1
|
Zheng Z, Gao J, Ma Y, Hou X. Cellular and Molecular Mechanisms of Phytochemicals Against Inflammation-Associated Diseases and Viral Infection. Cell Biol Int 2025. [PMID: 40091269 DOI: 10.1002/cbin.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Inflammation-associated diseases have become widespread and pose a significant threat to human health, and the therapeutic methods for diverse diseases are inadequate due to the undesirable effects of synthetic ingredients. Recently, more and more evidence indicated that phytochemicals, plant secondary metabolites, have numerous therapeutic functions against human diseases via affecting a variety of mechanisms with their distinct advantages of high efficiency and low toxicity. Here, we highlight the mechanisms of phytochemicals to hinder inflammation-associated diseases (including Inflammatory diseases, cardiovascular diseases, metabolic syndrome, neurological disorders, skin diseases, respiratory diseases, kidney diseases, gastrointestinal diseases, retinal diseases, viral infections) by regulating the crosstalk among various signal cascades (including MicroRNAs, SIRT1, DNMTs, NF-κB, NLRP3, TGF-β, the Gasdermin-mediated pyroptosis pathway), which can be considered as a novel and potential therapeutic strategy. Furthermore, phytochemicals could prevent virus infection by disturbing different targets in the virus replication cycle. However, natural plants have shown limited bioavailability due to their low water solubility, the use of adjuvants such as liposomal phytochemicals, phytochemical nanoparticles and phytochemicals-phospholipid complex promote their bioavailability to exhibit beneficial effects against various diseases. The purpose of this review is to explore the molecular mechanisms and promising applications of phytochemicals in the fields of inflammation-associated diseases and virus infection to provide some direction.
Collapse
Affiliation(s)
- Zhaodi Zheng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| | - Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yubing Ma
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| | - Xitan Hou
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Hashim NT, Babiker R, Chaitanya NCSK, Mohammed R, Priya SP, Padmanabhan V, Ahmed A, Dasnadi SP, Islam MS, Gismalla BG, Rahman MM. New Insights in Natural Bioactive Compounds for Periodontal Disease: Advanced Molecular Mechanisms and Therapeutic Potential. Molecules 2025; 30:807. [PMID: 40005119 PMCID: PMC11858609 DOI: 10.3390/molecules30040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Periodontal disease is a chronic inflammatory condition that destroys the tooth-supporting structures due to the host's immune response to microbial biofilms. Traditional periodontal treatments, such as scaling and root planing, pharmacological interventions, and surgical procedures, have significant limitations, including difficulty accessing deep periodontal pockets, biofilm recolonization, and the development of antibiotic resistance. In light of these challenges, natural bioactive compounds derived from plants, herbs, and other natural sources offer a promising alternative due to their anti-inflammatory, antioxidant, antimicrobial, and tissue-regenerative properties. This review focuses on the molecular mechanisms through which bioactive compounds, such as curcumin, resveratrol, epigallocatechin gallate (EGCG), baicalin, carvacrol, berberine, essential oils, and Gum Arabic, exert therapeutic effects in periodontal disease. Bioactive compounds inhibit critical inflammatory pathways like NF-κB, JAK/STAT, and MAPK while activating protective pathways such as Nrf2/ARE, reducing cytokine production and oxidative stress. They also inhibit the activity of matrix metalloproteinases (MMPs), preventing tissue degradation and promoting healing. In addition, these compounds have demonstrated the potential to disrupt bacterial biofilms by interfering with quorum sensing, targeting bacterial cell membranes, and enhancing antibiotic efficacy.Bioactive compounds also modulate the immune system by shifting the balance from pro-inflammatory to anti-inflammatory responses and promoting efferocytosis, which helps resolve inflammation and supports tissue regeneration. However, despite the promising potential of these compounds, challenges related to their poor bioavailability, stability in the oral cavity, and the absence of large-scale clinical trials need to be addressed. Future strategies should prioritize the development of advanced delivery systems like nanoparticles and hydrogels to enhance bioavailability and sustain release, alongside long-term studies to assess the effects of these compounds in human populations. Furthermore, combining bioactive compounds with traditional treatments could provide synergistic benefits in managing periodontal disease. This review aims to explore the therapeutic potential of natural bioactive compounds in managing periodontal disease, emphasizing their molecular mechanisms of action and offering insights into their integration with conventional therapies for a more comprehensive approach to periodontal health.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Science University, Ras-AlKhaimah 11127, United Arab Emirates;
