1
|
Zarandi PK, Ghiasi M, Heiat M. The role and function of lncRNA in ageing-associated liver diseases. RNA Biol 2025; 22:1-8. [PMID: 39697114 PMCID: PMC11660375 DOI: 10.1080/15476286.2024.2440678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Liver diseases are a significant global health issue, characterized by elevated levels of disorder and death. The substantial impact of ageing on liver diseases and their prognosis is evident. Multiple processes are involved in the ageing process, which ultimately leads to functional deterioration of this organ. The process of liver ageing not only renders the liver more susceptible to diseases but also compromises the integrity of other organs due to the liver's critical function in metabolism regulation. A growing body of research suggests that long non-coding RNAs (lncRNAs) play a significant role in the majority of pathophysiological pathways. They regulate gene expression through a variety of interactions with microRNAs (miRNAs), messenger RNAs (mRNAs), DNA, or proteins. LncRNAs exert a major influence on the progression of age-related liver diseases through the regulation of cell proliferation, necrosis, apoptosis, senescence, and metabolic reprogramming. A concise overview of the current understanding of lncRNAs and their potential impact on the development of age-related liver diseases will be provided in this mini-review.
Collapse
Affiliation(s)
- Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Du L, Sun Y, Gan Y, Wang L, Li X, Yan S, Xiao X, Li S, Jin H. Study on the mechanism of Xanthoceras sorbifolia Bunge oil in the treatment of Alzheimer's disease by an integrated "network pharmacology-metabolomics" strategy. Ann Med 2025; 57:2499700. [PMID: 40340504 PMCID: PMC12064105 DOI: 10.1080/07853890.2025.2499700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Xanthoceras sorbifolia Bunge oil (XSBO) has garnered significant interest from researchers due to its distinctive anti-Alzheimer's disease (AD) properties. However, the underlying molecular mechanism remain unclear. This study aims to investigate the potential mechanisms by which XSBO may exert therapeutic effects on AD by employing a combination of network pharmacology analysis and experimental validation. METHODS The chemical composition and absorbed compounds of XSBO were identified using GC-MS and LC-MS. Network pharmacology analysis was performed using various computational tools to identify hub genes and construct compound-target-pathway networks. Subsequently, both in vitro and in vivo experiments were conducted to confirm the mechanisms by which XSBO may treat AD. RESULTS The results identified 43 active compounds in XSBO, targeting a total of 223 genes, of which 191 were associated with AD. Network analysis indicated that the active constituents in XSBO, such as 9,12-octadecadienoic acid, linoelaidic acid and 11-octadecenoic acid, interact with targets including MAPK1, MAPK3, AKT1, RXRA, RXRB, PPARD and PPARA to modulate inflammation-related signalling pathways and the sphingolipid signalling pathway. In vitro investigations corroborated that XSBO can significantly influence the viability of Aβ25-35-induced SH-SY5Y cells via the MAPK pathway. CONCLUSIONS This study demonstrated that XSBO has the potential to mitigate inflammation network disorders through the MAPK pathway and to restore sphingolipid metabolite levels in AD rats, thereby laying a groundwork for future studies.
Collapse
Affiliation(s)
- Lijing Du
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| | - Yuanfang Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Leqi Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyi Li
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| | - Shasha Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| |
Collapse
|
3
|
Wang S, Jiang C, Yu S, Fan Q, Yang K, Huang J, Li Y. Hickory nut polyphenols enhance oxidative stress resilience and improve the longevity of Caenorhabditis elegans through modulating DAF-16/DAF-2 insulin/IGF-1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156918. [PMID: 40466506 DOI: 10.1016/j.phymed.2025.156918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/22/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND Hickory (Carya cathayensis) nuts, renowned for their health benefits and delightful taste, contain abundant bioactive compounds, particularly polyphenols. However, the specific mechanisms underlying their antioxidant properties and anti-aging effects remain elusive. PURPOSE This study aims to investigate the effects of hickory nut polyphenols (HNP) on oxidative stress mitigation and aging modulation. METHODS The innovative integration of medium-pressure liquid chromatography (MPLC) with in vitro bioactive screening was employed to discover an optimized HNP fraction (HNP3-2). Anti-aging effects of HNP3-2 on Caenorhabditis elegans (C. elegans) were determined through lifespan analysis, lipofuscin accumulation quantification, and motility assessments. Oxidative stress resistance was further evaluated by detecting the reactive oxygen species (ROS) contents, lipid peroxidation, and antioxidase activities. Integrative approaches combining transcriptomic, qRT-PCR, GFP reporter strains, and gene knockout mutants were utilized to explore the potential regulatory mechanisms. Non-targeted metabolomics was employed to conduct a comprehensive profiling analysis of HNP and their bioactive fractions. RESULTS HNP3-2 significantly decreased ROS production, lipofuscin accumulation, and lipid peroxidation, while enhanced the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). It also conferred robust protection against oxidative stress induced by H2O2 and juglone. HNP3-2 regulated lifespan extension mainly via the DAF-16/-2 insulin/IGF-1 signaling (IIS), which was further validated using loss- and gain-of-function mutants including age-1, akt-1/2, daf-2, and daf-16, as well as worms overexpressing SOD-3, GST-4, and DAF-16. Metabolomic analysis identified 31 kinds of polyphenol compounds displaying abundance patterns congruent with the overall antioxidant potency in vitro. CONCLUSION This study first reveals the efficacy of HNP as a promising antioxidant and anti-aging intervention. Notably, the screened bioactive fraction HNP3-2 acts primarily by modulating the DAF-16/DAF-2 insulin/IGF-1 signaling cascade, operating through a mechanism independent of dietary restriction. Collectively, these findings position HNP as a breakthrough candidate for next-generation gerotherapeutics, with translational potential for advancing human aging research.
Collapse
Affiliation(s)
- Song Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenyu Jiang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shitong Yu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qianru Fan
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China
| | - Kai Yang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jianqin Huang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yan Li
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
5
|
He L, Ji Y, Han L, Zhu W, Wei S, Qi H, Li J, Lv X, Shi M, Hou B, Wang T, Shen J, Song Y, Xu N, Zhu Q, Zhou J. Lianhua Qingke granules alleviate cigarette smoke-induced COPD through AMPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:120028. [PMID: 40412779 DOI: 10.1016/j.jep.2025.120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by inflammation, oxidative stress, and airflow limitation, commonly associated with cigarette smoke exposure and aging. Lianhua Qingke Granules (LHQK), derived from Maxing Shigan Decoction and Qingjin Huatan Decoction, is a traditional Chinese medicine historically used to "disperse lung Qi, clear heat, resolve phlegm, and relieve cough." LHQK has shown promise in alleviating respiratory disorders, including reducing inflammation and improving pulmonary function in COPD. However, its underlying mechanisms remain insufficiently explored. AIM OF THE STUDY This study aims to investigate the therapeutic effects and mechanisms of LHQK in cigarette smoke-induced COPD models. MATERIALS AND METHODS C57BL/6J mice were exposed to cigarette smoke for three months and treated with high- or low-dose LHQK for three months. Lung tissues were analyzed using histology, transcriptomics, RT-PCR, and western blotting to evaluate inflammation, cellular senescence, and pathway activation. Key cytokines (IL-6, CXCL15, TNF-α) and markers of senescence (p16, p21, p53) were measured. RESULTS Our results demonstrated that both low- and high-dose LHQK significantly alleviated lung injury and inflammation in the COPD mouse model, with the high-dose group exhibiting more pronounced effects. Histological analysis and reduced levels of inflammatory cytokines (IL-6, CXCL15, TNF-α) in the LHQK-treated groups compared to the control and COPD groups confirmed the efficacy of LHQK in mitigating lung damage. RNA sequencing of lung tissue from the control, COPD, and LHQK-treated groups revealed that LHQK, particularly at the high dose, regulated the AMPK signaling pathway, which is implicated in aging-related processes. Furthermore, both dose groups of LHQK reduced cellular senescence and alleviated age-related exacerbations of COPD, with the high-dose treatment demonstrating stronger effects. These findings suggest that LHQK protects against smoke-induced COPD by modulating inflammation and cellular senescence through the AMPK signaling pathway. CONCLUSION LHQK provides protective effects against smoke-induced COPD by attenuating inflammation and cellular senescence through the AMPK pathway. These findings highlight its potential as an adjunctive therapy for COPD, particularly in aging populations.
Collapse
Affiliation(s)
- Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ji
- Hangzhou Dixiang Co. Ltd., Hangzhou, 310030, Zhejiang, China
| | - Linxiao Han
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wensi Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuoyan Wei
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050091, Hebei, China
| | - Juan Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiuzhen Lv
- Hangzhou Dixiang Co. Ltd., Hangzhou, 310030, Zhejiang, China
| | - Min Shi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050091, Hebei, China
| | - Bin Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050091, Hebei, China
| | - Tongxing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050091, Hebei, China
| | - Jie Shen
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Nuo Xu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Shanghai Geriatric Medical Center, 2560 Chunshen Road, Shanghai, 201104, China.
| | - Jian Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Shang D, Zhang XL, Liu H, Tu Z, Tan Tan X. Suppressing endothelial senescence: A comprehensive analysis of metformin's mechanisms and implications. Life Sci 2025:123730. [PMID: 40409583 DOI: 10.1016/j.lfs.2025.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Endothelial cell senescence serves as a pivotal driver of vascular dysfunction and cardiovascular pathogenesis. Metformin, a first-line antidiabetic agent, has expanded beyond its traditional role in glycemic control, with accumulating evidence underscoring its anti-aging properties. Endothelial dysfunction constitutes a central pathological basis for the development and progression of cardiovascular disease (CVD), and the restoration of endothelial function has been demonstrated to significantly mitigate cardiovascular event risks. Preclinical and clinical studies indicate that metformin-whether administered as monotherapy or in combination regimens-has demonstrated significant potential in the treatment of CVD by ameliorating endothelial dysfunction. Emerging evidence indicates metformin attenuates endothelial senescence and enhances cellular function via pleiotropic mechanisms, thereby preserving endothelial function and retarding cardiovascular disease (CVD) progression. This review systematically elucidates current understanding of metformin's senescence-inhibitory mechanisms in endothelial cells and evaluates its translational potential for CVD intervention, which may provide novel strategies for next-generation CVD pharmacotherapeutics.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu University Staff Hospital, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xue Li Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaoli Tan Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Zhao Z, Sun Y, Jia M, Jiang M, Ruan X. Prophylactic administration of Kanli granule maintains fatty acid oxidation in the myocardium to prevent heart failure via activating AMPK/PPARα/CPT1A pathway: A network pharmacology-based study. Fitoterapia 2025; 184:106633. [PMID: 40398514 DOI: 10.1016/j.fitote.2025.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/18/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Abnormal energy metabolism plays a crucial role in the pathogenesis of heart failure (HF). Kanli granule (KLG), as an effective herbal medicine for treating HF, has been used in clinical practice for nearly 30 years. However, its underlying mechanisms have not been fully elucidated. METHODS This study combined network pharmacology, molecular docking, and in vivo experiments to explore KLG's effect on HF. Wistar rats with AAC-induced HF were orally administered KLG (0.675/1.35/2.7 g/kg) for 32 weeks. Assessments included heart weight index, echocardiography, histopathology, fatty acid metabolism (FAM) targets, and myocardial energy metrics. We focused on fatty acid oxidation (FAO) pathway, measuring AMPK, PPARα, and CPT1A at protein and gene levels. RESULTS KLG maintained cardiac function in AAC rats. Network pharmacology identified PPAR and AMPK pathways as key in FAM. Molecular docking showed strong affinity of KLG components to FAO targets PPARα and CPT1A. KLG significantly enhanced myocardial energy metabolism, reduced myocardial FFA levels, and increased ATP/ADP ratios. It activated AMPK and upregulated FAO-related genes, including PPARα and CPT1A. CONCLUSION KLG improves FAO in AAC-induced HF rats by activating the AMPK/PPARα/CPT1A pathway, reducing myocardial FFA levels, and improving myocardial microstructure and cardiac function.
