1
|
Sun T, Wang J, Liu X, Huang H, Wang J, Suo M, Zhang J, Li Z. Finite element models of intervertebral disc: recent advances and prospects. Ann Med 2025; 57:2453089. [PMID: 39840609 PMCID: PMC11755745 DOI: 10.1080/07853890.2025.2453089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine. METHODS In this review, literatures which reported the FE model of intervertebral disc (IVD) were reviewed. We summarized the types and constructional methods of the FE models and analyzed the applications of some representative FE models. RESULTS The most widely used model was the nonlinear model which considers the behavior of porous elastic materials. As more advanced methods, More and more models which involve penetration parameters were used to simulate the biological behavior and biomechanical properties of IVD. CONCLUSIONS Personalized modeling should be carried out in order to better provide accurate basis for the diagnosis and treatment of the disease. In addition, microstructure, cell behavior and complex load should be considered in the process of model construction to build a more realistic model.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| |
Collapse
|
2
|
Wu Y, Li F, Shu S, Feng Z, Qiu Y, Li S, Zhu Z. Baicalin alleviates intervertebral disc degeneration by inhibiting the p38 MAPK signaling pathway. Exp Gerontol 2025; 204:112743. [PMID: 40174870 DOI: 10.1016/j.exger.2025.112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) represents a prevalent degenerative pathology of the spinal, primarily precipitated by inflammatory processes and the deterioration of extracellular matrix (ECM). Baicalin has an effective anti-inflammatory effect on degenerative diseases. In addition, the P38 mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in the pathogenesis of IVDD. OBJECTIVE To investigate the therapeutic potential of baicalin in modulating pathological changes in IVDD. METHODS To design an in vitro model of degeneration of nucleus pulposus cells (NPCs) stimulated by IL-1β and an in vivo mouse model of needling to assess the protective effect of baicalin against IVDD and its underlying mechanism. RESULTS Baicalin down-regulated inflammatory factors (INOS, COX-2, IL-6) and catabolic factors (MMP-3, MMP-13, ADAMTS-5) while up-regulating anabolic factors (collagen II, SOX-9) by inhibiting the activation of the p38 MAPK signaling pathway, in addition to slowing down the progression of IVDD in the mouse acupuncture model. CONCLUSION Our study demonstrated in vitro experiments that baicalin attenuates IL-1β-stimulated IVDD by inhibiting activation of the P38 MAPK signaling pathway. Meanwhile, the effects of baicalin were also confirmed in vivo experiments, Consequently, we propose that baicalin is a promising therapeutic agent for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Yating Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengrui Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shibin Shu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Yang S, Soheilmoghaddam F, Pivonka P, Li J, Rudd S, Yeo T, Tu J, Zhu Y, Cooper-White JJ. Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models. Cell Prolif 2025:e70046. [PMID: 40389238 DOI: 10.1111/cpr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/21/2025] Open
Abstract
Intervertebral disc (IVD) degeneration is an age-related problem triggering chronic spinal issues, such as low back pain and IVD herniation. Standard surgical treatment for such spinal issues is the removal of the degenerated or herniated IVD and fusion of adjacent vertebrae to stabilise the joint and locally decompress the spinal cord and/or nerve roots to relieve pain. However, a key challenge of current surgical strategies is the increasing risk of adjacent segment degeneration due to the disruption of native biomechanics of the functional spinal unit, dominated by the loss of the IVD. In the past two decades, research has focused on developing a number of bioengineering approaches to repair and regenerate the IVD; in particular, tissue engineering of the IVD, using bioscaffolds and stem cells represents a promising area. This review highlights the current tissue engineering approaches utilising biomaterials, animal models and cell sources for IVD regeneration and discusses future opportunities.
Collapse
Affiliation(s)
- Sidong Yang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, China
- Hebei International Joint Research Centre for Spine Diseases, Shijiazhuang, China
| | - Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Peter Pivonka
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Joan Li
- Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Trifanny Yeo
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yibo Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Pang Z, Hu J, Zhao C, Li X, Zhu Y, Li X, Wang Y, Zhou Q, Li P. Chrysin attenuates intervertebral disk degeneration via dual inhibition of matrix metalloproteinases and senescence: integrated network pharmacology, molecular docking, and experimental validation. Front Med (Lausanne) 2025; 12:1593317. [PMID: 40421294 PMCID: PMC12104227 DOI: 10.3389/fmed.2025.1593317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Intervertebral disk degeneration (DDD) caused by nucleus pulposus cell (NPCs) senescence, oxidative stress, and extracellular matrix (ECM) degradation is one of the leading causes of chronic low back pain, yet effective treatments remain elusive. This study investigated the potential of chrysin, a natural flavonoid with antioxidant and anti-inflammatory properties, to alleviate NPCs aging and ECM dysregulation. Through network pharmacology, researchers identified 89 overlapping targets between chrysin and DDD, including MMP2, MMP9, and TGFB1. Enrichment analyses revealed key pathways in cancer, such as JAK-STAT signaling, efflux cells, and central carbon metabolism. Molecular docking showed that chrysin has a strong binding affinity for MMP2 (-8.4 kcal/mol) and MMP9 (-8.2 kcal/mol), key enzymes for ECM degradation. Molecular dynamics simulations demonstrated that the Chrysin-MMP-9 and Chrysin-MMP-2 complexes exhibited favorable dynamic properties. Experimental validation in H2O2-induced senescent NPCs confirmed the protective effects of chrysin: pretreatment with chrysin (1 μM) significantly reduced senescence-associated β-galactosidase activity and inhibited MMP2/9 mRNA expression while restoring collagen II and aggrecan levels. In addition, Chrysin attenuated oxidative stress-mediated ECM damage, which was consistent with network predictions. These findings highlight the dual ability of Chrysin to inhibit MMP activity and combat aging, making it a promising multi-targeted therapeutic candidate for the treatment of DDD. This study combines bioinformatics with experimental modeling to mechanistically reveal the anti-aging mechanism of Chrysin.
Collapse
Affiliation(s)
- Zeyu Pang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junxian Hu
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yibo Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangwei Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyang Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Chen J, Gan X, Su S, Jiao S, Gong Z, Liu Z, Wu X, Jiang J, Zhang J, Wan J. Conditional sequential delivery of ginkgetin and rapamycin orchestrates inflammation and autophagy to alleviate intervertebral disc degeneration. J Control Release 2025; 381:113556. [PMID: 39983927 DOI: 10.1016/j.jconrel.2025.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a multifaceted and complex condition primarily driven by excessive inflammation, degradation of the extracellular matrix (ECM), and dysfunction of nucleus pulposus cells (NPCs). Despite extensive exploration of various therapeutic agents targeting IVDD, their efficacy remains disappointingly limited. This study underscores the efficacy of ginkgetin (GK), a natural bioflavonoid with potent anti-inflammatory properties, in mitigating inflammation as well as ECM degradation and NPC dysfunction triggered by interleukin-1β (IL-1β). However, GK alone cannot fully address the persistent obstruction in autophagic flux induced by IL-1β. To overcome this limitation, an innovative MMP13-responsive nanoplatform was developed, orchestrating the sequential delivery of GK and rapamycin (RA), targeting distinct phases of IVDD progression. In this design, GK is progressively released from exosomes during the initial phase, while RA is released from mesoporous silica nanoparticles during the mid-phase to enhance autophagic flux. This staged release approach leverages the strengths of both agents, addressing inflammation and restoring autophagy more effectively. In vivo experiments confirmed the substantial therapeutic benefits of this staggered delivery strategy in IVDD. The engineered MMP13-responsive nanoplatform represents a significant advancement in controlled, sequential drug delivery systems, offering a promising therapeutic avenue to effectively regulate inflammation and autophagy, thereby ameliorating IVDD.
