-effective and ecofriendly phytoremediation of As-contaminated water, both N and P are helpful in regulating As accumulation and transformation in plants.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhong Wang
- School of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Liqing Zeng
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
21
|
Toxicity, Physiological, and Ultrastructural Effects of Arsenic and Cadmium on the Extremophilic Microalga Chlamydomonas acidophila. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051650. [PMID: 32138382 PMCID: PMC7084474 DOI: 10.3390/ijerph17051650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 01/23/2023]
Abstract
The cytotoxicity of cadmium (Cd), arsenate (As(V)), and arsenite (As(III)) on a strain of Chlamydomonas acidophila, isolated from the Rio Tinto, an acidic environment containing high metal(l)oid concentrations, was analyzed. We used a broad array of methods to produce complementary information: cell viability and reactive oxygen species (ROS) generation measures, ultrastructural observations, transmission electron microscopy energy dispersive x-ray microanalysis (TEM-XEDS), and gene expression. This acidophilic microorganism was affected differently by the tested metal/metalloid: It showed high resistance to arsenic while Cd was the most toxic heavy metal, showing an LC50 = 1.94 µM. Arsenite was almost four-fold more toxic (LC50= 10.91 mM) than arsenate (LC50 = 41.63 mM). Assessment of ROS generation indicated that both arsenic oxidation states generate superoxide anions. Ultrastructural analysis of exposed cells revealed that stigma, chloroplast, nucleus, and mitochondria were the main toxicity targets. Intense vacuolization and accumulation of energy reserves (starch deposits and lipid droplets) were observed after treatments. Electron-dense intracellular nanoparticle-like formation appeared in two cellular locations: inside cytoplasmic vacuoles and entrapped into the capsule, around each cell. The chemical nature (Cd or As) of these intracellular deposits was confirmed by TEM-XEDS. Additionally, they also contained an unexpected high content in phosphorous, which might support an essential role of poly-phosphates in metal resistance.
Collapse
|
22
|
Wei Y, Zhang H, Yuan Y, Zhao Y, Li G, Zhang F. Indirect effect of nutrient accumulation intensified toxicity risk of metals in sediments from urban river network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6193-6204. [PMID: 31865586 DOI: 10.1007/s11356-019-07335-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution. Graphical abstract Toxicity rate of metals in sediments from urban river network indirectly intensified by nutrients accumulation.
Collapse
Affiliation(s)
- Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Hao Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Ying Yuan
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yingshuang Zhao
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Mavrakis E, Mavroudakis L, Lydakis-Simantiris N, Pergantis SA. Investigating the Uptake of Arsenate by Chlamydomonas reinhardtii Cells and its Effect on their Lipid Profile using Single Cell ICP–MS and Easy Ambient Sonic-Spray Ionization–MS. Anal Chem 2019; 91:9590-9598. [DOI: 10.1021/acs.analchem.9b00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emmanouil Mavrakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Leonidas Mavroudakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Nikos Lydakis-Simantiris
- Laboratory of Environmental Chemistry and of Biochemical Processes, Department of Agriculture, Hellenic Mediterranean University, Chania 73133, Greece
| | - Spiros A. Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| |
Collapse
|
24
|
Li B, Zhang T, Yang Z. Immobilizing unicellular microalga on pellet-forming filamentous fungus: Can this provide new insights into the remediation of arsenic from contaminated water? BIORESOURCE TECHNOLOGY 2019; 284:231-239. [PMID: 30947137 DOI: 10.1016/j.biortech.2019.03.128] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Response surface methodology was employed to investigate the effects of nitrogen (X1), phosphorus (X2), and glucose (X3) on arsenic removal by fungal-algal pellets. X1, X3, and X1X3 had significant effects. Arsenic accumulation and transformation were compared among Chlorella vulgaris, Aspergillus oryzae, and fungal-algal pellets under different arsenate and phosphorus concentrations. Fungal-algal pellets had the highest removal rate and was best able to accumulate arsenate in all treatments. The reduction of arsenate to arsenite was found in all tested organisms, while arsenic methylation was only identified in C. vulgaris. The biomass of fungal-algal pellets was not inhibited by arsenate. SEM micrographs showed that arsenic led to a change in mycelial structure from compact to loose pellets. FT-IR spectra showed that four functional groups might be involved in arsenate adsorption. Arsenic tolerance and accumulation in fungal-algal pellets opens the way to its potential application in the remediation of arsenic from contaminated water.