Collapse
Affiliation(s)
- Zhejun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanlong Sun
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meijun Jia
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meixian Jiang
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaofen Ruan
- Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Carr L, Mustafa S, Collins-Praino LE. The Hallmarks of Ageing in Microglia. Cell Mol Neurobiol 2025; 45:45. [PMID: 40389766 PMCID: PMC12089641 DOI: 10.1007/s10571-025-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025]
Abstract
As ageing is linked to the development of neurodegenerative diseases (NDs), such as Alzheimer's Disease and Parkinson's Disease, it is important to disentangle the independent effect of age-related changes from those due to disease processes. To do so, changes to central nervous system (CNS) cells as a function of advanced age need better characterisation. Microglia are of particular interest due to their proposed links with the development and progression of NDs through control of the CNS immune response. Therefore, understanding the extent to which microglial dysfunction is related to phyisological ageing, rather than a disease process, is critical. As microglia age, they are believed to take on a pro-inflammatory phenotype with a distinct dystrophic morphology. Nevertheless, while established hallmarks of ageing have been investigated across a range of other cell types, such as macrophages, a detailed consideration of functional changes that occur in aged microglia remains elusive. Here, we describe the dynamic phenotypes of microglia and evaluate the current state of understanding of microglial ageing, focusing on the recently updated twelve hallmarks of ageing. Understanding how these hallmarks present in microglia represents a step towards better characterisation of microglial ageing, which is essential in the development of more representative models of NDs.
Collapse
Affiliation(s)
- Laura Carr
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Sanam Mustafa
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, The University of Adelaide, Adelaide, Australia.
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.
| |
Collapse
|
9
|
Li Q, Zhang H, Xiao N, Liang G, Lin Y, Yang X, Yang J, Qian Z, Fu Y, Zhang C, Liu A. Aging and Lifestyle Modifications for Preventing Aging-Related Diseases. FASEB J 2025; 39:e70575. [PMID: 40293686 DOI: 10.1096/fj.202402797rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
The pathogenesis of various chronic diseases is closely associated with aging. Aging of the cardiovascular system promotes the development of severe cardiovascular diseases with high mortality, including atherosclerosis, coronary heart disease, and myocardial infarction. Similarly, aging of the nervous system promotes the development of neurodegenerative diseases, such as Alzheimer's disease, which seriously impairs cognitive function. Aging of the musculoskeletal system is characterized by decreased function and mobility. The molecular basis of organ aging is cellular senescence, which involves multiple cellular and molecular mechanisms, such as impaired autophagy, metabolic imbalance, oxidative stress, and persistent inflammation. Given the ongoing demographic shift toward an aging society, strategies to delay or reduce the effects of aging have gained significance. Lifestyle modifications, such as exercise and calorie restriction, are now recognized for their anti-aging effects, their capacity to reduce modification, their potential to prolong lifespan, and their capacity to lower the risk of cardiovascular disease. This review elucidates the molecular mechanisms and application significance of various anti-aging approaches at the molecular level, based on research progress in aging. It aims to provide a reference for the prevention and treatment of age-related diseases in progressively aging societies.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhu Y, Liao K, Liu Y, Huang H, Zhang Y, Ge H, Chen D, Ma B, Xu J. Targeted lipidomic reveals dietary LA/n-3 PUFAs regulate inflammation and redox status via oxylipins in bivalves. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159631. [PMID: 40379088 DOI: 10.1016/j.bbalip.2025.159631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Oxylipins are bioactive lipid mediators derived from fatty acids; however, a comprehensive investigation of oxylipin profiles is absent in bivalves. Moreover, the physiological functions and bioactivities of PUFA-derived oxylipins warrant further exploration. In this study, we found that appropriate dietary linoleic acid (LA)/n-3 PUFAs enhanced the growth of the clam Sinonovacula constricta and improved its survival under hydrogen peroxide (H2O2) stress. Targeted lipidomic showed that the high-LA diet increased accumulation of LA and LA-derived oxylipins. Interestingly, a similar pattern was observed for α-linolenic acid (ALA) and ALA-derived oxylipins, potentially contributing to the anti-inflammatory and antioxidant effects of this dietary pattern. However, dietary n-3 PUFAs provided greater protection against H2O2-induced damage. Dietary n-3 PUFAs significantly increased the levels of oxylipins derived from docosahexaenoic acid and eicosapentaenoic acid, particularly 14(S)-hydroxydocosahexaenoic acid (14(S)-HDHA) and 12-hydroxyeicosapentaenoic acid (12-HEPE). Furthermore, 14(S)-HDHA and 12-HEPE restored cell viability in hydrogen peroxide (H2O2)-treated RAW264.7 cells. Mechanistically, 12-HEPE inhibited nuclear factor kappa B (NF-κB) nuclear translocation while promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby reducing inflammatory responses and enhancing antioxidant capacity. Additionally, 12-HEPE increased antioxidant activity and suppressed inflammatory gene expression in clam hemolymph cells. This study represents the first comprehensive evaluation of the oxylipin profile in bivalves, further emphasizing the importance of dietary n-3 PUFAs intake in shaping n-3 PUFA-derived oxylipins and consequently influencing inflammation and redox status. Additionally, our study revealed that 12-HEPE alleviates cell damage induced by H2O2, with NF-κB and Nrf2 being key pathways.
Collapse
Affiliation(s)
- Yuxiang Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Yang Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yang Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hui Ge
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Fujian 361013, China
| | - Deshui Chen
- Fujian Dalai Seed Science and Technology Co., Ltd, Ningde 352101, China
| | - Bin Ma
- Laizhou Bay Marine Technology Co., Ltd, Yantai 261400, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Fujian 361013, China.
| |
Collapse
|
11
|
Urlandini L, Leonetti AE, Conforti F, Perri A, Lofaro D, Antonucci G, Mandalà M, Bossio S, Di Agostino S, Rago V. Calorie-restriction treatment mitigates the aging in rat liver model. Biogerontology 2025; 26:108. [PMID: 40332584 PMCID: PMC12058891 DOI: 10.1007/s10522-025-10245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
The aging process promotes progressive impairment of homeostasis and the increase of the risk of disease and death. A major hallmark of the aging process is the systemic chronic inflammation which strongly contributes to the onset of aging-related diseases. In the liver, the aging condition drives the hepatocytes to develop a metabolic dysfunction-associated steatosis. Caloric restriction (CR) is a remarkable strategy to delay biological aging, occurring through several mechanisms. In this study we aimed to explore, employing an in vivo rat model, the impact of CR on aging-mediated liver inflammation markers. The experiments were performed on 14 male Sprague-Dawley rats (24 months old). At 18 months old, rats were allocated into two groups: the normal diet (ND) group was continued ad libitum diet, and the CR regimen group was fed a diet of the same chow restricted to 60% of the intake. All animals were sacrificed at 24 months old. Compared to the ND group, morphological examination of the liver revealed a lower level of fibrosis in the CR group, concomitantly with a reduced expression of key fibrotic markers, such as collagen I, fibronectin, and αSMA. Furthermore, CR improved the liver oxidative balance, as showed by the increased expression of two scavenging enzymes, SOD1/SOD. Moreover, we reported concomitant reduction of NLRP3 inflammasome signalling. Interestingly, CR significantly improved the signalling of key members of the nutrition-sensitizing affected by aging, AMPK/SIRT1/LKB1. Collectively our findings support the evidence on the metabolic benefits of CR about aging-related liver inflammation, by inducing a morphological improvement that mirrors the decrease in the expression of inflammatory molecular markers.