| | - Nallan C. S. K. Chaitanya
- Department of Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Sivan Padma Priya
- Oral Pathology Department, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Vivek Padmanabhan
- Department of Pediatric and Preventive Dentistry, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Ayman Ahmed
- Department of Periodontology and Implantology, Nile University, Khartoum 1847, Sudan;
| | - Shahista Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| |
Collapse
|
3
|
Shen W, Zhang X, Tang M, Chen W, Wang Y, Zhou H. Targeting of ubiquitination and degradation of KLF15 by E3 ubiquitin ligase KBTBD7 regulates LPS-induced septic brain injury in microglia. Exp Cell Res 2024; 443:114317. [PMID: 39489209 DOI: 10.1016/j.yexcr.2024.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Septic brain injury is a serious disease of the central nervous system that involves inflammation. Kelch repeat and BTB domain containing 7 (KBTBD7), an E3 ubiquitin ligase, is demonstrated to facilitate the pathological changes of various diseases, but its impact on septic brain injury is unclear. In this study, a rat model of septic brain injury was induced by cecal ligation and puncture (CLP). The neurobehavioral score and survival rate of CLP group were worse than those of sham group. In addition, CLP was found to evoke microglia activation, increase inflammation, induce the activation of NLRP3 inflammasome and NF-κB signaling pathway, and upregulate KBTBD7 expression. Immunofluorescence revealed strong positive KBTBD7 staining in CLP rat microglia. Furthermore, primary microglia were exposed to lipopolysaccharide (LPS) to explore the role and mechanism of KBTBD7. The results showed that KBTBD7 expression was increased in LPS-treated microglia. Knockdown of KBTBD7 markedly inhibited LPS-induced proinflammatory cytokine release, as well as the activation of NLRP3 inflammasome and NF-κB signaling pathway. The downstream molecular mechanism of KBTBD7 was then mined. Notably, co-immunoprecipitation (co-IP) results confirmed that KBTBD7 was a novel interacting protein of KLF transcription factor 15 (KLF15) and acted as an E3 ubiquitin ligase that catalyzed the ubiquitination degradation of KLF15 through the ubiquitin-proteasome system. Moreover, recovery experiment data suggested that KLF15 knockdown abolished the anti-inflammatory role of KBTBD7 knockdown in microglia, implying that KLF15 influenced the function of KBTBD7. Taken together, our results reveal a novel KBTBD7-KLF15 signal transduction pathway involved in septic brain injury and provide a potential therapeutic strategy for its treatment.
Collapse
Affiliation(s)
- Wei Shen
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuzhong Zhang
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Tang
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Chen
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Wang
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haoquan Zhou
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Chen Z, Lang G, Xu X, Liang X, Han Y, Han Y. The role of NF-kappaB in the inflammatory processes related to dental caries, pulpitis, apical periodontitis, and periodontitis-a narrative review. PeerJ 2024; 12:e17953. [PMID: 39221277 PMCID: PMC11366231 DOI: 10.7717/peerj.17953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Tooth-related inflammatory disorders, including caries, pulpitis, apical periodontitis (AP), and periodontitis (PD), are primarily caused by resident oral microorganisms. Although these dental inflammatory conditions are typically not life-threatening, neglecting them can result in significant complications and greatly reduce an individual's quality of life. Nuclear factor κB (NF-κB), a family formed by various combinations of Rel proteins, is extensively involved in inflammatory diseases and even cancer. This study reviews recent data on NF-κB signaling and its role in dental pulp stem cells (DPSCs), dental pulp fibroblasts (DPFs), odontoblasts, human periodontal ligament cells (hPDLCs), and various experimental animal models. The findings indicate that NF-κB signaling is abnormally activated in caries, pulpitis, AP, and PD, leading to changes in related cellular differentiation. Under specific conditions, NF-κB signaling occasionally interacts with other signaling pathways, affecting inflammation, bone metabolism, and tissue regeneration processes. In summary, data collected over recent years confirm the central role of NF-κB in dental inflammatory diseases, potentially providing new insights for drug development targeting NF-κB signaling pathways in the treatment of these conditions. Keywords: NF-κB, dental caries, pulpitis, apical periodontitis, periodontitis.