Collapse
Affiliation(s)
- Bin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, PR China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, PR China.
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, PR China
| |
Collapse
|
25
|
Mamun MAA, Rahman IMM, Datta RR, Kosugi C, Mashio AS, Maki T, Hasegawa H. Arsenic speciation and biotransformation by the marine macroalga Undaria pinnatifida in seawater: A culture medium study. CHEMOSPHERE 2019; 222:705-713. [PMID: 30738313 DOI: 10.1016/j.chemosphere.2019.01.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Freshwater and marine organisms are capable of metabolizing arsenic (As) efficiently and regulating the As biogeochemical cycles. In this study, Undaria pinnatifida was exposed to As(V) (0, 0.1, and 1 μM) and phosphate (P; 1 and 10 μM) in seawater under laboratory-controlled conditions for up to seven days to analyze As biotransformation. The growth rates and chlorophyll fluorescence of the alga were unaffected by As stress, and statistically insignificant differences were observed among the cultures (p > 0.05). As(V) was readily accumulated by this macroalga through phosphate transporters, transformed intracellularly, and excreted into the medium, depending on the As(V) to P molar ratios. The concentration of As(V) and biotransformed species As(III) and DMAA(V) varied significantly in the algal cultures on the basis of the exposure period (p < 0.05). The concentration of As(III) was initially higher but decreased with the incubation period, whereas the concentration of DMAA(V) increased gradually. At the end of the incubation, 0.04 and 0.32 μM DMAA(V) were recorded in the media containing 0.1 and 1 μM As(V) with a constant 1.0 μM P, respectively. The results also indicated that the cellular uptake of As(V) and subsequent release of DMAA(V) were inhibited by P in the medium. The biotransformation was consistent with the As(V) detoxification mechanism based on reduction and methylation, which was enhanced by the lower As(V) to P molar ratios. These findings can be helpful in understanding the contribution of macroalgae to As biogeochemistry in marine environments and the potential risks of As dietary intake.
Collapse
Affiliation(s)
- M Abdullah Al Mamun
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; Department of Soil Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Rakhi Rani Datta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Chika Kosugi
- Advanced Technology Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu City, Chiba 293-8511, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Teruya Maki
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
26
|
Huang B, Wei ZB, Yang LY, Pan K, Miao AJ. Combined Toxicity of Silver Nanoparticles with Hematite or Plastic Nanoparticles toward Two Freshwater Algae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3871-3879. [PMID: 30882224 DOI: 10.1021/acs.est.8b07001] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the natural environment, the interactions of different types of nanoparticles (NPs) may alter their toxicity, thus masking their true environmental effects. This study investigated the toxicity of silver NPs (AgNPs) combined with hematite (HemNPs) or polystyrene (PsNPs) NPs toward the freshwater algae Chlamydomonas reinhardtii and Ochromonas danica. The former has a cell wall and cannot internalize these NPs, while the latter without a cell wall can. Therefore, the toxicity of AgNPs toward C. reinhardtii was attributed to the released Ag ions, while AgNPs had direct toxic effects on O. danica. Moreover, nontoxic HemNPs ameliorated AgNP toxicity toward C. reinhardtii, by decreasing the bioavailability of Ag ions through adsorption. Despite their role as Ag-ion carriers, HemNPs still reduced the toxicity of AgNPs toward O. danica by competitively inhibiting AgNP uptake. In both algae, Ag accumulation fully accounted for the combined toxicity of AgNPs and HemNPs. However, the combined toxicity of AgNPs and PsNPs was complicated by their significant individual toxicities and the synergistic interactions of these particles with the algae, regardless of differences in Ag accumulation. Overall, in environmental assessments, considerations of the combined toxicity of dissimilar NPs will allow more accurate assessments of their environmental risks.