Collapse
Affiliation(s)
- L Urlandini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - A E Leonetti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - F Conforti
- Pathology Unit, Annunziata Hospital, 87100, Cosenza, Italy
| | - A Perri
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - D Lofaro
- University of Calabria, Department of Mathematics and Computer Science, Rende, 87036, Cosenza, Italy
| | - G Antonucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - M Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - S Bossio
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - S Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy.
| | - V Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
12
|
Abdel-Lah ES, Sherkawy HS, Mohamed WH, Fawy MA, Hasan AA, Muhammed AA, Taha AF, Tony AA, Hamad N, Gamea MG. Empagliflozin and memantine combination ameliorates cognitive impairment in scopolamine + heavy metal mixture-induced Alzheimer's disease in rats: role of AMPK/mTOR, BDNF, BACE-1, neuroinflammation, and oxidative stress. Inflammopharmacology 2025:10.1007/s10787-025-01755-5. [PMID: 40325262 DOI: 10.1007/s10787-025-01755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
One of the major consequences of diabetes mellitus that has gained attention due to its rising incidence is cognitive impairment. Recent research suggested that sodium-glucose cotransporter-2 (SGLT-2) inhibitors can mitigate memory impairment linked to Alzheimer's disease and are now being explored for their cognitive benefits. However, their mechanisms were not thoroughly studied. This research investigates the hypothesis of the neuroprotective effect of empagliflozin administration against scopolamine-heavy metal mixture (SCO + HMM)-treated Alzheimer's rat models in comparison with memantine as a reference drug and the impact of their combination. Yet, the neuroprotective effects of memantine and empagliflozin combination against cognitive impairment have not been previously explored. This study employed adult male albino rats categorized into five groups. The impact of empagliflozin, memantine, and their concomitant administration on cognitive performance was assessed in a scopolamine and heavy metal mixture-treated Alzheimer's disease model in rats. The assessment of rats' cognitive behavior, memory, and spatial learning was conducted, followed by an evaluation of hippocampal brain-derived neurotrophic factor (BDNF), beta-secretase (BACE-1), oxidative stress (OS), and inflammatory marker activity. And, a western blot analysis was conducted to detect phosphorylated 5' AMP-activated protein kinase (p-AMPK), phosphorylated mammalian target of rapamycin (p-mTOR), and heme oxygenase-1 (HO-1). Hippocampal and cerebellar histopathology were thoroughly examined, in addition to the expressions of amyloid β (Aβ). The current data demonstrate the involvement of the pAMPK/mTOR/HO-1 signaling pathway in empagliflozin neuroprotection against SCO + HMM-induced AD. In addition, it reduces AD hallmarks (Aβ and BACE1), neuro-inflammation, and oxidative stress sequelae, and enhances neurogenesis and synaptic density via BDNF. This study proposes that EMPA, especially when co-administered with other conventional anti-Alzheimer therapy, may be formulated into an innovative therapeutic strategy for the enhancement of cognitive impairments associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Ebtsam S Abdel-Lah
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacology, School of Veterinary Medicine, Badr University, Assiut, 11829, Egypt.
| | - Hoda S Sherkawy
- Department of Medical Biochemistry, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Wafaa H Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Mariam A Fawy
- Department of Zoology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Asmaa A Hasan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Aswan University, Aswan, 81528, Egypt
| | - Asmaa A Muhammed
- Department of Medical Physiology, Faculty of Medicine, Aswan University, Aswan, 81528, Egypt
| | - Amira F Taha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abeer A Tony
- Department of Neuropsychiatry, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Nashwa Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Marwa G Gamea
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
- Basic Medical Science Department, Badr University, Assiut, Egypt
| |
Collapse
|
13
|
Khalaf F, Barayan D, Saldanha S, Jeschke MG. Metabolaging: a new geroscience perspective linking aging pathologies and metabolic dysfunction. Metabolism 2025; 166:156158. [PMID: 39947519 DOI: 10.1016/j.metabol.2025.156158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
With age, our metabolic systems undergo significant alterations, which can lead to a cascade of adverse effects that are implicated in both metabolic disorders, such as diabetes, and in the body's ability to respond to acute stress and trauma. To elucidate the metabolic imbalances arising from aging, we introduce the concept of "metabolaging." This framework encompasses the broad spectrum of metabolic disruptions associated with the hallmarks of aging, including the functional decline of key metabolically active organs, like the adipose tissue. By examining how these organs interact with essential nutrient-sensing pathways, "metabolaging" provides a more comprehensive view of the systemic metabolic imbalances that occur with age. This concept extends to understanding how age-related metabolic disturbances can influence the response to acute stressors, like burn injuries, highlighting the interplay between metabolic dysfunction and the ability to handle severe physiological challenges. Finally, we propose potential interventions that hold promise in mitigating the effects of metabolaging and its downstream consequences.
Collapse
Affiliation(s)
- Fadi Khalaf
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dalia Barayan
- David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sean Saldanha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Marc G Jeschke
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
14
|
Zhu YF, Zhou XY, Lan C, Wen YP, Fu HJ, Li ZC, Li YP, Li SY, Huang FH, Wang L, Yu L, Qin DL, Wu AG, Wu JM, Zhou XG. Tricin Delays Aging and Enhances Muscle Function via Activating AMPK-Mediated Autophagy in Diverse Model Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10246-10264. [PMID: 40243450 DOI: 10.1021/acs.jafc.4c12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Aging leads to progressive decline in the functions of cells, tissues, and organs, severely affecting muscle performance and overall health, highlighting the urgent need for effective therapeutic agents. This study investigated the antiaging properties of tricin, a flavonoid abundant in grains, using biological models, including human fibroblasts, Caenorhabditis elegans (C. elegans), and mice. Tricin significantly alleviated the senescent phenotype in human fibroblasts induced by D-galactose (D-gal), doxorubicin, and replicative senescence, as evidenced by reduced SA-β-gal activity, downregulated senescence markers (p16, p21), and decreased SASP factors. Mechanistically, tricin binds to AMPK and activates the AMPK-mTOR-p70S6K signaling pathway, promoting autophagy and delaying cellular aging. In vivo, tricin extended lifespan, enhanced stress resistance, and improved mobility in C. elegans through aak-2/AMPK-mediated autophagy. In D-gal-induced aging mice, tricin improved muscle function, reducing p16, p21, and SASP expression in muscle tissues. These findings underscore tricin's potential as a promising antiaging therapeutic via AMPK-mediated autophagy activation.
Collapse
Affiliation(s)
- Yun-Fei Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xing-Yue Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Cai Lan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yong-Ping Wen
- College of Food and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Hai-Jun Fu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhi-Chao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ya-Ping Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shi-Ying Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fei-Hong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| |
Collapse
|
15
|
Xue C, Yan Z, Cheng W, Zhang D, Zhang R, Duan H, Zhang L, Ma X, Hu J, Kang J, Ma X. Curcumin ameliorates aging-induced blood-testis barrier disruption by regulating AMPK/mTOR mediated autophagy. PLoS One 2025; 20:e0321752. [PMID: 40273194 PMCID: PMC12021166 DOI: 10.1371/journal.pone.0321752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/08/2025] [Indexed: 04/26/2025] Open
Abstract
The blood-testis barrier (BTB) is composed of tight junctions (TJ) between adjacent Sertoli cells (SCs) and is crucial for sperm growth and development. Aging-induced TJ impairment is closely related to testicular dysfunction. Curcumin, a natural compound, has been widely demonstrated to have a wide range of pharmacological activities, but its regulatory effects on tight junction damage in the testis remain unclear. We here explored the effect of curcumin on TJ function and its underlying molecular mechanism by using D-galactose (D-gal)-induced mouse testis and mouse testicular SCs (TM4) aging models in vitro. In this study, D-gal increased the expression of aging-related proteins p16 and p21, whereas significantly decreased the expression of TJ proteins (ZO-1, Claudin-4, Claudin-7, and Occludin). In addition, curcumin restored the adverse effects of D-gal in the SCs. Autophagy is a degradation system for maintaining cell renewal and homeostasis. D-gal significantly decreased the autophagy level, whereas curcumin restored the effect of D-gal. Using chloroquine (CQ), an inhibitor of autophagy, and rapamycin (RAPA), an activator of autophagy, it was demonstrated that autophagy plays a key role in curcumin amelioration of TJ injury in testicular SCs. Further studies unveiled that autophagy activation was mediated through the AMPK/mTOR pathway. In conclusion, curcumin ameliorates aging-induced TJ damage through AMPK/mTOR signaling pathway-regulated autophagy. This study thus clearly identifies a novel action mechanism of curcumin in the treatment of age-related male reproductive disorders.
Collapse
Affiliation(s)
- Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Wenjing Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Rong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Jian Kang
- School of Animal Science and technology, Guangdong polytechnic of science and trade, Guangzhou, Guangdong, China
| | - Xiaojun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
17
|
Jeon KH, Shin JH, Jo HJ, Kim H, Park S, Kim S, Lee J, Kim E, Na Y, Kwon Y. Computer-aided discovery of novel AMPK activators through virtual screening and SAR-driven synthesis. Eur J Med Chem 2025; 287:117318. [PMID: 39904145 DOI: 10.1016/j.ejmech.2025.117318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
AMPK is a promising target for various chronic illnesses such as diabetes and Alzheimer's disease (AD). We sought to develop a novel small molecule that directly activates AMPK, with the potential to fundamentally modulate the pathogenic mechanisms of the metabolic disorders. To identify a potent novel pharmacophore in an unbiased way, we performed structure-based virtual screening on a commercially available chemical library, and evaluated the actual AMPK activity of 118 compounds selected from 100,000 compounds based on docking scores. Additional iterative molecular docking studies and experimental evaluation of AMPK activity led us to select a hit compound, B1, with a chromone backbone. Using the hit compound and other compounds structurally similar to the hit compound, we identified the chalcone structure as a new scaffold with more efficient interactions with key residues required for AMPK activation. From the newly designed and synthesized chalcone derivatives, we discovered compound 6 as a candidate compound. Compound 6 showed the most efficient interactions with the key residues of AMPK at in silico study and demonstrated significant activation of AMPK in both in vitro and in cellular assays.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| | - Jae-Ho Shin
- College of Pharmacy, CHA University, Pocheon, 11160, Republic of Korea
| | - Hyun-Ji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei Metabolism-Dementia Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seojeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Juhong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei Metabolism-Dementia Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 11160, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
18
|
Jiang H, Inoue S, Hatakeyama J, Liu P, Zhao T, Zhang Y, Liu B, He C, Moriyama H. Effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in SAMP8 mice. Biogerontology 2025; 26:88. [PMID: 40186023 DOI: 10.1007/s10522-025-10234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Skeletal muscle aging, characterized by progressive declines in muscle mass and strength, correlates with reduced quality of life and increased mortality. Resistance exercise is known to be critical for maintaining skeletal muscle health. This study investigated the effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in mice. Twenty-eight-week-old senescence-accelerated mouse prone 8 (SAMP8) mice were used as a model for muscle aging, with senescence-accelerated mouse resistant 1 (SAMR1) mice serving as healthy controls. The mice underwent a 12-week regimen of ladder-climbing training, a form of resistance exercise, performed three days per week. After the training, muscle strength and muscle weight were measured. Levels of the longevity proteins adenosine monophosphate-activated kinase (AMPK), mammalian target of rapamycin (mTOR), and sirtuin 1 (SIRT1) were assessed via western blotting, and telomere length was evaluated by qPCR. SAMP8 mice exhibited significantly lower muscle mass and strength than SAMR1 mice, while resistance exercise attenuated these deficits in SAMP8 mice. SAMP8 mice showed elevated AMPK phosphorylation and SIRT1 levels compared to SAMR1 mice; resistance exercise normalized AMPK phosphorylation levels to approximate those of SAMR1 mice. mTOR activity was significantly reduced in SAMP8 mice but tended to be restored by resistance exercise. Telomere length remained unchanged in SAMP8 mice after resistance exercise compared to their sedentary controls. In conclusion, aging reduces muscle function and disrupts levels of longevity proteins. Resistance exercise mitigates these effects by improving muscle function and restoring molecular balance.