Collapse
Affiliation(s)
- Zhonglan Chen
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Guangping Lang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Xi Xu
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Xinghua Liang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Yalin Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Yingying Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Li X, Lin Z, Xu S, Zhang N, Zhou J, Liao B. Knockdown of KBTBD7 attenuates septic lung injury by inhibiting ferroptosis and improving mitochondrial dysfunction. Int Immunopharmacol 2024; 133:112129. [PMID: 38652964 DOI: 10.1016/j.intimp.2024.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Lung injury in sepsis is caused by an excessive inflammatory response caused by the entry of pathogenic microorganisms into the body. It is also accompanied by the production of large amounts of ROS. Ferroptosis and mitochondrial dysfunction have also been shown to be related to sepsis. Finding suitable sepsis therapeutic targets is crucial for sepsis research. BTB domain-containing protein 7 (KBTBD7) is involved in regulating inflammatory responses, but its role and mechanism in the treatment of septic lung injury are still unclear. In this study, we evaluated the role and related mechanisms of KBTBD7 in septic lung injury. In in vitro studies, we established an in vitro model by inducing human alveolar epithelial cells with lipopolysaccharide (LPS) and found that KBTBD7 was highly expressed in the in vitro model. KBTBD7 knockdown could reduce the inflammatory response by inhibiting the secretion of pro-inflammatory factors and inhibit the production of ROS, ferroptosis and mitochondrial dysfunction. Mechanistic studies show that KBTBD7 interacts with FOXA1, promotes FOXA1 expression, and indirectly inhibits SLC7A11 transcription. In vivo studies have shown that knocking down KBTBD7 improves lung tissue damage in septic lung injury mice, inhibits inflammatory factors, ROS production and ferroptosis. Taken together, knockdown of KBTBD7 shows an alleviating effect on septic lung injury in vitro and in vivo, providing a potential therapeutic target for the treatment of septic lung injury.
Collapse
Affiliation(s)
- Xiang Li
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Zhao Lin
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - ShiYu Xu
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Ning Zhang
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Jun Zhou
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Bo Liao
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| |
Collapse
|
6
|
Ballikaya E, Çelebi-Saltik B. Approaches to vital pulp therapies. AUST ENDOD J 2023; 49:735-749. [PMID: 37515353 DOI: 10.1111/aej.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Tooth decay, which leads to pulpal inflammation due to the pulp's response to bacterial components and byproducts is the most common infectious disease. The main goals of clinical management are to eliminate sources of infection, to facilitate healing by regulating inflammation indental tissue, and to replace lost tissues. A variety of novel approaches from tissue engineering based on stem cells, bioactive molecules, and extracellular matrix-like scaffold structures to therapeutic applications, or a combination of all these are present in the literature. Shortcomings of existing conventional materials for pulp capping and the novel approches aiming to preserve pulp vitality highligted the need for developing new targeted dental materials. This review looks at the novel approches for vital pulp treatments after briefly addresing the conventional vital pulp treatment as well as the regenerative and self defense capabilities of the pulp. A narrative review focusing on the current and future approaches for pulp preservation was performed after surveying the relevant papers on vital pulp therapies including pulp capping, pulpotomy, and potential approaches for facilitating dentin-pulp complex regeneration in PubMed, Medline, and Scopus databases.