Collapse
Affiliation(s)
- Bin Huang
- Institute for Advanced Study , Shenzhen University , Nanhai Boulevard 3688 , Shenzhen , Guangdong Province 518060 , China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , Guangdong Province 518060 , China
| | - Zhong-Bo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Mail box 24, Xianlin Road 163 , Nanjing , Jiangsu Province 210023 , China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Mail box 24, Xianlin Road 163 , Nanjing , Jiangsu Province 210023 , China
| | - Ke Pan
- Institute for Advanced Study , Shenzhen University , Nanhai Boulevard 3688 , Shenzhen , Guangdong Province 518060 , China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Mail box 24, Xianlin Road 163 , Nanjing , Jiangsu Province 210023 , China
| |
Collapse
|
27
|
Hussain MM, Bibi I, Shahid M, Shaheen SM, Shakoor MB, Bashir S, Younas F, Rinklebe J, Niazi NK. Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Chen L, Zhang L. Arsenic speciation in Asiatic algae: Case studies in Asiatic continent. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Wang NX, Liu YY, Wei ZB, Yang LY, Miao AJ. Waterborne and Dietborne Toxicity of Inorganic Arsenic to the Freshwater Zooplankton Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8912-8919. [PMID: 29947214 DOI: 10.1021/acs.est.8b02600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Waterborne and dietborne exposure are both important sources for the accumulation of inorganic arsenic (iAs) in aquatic organisms. Although the waterborne toxicity of iAs has been extensively investigated, its dietborne toxicity has received little attention. The present study examined the acute and chronic toxicity of arsenate (iAsV) and arsenite (iAsIII) to the freshwater zooplankton species Daphnia magna under both waterborne and dietborne exposure scenarios. The bioaccumulation, speciation, and tissue and subcellular distributions of arsenic were analyzed to understand the mechanisms accounting for differences in toxicity related to different arsenic species, exposure scenarios, and exposure duration. The toxicity of iAs increased with exposure time, and iAsIII was more toxic than iAsV. Moreover, although dietborne iAs had no acute effect on D. magna, it incurred significant toxicity in the chronic-exposure experiment. Nevertheless, the toxicity of dietborne iAs was still lower than that of waterborne iAs regardless of the exposure duration. This difference was found to be caused by the lower bioaccumulation of dietborne iAs, its higher distribution in the gut and in the biologically detoxified subcellular fraction, and greater transformation to the less toxic dimethylarsinic acid. Overall, the dietborne toxicity of iAs should be considered when evaluating the environmental risks posed by arsenic.
Collapse
Affiliation(s)
- Ning-Xin Wang
- School of Energy and Environment , Anhui University of Technology , Maanshan , Anhui Province 243002 , China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Zhong-Bo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| |
Collapse
|
30
|
Che F, Du M, Yan C. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels. J Environ Sci (China) 2018; 66:41-49. [PMID: 29628107 DOI: 10.1016/j.jes.2017.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/27/2017] [Accepted: 05/27/2017] [Indexed: 06/08/2023]
Abstract
The arsenate (As(V)) biotransformation by Microcystis aeruginosa in a medium with different concentrations of nitrogen (N) and phosphorus (P) has been studied under laboratory conditions. When 15μg/L As(V) was added, N and P in the medium showed effective regulation on arsenic (As) metabolism in M. aeruginosa, resulting in significant differences in the algal growth among different N and P treatments. Under 0.2mg/L P treatment, increases in N concentration (4-20mg/L) significantly stimulated the cell growth and therefore indirectly enhanced the production of dimethylarsinic acid (DMA), the main As metabolite, accounting for 71%-79% of the total As in the medium. Meanwhile, 10-20mg/L N treatments accelerated the ability of As metabolization by M. aeruginosa, leading to higher contents of DMA per cell. However, As(V) uptake by M. aeruginosa was significantly impeded by 0.5-1.0mg/L P treatment, resulting in smaller rates of As transformation in M. aeruginosa as well as lower contents of As metabolites in the medium. Our data demonstrated that As(V) transformation by M. aeruginosa was significantly accelerated by increasing N levels, while it was inhibited by increasing P levels. Overall, both P and N play key roles in As(V) biotransformation processes.