Collapse
Affiliation(s)
- Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Peng Liu
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Tingrui Zhao
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Yifan Zhang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Bin Liu
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Chunxiao He
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-Ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
19
|
Sun Z, Wen P, Yang D, Li J, Li Z, Zhao M, Wang D, Gou F, Wang J, Fan Q, Dai Y, Ji Y, Li X, Tu Y, Ma T, Wang X, Zhao D, Yang L. Idebenone improves mitochondrial respiratory activity and attenuates oxidative damage via the SIRT3-SOD2 pathway in a prion disease cell model. Life Sci 2025; 366-367:123481. [PMID: 39983818 DOI: 10.1016/j.lfs.2025.123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Prion diseases are neurodegenerative diseases that are transmitted between humans and animals, which cause spongiform brain degeneration and neuronal death. Prion diseases are difficult to treat. Mitochondrial damage and oxidative stress occurring early in disease progression. Reducing oxidative stress is a therapeutic strategy for disease. Idebenone (IDE) is an antioxidant that enhances electron transfer in the mitochondrial respiratory chain. To investigate IDE protection mechanisms in prion neuron models, we examined IDE effects on apoptosis, mitochondrial dysfunction, cellular respiratory chain damage, and oxidative stress in N2a cells treated with the prion toxic peptide PrP106-126. IDE effectively alleviated apoptosis and mitochondrial dysfunction, reduced mitochondrial reactive oxygen species (ROS), attenuated lipid peroxidation, improved glutathione percentages, increased important antioxidant enzyme (superoxide dismutase (SOD) and catalase) activities, and elevated mitochondrial DNA levels. IDE also modulated SOD2 deacetylation and oxidative damage by regulating SIRT3. Overall, IDE exerted significant antioxidant effects in our prion disease cell model and may have therapeutic applications for prion disease.
Collapse
Affiliation(s)
- Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueyuan Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingxin Tu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tianying Ma
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyu Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Nasb M, Li F, Dayoub L, Wu T, Wei M, Chen N. Bridging the gap: Integrating exercise mimicry into chronic disease management through suppressing chronic inflammation. J Adv Res 2025; 70:307-322. [PMID: 38704088 PMCID: PMC11976426 DOI: 10.1016/j.jare.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chronic inflammation is a common hallmark of many chronic diseases. Although exercise holds paramount importance in preventing and managing chronic diseases, adherence to exercise programs can be challenging for some patients. Consequently, there is a pressing need to explore alternative strategies to emulate the anti-inflammatory effects of exercise for chronic diseases. AIM OF REVIEW This review explores the emerging role of green tea bioactive components as potential mitigators of chronic inflammation, offering insights into their capacity to mimic the beneficial effects of exercise. We propose that bioactive components in green tea are promising agents for suppressing chronic inflammation, suggesting their unique capability to replicate the health benefits of exercise. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on several key concepts, including chronic inflammation and its role in chronic diseases, the anti-inflammatory effects of regular exercise, and bioactive components in green tea responsible for its health benefits. It elaborates on scientific evidence supporting the anti-inflammatory properties of green tea bioactive components, such as epigallocatechin gallate (EGCG), and theorizes how these bioactive components might replicate the effects of exercise at a molecular level. Through a comprehensive analysis of current research, this review proposes a novel perspective on the application of green tea as a potential intervention strategy to suppress chronic inflammation, thereby extending the benefits akin to those achieved through exercise.
Collapse
Affiliation(s)
- Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Fengxing Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Lamis Dayoub
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
21
|
Jinesh S, Özüpek B, Aditi P. Premature aging and metabolic diseases: the impact of telomere attrition. FRONTIERS IN AGING 2025; 6:1541127. [PMID: 40231186 PMCID: PMC11995884 DOI: 10.3389/fragi.2025.1541127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Driven by genetic and environmental factors, aging is a physiological process responsible for age-related degenerative changes in the body, cognitive decline, and impaired overall wellbeing. Notably, premature aging as well as the emergence of progeroid syndromes have posed concerns regarding chronic health conditions and comorbidities in the aging population. Accelerated telomere attrition is also implicated in metabolic dysfunction and the development of metabolic disorders. Impaired metabolic homeostasis arises secondary to age-related increases in the synthesis of free radicals, decreased oxidative capacity, impaired antioxidant defense, and disrupted energy metabolism. In particular, several cellular and molecular mechanisms of aging have been identified to decipher the influence of premature aging on metabolic diseases. These include defective DNA repair, telomere attrition, epigenetic alterations, and dysregulation of nutrient-sensing pathways. The role of telomere attrition premature aging in the pathogenesis of metabolic diseases has been largely attributed to pro-inflammatory states that promote telomere shortening, genetic mutations in the telomerase reverse transcriptase, epigenetic alteration, oxidative stress, and mitochondrial dysfunctions. Nonetheless, the therapeutic interventions focus on restoring the length of telomeres and may include treatment approaches to restore telomerase enzyme activity, promote alternative lengthening of telomeres, counter oxidative stress, and decrease the concentration of pro-inflammatory cytokines. Given the significance and robust potential of delaying telomere attrition in age-related metabolic diseases, this review aimed to explore the molecular and cellular mechanisms of aging underlying premature telomere attrition and metabolic diseases, assimilating evidence from both human and animal studies.
Collapse
Affiliation(s)
| | | | - Prerana Aditi
- Department of Medical Biochemistry, Faculty of Allied Health Sciences, Mahayogi Gorakhnath University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
22
|
Zhu Z, Tu B, Peng C, Xu X, Lu P, Ning R. Integrated bioinformatics and clinical data identify three novel biomarkers for osteoarthritis diagnosis and synovial immune. Sci Rep 2025; 15:10987. [PMID: 40164659 PMCID: PMC11958655 DOI: 10.1038/s41598-025-95837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that can be aggravated by synovitis and synovial immune disorders (SID). However, the role of synovial SID-related genes in OA synovium remains poorly understood. OA synovial and peripheral blood datasets were obtained from the GEO database ( https://www.ncbi.nlm.nih.gov/ ). Immune-related genes ( https://reactome.org/ ) showing differential expression in peripheral blood were identified as immune disorder genes. Subsequently, differentially expressed immune disorder genes in OA synovium were further identified as SID genes. The Venn diagram, random forest, SVM-RFE algorithm, and multivariate analysis were employed to determine SID-related hub genes in OA synovium. Using the identified hub genes, we constructed and validated a diagnostic model for predicting OA occurrence. The correlation between hub gene expression and immune-related modules was explored using CIBERSORT and MCP-counter analyses. We identified three SID-related hub genes (ACAT1, SPHK1, and ACACB) in OA synovium. The diagnostic model incorporating these hub genes demonstrated reliable predictive accuracy (AUC = 0.939). Through qPCR analysis, we quantitated the expression levels of the hub genes and confirmed that three hub genes could serve as novel biomarkers for OA patients (AUC = 0.960). Furthermore, we observed a significant correlation between the expression of these hub genes and immune cell infiltration, as well as inflammatory cytokine levels in OA synovium. Our findings suggest that three SID-related hub genes have the potential to serve as diagnostic biomarkers for OA patients. These genes are associated with immune disorder and contribute to immune alterations within the OA synovium.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Bizhi Tu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Cheng Peng
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Xun Xu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Peizhi Lu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Rende Ning
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China.
| |
Collapse
|
23
|
Qiao A, Pan M, Zeng Y, Gong Y, Zhang Y, Lan X, Tang L, Jia W. Matrine Inhibits High-Glucose-Diet-Induced Fat Accumulation and Aβ-Mediated Lipid Metabolic Disorder via AAK-2/NHR-49 Pathway in Caenorhabditis elegans. Int J Mol Sci 2025; 26:3048. [PMID: 40338235 PMCID: PMC11988642 DOI: 10.3390/ijms26073048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 05/09/2025] Open
Abstract
Matrine, a quinoline alkaloid, possesses lipid-regulating effects, but the underlying mechanisms are rarely characterized in vivo. With a fat-accumulating Caenorhabditis elegans model, we show that matrine reduces the fat content and the DHS-3::GFP-labeled lipid droplets in high-glucose-diet N2 and transgenic LIU1 nematodes, respectively. Based on RNA-seq, this study demonstrates that a loss of AAK-2 function suppresses the fat-lowering effects of matrine, and the hyperactivated AAK-2 strain has a relatively lower fat content than N2. The involvement of NHR-49 in matrine's fat-lowering effects further suggests that matrine impacts fat breakdown and storage via the AAK-2/NHR-49-governed pathway. Using the transgenic SJ4143 (ges-1::GFP(mit)) and VS10 (vha-6p::mRFP-PTS1), we show that matrine activates the AAK-2/NHR-49 pathway, coupling the alteration of mitochondrial and peroxisomal functions. Studies of aak-2 and nhr-49 mutants reveal that AAK-2 and NHR-49 modulate lipid metabolic homeostasis; meanwhile, matrine increases physical fitness and lifespan through activating the AAK-2/NHR-49 pathway in high-glucose-diet nematodes. Surprisingly, we found that β-amyloid (Aβ) induces lipid metabolic disorder in an Alzheimer's disease (AD) C. elegans model, but matrine not only reduces Aβ aggregation but also alleviates Aβ-mediated lipid metabolic disorder. Our data suggest that matrine has promise as a fat-lowering agent, and also offer new insights into its therapeutic potential for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weizhang Jia
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (A.Q.); (M.P.); (Y.Z.); (Y.G.); (Y.Z.); (X.L.); (L.T.)
| |
Collapse
|
24
|
Trushin S, Nguyen TKO, Stojacovic A, Ostroot M, Deason JT, Chang SY, Zhang L, Macura SI, Nambara T, Lu W, Kanekiyo T, Trushina E. Therapeutic assessment of a novel mitochondrial complex I inhibitor in in vitro and in vivo models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637918. [PMID: 40027647 PMCID: PMC11870434 DOI: 10.1101/2025.02.12.637918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Despite recent approval of monoclonal antibodies that reduce amyloid (Aβ) accumulation, the development of disease-modifying strategies targeting the underlying mechanisms of Alzheimer's disease (AD) is urgently needed. We demonstrate that mitochondrial complex I (mtCI) represents a druggable target, where its weak inhibition activates neuroprotective signaling, benefiting AD mouse models with Aβ and p-Tau pathologies. Rational design and structure-activity relationship studies yielded novel mtCI inhibitors profiled in a drug discovery funnel designed to address their safety, selectivity, and efficacy. The new lead compound C458 is highly protective against Aβ toxicity, has favorable pharmacokinetics, and has minimal off-target effects. C458 exhibited excellent brain penetrance, activating neuroprotective pathways with a single dose. Preclinical studies in APP/PS1 mice were conducted via functional tests, metabolic assessment, in vivo 31P-NMR spectroscopy, blood cytokine panels, ex vivo electrophysiology, and Western blotting. Chronic oral administration improved long-term potentiation, reduced oxidative stress and inflammation, and enhanced mitochondrial biogenesis, antioxidant signaling, and cellular energetics. These studies provide further evidence that the restoration of mitochondrial function and brain energetics in response to mild energetic stress represents a promising disease-modifying strategy for AD.