Collapse
Affiliation(s)
- Elif Ballikaya
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Pediatric Dentistry, Hacettepe University Faculty of Dentistry, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
8
|
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023; 13:metabo13040520. [PMID: 37110177 PMCID: PMC10143950 DOI: 10.3390/metabo13040520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Martyna Ortarzewska
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Jakub Jankowski
- Student's Scientific Group in the Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
9
|
Ni C, Wu G, Miao T, Xu J. Wnt4 prevents apoptosis and inflammation of dental pulp cells induced by LPS by inhibiting the IKK/NF‑κB pathway. Exp Ther Med 2022; 25:75. [PMID: 36684653 PMCID: PMC9842946 DOI: 10.3892/etm.2022.11774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Wnt4 has been shown to promote the recovery of odontogenic differentiation of dental pulp stem cells under inflammatory conditions, but its role in inflammation and apoptosis of pulpitis remains to be elucidated. Lipopolysaccharide (LPS) (10 µg/ml) was applied to treat the human dental pulp cells (HDPCs) for 24 h. Western blotting measured the expressions of inflammatory cytokines and apoptosis-related proteins. Cell apoptosis was measured by flow cytometry. The level of Wnt4 was evaluated by reverse transcription-quantitative PCR and western blotting. The results indicated that LPS could promote inflammatory response and apoptosis in HDPCs and downregulated Wnt4 expression was found in LPS-HDPCs. Overexpression of Wnt4 ameliorated cell inflammatory response and apoptosis, presented by reduced expressions of IL-8, IL-6, TNF-α, IL-1β, Bax, cleaved-caspase 3 and enhanced Bcl-2 expression as well as decreased apoptosis rate. Moreover, overexpression of Wnt4 reduced the phosphorylation levels of IKK2, IκBα and p65 proteins upregulated by LPS. Finally, overexpression of IKK2 reversed the effects of Wnt4 on inflammation and apoptosis of LPS-HDPCs and NF-κB inhibitor reversed the effect of IKK2 overexpression in LPS-HDPCs. Wnt4 inhibited LPS-triggered inflammation and apoptosis in HDPCs via regulating the IKK/NF-κB signaling pathway, which provided a new viewpoint for understanding the pathological mechanism of pulpitis.
Collapse
Affiliation(s)
- Chengli Ni
- College of Stomatology, Anhui Medical College, Hefei, Anhui 230601, P.R. China,Correspondence to: Ms. Chengli Ni, College of Stomatology, Anhui Medical College, 632 Furong Road, Hefei, Anhui 230601, P.R. China
| | - Gang Wu
- Shanghai Smartee Denti-Technology Co., Ltd., Shanghai 200120, P.R. China
| | - Tingting Miao
- College of Stomatology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jianguang Xu
- Key Laboratory of Oral Disease Research of Anhui Province, Department of Orthodontics, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
10
|
MicroRNA and their implications in dental pulp inflammation: current trends and future perspectives. Odontology 2022:10.1007/s10266-022-00762-0. [DOI: 10.1007/s10266-022-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
11
|
Kim G, Jang G, Song J, Kim D, Lee S, Joo JWJ, Jang W. A transcriptome-wide association study of uterine fibroids to identify potential genetic markers and toxic chemicals. PLoS One 2022; 17:e0274879. [PMID: 36174000 PMCID: PMC9521910 DOI: 10.1371/journal.pone.0274879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Uterine fibroid is one of the most prevalent benign tumors in women, with high socioeconomic costs. Although genome-wide association studies (GWAS) have identified several loci associated with uterine fibroid risks, they could not successfully interpret the biological effects of genomic variants at the gene expression levels. To prioritize uterine fibroid susceptibility genes that are biologically interpretable, we conducted a transcriptome-wide association study (TWAS) by integrating GWAS data of uterine fibroid and expression quantitative loci data. We identified nine significant TWAS genes including two novel genes, RP11-282O18.3 and KBTBD7, which may be causal genes for uterine fibroid. We conducted functional enrichment network analyses using the TWAS results to investigate the biological pathways in which the overall TWAS genes were involved. The results demonstrated the immune system process to be a key pathway in uterine fibroid pathogenesis. Finally, we carried out chemical–gene interaction analyses using the TWAS results and the comparative toxicogenomics database to determine the potential risk chemicals for uterine fibroid. We identified five toxic chemicals that were significantly associated with uterine fibroid TWAS genes, suggesting that they may be implicated in the pathogenesis of uterine fibroid. In this study, we performed an integrative analysis covering the broad application of bioinformatics approaches. Our study may provide a deeper understanding of uterine fibroid etiologies and informative notifications about potential risk chemicals for uterine fibroid.