Collapse
Affiliation(s)
- Feifei Che
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Miaomiao Du
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
31
|
Wang Y, Zhang C, Zheng Y, Ge Y. Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21213-21221. [PMID: 28733823 DOI: 10.1007/s11356-017-9758-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 07/11/2017] [Indexed: 05/05/2023]
Abstract
Dunaliella salina is a potential candidate for the phycoremediation of saline water contaminated with arsenic (As) due to its strong tolerance of salt and this toxic metalloid. However, the efficiency of As removal by this microalga varies under different phosphate regimes and the underlying mechanisms remain unresolved. Therefore, more detailed studies are needed to optimize As remediation using D. salina. Here, we investigated the dynamic processes of arsenite (As(III)) and arsenate (As(V)) uptake, transformation, and excretion by D. salina under phosphate-deficient (-P) and phosphate-enriched (+P) conditions through short-term and long-term uptake experiments. In the short-term uptake experiment, the absorption of As(III) or As(V) by D. salina was significantly suppressed by an increased phosphate supply. The V max values for As(III) and As(V) decreased by 2- and 2.5-fold, respectively, under +P conditions, although the Michaelis constants (K m ) were similar irrespective of the phosphate supply. Long-term uptake experiments also revealed enhanced As(III)/As(V) absorption and efflux rates and As(V) reduction by D. salina under -P conditions. This study quantified the kinetic processes of As metabolism in D. salina. More importantly, the results imply that the optimal As remediation by this microalga may be achieved by regulating the phosphate level in the culture.
Collapse
Affiliation(s)
- Ya Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanheng Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
32
|
Wang Z, Luo Z, Yan C, Xing B. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach. WATER RESEARCH 2017; 118:167-176. [PMID: 28431349 DOI: 10.1016/j.watres.2017.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Very limited information is available on how and to what extent environmental factors influence arsenic (As) biotransformation and release in freshwater algae. These factors include concentrations of arsenate (As(V)), dissolved inorganic nitrogen (N), phosphate (P), and ambient pH. This study conducted a series of experiments using Taguchi methods to determine optimum conditions for As biotransformation. We assessed principal effective factors of As(V), N, P, and pH and determined that As biotransformation and release actuate at 10.0 μM As(V) in dead alga cells, the As efflux ratio and organic As efflux content actuate at 1.0 mg/L P, algal growth and intracellular arsenite (As(III)) content actuate at 10.0 mg/L N, and the total sum of As(III) efflux from dead alga cells actuates at a pH level of 10. Moreover, N is the critical component for As(V) biotransformation in M. aeruginosa, specifically for As(III) transformation, because N can accelerate algal growth, subsequently improving As(III) accumulation and its efflux, which results in an As(V) to As(III) reduction. Furthermore, low P concentrations in combination with high N concentrations promote As accumulation. Following As(V), P was the primary impacting factor for As accumulation. In addition, small amounts of As accumulation under low concentrations of As and high P were securely stored in living algal cells and were easily released after cell death. Results from this study will help to assess practical applications and the overall control of key environmental factors, particularly those associated with algal bioremediation in As polluted water.