Collapse
Affiliation(s)
- Jiaoxiang Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Orthopedics, the Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenkai Su
- Department of Orthopedics, the Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Sizhe Jiao
- The First Clinical Medical College, Southern Medical University, Guangzhou 510000, China
| | - Zailing Gong
- Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Ziqiang Liu
- The First Clinical Medical College, Southern Medical University, Guangzhou 510000, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Jiang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Jiaming Zhang
- Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Junlai Wan
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
6
|
Wei C, Wang X, Wu S, Chen Y, Lai S, Liu F, Wu H, Lin R, Li J. Beta-defensin 1 knockdown ameliorates the characteristics of intervertebral disc degeneration by altering nucleus pulposus and annulus fibrosus cell phenotypes via suppression of the extracellular signal-regulated kinase signaling pathway. Osteoarthritis Cartilage 2025; 33:560-573. [PMID: 40057017 DOI: 10.1016/j.joca.2025.02.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE Beta-defensin 1 (DEFB1), is a member of the defensin family involved in inflammation, cell apoptosis and senescence. We hypothesized that DEFB1 is essential for intervertebral disc (IVD) homeostasis. Our objective was to elucidate the roles of DEFB1 in IVD degeneration (IDD). DESIGN DEFB1 expression in human degenerated and non-degenerated IVD tissues was measured. In the rat coccygeal IDD model, morphological changes and extracellular signal-regulated kinase 1/2 (ERK1/2) expression were assessed following DEFB1 knockdown lentivirus injection into rat tail discs. In vitro, DEFB1 knockdown or DEFB1-overexpressing plasmid was transfected into nucleus pulposus (NP) and annulus fibrosus (AF) cells. Under interleukin (IL)-1β stimulation, protein expression, cytokine levels, cell viability, cell senescence, cell apoptosis and cell cycle were evaluated. RESULTS IDD tissue from human and rat models exhibited higher DEFB1 levels compared to non-degenerated IVD samples. DEFB1 knockdown ameliorated histopathological changes and reduced inflammation in rat IVD tissues. Under IL-1β stimulation, DEFB1 knockdown increased cell viability (NP cells mean difference 0.28 [95% CI: 0.21, 0.35], AF cells 0.24 [0.20, 0.29]), and decreased cell senescence (-11.78 [-13.73, -9.83], -11.88 [-13.89, -9.87]), cell apoptosis (-9.15 [-11.20, -7.11], -7.40 [-9.36, -5.44]), and G1-phase arrest (-16.74 [-19.87, -13.61], -18.70 [-22.13, -15. 27]) in NP and AF cells. Conversely, DEFB1 overexpression had the opposite effects. DEFB1 knockdown reduced ERK1/2 phosphorylation in vivo and in vitro. The ERK antagonist ameliorated DEFB1 overexpression-induced changes in cellular phenotype. CONCLUSIONS DEFB1 knockdown ameliorated IDD features, potentially by regulating ERK signaling in NP and AF cells. Targeting DEFB1 could be a promising therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Chao Wei
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Siwen Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yiyuan Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Shunxun Lai
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Fubin Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hailin Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Renqin Lin
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
7
|
Lin Y, Chen Q, Liu S, Liu B. Ocifisertib alleviates the gasdermin D-independent pyroptosis of nucleus pulposus cells by targeting GSDME. Sci Rep 2025; 15:13280. [PMID: 40247083 PMCID: PMC12006288 DOI: 10.1038/s41598-025-98283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
This study aimed to elucidate the cellular and molecular mechanisms of GSDME in GSDMD independent nucleus pulposus (NP) cell pyroptosis. We analyzed microarray datasets to identify differentially expressed genes (DEGs) in the progression of intervertebral disc degeneration (IDD) and conducted Gene Ontology analysis to elucidate DEGs-participated biological processes. We utilized lipopolysaccharides (LPS) to treat human primary NP cells to establish pyroptosis cell model. And siRNA was used to simulate a GSDMD-deficient environment. We used several regulators to figure out how GSDME was participate in pyroptosis via a GSDMD independent pathway. The molecular docking was conducted to identify compound that could possibly bind to GSDME and suppress its cleavage. Finally, Ocifisertib was intraperitoneally administered into IDD rat model to explore its therapeutic potential. Pyroptosis was activated in IDD. In vitro, LPS induced NP cell pyroptosis by promoting the cleavage of GSDMD and GSDME. In the absence of GSDMD, the cleavage of GSDME compensatively upregulated to mediate pyroptosis. Ocifisertib alleviated pyroptosis-mediated IDD by inhibiting GSDME cleavage in annulus fibrosus puncture-induced IDD rat model. Our study provides evidence that the cleavage of GSDME aggravates IDD by accelerating NP cell pyroptosis and demonstrates that Ocifisertib has therapeutic potential in IDD treatment.
Collapse
Affiliation(s)
- Yu Lin
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China
| | - Qiyong Chen
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China.
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China.
| | - Shaoqiang Liu
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China
| | - Boling Liu
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China
| |
Collapse
|
8
|
Gao Z, Zhao L, Tian X, Li Z, Niu H, Yang S, Hou Z. Hounsfield unit correlates with intervertebral disc degeneration in premenopausal and menopausal women: a radiological study. J Orthop Surg Res 2025; 20:356. [PMID: 40205410 PMCID: PMC11980056 DOI: 10.1186/s13018-025-05770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVES This study aims to investigate whether Hounsfield unit (HU) value is correlated with intervertebral disc (IVD) degeneration (IVDD) by comparing premenopausal with menopausal women patients. METHODS A total of 101 female patients who underwent treatment in our hospital between February 2022 and February 2023 were retrospectively reviewed and included in this study. All patients were divided into either the premenopausal group or the menopausal group, according to age and menopause status. The changes in disc height index (DHI) on X-ray, the Hounsfield unit (HU) value on computed tomography (CT), and the area of the nucleus pulposus (NP) on magnetic resonance imaging (MRI) were assessed and compared between the two groups. RESULTS There is a significant difference in the Pfirrmann grading of T12-S1 discs between the premenopausal and menopausal groups; the menopausal group has more degenerated discs compared with the premenopausal group (P < 0.001). There is no significant difference in DHI measurements between the premenopausal and menopausal groups. HU values in the premenopausal group are greater compared with the menopausal group from T12 to S1 vertebrae (all P < 0.001). Regarding the NP area on MRI, the L2-L3 IV disc space have a bigger area in the premenopausal group compared with the menopausal group (P = 0.029), with no significant difference in other IVD segments. CONCLUSIONS The HU value on CT is significantly decreased with IVDD progression after menopause. The change in HU value could indirectly reflect vertebral bone mineral density. Therefore, the decline of estrogen after menopause leads to vertebral osteoporosis, which might contribute to IVDD progression.