Collapse
Affiliation(s)
- Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Thi Kim Oanh Nguyen
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Andrea Stojacovic
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Mark Ostroot
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - J. Trey Deason
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Slobodan I. Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Toshihiko Nambara
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
25
|
Tao D, Xia Y, Liao Q, Yang X, Zhang L, Xie C. Rapamycin mitigates neurotoxicity of fluoride and aluminum by activating autophagy through the AMPK/mTOR/ULK1 pathway in hippocampal neurons and NG108-15 cells. Sci Rep 2025; 15:9801. [PMID: 40119168 PMCID: PMC11928598 DOI: 10.1038/s41598-025-94648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Our previous studies have confirmed that fluoride combined with aluminum (FA) can induce hippocampal neuron damage in the second-generation offspring (F2) of rats; however, the underlying mechanisms remain unclear. In this study, we established an F2 rat model and an NG108-15 cell model to investigate the potential modes of action. The autophagy of F2 rat hippocampal neurons and NG108-15 cells was assessed using transmission electron microscopy and immunofluorescence/immunocytochemistry kit, respectively. Hippocampal morphology was evaluated via hematoxylin-eosin (HE) staining. We measured mRNA levels of AMPK, mTOR, ULK1, and LC3 using quantitative reverse transcription PCR, and protein expressions were analyzed by Western blotting. Following treatment with rapamycin (Rap) in FA-exposed F2 rats and NG108-15 cells, a small number of primary lysosomes and autophagosomes appeared within hippocampal cells, with HE staining indicating a near-normal restoration of pyramidal cell morphology. The quantity, intensity, and volume of green fluorescent spots in the cytoplasm of NG108-15 cells increased as observed through fluorescence microscopy. The mRNA expressions of AMPK, ULK1, and LC3 were upregulated while mTOR expressions were downregulated in NG108-15 cells. Correspondingly, protein levels for AMPK, p-AMPK, ULK1, p-ULK1 along with the LC3-II/LC3-I ratio increased whereas those for mTOR, p-mTOR and p62 decreased significantly. Similar trends regarding both mRNA and protein expression were noted within the hippocampus of F2 rats as well. Activation of the AMPK/mTOR/ULK1 signaling pathway by Rap enhances FA-induced autophagy thereby mitigating neuronal damage.
Collapse
Affiliation(s)
- Dan Tao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, People's Republic of China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Ya Xia
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, People's Republic of China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Qilong Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, People's Republic of China
| | - Xuemei Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, People's Republic of China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Luwen Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, People's Republic of China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Chun Xie
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, People's Republic of China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, People's Republic of China.
| |
Collapse
|
26
|
Godoy P, Hao N. Design principles of gene circuits for longevity. Trends Cell Biol 2025:S0962-8924(25)00040-6. [PMID: 40082090 DOI: 10.1016/j.tcb.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Aging is a dynamic process that is driven by cellular damage and disruption of homeostatic gene regulatory networks (GRNs). Traditional studies often focus on individual genes, but understanding their interplay is key to unraveling the mechanisms of aging. This review explores the gene circuits that influence longevity and highlights the role of feedback loops in maintaining cellular balance. The SIR2-HAP circuit in yeast serves as a model to explore how mutual inhibition between pathways influences aging trajectories and how engineering stable fixed points or oscillations within these circuits can extend lifespan. Feedback loops crucial for maintaining homeostasis are also reviewed, and we highlight how their destabilization accelerates aging. By leveraging systems and synthetic biology, strategies are proposed that may stabilize these loops within single cells, thereby enhancing their resilience to aging-related damage.
Collapse
Affiliation(s)
- Paula Godoy
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Li T, Huang N, Chen H, Yang Y, Zhang J, Xu W, Gong H, Gong C, Yang M, Zhao T, Wang F, Xiao H. Daytime-Restricted Feeding Alleviates D-Galactose-Induced Aging in Mice and Regulates the AMPK and mTORC1 Activities. J Cell Physiol 2025; 240:e70020. [PMID: 40070151 DOI: 10.1002/jcp.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/17/2025]
Abstract
Time-restricted feeding (TRF) is a distinct regimen of intermittent fasting advocated for health improving. Although nighttime TRF (NRF) in rodents is analogous to daytime TRF (DRF) in humans and has health benefits, the effects of DRF on rodent's health remain uncertain. The adverse health effects of DRF in rodents are primarily attributed to its implementation-induced temporal shift in the expression of circadian rhythm-related genes. However, studies also demonstrate the health-beneficial effect of restricted feeding itself on metabolic homeostasis, particularly in periphery tissues. Moreover, the direct effects of DRF on aging progression in rodents are underexplored, highlighting a gap in current research. To explore the overall health effects of long-term DRF in rodents, especially its influence on aging progression, we investigated the impact of long-term DRF on mice under a progeric aging condition. Results showed that both 4-h and 8-h DRF regimens exerted positive effects on aging retardation; these effects were manifested as improved physical and memory capacities, enhanced liver and kidney functions, and reduced oxidative damage and inflammatory response. These DRF regimens also lowered the manifestation of aging-related markers in peripheral tissues, with decreased SA-β-gal staining and p16 expression. Mechanistically, DRF regimens, especially DRF8, upregulated AMPK signaling and downregulated mTORC1 signaling. Interestingly, the health benefits of DRF are similar to those of metformin intervention. In conclusion, our study demonstrates for the first time that DRF effectively counteracts oxidative stress-induced aging progression in mice, supporting the viewpoint that TRF as a promising strategy for preventing aging and aging-related disorders.
Collapse
Affiliation(s)
- Tiepeng Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Huang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Honghan Chen
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weitong Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Yang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zhao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfang Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Oo TT. Repurposing metformin: A potential off-label indication for ischaemic stroke? Diabetes Obes Metab 2025; 27:1065-1078. [PMID: 39604047 DOI: 10.1111/dom.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
The term 'clinical cemetery' is frequently used to characterize ischaemic stroke, one of the leading causes of mortality and long-term morbidity globally. Over the past two decades, a number of novel therapies have been investigated for ischaemic stroke. However, aside from mechanical thrombectomy, the only FDA-approved prescription for treating ischaemic stroke is tissue plasminogen activator, which has a limited therapeutic period. Although post-stroke rehabilitation therapies are helpful in improving functional recovery, their benefits cannot be yielded promptly. Nowadays, drug repurposing might be an appealing approach to expanding therapeutic options for ischaemic stroke. During the last decade, metformin has been extensively researched as a potential repurposing medicine for ischaemic stroke, with a focus on both preventive and therapeutic approaches. With regard to the idea of repurposing metformin in ischaemic stroke, this review aims to compile the available data from pre-clinical and clinical trials, address and clarify any discrepancies, and offer solutions.
Collapse
Affiliation(s)
- Thura Tun Oo
- Department of Biomedical Sciences, University of Illinois at Chicago, College of Medicine Rockford, Rockford, Illinois, USA
| |
Collapse
|
29
|
Trisal A, Singh AK. Mechanisms and early efficacy data of caloric restriction and caloric restriction mimetics in neurodegenerative disease. Neuroscience 2025; 567:235-248. [PMID: 39761825 DOI: 10.1016/j.neuroscience.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Neurodegenerative disorders (NDDs) have been prevalent for more than a decade, and the number of individuals affected per year has increased exponentially. Among these NDDs, Alzheimer's disease, which causes extreme cognitive impairment, and Parkinson's disease, characterized by impairments in motor activity, are the most prevalent. While few treatments are available for clinical practice, they have minimal effects on reversing the neurodegeneration associated with these debilitating diseases. Lifestyle modifications and dietary choices are emerging and promising approaches to combat these disorders. Of the lifestyle changes that one could adopt, a major habit is caloric restriction. Caloric restriction (CR) is a lifestyle modification in which the amount of calories ingested is reduced to a significant amount without resulting in malnutrition. However, maintaining such a lifestyle is challenging. As alternatives, certain compounds have been recognized to mimic the effects produced by CR. These compounds are called caloric restriction mimetics (CRMs). Among these compounds, some have been designated established CRMs, namely, resveratrol, metformin, and rapamycin, whereas several other candidates are termed potential CRMs because of a lack of conclusive evidence of their effects. The potential CRMs discussed in this review are quercetin, chrysin, astragalin, apigenin, curcumin, epigallocatechin-3-gallate, and NAD+ precursors. This review aims to provide an overview of these CRMs' effectiveness in preventing neurodegenerative disorders associated with aging. Moreover, we highlight the clinical relevance of these compounds by discussing in detail the results of clinical trials on them.
Collapse
Affiliation(s)
- Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
30
|
Aleksandrova Y, Neganova M. Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment. Antioxidants (Basel) 2025; 14:199. [PMID: 40002385 PMCID: PMC11851806 DOI: 10.3390/antiox14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a general biological process inherent in all living organisms. It is characterized by progressive cellular dysfunction. For many years, aging has been widely recognized as a highly effective mechanism for suppressing the progression of malignant neoplasms. However, in recent years, increasing evidence suggests a "double-edged" role of aging in cancer development. According to these data, aging is not only a tumor suppressor that leads to cell cycle arrest in neoplastic cells, but also a cancer promoter that ensures a chronic proinflammatory and immunosuppressive microenvironment. In this regard, in our review, we discuss recent data on the destructive role of senescent cells in the pathogenesis of cancer. We also identify for the first time correlations between the modulation of the senescence-associated secretory phenotype and the antitumor effects of naturally occurring molecules.