Collapse
Affiliation(s)
- Zhenhong Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; School of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
33
|
Wang Y, Zhang C, Zheng Y, Ge Y. Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:150-160. [PMID: 27865115 DOI: 10.1016/j.ecoenv.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the dynamic variations in thiol compounds, including cysteine (Cys), glutathione (GSH), and phytochelatins (PCs), in Dunaliella salina samples exposed to arsenite [As(III)] and arsenate [As(V)] under various phosphate (PO43-) regimes. Our results showed that GSH was the major non-protein sulfhydryl compound in D. salina cells. As(III) and As(V) induced PC syntheses in D. salina. PC2, PC3, and PC4 were all found in algal cells; the PC concentrations decreased gradually while exposed to As for 3 d. The synthesis of PC2-3 was significantly affected by As(III) and As(V) concentrations in the cultures. More PCs were detected in the As(V)-treated algal cells compared with the As(III) treatment. PC levels increased with As(III)/As(V) amount in the medium, but remained stable after 112μgL-1 As(V) exposure. In contrast, significant (p<0.001) positive correlations were observed between PC synthesis and intracellular As(III) content or As accumulation in As(III)-treated algal cells during the 72-h exposure. PO43- had a significant influence on the PC synthesis in algal cells, irrespective of the As-treated species. Reductions in As uptake and subsequent PC synthesis by D. salina were observed as the PO43- concentration in the growth medium increased. L-Buthionine sulfoximine (BSO) differentially influenced PC synthesis in As-treated D. salina under different extracellular PO43- regimes. Overall, our data demonstrated that the production of GSH and PCs was affected by PO43- and that these thiols played an important role in As detoxification by D. salina.
Collapse
Affiliation(s)
- Ya Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanheng Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Wang Y, Zhang CH, Lin MM, Ge Y. A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:443-451. [PMID: 27450336 DOI: 10.1016/j.jhazmat.2016.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
In this study, we investigated the effects of a symbiotic bacterium and phosphate (PO4(3-)) nutrition on the toxicity and metabolism of arsenate (As(V)) in Dunaliella salina. The bacterium was identified as Alteromonas macleodii based on analysis of its 16S rRNA gene sequence. When no As(V) was added, A. macleodii significantly enhanced the growth of D. salina, irrespective of PO4(3-) nutrition levels, but this effect was reversed after As(V)+PO4(3-) treatment (1.12mgL(-1)) for 3 days. Arsenic (As) absorption by the non-axenic D. salina was significantly higher than that by its axenic counterpart during incubation with 1.12mgL(-1) PO4(3-). However, when the culture was treated with 0.112mgL(-1) PO4(3-), As(V) reduction and its subsequent arsenite (As(III)) excretion by non-axenic D. salina were remarkably enhanced, which, in turn, contributed to lower As absorption in non-axenic algal cells from days 7 to 9. Moreover, dimethylarsinic acid was synthesized by D. salina alone, and the rates of its production and excretion were accelerated when the PO4(3-) concentration was 0.112mgL(-1). Our data demonstrate that A. macleodii strongly affected As toxicity, uptake, and speciation in D. salina, and these impacts were mediated by PO4(3-) in the cultures.
Collapse
Affiliation(s)
- Ya Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun Hua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Man Man Lin
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Ge
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Wang Y, Zheng Y, Liu C, Xu P, Li H, Lin Q, Zhang C, Ge Y. Arsenate toxicity and metabolism in the halotolerant microalga Dunaliella salina under various phosphate regimes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:735-743. [PMID: 27243670 DOI: 10.1039/c6em00271d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microalgae play an important role in arsenic (As) biogeochemical cycles as they are capable of accumulating and metabolizing this metalloid efficiently. This study aimed to investigate the toxicity, accumulation and transformation of arsenate (As(v)) in Dunaliella salina, an exceptionally halotolerant microalga, under various phosphate (PO4(3-)) regimes. The results of the 72-h toxicity test showed that D. salina was tolerant to As(v). In addition, the toxicity of As(v) was mitigated by an increased PO4(3-) supply. D. salina resisted the adverse effects of As(v) through the suppression of As uptake, enhancement of As reduction, methylation in the cell and excretion from the cell. Our study revealed that D. salina reduced As(v) toxicity using different strategies, i.e., reduction of As uptake upon acute As stress (24 h) and increase of As efflux following chronic As exposure (9 day). Moreover, PO4(3-) strongly affected the adsorption, uptake and transformation of As(v) in D. salina. As(v) reduction, DMA production and As excretion were enhanced under P-limited conditions (0.112 mg L(-1)) or upon higher As(v) exposure (1120 μg L(-1)). Furthermore, PO4(3-) had a significant influence on the As removal ability of D. salina. A high As removal efficiency (>95.6%) was observed in the 5-day cultures at an initial As concentration of 11.2 μg L(-1) and PO4(3-) of 0.112 and 1.12 mg L(-1). However, only 10.9% of total As was removed under 11.2 mg L(-1) PO4(3-) after 9 days of incubation. The findings of this study illustrate the pivotal roles of extracellular PO4(3-) in As(v) toxicity and metabolism, and the results may be relevant for future research on the minimization of As contamination in algal products as well as on the enhancement of As removal from the environment.