Collapse
Affiliation(s)
- Ze Gao
- Department of Spine Surgery, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Liangwei Zhao
- Department of Spine Surgery, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Xiaoming Tian
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Tianjin, 300121, PR China
| | - Zhaohui Li
- Department of Spine Surgery, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Haiyun Niu
- Department of Spine Surgery, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Sidong Yang
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, PR China.
- Hebei International Joint Research Centre for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, PR China.
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, PR China.
- Engineering Research Center of Orthopedic MinimallyInvasive Intelligent Equipment, Ministry of Education, 139 Ziqiang Road, Shijiazhuang, 050051, PR China.
- Key Laboratory of Biomechanics of Hebei Province, 139 Ziqiang Road, Shijiazhuang, 050051, PR China.
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, 139 Ziqiang Road, Shijiazhuang, 050051, PR China.
| |
Collapse
|
9
|
Tan B, Xiang S, Zheng Y, Ouyang J, Zhou N. Association of dyslipidemia with intervertebral disc degeneration: a case-control study. Eur J Med Res 2025; 30:194. [PMID: 40119438 PMCID: PMC11927250 DOI: 10.1186/s40001-025-02455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
PURPOSE To investigate the relationship between dyslipidemia and intervertebral disc degeneration (IVDD). METHODS A total of 269 patients with lumbar disc herniation (Grade III-VIII using the modified Pfirrmann Grading Systems and Total End Plate Damage Score (TEPS) III-VI grade) and 269 patients with lumbar vertebral fracture (LVF, Grade I-II using the modified Pfirrmann Grading Systems and TEPS I-II grade) were enrolled in this study. The total cholesterol level (TC), low-density lipoprotein-cholesterol level (LDL-C), triglyceride level (TG), high-density lipoprotein-cholesterol level (HDL-C), nonHDL-C, ApoB level, ApoB A1 level and arteriosclerosis index (AI) were measured. The 269 patients with single-level LDH who underwent surgery were assigned to the disc herniation group (DH) and 269 patients who underwent surgical treatment for lumbar vertebral fracture during the same period were enrolled as the control group. The participants in the control group were selected randomly and matched for sex. RESULTS The analysis revealed that the levels of TC, TG, LDL, nonHDL-C, APOB, and APOA1 in patients with LDH were significantly higher compared with those in the controls. The proportion of high-TC, borderline high-total cholesterol, high LDL-C, high-TG, borderline high LDL-C, high APO B, high arteriosclerosis index (AI), and high-ApoB/ApoA1 in the LDH group was significantly higher relative to that of the control group. The ratio of TC/HDL-C, TG/HDL-C, LDL-C/HDL-C, nonHDL-C/HDL-C, and ApoB/ApoA1 in the LDH group was significantly higher compared with that of the control group. Multivariate logistic regression analysis showed that the levels of serum TG, Apo B/ApoA1 ratio, atherogenic index(AI), labour intensity, and age were positively associated with the risk of LDH and were independent risk factors predicting IVDD development. CONCLUSION Overall, this study indicates that age, labour intensity, TG, ApoB/ApoA1 ratio and atherogenic index (AI) may increase the risk of IVDD. The levels of TC, TG, LDL-C, nonHDL-C, Apo B, and atherogenic index (AI) may be related to the degree of cartilage endplate (CEP) and intervertebral disc degeneration (IVDD). Moreover, dyslipidemia may be a useful predictor of IVDD.
Collapse
Affiliation(s)
- Bing Tan
- Department of Spine Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, 190 Jiannan Road East Section, Youxian, Mianyang, 621000, Sichuan, China
| | - Shanlin Xiang
- Department of Orthopedic, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang Friendship Road No. 1, Yuzhong, 400042, Chongqing, China
| | - Yuhao Zheng
- Department of Spine Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, 190 Jiannan Road East Section, Youxian, Mianyang, 621000, Sichuan, China
| | - Jianyuan Ouyang
- Department of Spine Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, 190 Jiannan Road East Section, Youxian, Mianyang, 621000, Sichuan, China
| | - Nian Zhou
- Department of Orthopedic, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang Friendship Road No. 1, Yuzhong, 400042, Chongqing, China.
| |
Collapse
|
10
|
Huang Y, Zhang Q, Wang J, Luan T, Guo L, Hao Z, Shi G, Chen R, Wu Z, Zhou X, Zhou S, Shen Q, Li J. Potential Molecular Mechanism of Bajitian-Niuxi Formula Delays Intervertebral Disc Degeneration: An Animal Experiment and Network Pharmacology. Chem Biodivers 2025:e202500048. [PMID: 40091422 DOI: 10.1002/cbdv.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Intervertebral disc degeneration (IDD) continues to be a major health concern. The combination of Bajitian and Niuxi (B&N) is commonly used to treat musculoskeletal degenerative diseases. This study aimed to explore the potential of B&N in treating IDD through in vivo experiments and bioinformatics approaches. In vivo experiments found that the process of IDD in rats treated with B&N extracts was delayed. Through database screening and network pharmacology analysis, it was discovered that multiple key drug-active ingredients (DAIs) of B&N, such as wogonin, baicalein, 1-hydroxy-3-methoxy-9,10-anthraquinone, and beta-sitosterol, might play a role in the treatment of IDD, among which signaling pathways, such as PI3K-AKT, MAPK, and senescence signaling, might be the main drug-regulated pathways. The binding potential and position of the main DAIs to the core targets were verified by structural bioinformatics. Immunohistochemistry and qRT-PCR results indicated that B&N treatment could improve the expressions of Type II collagen (Col-2) and aggrecan (ACAN) in IDD rats, which might be related to the phosphorylation levels of AKT and p38. Therefore, the B&N formula might delay IDD in rats by regulating multiple signaling pathways through DAIs, which provides new approaches for further exploring the prevention and treatment strategies of IDD with traditional Chinese medicine.