Collapse
Affiliation(s)
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Bld. 1, Moscow 119991, Russia;
| |
Collapse
|
31
|
Romero M, Gelsomini A, Miller K, Suresh D, Thaller S, Frasca D. In Vitro Treatment with Metformin Significantly Reduces Senescent B Cells Present in the Adipose Tissue of People with Obesity. J Nutr 2025; 155:445-452. [PMID: 39389182 PMCID: PMC11867121 DOI: 10.1016/j.tjnut.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Our previous work has shown that senescent B cells accumulate in the human adipose tissue (AT) of people with obesity, where they express transcripts for markers associated with the senescence-associated secretory phenotype (SASP) and secrete multiple inflammatory mediators. These functions of AT-derived B cells are metabolically supported. OBJECTIVES To show that Metformin (MET), a widely used hypoglycemic and antidiabetic drug, is able at least in vitro to decrease frequencies, secretory profile, and metabolic requirements of senescent B cells isolated from the AT of people with obesity. METHODS We recruited adult females with obesity (n = 8, age 40 ± 2 y, BMI range: 33-42) undergoing breast reduction surgery, who donated their discarded subcutaneous AT. B cells from stromal vascular fractions isolated after collagenase digestion of the AT were evaluated after in vitro incubation with MET (1 mM × 106 B cells) or with a control medium without MET for the following measures: expression of transcripts for SASP-associated markers (p16INK4a and p21CIP1/WAF1) measured by quantitative polymerase chain reaction (qPCR); secretion of inflammatory cytokines (TNF-α, IL-6, IFN-γ and IL-17A) measured by a Cytometric Bead Array); metabolic characteristics as identified by a glycolytic test and Seahorse technology, and by the expression of transcripts for glucose transporters and metabolic enzymes involved in glucose metabolic pathways, measured by qPCR. To examine differences between MET-treated compared with untreated groups, paired Student's t tests (two-tailed) were employed. RESULTS MET in vitro was able to reduce frequencies and numbers of senescent B cells, as identified by staining with β-galactosidase, as well as the secretion of inflammatory cytokines, the expression of transcripts for SASP, and metabolic markers that support intrinsic B cell inflammation. CONCLUSIONS Our results provide evidence to support the beneficial effects of MET in reducing AT-related inflammation through its effects on senescent B cells.
Collapse
Affiliation(s)
- Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew Gelsomini
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kate Miller
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dhananjay Suresh
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Seth Thaller
- DeWitt Daughtry Family Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
32
|
Aguiar MB, Kim S, Bortoluzzo AB, Di Tommaso AB, Cendoroglo MS, Colleoni GWB. Sarcopenia in independent oldest-old individuals treated for diabetes, with or without metformin: a case-control study. Acta Diabetol 2025:10.1007/s00592-025-02448-9. [PMID: 39888448 DOI: 10.1007/s00592-025-02448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Sarcopenia is a common condition in the elderly, especially in diabetics (DM). Metformin (MTF), known to reduce glucose levels, can also be a therapeutic intervention in age-related diseases, although it may contribute to muscle loss. OBJECTIVES To compare the prevalence of sarcopenia among elderly people treated for DM, with or without MTF, and non-diabetic patients (NDM) and evaluate whether there is an association between the use of MTF and the development of sarcopenia. METHODS 194 independent elderly people over 80 years old were analyzed. Sarcopenia was defined by handgrip (HG), calf circumference (CC), and gait speed (GS). Non-parametric statistical analysis and Kaplan-Meier survival curves were used. RESULTS The prevalence of DM was 24.7%, of which 56.25% used MTF. The median fasting blood glucose in the NDM and DM groups was 95 and 104 mg/dL. The median glycated hemoglobin in the NDM and DM groups was 5.7% and 6.4%. There was no statistical difference between the DM and NDM groups when comparing clinical characteristics, functionality, weight, physical tests, and mortality. The prevalence of sarcopenia was similar between NDM and DM (16.55% and 14.63%), with few cases of severe sarcopenia in both groups, without statistical differences. We did not find differences in the same variables when we analyzed NDM and DM using or not MTF. Survival curves showed no significant differences between patients with and without sarcopenia/severe sarcopenia. CONCLUSIONS Long-lived people with well-controlled DM did not show significant differences concerning those without DM for the outcome of sarcopenia or death.
Collapse
Affiliation(s)
- Maísa Braga Aguiar
- Discipline of Geriatrics and Gerontology, Paulista School of Medicine, Federal University of São Paulo, Rua dos Otonis, 863, Vila Clementino, São Paulo, SP, ZIP CODE 04025-002, Brazil
| | - Solomon Kim
- Discipline of Geriatrics and Gerontology, Paulista School of Medicine, Federal University of São Paulo, Rua dos Otonis, 863, Vila Clementino, São Paulo, SP, ZIP CODE 04025-002, Brazil
| | | | - Ana Beatriz Di Tommaso
- Discipline of Geriatrics and Gerontology, Paulista School of Medicine, Federal University of São Paulo, Rua dos Otonis, 863, Vila Clementino, São Paulo, SP, ZIP CODE 04025-002, Brazil
| | - Maysa Seabra Cendoroglo
- Discipline of Geriatrics and Gerontology, Paulista School of Medicine, Federal University of São Paulo, Rua dos Otonis, 863, Vila Clementino, São Paulo, SP, ZIP CODE 04025-002, Brazil
| | - Gisele W B Colleoni
- Discipline of Geriatrics and Gerontology, Paulista School of Medicine, Federal University of São Paulo, Rua dos Otonis, 863, Vila Clementino, São Paulo, SP, ZIP CODE 04025-002, Brazil.
| |
Collapse
|
33
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
34
|
He Y, Liu Y, Zhang M. The beneficial effects of curcumin on aging and age-related diseases: from oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front Aging Neurosci 2025; 17:1533963. [PMID: 39906716 PMCID: PMC11788355 DOI: 10.3389/fnagi.2025.1533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Aging and age-related disease are among the most common and challenging issues worldwide. During the aging process, the accumulation of oxidative stress, DNA damage, telomere dysfunction, and other related changes lead to cellular dysfunction and the development of diseases such as neurodegenerative and cardiovascular conditions. Curcumin is a widely-used dietary supplement against various diseases such as cancer, diabetes, cardiovascular diseases and aging. This agent mediates its effects through several mechanisms, including the reduction of reactive oxygen species (ROS) and oxidative stress-induced damage, as well as the modulation of subcellular signaling pathways such as AMPK, AKT/mTOR, and NF-κB. These pathways are involved in cellular senescence and inflammation, and their modulation can improve cell function and help prevent disease. In cancer, Curcumin can induce apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing ROS production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2), which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis phosphoinositide 3-kinases (PI3K) signaling and increase the expression of mitogen-activated protein kinases (MAPKs) to induce endogenous production of ROS. Therefore, herein, we aim to summarize how curcumin affect different epigenetic processes (such as apoptosis and oxidative stress) in order to change aging-related mechanisms. Furthermore, we discuss its roles in age-related diseases, such as Alzheimer, Parkinson, osteoporosis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, Beijing, China
| |
Collapse
|
35
|
Liu B, Zhang Y, Wang Y, Meng Q, Zhang D, Yang H, Li G, Wang Y, Zhou H. Pharmacological targeting of AMPK to restore glucose and fatty acid metabolism homeostasis attenuates transplanted kidney fibrosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167510. [PMID: 39278511 DOI: 10.1016/j.bbadis.2024.167510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/10/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Chronic fibrosis often occurs in transplanted kidneys, leading to progressive functional decline. The underlying mechanisms may involve disruption in the metabolism of renal tubular epithelial cells. The liver kinase B1 (LKB1)-AMPK pathway is a pivotal regulatory hub for glucose and fatty acid metabolism and may play a role in transplanted kidney fibrosis, but it has not been reported. In this study we administered fenofibrate, 2-deoxyglucose, or metformin to modulate metabolism in Brown Norway rat kidney transplants and investigated pathways involved in fibrosis using various assays. We identified an impaired LKB1-AMPK pathway within epithelial cells, resulting in perturbed glucose and fatty acid metabolism, collagen secretion, extracellular matrix remodeling, and epithelial-mesenchymal transition. ACOX1, a pivotal enzyme in the fatty acid peroxisomal β-oxidation pathway, played an important role in transplanted renal fibrosis. Furthermore, several metabolism-targeting drugs, particularly metformin, emerged as potent fibrosis inhibitors. Metformin attenuated fibrosis, improved renal function, and reduced inflammation and macrophage infiltration in the transplanted kidneys. These results provide new perspectives for understanding the complex molecular basis underlying transplanted renal fibrosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yanghe Zhang
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuxiong Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
36
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
37
|
Pangrazzi L, Meryk A. Molecular and Cellular Mechanisms of Immunosenescence: Modulation Through Interventions and Lifestyle Changes. BIOLOGY 2024; 14:17. [PMID: 39857248 PMCID: PMC11760833 DOI: 10.3390/biology14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production. Recent advances in molecular biology have shed light on the underlying mechanisms of immunosenescence, including telomere attrition, epigenetic alterations, mitochondrial dysfunction, and changes in key signaling pathways such as NF-κB and mTOR. These molecular changes lead to functional impairments in various immune cell types, altering their proliferative capacity, differentiation, and effector functions. Emerging research suggests that lifestyle factors may modulate the rate and extent of immunosenescence at both cellular and molecular levels. Physical activity, nutrition, stress management, and sleep patterns have been shown to influence immune cell function, inflammatory markers, and oxidative stress in older adults. This review provides a comprehensive analysis of the molecular and cellular mechanisms underlying immunosenescence and explores how lifestyle interventions may impact these processes. We will examine the current understanding of immunosenescence at the genomic, epigenomic, and proteomic levels, and discuss how various lifestyle factors can potentially mitigate or partially reverse aspects of immune aging. By integrating recent findings from immunology, gerontology, and molecular biology, we aim to elucidate the intricate interplay between lifestyle and immune aging at the molecular level, potentially informing future strategies for maintaining immune competence in aging populations.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
Ramatchandirane M, Rajendran P, Athira MP, Suchiang K. Coniferaldehyde activates autophagy and enhances oxidative stress resistance and lifespan of Caenorhabditis elegans via par-4/aak-2/skn-1 pathway. Biogerontology 2024; 26:25. [PMID: 39674829 DOI: 10.1007/s10522-024-10163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Aging represents the gradual accumulation of alterations within an organism over time. The physical and chemical characteristics of our cells gradually change as we age, making it more difficult for our tissues and organs to self-regulate, regenerate, and maintain their structural and functional integrity. AMP- activated protein kinase (AMPK), a well-known sensor of cellular energy status acts as a central regulator of an integrated signalling network that control homeostasis, metabolism, stress resistance, cell survival and autophagy. Coniferaldehyde (CFA), a phenolic compound found in many edible plants, has multiple biological and pharmacological functions. Our findings demonstrated that 50 µM CFA could significantly activate autophagy and reduce oxidative stress, which enhanced the activity of antioxidant enzymes and increased resistance under oxidative stress. CFA treatment could efficiently decrease reactive oxygen species (ROS) levels and positively enhance the expression of antioxidant genes in Caenorhabditis elegans (C. elegans). On the other hand, CFA did not have any role in the lifespan extension of the several mutants linked to the AAK-2/AMPK pathway and it promotes SKN-1 (Skinhead-1) localization into the nucleus, which modulates downstream gene gst-4 (Glutathione S-transferase). In depth investigations revealed that CFA could lower oxidative stress and enhance the lifespan of C. elegans by activating the PAR-4/LKB-1-AAK-2/AMPK-SKN-1/NRF-2 pathway, with crucial involvement of bec-1 and lgg-1 genes for autophagy mediated lifespan extension. This study might contribute to understanding the interactions and mechanisms that allow natural compounds like CFA to treat age-related disorders among several species.