Collapse
Affiliation(s)
- Gayeon Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Gyuyeon Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Daeun Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Sora Lee
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jong Wha J. Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Lan Y, Wang H, Wu J, Meng X. Cytokine storm-calming property of the isoquinoline alkaloids in Coptis chinensis Franch. Front Pharmacol 2022; 13:973587. [PMID: 36147356 PMCID: PMC9485943 DOI: 10.3389/fphar.2022.973587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Coronavirus disease (COVID-19) has spread worldwide and its effects have been more devastating than any other infectious disease. Importantly, patients with severe COVID-19 show conspicuous increases in cytokines, including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, tumor necrosis factor (TNF)-α, IL-1, IL-18, and IL-17, with characteristics of the cytokine storm (CS). Although recently studied cytokine inhibitors are considered as potent and targeted approaches, once an immunological complication like CS happens, anti-viral or anti-inflammation based monotherapy alone is not enough. Interestingly, certain isoquinoline alkaloids in Coptis chinensis Franch. (CCFIAs) exerted a multitude of biological activities such as anti-inflammatory, antioxidant, antibacterial, and immunomodulatory etc, revealing a great potential for calming CS. Therefore, in this timeline review, we report and compare the effects of CCFIAs to attenuate the exacerbation of inflammatory responses by modulating signaling pathways like NF-ĸB, mitogen-activated protein kinase, JAK/STAT, and NLRP3. In addition, we also discuss the role of berberine (BBR) in two different triggers of CS, namely sepsis and viral infections, as well as its clinical applications. These evidence provide a rationale for considering CCFIAs as therapeutic agents against inflammatory CS and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| |
Collapse
|
13
|
Li Y, Li S, Li R, Xu H. LncRNA PVT1 upregulates FBN1 by sponging miR-30b-5p to aggravate pulpitis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Álvarez-Vásquez JL, Castañeda-Alvarado CP. Dental pulp fibroblast: A star Cell. J Endod 2022; 48:1005-1019. [DOI: 10.1016/j.joen.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
|
15
|
Kulthanaamondhita P, Kornsuthisopon C, Photichailert S, Manokawinchoke J, Limraksasin P, Osathanon T. Specific microRNAs regulate dental pulp stem cell behavior. J Endod 2022; 48:688-698. [PMID: 35271859 DOI: 10.1016/j.joen.2022.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs), small non-coding RNA, control the translation of messenger RNAs into proteins. miRNAs have a crucial role in regulating the diverse biological processes of many physiological and pathological activities. The aim of this systematic review is to explore various functions of miRNAs in the regulation of dental pulp stem cells (DPSCs) behavior. METHODS The articles were searched in PubMed, SCOPUS and ISI Web of Science database using designated keywords. Full-length manuscripts published in English in peer-reviewed journals relevant to the role of miRNAs in DPSC functions were included and reviewed by 2 independent researchers. RESULTS The original search of the database generated 299 studies. One hundred and two duplicate studies were removed. After their exclusion, 48 studies were selected for review. miRNAs have shown to modulate the stemness and differentiation of various mesenchymal stem cells. The miRNAs expression profiles in DPSCs were differed compared with other cell types and have been demonstrated to regulate the levels of proteins crucial for promoting or inhibiting DPSC proliferation as well as differentiation. Further, miRNAs also modulate inflammatory processes in dental pulp. CONCLUSION miRNAs have various function upon the regulation of DPSCs and understanding these roles of miRNAs is crucial for the development of new therapeutics in regenerative dental medicine. With the advancing technologies, the utilization of miRNA technology could revolutionarily change the future of regenerative endodontics.
Collapse
Affiliation(s)
- Promphakkon Kulthanaamondhita
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suphalak Photichailert
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phoonsuk Limraksasin
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
16
|
Solakoglu Ö, Steinbach B, Götz W, Heydecke G, Schwarzenbach H. Characterization of circulating molecules and activities in plasma of patients after allogeneic and autologous intraoral bone grafting procedures: a prospective randomized controlled clinical trial in humans. BMC Oral Health 2022; 22:24. [PMID: 35094679 PMCID: PMC8802434 DOI: 10.1186/s12903-021-02036-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background The objective was to assess whether intraoral bone augmentation procedures have an impact on the patient’s plasma levels of circulating nucleic acids, exosomes, miRNA levels and caspase activities. The null hypothesis was tested, that no significant differences between the two groups will be found. Methods In this prospective randomized controlled clinical trial 35 systemically healthy non-smoking participants were randomly allocated using sealed envelopes by a blinded clinician not involved in the clinical setting. Plasma samples were collected preoperatively and 3 times postoperatively (immediately, 5 weeks and 4 months postoperatively). The test group consisted of twenty-five patients who received allogeneic bone grafting material and the control group of ten patients who received autologous bone grafts. Levels of cell-free DNA (cfDNA) and microRNAs (miR-21, miR-27a, miR-218) were quantified by real-time PCR, caspase activities and exosome concentrations were determined by ELISA. Results Statistical evaluation reveled a significantly higher exosome level before surgery (p = 0.013) and the first postsurgical sample (p = 0.017) in the control group compared to the test group. The levels of miR-27a and miR-218 significantly differed between the plasma samples before surgery and after surgery in both groups. The levels of miR-21 only significantly differed between the pre- and postsurgical plasma samples in the test group, but not in the control group. All patients completed the study, no adverse events were recorded. Conclusions Our data show the diagnostic potential of the plasma levels of miR-27a, miR-218 and miR-21 in detecting changes in bone metabolism after alveolar bone augmentation. Our very promising results indicate that there might be a high diagnostic potential in evaluating the plasma levels of the before mentioned miRNAs in order to detect bone resorption activities before they become clinically relevant. Trial registration Ethical commission of the Ärztekammer Hamburg, Germany (PV5211) on 11/03/2016 as well as by the German Registry of Clinical Studies (DRKS 00,013,010) on 30/07/2018 (http://apps.who.int/trialsearch/). Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-02036-7.