Collapse
Affiliation(s)
- Yilong Huang
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Qi Zhang
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Junwu Wang
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Tian Luan
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Lanhong Guo
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Zhuowen Hao
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Guang Shi
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Zijian Wu
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Xuan'ang Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Shifeng Zhou
- Department of Orthopedics, Taizhou People's Hospital Affiliated with Nanjing Medical University, Taizhou, China
| | - Qixiao Shen
- Department of Orthopedics, Yangxin People's Hospital, Huangshi, China
| | - Jingfeng Li
- Department of Orthopedics, ZhongNan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Chen YQ, Chen ZY, Song ZQ, Liang HB, Li YJ, Su H, Jin HM, Bai XQ. Causal relationships between dietary factors and spinal diseases: a univariable and multivariable Mendelian randomization study. Front Nutr 2025; 12:1437484. [PMID: 40161299 PMCID: PMC11949805 DOI: 10.3389/fnut.2025.1437484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Background Spinal diseases and their associated symptoms are prevalent across all age groups, and their incidence severely affects countless individuals' quality of life. The role of daily habits in the progression of these diseases is increasingly emphasized in research. Moreover, there are reports suggesting associations between dietary factors and the onset of spinal diseases. However, the exact causal relationship between dietary factors and spinal diseases has not been fully elucidated. Methods We obtained GWAS data on 16 dietary intake and 187 dietary likings from the UK Biobank, and GWAS data on 23 types of spinal disorders from FinnGen R10. The analysis of causal effects was conducted using the Inverse Variance Weighted (IVW) test, and to ensure robustness, MR-Egger, Weighted median, and Bayesian weighted Mendelian randomization (BWMR) were utilized to validate the direction. Sensitivity analysis was conducted using the Cochran Q test and MR-Egger intercept test. Additionally, Multivariable MR (MVMR) was employed to examine the independent effect of alcohol intake frequency. Results In summary, our study identified statistically significant causal associations between four dietary intake and 10 dietary linkings with various spinal disorders through univariable MR, with degenerative spinal changes showing the most significant dietary influence. Alcohol intake was identified as the primary risk factor, with other risk factors including poultry intake and likings for various types of meat. Protective factors mainly included intake and liking of fruits and vegetables. Additionally, various supplementary analytical methods along with heterogeneity and pleiotropy tests have confirmed the robustness of our results. To avoid the interference of diet-related diseases, multivariable MR analysis was conducted, showing that the incidence of cervical disc disorders may be influenced by gout, diabetes, and hypertension. Conclusion This study indicates a potential causal relationship between dietary factors and the risk of spinal disorders, providing insights for the early detection and prevention. However, the specific pathogenic mechanisms require detailed basic and clinical research in the future.
Collapse
Affiliation(s)
- Yi-Qi Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Ya Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng-Qi Song
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hai-Bo Liang
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jun Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Su
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Ming Jin
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue-Qin Bai
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Zhang W, Li Z, Wang Z, Liu K, Huang S, Liang J, Dai Z, Guo W, Mao C, Chen S, Wei J. Polyethylene microplastics promote nucleus pulposus cell senescence by inducing oxidative stress via TLR4/NOX2 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117950. [PMID: 40020381 DOI: 10.1016/j.ecoenv.2025.117950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
This study aimed to detect and characterize microplastics in intervertebral disc and investigate their effects and molecular mechanism on intervertebral disc degeneration. We collected intervertebral disc tissues from cervical, lumbar, and thoracolumbar segments and used Raman spectroscopy to identify and characterize microplastics. Among 80 samples, 47 contained microplastics, with polyethylene being the most prevalent type. To explore the effects of polyethylene microplastics (PE-MPs), we established a mouse model and a nucleus pulposus cell model. Reactive oxygen species (ROS) levels were assessed via immunofluorescence staining, cell viability was measured using the CCK-8 assay, and protein expression related to the Toll-like receptor 4 (TLR4)/NADPH oxidase 2 (NOX2) axis, oxidative stress, and nucleus pulposus degeneration were evaluated through western blotting and immunofluorescence staining. Results showed that PE-MPs exposure led to intervertebral disc degeneration by inducing oxidative stress and activating the TLR4 / NOX2 axis, which increased the senescence of nucleus pulposus cells. These effects were mitigated by TLR4 and NOX2 inhibitors. This research highlights the existence of microplastics in human intervertebral disc tissue and unveils a novel mechanism of nucleus pulposus cell senescence induced by PE-MPs, offering new avenues for clinical treatment of microplastic-related disc degeneration.
Collapse
Affiliation(s)
- Weilin Zhang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhencong Li
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhongwei Wang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kuize Liu
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shengbang Huang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinguo Liang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhiwen Dai
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Weixiong Guo
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chao Mao
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Siyuan Chen
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinsong Wei
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
13
|
Zhao R, Ma L, Li J, Liu S, Yang D, Liu G, Yang S. Adipose Tissue-Derived Exosome Maintains Metabolic Balance of Extracellular Matrix in Rat Nucleus Pulposus Cells. Int J Nanomedicine 2025; 20:2411-2425. [PMID: 40027872 PMCID: PMC11869899 DOI: 10.2147/ijn.s504649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose This study aimed to investigate the protective effect of adipose tissue-derived exosomes (AT-Exo) on rat nucleus pulposus cells (NPCs). Methods Ultracentrifugation was used to extract exosomes from rat adipose tissue. Transmission electron microscopy (TEM), Western blot, and nanoparticle tracking analysis (NTA) were used to characterize the exosomes. Tert-butyl hydrogen peroxide (TBHP) was used to induce apoptosis of rat NPCs. Cell viability was determined by CCK-8 assay. AT-Exo was administered to investigate its effect on rat NPCs using Western blot and immunofluorescence staining. Results AT-Exo was successfully extracted and characterized by NTA, TEM, and Western blots. Uptake assay showed that AT-Exo can be taken up by the NPCs. TBHP (60 μM) resulted in decreased cell viability and increased apoptosis of NPCs. Interestingly, AT-Exo protected NPCs against TBHP, indicated by increased cell viability, decreased apoptosis, upregulated Aggrecan and type II collagen deposition, and downregulated matrix metalloproteinase 3/13. Conclusion In summary, rat adipose tissue-derived exosomes can increase the levels of Aggrecan, type II collagen, and Bcl2, and decrease the levels of matrix metalloproteinase 3/13, cleaved caspase3, and Bax. Therefore, rat adipose tissue-derived exosomes can maintain metabolic balance of extracellular matrix and protect against apoptosis in rat nucleus pulposus cells.