Collapse
Affiliation(s)
- Mahesh Ramatchandirane
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Ponsankaran Rajendran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - M P Athira
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
39
|
Rahimi Naiini M, Shahouzehi B, Khaksari M, Azizi S, Naghibi N, Nazari-Robati M. Ellagic acid reduces hepatic lipid contents through regulation of SIRT1 and AMPK in old rats. Arch Physiol Biochem 2024; 130:686-693. [PMID: 37814948 DOI: 10.1080/13813455.2023.2262165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Ellagic acid is used in traditional medicine for the treatment of lipid disorders. In this study, the effects of ellagic acid on key regulators of lipid metabolism, and histopathological alterations in aged liver were examined. METHODS A total of 21 male Wistar rats were divided into three groups, including young control, old control, and old ellagic acid. After one month of treatment with ellagic acid, the expression levels of hepatic SIRT1, AMPK, SREBP-1c, PPAR-α, and phosphorylated AMPK (p-AMPK) were evaluated. The levels of several serum biochemical factors, and hepatic triglyceride, and cholesterol contents were assessed. RESULTS Ellagic acid elevated the levels of SIRT1, p-AMPK, and PPAR-α and reduced SREBP-1c level in the liver of old rats. It decreased triglyceride and cholesterol contents in the aged liver and improved histopathological changes. CONCLUSIONS The results demonstrated that ellagic acid can exert protective effects against hepatic lipid metabolism disorders induced by ageing.
Collapse
Affiliation(s)
- Mahdis Rahimi Naiini
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrzad Azizi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Niloufar Naghibi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
40
|
Wang X, Yang J, Zhang X, Cai J, Zhang J, Cai C, Zhuo Y, Fang S, Xu X, Wang H, Liu P, Zhou S, Wang W, Hu Y, Fang J. An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156158. [PMID: 39447228 DOI: 10.1016/j.phymed.2024.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an escalating global health issue, lacks effective treatments due to its complex pathogenesis. YangXue QingNao Wan (YXQNW) is a China Food and Drug Administration (CFDA)- approved TCM formula that has been repurposed in clinical Phase II for the treatment of AD. Identifying YXQNW's active ingredients and their mechanisms is crucial for developing effective AD treatments. PURPOSE This study aims to elucidate the anti-AD effects of YXQNW and to explore its potential therapeutic mechanisms employing an endophenotype network strategy. METHODS Herein we present an endophenotype network strategy that combines active ingredient identification in rat serum, network proximity prediction, metabolomics, and in vivo experimental validation in two animal models. Specially, utilizing UPLC-Q-TOF-MS/MS, active ingredients are identified in YXQNW to build a drug-target network. We applied network proximity to identify potential AD pathological mechanisms of YXQNW via integration of drug-target network, AD endophenotype gene sets, and human protein interactome, and validated related mechanisms in two animal models. In a d-galactose-induced senescent rat model, YXQNW was administered at varying doses for cognitive and neuronal assessments through behavioral tests, Nissl staining, and transmission electron microscopy (TEM). Metabolomic analysis with LC-MS revealed YXQNW's influence on brain metabolites, suggesting therapeutic pathways. Levels of key proteins and biochemicals were measured by WB and ELISA, providing insights into YXQNW's neuroprotective mechanisms. In addition, 5×FAD model mice were used and administered YXQNW by gavage for 14 days at two doses. Amyloid-β levels, transporter expression, and cerebral blood flow have been detected by MRI and biochemical assays. RESULTS The network proximity analysis showed that the effect of YXQNW on AD was highly correlated with amyloid β, synaptic function, glucose metabolism and mitochondrial function. The results of metabolomics combined with in vivo experimental validation suggest that YXQNW has the potential to ameliorate glucose transport abnormalities in the brain by upregulating the expression of GLUT1 and GLUT3, while further enhancing glucose metabolism through increased O-GlcNAcylation and mitigating mitochondrial dysfunction via the AMPK/Sirt1 pathway, thereby improving d-galactose-induced cognitive deficits in rats. Additionally, YXQNW treatment significantly decreased Aβ1-42 levels and enhanced cerebral blood flow (CBF) in the hippocampus of 5×FAD mice. while mechanistic findings indicated that YXQNW treatment increased the expression of ABCB1, an Aβ transporter, in 5×FAD model mice to promote the clearance of Aβ from the brain and alleviate AD-like symptoms. CONCLUSIONS This study reveals that YXQNW may mitigate AD by inhibiting Aβ deposition and ameliorating mitochondrial dysfunction and glucose metabolism, thus offering a promising therapeutic approach for AD.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinna Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Xiaolian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinyong Cai
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Jieqi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Wenjia Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Yunhui Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
41
|
Amman AM, Wolfe V, Piraino G, Ziady A, Zingarelli B. Humanin-G Ameliorates Hemorrhage-Induced Acute Lung Injury in Mice Through AMPKα1-Dependent and -Independent Mechanisms. Biomedicines 2024; 12:2615. [PMID: 39595179 PMCID: PMC11592305 DOI: 10.3390/biomedicines12112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The severity of acute lung injury is significantly impacted by age and sex in patients with hemorrhagic shock. AMP-activated protein kinase (AMPK) is a crucial regulator of energy metabolism but its activity declines with aging. Humanin is a mitochondrial peptide that exerts cytoprotective effects in response to oxidative stressors and is associated with longevity. Using a mouse model of hemorrhagic shock that mimics the clinical condition of adult patients, we investigated whether treatment with a humanin analog, humanin-G, mitigates lung injury and whether its mechanisms of action are dependent on the catalytic AMPKα1 subunit activation. Methods: Male and female AMPKα1 wild-type (WT) and knock-out (KO) mice (8-13 months old) were subjected to hemorrhagic shock by blood withdrawal, followed by resuscitation with shed blood and lactated Ringer's solution. The mice were treated with PEGylated humanin-G or vehicle and euthanized 3 h post-resuscitation. Results: Sex- and genotype-related differences were observed after hemorrhagic shock as lung neutrophil infiltration was more pronounced in the male AMPKα1 WT mice than the female WT mice; also, the male AMPKα1 KO mice experienced a significant decline in mean arterial blood pressure when compared to the male WT mice after resuscitation. The scores of histological lung injury were similarly elevated in all the male and female AMPKα1 WT and KO mice when compared to the control mice. At molecular analysis, acute lung injury was associated with the downregulation of AMPKα1/α2 catalytic subunits in the WT mice, whereas an increased activation of the signal transducer and activator of transcription-3 (STAT3) was observed in all the vehicle-treated groups. The in vivo administration of humanin-G ameliorated histological lung damage in all the groups of animals and ameliorated mean arterial blood pressure in the male AMPKα1 KO mice. The in vivo administration of humanin-G lowered lung neutrophil infiltration in the male and female AMPKα1 WT mice only but not in the KO mice. The beneficial results of humanin-G correlated with the lung cytosolic and nuclear activation of AMPKα in the male and female AMPKα1 WT groups, whereas STAT3 activation was not modified. Conclusions: In adult age, hemorrhage-induced acute lung injury manifests with sex-dependent characteristics. Humanin-G has therapeutic potential and the AMPKα1subunit is an important requisite for its inhibitory effects on lung leucosequestration, but not for the amelioration of lung alveolar structure or the hemodynamic effects of the peptide.
Collapse
Affiliation(s)
- Allison M. Amman
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA;
| | - Vivian Wolfe
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| | - Giovanna Piraino
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| | - Assem Ziady
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Basilia Zingarelli
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| |
Collapse
|
42
|
Lan W, Xiao X, Nian J, Wang Z, Zhang X, Wu Y, Zhang D, Chen J, Bao W, Li C, Zhang Y, Zhu A, Zhang F. Senolytics Enhance the Longevity of Caenorhabditis elegans by Altering Betaine Metabolism. J Gerontol A Biol Sci Med Sci 2024; 79:glae221. [PMID: 39434620 DOI: 10.1093/gerona/glae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 10/23/2024] Open
Abstract
Aging triggers physiological changes in organisms that are tightly linked to metabolic changes. Senolytics targeting many fundamental aging processes are currently being developed. However, the host metabolic response to natural senescence and the molecular mechanism underlying the antiaging benefits of senolytics remain poorly understood. In this study, we investigated metabolic changes during natural senescence based on the Caenorhabditis elegans model and pinpointed potential biomarkers linked to the benefits of senolytics. These results suggest that age-dependent metabolic changes during natural aging occur in C elegans. Betaine was identified as a crucial metabolite in the natural aging process. We explored the metabolic effects of aging interventions by administering 3 antiaging drugs-metformin, quercetin, and minocycline-to nematodes. Notably, betaine expression significantly increased under the 3 antiaging drug treatments. Our findings demonstrated that betaine supplementation extends lifespan, primarily through pathways associated with the forkhead box transcription factor (FoxO) signaling pathway, the p38-mitogen-activated protein kinase (MAPK) signaling pathway, autophagy, the longevity regulating pathway, and the target of rapamycin (mTOR) signaling pathway. In addition, autophagy and free radicals are altered in betaine-treated nematodes. Overall, we found that betaine is a critical metabolite during natural aging and that senolytics extend the lifespan of nematodes by increasing betaine levels and promoting autophagy and antioxidant activity. This finding suggests that betaine could be a novel therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Xiaolian Xiao
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - Jingjing Nian
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ziran Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojing Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yajiao Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongcheng Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junkun Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenqiang Bao
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chutao Li
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - An Zhu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
43
|
Hu M, Liu R, Chen X, Yan S, Gao J, Zhang Y, Wu D, Sun L, Jia Z, Sun G, Liu D. Metabolomics Dysfunction in Replicative Senescence of Periodontal Ligament Stem Cells Regulated by AMPK Signaling Pathway. Stem Cells Dev 2024; 33:607-615. [PMID: 39302052 DOI: 10.1089/scd.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Periodontal ligament mesenchymal stem cells (PDLSCs) are a promising cell resource for stem cell-based regenerative medicine in dentistry, but they inevitably acquire a senescent phenotype after prolonged in vitro expansion. The key regulators of PDLSCs during replicative senescence remain unclear. Here, we sought to elucidate the role of metabolomic changes in determining the cellular senescence of PDLSCs. PDLSCs were cultured to passages 4, 10, and 20. The senescent phenotypes of PDLSCs were detected, and metabolomics analysis was performed. We found that PDLSCs manifested senescence phenotype during passaging. Metabolomics analysis showed that the metabolism of replicative senescence in PDLSCs varied significantly. The AMP-activated protein kinase (AMPK) signaling pathway was closely related to adenosine monophosphate (AMP) levels. The AMP:ATP ratio increased in senescent PDLSCs; however, the levels of p-AMPK, FOXO1 and FOXO3a decreased with senescence. We treated PDLSCs with an activator of the AMPK pathway (AICAR) and observed that the phosphorylated AMPK level at P20 PDLSCs was partially restored. These data delineate that the metabolic process of PDLSCs is active in the early stage of senescence and attenuated in the later stages of senescence; however, the sensitivity of AMPK phosphorylation sites is impaired, causing senescent PDLSCs to fail to respond to changes in energy metabolism.