Collapse
Affiliation(s)
- Ya Wang
- College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pantoja Munoz L, Purchase D, Jones H, Raab A, Urgast D, Feldmann J, Garelick H. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:56-72. [PMID: 26994369 DOI: 10.1016/j.aquatox.2016.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The response of Chlorella vulgaris when challenged by As(III), As(V) and dimethylarsinic acid (DMA) was assessed through experiments on adsorption, efflux and speciation of arsenic (reduction, oxidation, methylation and chelation with glutathione/phytochelatin [GSH/PC]). Our study indicates that at high concentrations of phosphate (1.62mM of HPO4(2-)), upon exposure to As(V), cells are able to shift towards methylation of As(V) rather than PC formation. Treatment with As(V) caused a moderate decrease in intracellular pH and a strong increase in the concentration of free thiols (GSH). Passive surface adsorption was found to be negligible for living cells exposed to DMA and As(V). However, adsorption of As(III) was observed to be an active process in C. vulgaris, because it did not show saturation at any of the exposure periods. Chelation of As(III) with GS/PC and to a lesser extent hGS/hPC is a major detoxification mechanism employed by C. vulgaris cells when exposed to As(III). The increase of bound As-GS/PC complexes was found to be strongly related to an increase in concentration of As(III) in media. C. vulgaris cells did not produce any As-GS/PC complex when exposed to As(V). This may indicate that a reduction step is needed for As(V) complexation with GSH/PC. C. vulgaris cells formed DMAS(V)-GS upon exposure to DMA independent of the exposure period. As(III) triggers the formation of arsenic complexes with PC and homophytochelatins (hPC) and their compartmentalisation to vacuoles. A conceptual model was devised to explain the mechanisms involving ABCC1/2 transport. The potential of C. vulgaris to bio-remediate arsenic from water appeared to be highly selective and effective without the potential hazard of reducing As(V) to As(III), which is more toxic to humans.
Collapse
Affiliation(s)
- L Pantoja Munoz
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
| | - D Purchase
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
| | - H Jones
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
| | - A Raab
- College of Physical Sciences - Chemistry, Trace Element Speciation Laboratory (TESLA), University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - D Urgast
- College of Physical Sciences - Chemistry, Trace Element Speciation Laboratory (TESLA), University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - J Feldmann
- College of Physical Sciences - Chemistry, Trace Element Speciation Laboratory (TESLA), University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - H Garelick
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom.