Collapse
Affiliation(s)
- Ruoyu Zhao
- Department of Orthopedic Surgery, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Ma
- Department of Spine Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Joan Li
- Medical School, Faculty of Medicine, the University of Queensland, Brisbane, Queensland, Australia
| | - Sen Liu
- Department of Orthopedic Surgery, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Dalong Yang
- Department of Spine Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Guobin Liu
- Department of Orthopedic Surgery, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Sidong Yang
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
14
|
Wang X, Huang Y, Yang Y, Tian X, Jin Y, Jiang W, He H, Xu Y, Liu Y. Polysaccharide-based biomaterials for regenerative therapy in intervertebral disc degeneration. Mater Today Bio 2025; 30:101395. [PMID: 39759846 PMCID: PMC11699348 DOI: 10.1016/j.mtbio.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP). These materials have demonstrated the capacity to support cell viability, facilitate matrix production, and alleviate inflammation in vitro and in vivo, thus supporting tissue regeneration and restoring disc function in comparison to conventional treatment. Furthermore, polysaccharide-based hydrogels have demonstrated the potential to deliver bioactive molecules, including growth factors, cytokines and anti-inflammatory drugs, directly to the degenerated disc environment, thereby enhancing therapeutic outcomes. Therefore, polysaccharide-based materials provide structural support and facilitate the regeneration of native tissue, representing a versatile and effective approach for the treatment of IVDD. Despite their promise, challenges such as limited long-term stability, potential immunogenicity, and the difficulty in scaling up production for clinical use remain. This review delineates the potential of various polysaccharides during the fabrication of hydrogels and scaffolds for disc regeneration, guiding and inspiring future research to focus on optimizing these materials for clinical translation for IVDD repair and regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yixue Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Yesheng Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Hanliang He
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| |
Collapse
|
15
|
Hua X, Yu L, Zhu H, Zhu Y, Fan G, Zhou G. Research progress of circRNAs in bone-related diseases. Front Oncol 2025; 15:1481322. [PMID: 39931083 PMCID: PMC11807992 DOI: 10.3389/fonc.2025.1481322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that exist naturally in various eukaryotic organisms. The majority of circRNAs are produced through the splicing of exons, although there are a limited number that are generated through the circularization of introns. Studies have shown that circRNAs play an irreplaceable role in the pathogenesis, disease progression, diagnosis, and targeted therapy of motor system tumors (osteosarcoma), metabolic diseases (osteoporosis), and degenerative diseases (osteonecrosis of the femoral head, osteoarthritis, intervertebral disc degeneration). This review summarizes the advancements in circRNA detection techniques and the research progress of circRNAs in orthopedic diseases.
Collapse
Affiliation(s)
- Xianming Hua
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingfeng Yu
- Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhu
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Zhu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gentao Fan
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
- Wuxi Xishan Nanjing University (NJU) Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
17
|
Yu Z, Fan C, Mao Y, Wu X, Mao H. Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway. J Orthop Surg Res 2025; 20:86. [PMID: 39849546 PMCID: PMC11755947 DOI: 10.1186/s13018-025-05492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles. This study aimed to investigate the role of autophagy in IVDD using a hydrogen peroxide (H2O2)-induced model of rat annulus fibrosus cells (AFCs). METHODS AFCs were exposed to H2O2 to model oxidative stress-induced degeneration. Protein expression levels of collagen I, collagen II, MMP3, and MMP13 were quantified. GEO database analysis identified alterations in miR-2355-5p expression, and its regulatory role on the mTOR pathway and autophagy was assessed. Statistical tests were used to evaluate changes in protein expression and pathway activation. RESULTS H2O2 exposure reduced collagen I and collagen II expression to approximately 50% of baseline levels, while MMP3 and MMP13 expression increased twofold. Activation of autophagy restored collagen I and II expression and decreased MMP3 and MMP13 levels. GEO analysis revealed significant alterations in miR-2355-5p expression, confirming its role in regulating the mTOR pathway and autophagy. CONCLUSIONS Autophagy, mediated by the miR-2355-5p/mTOR pathway, plays a protective role in AFCs degeneration. These findings suggest a potential therapeutic target for mitigating IVDD progression.
Collapse
Affiliation(s)
- Zilin Yu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China
| | - Chunyang Fan
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yubo Mao
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China.
| | - Xiexing Wu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Haiqing Mao
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
18
|
Xie W, Huang Z, Huang Z, Luo D, Chen Z, Xie L, Zhu L, Liu H, Lian K, Alberton P, Docheva D, Lin D. A mouse coccygeal intervertebral disc degeneration model with tail-looping constructed using a suturing method. Animal Model Exp Med 2025. [PMID: 39808167 DOI: 10.1002/ame2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUD Intervertebral disc degeneration (IDD) is one of the common degenerative diseases. Due to ethical constraints, it is difficult to obtain sufficient research on humans, so the use of an animal model of IDD is very important to clarify the pathogenesis and treatment mechanism of the disease. METHODS In this study, thirty 2-month-old mice were selected for operation to establish a coccygeal IDD model. The distal tail portion of the tail (beyond the 17th coccygeal vertebra) and a small piece of skin above the 8th coccygeal vertebra were excised, and the two incisions were brought together after flexion, and secured with sutures. The heights and signal intensities of the intervertebral discs (IVDs) were assessed using microcomputed tomography (μCT) and magnetic resonance imaging (MRI) at 0, 6, 12 weeks postoperatively. The overall tissue morphology, cell distribution and density, and extracellular matrix of the IVDs were also assessed using Hematoxylin and Eosin (HE), Safranin O-Fast Green and immunohistochemical staining. RESULTS All mice in the experimental group survived after the operation, and there were no complications such as wound infection, tail necrosis and suture shedding. The experimental results demonstrated that the suturing method can successfully initiate IDD. Different severity levels of IDD can be induced by controlling the bending angle of the IVDs within the tail loop; however, for consistency, histologic and imaging results should be obtained at the same bending angle and looping period. CONCLUSIONS This IDD model is an effective method for studying the etiology and treatment of degenerative IVD disease.