Collapse
Affiliation(s)
- Meilin Hu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Ruiqi Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Xiaoyu Chen
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Shen Yan
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Jian Gao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Yao Zhang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Zhi Jia
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Guangyunhao Sun
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| |
Collapse
|
44
|
Penugurti V, Manne RK, Bai L, Kant R, Lin HK. AMPK: The energy sensor at the crossroads of aging and cancer. Semin Cancer Biol 2024; 106-107:15-27. [PMID: 39197808 PMCID: PMC11625618 DOI: 10.1016/j.semcancer.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
AMP-activated protein kinase (AMPK) is a protein kinase that plays versatile roles in response to a variety of physiological stresses, including glucose deprivation, hypoxia, and ischemia. As a kinase with pleiotropic functions, it plays a complex role in tumor progression, exhibiting both tumor-promoting and tumor-suppressing activities. On one hand, AMPK enhances cancer cell proliferation and survival, promotes cancer metastasis, and impairs anti-tumor immunity. On the other hand, AMPK inhibits cancer cell growth and survival and stimulates immune responses in a context-dependent manner. Apart from these functions, AMPK plays a key role in orchestrating aging and aging-related disorders, including cardiovascular diseases (CVD), Osteoarthritis (OA), and Diabetes. In this review article, we summarized the functions of AMPK pathway based on its oncogenic and tumor-suppressive roles and highlighted the importance of AMPK pathway in regulating cellular aging. We also spotlighted the significant role of various signaling pathways, activators, and inhibitors of AMPK in serving as therapeutic strategies for anti-cancer and anti-aging therapy.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajesh Kumar Manne
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Ling Bai
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajni Kant
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Hui-Kuan Lin
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
45
|
Cheng CK, Ye L, Zuo Y, Wang Y, Wang L, Li F, Chen S, Huang Y. Aged Gut Microbiome Induces Metabolic Impairment and Hallmarks of Vascular and Intestinal Aging in Young Mice. Antioxidants (Basel) 2024; 13:1250. [PMID: 39456503 PMCID: PMC11505429 DOI: 10.3390/antiox13101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Aging, an independent risk factor for cardiometabolic diseases, refers to a progressive deterioration in physiological function, characterized by 12 established hallmarks. Vascular aging is driven by endothelial dysfunction, telomere dysfunction, oxidative stress, and vascular inflammation. This study investigated whether aged gut microbiome promotes vascular aging and metabolic impairment. Fecal microbiome transfer (FMT) was conducted from aged (>75 weeks old) to young C57BL/6 mice (8 weeks old) for 6 weeks. Wire myography was used to evaluate endothelial function in aortas and mesenteric arteries. ROS levels were measured by dihydroethidium (DHE) staining and lucigenin-enhanced chemiluminescence. Vascular and intestinal telomere function, in terms of relative telomere length, telomerase reverse transcriptase expression and telomerase activity, were measured. Systemic inflammation, endotoxemia and intestinal integrity of mice were assessed. Gut microbiome profiles were studied by 16S rRNA sequencing. Some middle-aged mice (40-42 weeks old) were subjected to chronic metformin treatment and exercise training for 4 weeks to evaluate their anti-aging benefits. Six-week FMT impaired glucose homeostasis and caused vascular dysfunction in aortas and mesenteric arteries in young mice. FMT triggered vascular inflammation and oxidative stress, along with declined telomerase activity and shorter telomere length in aortas. Additionally, FMT impaired intestinal integrity, and triggered AMPK inactivation and telomere dysfunction in intestines, potentially attributed to the altered gut microbial profiles. Metformin treatment and moderate exercise improved integrity, AMPK activation and telomere function in mouse intestines. Our data highlight aged microbiome as a mechanism that accelerates intestinal and vascular aging, suggesting the gut-vascular connection as a potential intervention target against cardiovascular aging and complications.
Collapse
Affiliation(s)
- Chak-Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Yuanyuan Zuo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Yaling Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Sheng Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
46
|
Hartinger R, Singh K, Leverett J, Djabali K. Enhancing Cellular Homeostasis: Targeted Botanical Compounds Boost Cellular Health Functions in Normal and Premature Aging Fibroblasts. Biomolecules 2024; 14:1310. [PMID: 39456243 PMCID: PMC11506649 DOI: 10.3390/biom14101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The human skin, the body's largest organ, undergoes continuous renewal but is significantly impacted by aging, which impairs its function and leads to visible changes. This study aimed to identify botanical compounds that mimic the anti-aging effects of baricitinib, a known JAK1/2 inhibitor. Through in silico screening of a botanical compound library, 14 potential candidates were identified, and 7 were further analyzed for their effects on cellular aging. The compounds were tested on both normal aged fibroblasts and premature aging fibroblasts derived from patients with Hutchinson-Gilford Progeria Syndrome (HGPS). Results showed that these botanical compounds effectively inhibited the JAK/STAT pathway, reduced the levels of phosphorylated STAT1 and STAT3, and ameliorated phenotypic changes associated with cellular aging. Treatments improved cell proliferation, reduced senescence markers, and enhanced autophagy without inducing cytotoxicity. Compounds, such as Resveratrol, Bisdemethoxycurcumin, Pinosylvin, Methyl P-Hydroxycinnamate, cis-Pterostilbene, and (+)-Gallocatechin, demonstrated significant improvements in both control and HGPS fibroblasts. These findings suggest that these botanical compounds have the potential to mitigate age-related cellular alterations, offering promising strategies for anti-aging therapies, particularly for skin health. Further in vivo studies are warranted to validate these results and explore their therapeutic applications.
Collapse
Affiliation(s)
- Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany;
| | - Khushboo Singh
- Amway Corporation, Innovation and Science, 7575 Fulton Street East, Ada, MI 49355, USA
| | - Jesse Leverett
- Amway Corporation, Innovation and Science, 7575 Fulton Street East, Ada, MI 49355, USA
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany;
| |
Collapse
|
47
|
Jalil AT, Zair MA, Hanthal ZR, Naser SJ, Aslandook T, Abosaooda M, Fadhil A. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian J Clin Biochem 2024; 39:450-458. [PMID: 39346714 PMCID: PMC11436500 DOI: 10.1007/s12291-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6-10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.
Collapse
Affiliation(s)
- Abduldaheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon Iraq
| | - Mahdi Abd Zair
- Department of Pharmacy, Kut University College, Kut, Wasit Iraq
| | | | - Sarmad Jaafar Naser
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- Medical Laboratory Technology Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
48
|
Panghal A, Jena G. β-aminoisobutyric acid ameliorated type 1 diabetes-induced germ cell toxicity in rat: Studies on the role of oxidative stress and IGF-1/AMPK/SIRT-1 signaling pathway. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503820. [PMID: 39326943 DOI: 10.1016/j.mrgentox.2024.503820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024]
Abstract
Diabetes mellitus is known as the "epidemic of the century" due to its global prevalence. Several pre-clinical and clinical studies have shown that male germ cell toxicity is one of the major consequences of diabetes mellitus. Although β-aminoisobutyric acid (BAIBA) has been shown to be advantageous in the diabetic nephropathy and cardiomyopathy, its specific role in the diabetes-induced testicular toxicity remains unknown. In this study, an attempt was made to elucidate the molecular mechanisms of BAIBA-mediated germ cell protection in diabetic rats. Adult male Sprague-dawley rats were subjected to either no treatment (control) or BAIBA (100 mg/kg; BAIBA control) or Streptozotocin (50 mg/kg; diabetic control) or low (25 mg/kg), medium (50 mg/kg) and high (100 mg/kg) doses of BAIBA in diabetic conditions. Significant alterations in sperm related parameters, oxidative stress and apoptotic biomarkers, pancreatic and testicular histology, DNA damage and changes in expression of proteins in testes were found in the diabetic rats. 100 mg/kg of BAIBA significantly reduced the elevated blood glucose levels (P ≤ 0.05), increased body weight (P ≤ 0.01 in the 4th week), lowered malondialdehyde (P ≤ 0.05) and nitrite levels (P ≤ 0.01), elevated testosterone (P ≤ 0.05) and FSH levels (P ≤ 0.05), increased sperm count and motility (P ≤ 0.01), decreased testicular DNA damage (P ≤ 0.001), improved histological features of pancreas and testes, decreased TUNEL positive cells (P ≤ 0.01), decreased RAGE (P ≤ 0.01) and Bax (P ≤ 0.05) expressions and increased SIRT1 (P ≤ 0.05) and Atg 12 (P ≤ 0.05) expressions in the testes. 50 mg/kg of BAIBA partially restored the above-mentioned parameters whereas 25 mg/kg of BAIBA was found to be insignificant in counteracting the toxicity. It is interesting to note that BAIBA protects male germ cell damage in diabetic rats by regulating the IGF-1/AMPK/SIRT-1 signaling pathway.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
49
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
50
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|