| |
Collapse
|
37
|
Zhang W, Chen L, Zhou Y, Wu Y, Zhang L. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure. CHEMOSPHERE 2016; 147:297-304. [PMID: 26766368 DOI: 10.1016/j.chemosphere.2015.12.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Arsenic (As) is well known to be biodiminished along marine food chains. The marine herbivorous fish at a lower trophic level are expected to accumulate more As. However, little is known about how marine herbivorous fish biotransform the potential high As bioaccumulation. Therefore, the present study quantified the biotransformation of two inorganic As species (As(III) and As(V)) in a marine herbivorous fish Siganus fuscescens following dietborne exposure. The fish were fed on As contaminated artificial diets at nominal concentrations of 400 and 1500 μg As(III) or As(V) g(-1) (dry weight) for 21 d and 42 d. After exposure, As concentrations in intestine, liver, and muscle tissues of rabbitfish increased significantly and were proportional to the inorganic As exposure concentrations. The present study demonstrated that both inorganic As(III) and As(V) in the dietborne phases were able to be biotransformed to the less toxic arsenobetaine (AsB) (63.3-91.3% in liver; 79.0%-95.2% in muscle). The processes of As biotransformation in rabbitfish could include oxidation of As(III) to As(V), reduction of As(V) to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to AsB. These results also demonstrated that AsB synthesis processes were diverse facing different inorganic As species in different tissues. In summary, the present study elucidated that marine herbivorous fish had high ability to biotransform inorganic As to the organic forms (mainly AsB), resulting in high As bioaccumulation. Therefore, marine herbivorous fish could detoxify inorganic As in the natural environment.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
38
|
Barral-Fraga L, Morin S, Rovira MDM, Urrea G, Magellan K, Guasch H. Short-term arsenic exposure reduces diatom cell size in biofilm communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4257-4270. [PMID: 26141976 DOI: 10.1007/s11356-015-4894-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Arsenic (As) pollution in water has important impacts for human and ecosystem health. In freshwaters, arsenate (As(V)) can be taken up by microalgae due to its similarity with phosphate molecules, its toxicity being aggravated under phosphate depletion. An experiment combining ecological and ecotoxicological descriptors was conducted to investigate the effects of As(V) (130 μg L(-1) over 13 days) on the structure and function of fluvial biofilm under phosphate-limiting conditions. We further incorporated fish (Gambusia holbrooki) into our experimental system, expecting fish to provide more available phosphate for algae and, consequently, protecting algae against As toxicity. However, this protection role was not fully achieved. Arsenic inhibited algal growth and productivity but not bacteria. The diatom community was clearly affected showing a strong reduction in cell biovolume; selection for tolerant species, in particular Achnanthidium minutissimum; and a reduction in species richness. Our results have important implications for risk assessment, as the experimental As concentration used was lower than acute toxicity criteria established by the USEPA.
Collapse
Affiliation(s)
- Laura Barral-Fraga
- Institute of Aquatic Ecology, University of Girona, E-17071, Girona, Spain.
| | | | - Marona D M Rovira
- Institute of Aquatic Ecology, University of Girona, E-17071, Girona, Spain
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, New Zealand
| | - Gemma Urrea
- Institute of Aquatic Ecology, University of Girona, E-17071, Girona, Spain
| | - Kit Magellan
- Institute of Aquatic Ecology, University of Girona, E-17071, Girona, Spain
| | - Helena Guasch
- Institute of Aquatic Ecology, University of Girona, E-17071, Girona, Spain
| |
Collapse
|
39
|
Ge Y, Ning Z, Wang Y, Zheng Y, Zhang C, Figeys D. Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure. CHEMOSPHERE 2016; 145:112-118. [PMID: 26688246 DOI: 10.1016/j.chemosphere.2015.11.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/18/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Dunaliella salina is resistant to arsenic (As) and can accumulate a large amount of this highly toxic metalloid in cells. To study the mechanisms of As tolerance, a label-free, LC-MS/MS-based proteomic approach was applied for the first time to identify and quantify differentially expressed proteins from D. salina exposed to 11.2 mg L(-1) arsenate (As(V)) for 72 h. The intracellular As content reached 19.8 mg kg(-1), leading to a significant increase of lipid peroxidation in cells and a 7.4% growth reduction of this microalga. Sixty-five proteins were differentially expressed (p < 0.05), with 45 significantly induced and 20 declined. These proteins were involved in energy metabolism, protein synthesis and folding, ROS scavenging and defense, phosphate transport and membrane trafficking, and amino acid synthesis. Taken together, this study provides novel insights on the As(V) detoxification in D. salina.
Collapse
Affiliation(s)
- Ying Ge
- College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Ya Wang
- College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanheng Zheng
- College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Proteomics Research, Laboratory Centre of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|