Collapse
|
17
|
Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis—A Systematic Review. Biomolecules 2022; 12:biom12010138. [PMID: 35053286 PMCID: PMC8774278 DOI: 10.3390/biom12010138] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS) is widely used for induction of inflammation in various human tissues, including dental pulp. The purpose of this study was to summarize current medical literature focusing on (1) cell types used by researchers to simulate dental pulp inflammation, (2) LPS variants utilized in experimental settings and how these choices affect the findings. Our study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched for studies reporting outcomes of lipopolysaccharide application on dental pulp cells in vitro using electronic databases: MEDLINE, Web of Science and Scopus. Having gathered data from 115 papers, we aimed to present all known effects LPS has on different cell types present in dental pulp. We focused on specific receptors and particles that are involved in molecular pathways. Our review provides an essential foundation for further research using in vitro models of pulpitis.
Collapse
|
18
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
19
|
Li DD, Yu P, Xiao W, Wang ZZ, Zhao LG. Berberine: A Promising Natural Isoquinoline Alkaloid for the Development of Hypolipidemic Drugs. Curr Top Med Chem 2021; 20:2634-2647. [PMID: 32901585 DOI: 10.2174/1568026620666200908165913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Berberine, as a representative isoquinoline alkaloid, exhibits significant hypolipidemic activity in both animal models and clinical trials. Recently, a large number of studies on the lipid-lowering mechanism of berberine and studies for improving its hypolipidemic activity have been reported, but for the most part, they have been either incomplete or not comprehensive. In addition, there have been a few specific reviews on the lipid-reducing effect of berberine. In this paper, the physicochemical properties, the lipid-lowering mechanism, and studies of the modification of berberine all are discussed to promote the development of berberine as a lipid-lowering agent. Subsequently, this paper provides some insights into the deficiencies of berberine in the study of lipid-lowering drug, and based on the situation, some proposals are put forward.
Collapse
Affiliation(s)
- Dong-Dong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Pan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China
| | - Zhen-Zhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China
| | - Lin-Guo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| |
Collapse
|
20
|
Research Progress on Anti-Inflammatory Effects and Mechanisms of Alkaloids from Chinese Medical Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1303524. [PMID: 32256634 PMCID: PMC7104124 DOI: 10.1155/2020/1303524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
As the spectrum of diseases keeps changing and life pace keeps going faster, the probability and frequency of diseases caused by human inflammatory reactions also keep increasing. How to develop effective anti-inflammatory drugs has become the hotspot of researches. It has been found that alkaloids from Chinese medical herbs have anti-inflammatory, analgesic, antitumor, anticonvulsant, diuretic, and antiarrhythmic effects, among which the anti-inflammatory effect is very prominent and commonly used in the treatment of rheumatoid arthritis, ankylosing spondylitis, and other rheumatic immune diseases, but its mechanism of action has not been well explained. Based on this, this paper will classify alkaloids according to structural types and review the plant sources, applicable diseases, and anti-inflammatory mechanisms of 16 kinds of alkaloids commonly used in clinical treatment, such as berberine, tetrandrine, and stephanine, with the aim of providing a reference for drug researches and clinical applications.
Collapse
|