Collapse
Affiliation(s)
- Wei Xie
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Zemao Huang
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
- Department of Orthopaedic Surgery, Fuzhou Second General Hospital, Xiamen University, Fuzhou, China
| | - Ziyang Huang
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Zhangxin Chen
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Xie
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Lingqi Zhu
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Hui Liu
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Kejian Lian
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Paolo Alberton
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration Orthopaedic Hospital König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Dasheng Lin
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
19
|
Zhan J, Cui Y, Zhang P, Du Y, Hecker P, Zhou S, Liang Y, Zhang W, Jin Z, Wang Y, Gao W, Moroz O, Zhu L, Zhang X, Zhao K. Cartilage Endplate-Targeted Engineered Exosome Releasing and Acid Neutralizing Hydrogel Reverses Intervertebral Disc Degeneration. Adv Healthc Mater 2025; 14:e2403315. [PMID: 39555665 DOI: 10.1002/adhm.202403315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Cartilage endplate cell (CEPC) and nucleus pulposus cell (NPC) inflammation are critical factors that contribute to intervertebral disc degeneration (IVDD). Recent evidence indicated that iron ion influx, reactive oxygen species (ROS), and the cGAS-STING pathway are involved in CEPC inflammatory degeneration. Moreover, cytokines produced by degenerating CEPCs and lactic acid accumulation within the microenvironment significantly contribute to NPC inflammation. Consequently, simultaneous alleviation of CEPC inflammation and correction of the acidic microenvironment are anticipated to reverse IVDD. Herein, CEPC-targeted engineered exosomes loaded with salvianolic acid A are incorporated into a CaCO3/chitosan hydrogel, forming a composite gel, CAP-sEXOs@Gel. Notably, CAP-sEXOs@Gel shows long local retention, realizes the slow release of CAP-sEXOs and specific uptake by CEPCs. After uptake by CEPCs, CAP-sEXOs reduce intracellular iron ion and ROS by inhibiting hypoxia-inducible factor-2α (HIF-2α)/TfR1 expression. Iron ion influx and ROS inhibition contribute to the maintenance of normal mitochondrial function and reduced mtDNA leakage, suppresing the cGAS-STING pathway. Additionally, the CaCO3 component of CAP-sEXOs@Gel neutralizes H+, thereby alleviating NPC inflammation. Collectively, this novel composite hydrogel demonstrates the ability to concurrently inhibit CEPC and NPC inflammation, thereby presenting a promising therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Jiawen Zhan
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ping Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuxuan Du
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Prisca Hecker
- Department of Cognitive Science, University of California, La Jolla, San Diego, California, 92093, USA
| | - Shuaiqi Zhou
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yupeng Liang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weiye Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Zhefeng Jin
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuan Wang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weihang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Oleksandr Moroz
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liguo Zhu
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Xiaoguang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ke Zhao
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| |
Collapse
|
20
|
Wei YF, Zhang HL, Li LZ, Lv Y, Li H, Li Z, Yu FL, Jiang T, Zhang TY, Xin F, Ma C, Ren YX. Sirt1 blocks nucleus pulposus and macrophages crosstalk by inhibiting RelA/Lipocalin 2 axis. J Orthop Translat 2025; 50:30-43. [PMID: 39758288 PMCID: PMC11699611 DOI: 10.1016/j.jot.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) stands as a primary pathophysiological driver of low back pain, yet no therapeutic intervention effectively arrests its progression. Evidence shows that certain Sirt1 agonists may confer protective effects on intervertebral discs, but the underlying mechanisms remain unclear. This study aims to delineate the interaction between Sirt1 and the inflammatory microenvironment, offering potential novel avenues for IVDD prevention and treatment. Methods In vitro IL-1β-induced nucleus pulposus cells (NPCs) degenerative model and in vivo a mouse annulus fibrosus needle puncture model in Sirt1 transgenic (Sirt1TG) and the same litter WT mice were used to investigate the role of Sirt1 in homeostasis and inflammation. Mechanistic insights were obtained through RNA sequencing, co-immunoprecipitation (Co-IP), luciferase assays, and chromatin immunoprecipitation-(ChIP)-PCR. A co-culture system of Raw264.7 and NPCs was employed to assess the involvement of Lipocalin 2. Results Our study demonstrated reduced Sirt1 expression in degenerating human nucleus pulposus (NP) tissue. Both in vitro and in vivo data revealed that NP-specific overexpression of Sirt1 inhibited extracellular matrix degradation and inflammation. Mechanistically, Sirt1 suppressed the acetylation of RelA/p65 at lysine 310 and phosphorylation at serine 536, with the C-terminus of Sirt1 and the RHD-NLS domain of RelA mediating to their interaction. Furthermore, NPCs-derived Lipocalin 2 was identified as a cytokine involved in macrophage chemotaxis and M1 polarization to exacerbate inflammation. Conclusion Our work revealed that Sirt1 negatively regulates Lipocalin 2, thereby ameliorating the inflammatory milieu and blocking NPCs and macrophages crosstalk. The Translational Potential of this Article This study illuminates the crucial role and molecular mechanisms of Sirt1 in regulating the NP microenvironment. These insights shed light on strategies for the prevention and treatment of IVDD-related herniation and low back pain. By pinpointing specific biological targets, the screening of smallmolecule compounds with significant clinical implications can be facilitated. This translational innovation promises to optimize cells communication within intervertebral disc microenvironment via localized drug delivery, potentially improving patient outcomes and satisfaction following spinal fusion or discectomy surgeries.
Collapse
Affiliation(s)
- Yi-Fan Wei
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - He-Long Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Ling-Zhi Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - You Lv
- Department of Orthopaedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang, 221000, China
| | - He Li
- Department of Sports Medicine, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang, 221000, China
| | - Zhi Li
- Department of Orthopaedics, Geriatric Hospital of Nanjing Medical University, 65 Jiangsu Rd, Nanjing, 210024, China
| | - Feng-Lei Yu
- Department of Trauma and Orthopaedics, The First People's Hospital of Kunshan, 566 East Qianjin Rd, Suzhou, 215000, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Tian-You Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Feng Xin
- Department of Orthopaedics, Xuzhou Cancer Hospital, 131 Huancheng Rd, Xuzhou, 221005, China
| | - Cheng Ma
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Yong-Xin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| |
Collapse
|
21
|
Zhang T, Huang Q, Lu L, Zhou K, Hu K, Gan K. ROS-responsive Hydrogel Loaded with Allicin Suppresses Cell Apoptosis for the Treatment of Intervertebral Disc Degeneration in a Rat Model. World Neurosurg 2025; 193:675-686. [PMID: 39490768 DOI: 10.1016/j.wneu.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of lower back pain, and cell apoptosis plays a key role in its progression. This study explores the therapeutic potential of a reactive oxygen species (ROS)-responsive hydrogel loaded with allicin for treating IVDD. METHODS Allicin was encapsulated in an ROS-responsive hydrogel, and its controlled release was studied in vitro. Nucleus pulposus cells were treated with hydrogen peroxide to induce apoptosis, and the effects of the hydrogel were examined using quantitative polymerase chain reaction and Western blotting. An in vivo rat model of IVDD was also established to assess the efficacy of the treatment. RESULTS The ROS-responsive hydrogel effectively inhibited apoptosis in nucleus pulposus cells by reducing ROS levels and modulating the expression of apoptotic and antiapoptotic genes. In the rat model, the hydrogel loaded with allicin significantly reduced IVDD, preserving disc morphology and matrix integrity. CONCLUSIONS ROS-responsive hydrogel loaded with allicin shows potential as a therapeutic approach for IVDD by inhibiting cell apoptosis and reducing disc degeneration in vivo.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Qing Huang
- Department of Gynecology, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Liangjie Lu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Ke Zhou
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Keqi Hu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
22
|
Shi S, Ou X, Liu C, Li R, Zheng Q, Hu L. Nanotechnology-Enhanced Pharmacotherapy for Intervertebral Disc Degeneration Treatment. Int J Nanomedicine 2024; 19:14043-14058. [PMID: 39742093 PMCID: PMC11687283 DOI: 10.2147/ijn.s500364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/21/2024] [Indexed: 01/03/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a primary contributor to chronic back pain and disability globally, with current therapeutic approaches often proving inadequate due to the complex nature of its pathophysiology. This review assesses the potential of nanoparticle-driven pharmacotherapies to address the intricate challenges presented by IDD. We initially analyze the primary mechanisms driving IDD, with particular emphasis on mitochondrial dysfunction, oxidative stress, and the inflammatory microenvironment, all of which play pivotal roles in disc degeneration. Then, we evaluate the application of metal-phenolic and catalytic nanodots in targeting mitochondrial defects and alleviating oxidative stress within the degenerative disc environment. Additionally, multifunctional and stimuli-responsive nanoparticles are explored for their capacity to provide precise targeting and controlled therapeutic release, offering improved localization and sustained delivery. Finally, we outline future research directions and identify emerging trends in nanoparticle-based therapies, highlighting their potential to significantly advance IDD treatment by overcoming the limitations of conventional therapeutic modalities and enabling more effective, targeted management strategies.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Chao Liu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Rui Li
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Qianjin Zheng
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
23
|
Li Q, Guo R, Wu Z, Zhao C, Chen X, Wang H, Shen C. Endplate chondrocyte-derived exosomal miR-128-3p mitigates intervertebral disc degeneration by targeting TRAF6 via the miR-128-3p/TRAF6 axis to suppress pyroptosis. Int Immunopharmacol 2024; 143:113620. [PMID: 39550843 DOI: 10.1016/j.intimp.2024.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of chronic back pain and significantly impacts quality of life. The pathogenesis of IVDD is largely driven by inflammation, pyroptosis, and extracellular matrix (ECM) degradation, which current therapies fail to adequately address. In this study, we explore the therapeutic potential of exosomes derived from endplate chondrocytes (EPCs), with a particular focus on the microRNA miR-128-3p. Our findings reveal that exosomes isolated from third-generation EPCs, enriched with miR-128-3p, exhibit potent anti-inflammatory and anti-pyroptotic effects in lipopolysaccharide-treated nucleus pulposus cells, which are key contributors to IVDD pathology. Specifically, we demonstrate that miR-128-3p delivered via EPC-derived exosomes directly targets TRAF6, effectively suppressing activation of the NF-κB signaling pathway, which is known to play a pivotal role in inflammation and ECM breakdown, leading to a marked reduction in pro-inflammatory cytokine release and mitigation of ECM degradation. Importantly, third-generation EPC exosomes, with higher levels of miR-128-3p, showed superior efficacy compared to fifth-generation EPCs, underscoring the critical role of miR-128-3p in mediating these protective effects. Our research highlights the promise of EPC-derived exosomes, particularly those rich in miR-128-3p, as a novel, cell-free therapeutic approach for IVDD. Unlike current treatments that focus primarily on symptom management, our approach targets key molecular pathways underlying IVDD progression, including inflammation, pyroptosis, and ECM degradation. By elucidating the miR-128-3p/TRAF6 axis, this study provides a foundation for the development of targeted, biologically based interventions aimed at halting or even reversing IVDD, thereby offering hope for more effective and lasting therapeutic options.
Collapse
Affiliation(s)
- Qiuwei Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Ruocheng Guo
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Zuomeng Wu
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Chenhao Zhao
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xuewu Chen
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Anhui 241000, China
| | - Hong Wang
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Anhui 241000, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China.
| |
Collapse
|
24
|
Zhao K, Zhang Y, Liao Z, Zhang W, Li G, Shi P, Cheng Z, Chen Y, Li S, Wang K, Song Y, Feng X, An R, Yang C. Melatonin mitigates intervertebral disc degeneration by suppressing NLRP3 inflammasome activation via the EGR1/DDX3X pathway. FASEB J 2024; 38:e70143. [PMID: 39708233 DOI: 10.1096/fj.202302453rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 12/23/2024]
Abstract
Intervertebral disc degeneration (IVDD), is one of the leading causes of low back pain. Inflammation is considered to be the main pathophysiological process of IVDD. The nucleotide-binding domain and leucine-rich pyrin domain containing 3 (NLRP3) inflammasome-mediated inflammatory responses are critically involved in the progression of IVDD. Melatonin is known for its anti-inflammatory and antioxidant effects. However, little is known about the potential effects of melatonin in the pathological process of IVDD. We found that the expression of EGR1, DDX3X, and NLRP3 inflammasome increased and extracellular matrix (ECM) degraded in IVDD. With the application of EGR1 siRNA, the expression of DDX3X and the activation of NLRP3 inflammasome were inhibited in stress-induced NP cells. DDX3X/NLRP3 was regulated on dependence of EGR1. Besides, the utility of melatonin mitigated the EGR1-induced overproduction of DDX3X and activation of NLRP3 inflammasome, thus protecting cells from pyroptosis and ECM degradation. In vivo, in a rat IVDD model, melatonin was found to be able to delay the development of IVDD by imageological and histological evaluation. In conclusion, our study demonstrated that melatonin prevented IVDD progression by regulating EGR1/DDX3X/NLRP3 axis. Our study provides insight into melatonin as a new target for therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Xiang Q, Wu Z, Zhao Y, Tian S, Lin J, Wang L, Jiang S, Sun Z, Li W. Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases. Bone Res 2024; 12:71. [PMID: 39658574 PMCID: PMC11632072 DOI: 10.1038/s41413-024-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
26
|
Tao C, Lin S, Shi Y, Gong W, Chen M, Li J, Zhang P, Yao Q, Qian D, Ling Z, Xiao G. Inactivation of Tnf-α/Tnfr signaling attenuates progression of intervertebral disc degeneration in mice. JOR Spine 2024; 7:e70006. [PMID: 39391171 PMCID: PMC11461905 DOI: 10.1002/jsp2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and μCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.
Collapse
Affiliation(s)
- Chu Tao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Yujia Shi
- School of Biomedical SciencesThe Chinese University of Hong KongShatinHong Kong
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Jianglong Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Orthopaedics, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Dongyang Qian
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
27
|
Wang X, Song C, Zhou D, Mei Y, Cai W, Chen R, Lv J, Shi H, Liu Z. Exploring the therapeutic potential of puerarin on intervertebral disc degeneration by regulating apoptosis of nucleus pulposus cells. JOR Spine 2024; 7:e70020. [PMID: 39664589 PMCID: PMC11632247 DOI: 10.1002/jsp2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as a prevalent chronic orthopedic ailment, profoundly impacting patients' well-being due to incapacitating low back pain. Studies have highlighted a close correlation between IVDD and the programmed cell death of nucleus pulposus (NP) cells orchestrated by interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and caspase-3 (CASP3). Puerarin, renowned for its anti-inflammatory attributes and its influence on IL-1β and TNF-α, emerges as a promising candidate for IVDD treatment. However, the precise mechanism by which it regulates apoptosis via these pathways remains ambiguous. This investigation utilizes bioinformatics to unveil the molecular intricacies of puerarin-mediated apoptosis regulation in IVDD, substantiated by preliminary in vitro experiments. Analysis exposes aberrant expression of pivotal apoptosis-associated proteins (IL-1β, TNF-α, CASP3, CASP8, and BCL2) in IVDD patients, with network pharmacology indicating puerarin's potential efficacy in IVDD treatment by modulating apoptosis and cellular senescence pathways. Further experiments elucidate puerarin's capacity to stimulate NP cell proliferation while inhibiting apoptosis, potentially contributing to IVDD mitigation. Western blot and PCR outcomes reveal escalated expression of apoptosis-related proteins (IL-1β, TNF-α, and CASP3) in lipopolysaccharide-treated NPCs, ameliorated by puerarin intervention. Molecular docking simulations demonstrate favorable binding properties of puerarin with apoptotic proteins, while flow cytometry analysis indicates its ability to diminish NPC apoptosis. These discoveries imply that puerarin might alleviate NPC apoptosis by modulating key targets, thereby potentially ameliorating IVDD. In summary, this study unveils the intrinsic mechanism of puerarin in regulating NPC apoptosis to alleviate IVDD, underscoring its therapeutic promise.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Rui Chen
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Jiale Lv
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Houyin Shi
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhouChina
| |
Collapse
|
28
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Shao T, Gao Q, Tang W, Ma Y, Gu J, Yu Z. The Role of Immunocyte Infiltration Regulatory Network Based on hdWGCNA and Single-Cell Bioinformatics Analysis in Intervertebral Disc Degeneration. Inflammation 2024; 47:1987-1999. [PMID: 38630169 DOI: 10.1007/s10753-024-02020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 11/30/2024]
Abstract
Immune infiltration plays a crucial role in intervertebral disc degeneration (IDD). In this study, we explored the immune microenvironment of IDD through single-cell bioinformatics analysis. Three single-cell datasets were integrated into this study. Nucleus pulposus cells (NPCs) were divided into subgroups based on characteristic genes, and the role of each subgroup in the IDD process was analyzed through pseudo-time trajectory analysis. The hub genes were obtained using hdWGCNA, further identified by bulk datasets and pseudo-time sequence. The expression of the hub genes defined the NPCs related to immune infiltration, and the interaction between these NPCs and immunocytes was explored. The NPCs were divided into four subgroups: reserve NPCs, HCL-NPCs, response NPCs, and support NPCs, which, respectively, dominate the four processes of IDD: non, mild, moderate, and severe degeneration. SPP1 and ICAM1 were identified as the nucleus pulposus immune infiltration hub genes. Macrophages and myelocytes played pro-inflammatory roles in the SPP1-ICAM both-up NPC group through the SPP1-CD44 pathway and ICAM1-ITGB2 ligand-receptor pathway, respectively. At the same time, both-up NPCs sought self-help inflammation remission from neutrophils through the ANXA1-FPR1 pathway. The systematic analysis of the differentiation and immune infiltration landscapes helps to understand IDD's overall development process. Our data suggest that SPP1 and ICAM1 may be new targets for the treatment of inflammatory infiltration in IDD.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Qichang Gao
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Weilong Tang
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Yiming Ma
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Jiaao Gu
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Zhange Yu
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China.
| |
Collapse
|
30
|
Kamal Z. Biomechanical significance of intervertebral discs on growthplate stresses in scoliotic trunks following unilateral muscle weakening: A hybrid approach of finite element and musculoskeletal modeling. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3863. [PMID: 39404044 DOI: 10.1002/cnm.3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/23/2024] [Accepted: 08/06/2024] [Indexed: 12/06/2024]
Abstract
This study aimed to ascertain the relevance of intervertebral discs (IVD) in the stress distribution on growthplates (GPs) of a trunk model with adolescent idiopathic scoliosis (AIS) following a unilateral weakening of muscles. A thoracolumbar spine finite element (FE) model of a young female healthy and an AIS spine comprising GPs linked to the T12 through sacrum vertebrae. Two scenarios of including (FEI) and excluding (FEE) IVDs were considered. Then, using optimization-driven musculoskeletal models of the AIS and healthy trunks, the FE models were examined under subject-specific muscle forces and gravity loads. Results of this study demonstrate that when IVDs included in the FE model, an increase, ranging from 0.2 to 1.7 MPa, with the highest value occurring at the apex of the AIS model, in the von Mises stresses in the GPs. The ratio of 1.5 was found for the maximum von-Mises stress value on the most tilted GP in the FEI over the FEE model. Unilateral paralysis of muscles caused a reduction of 50% and 63% in the von Mises stress ratio of the concave-over-convex side of the most tilted GP in the FEI and FEE models of the AIS spine with healthy muscles, respectively. The intradiscal pressures, found for FEE and FEI models, assented to recent in-vivo investigations. Nonetheless, employing IVDs in the simulations provides an indispensable tool to anticipate the effects of neuromuscular disorders on GP stresses in an AIS spine and predict deformity progression during growth.
Collapse
Affiliation(s)
- Zeinab Kamal
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
31
|
Wu F, Hu X, Li X, Huang Y. Identification of KCNQ1 as a diagnostic biomarker related to endoplasmic reticulum stress for intervertebral disc degeneration based on machine learning and experimental evidence. Medicine (Baltimore) 2024; 103:e40661. [PMID: 39612444 PMCID: PMC11608675 DOI: 10.1097/md.0000000000040661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a primary cause of low back pain and disability. Cellular senescence and apoptosis due to endoplasmic reticulum stress (ERS) are key in IDD pathology. Identifying biomarkers linked to ERS in IDD is crucial for diagnosis and treatment. We utilized machine learning on gene expression profiles from the Gene Expression Omnibus database to discover biomarkers associated with ERS in IDD. Gene set enrichment analysis (GSEA) and single-sample GSEA were applied to evaluate the immunological features and biological functions of these biomarkers. The expression of KCNQ1 was experimentally validated. Machine learning identified KCNQ1 as a diagnostic biomarker for ERS in IDD, confirmed by Western blotting. GSEA indicated that KCNQ1 influences IDD primarily through the Notch signaling pathway and by regulating macrophage and monocyte infiltration. KCNQ1, identified as an ERS-associated biomarker in IDD, impacts the Notch signaling pathway and immune cell infiltration, suggesting its potential as a therapeutic target for IDD. Further validation through prospective studies and additional experimental methods is necessary to elucidate the role of KCNQ1 in IDD comprehensively.
Collapse
Affiliation(s)
- Feng Wu
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Xin Hu
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Xing Li
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Yongquan Huang
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| |
Collapse
|
32
|
Zhao Y, Mu Y, Zou Y, Lei X, Ji R, Wei B, Wei T, Lu T, He Z, Wang X, Li W, Gao B. Integrated analysis of single-cell transcriptome and structural biology approach reveals the dynamics changes of NP subtypes and roles of Menaquinone in attenuating intervertebral disc degeneration. J Biomol Struct Dyn 2024; 42:9439-9462. [PMID: 37902557 DOI: 10.1080/07391102.2023.2275172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 10/31/2023]
Abstract
Intervertebral disc degeneration (IDD) is a progressive and chronic disease, the mechanisms have been studied extensively as a whole, while the cellular heterogeneity of cells in nucleus pulposus (NP) tissues remained controversial for a long time. This study conducted integrated analysis through single-cell sequencing analysis, weighted gene co-expression network analysis (WGCNA), and differential expression analysis, to systematically decipher the longitudinal alterations of distinct NP subtypes, and also analyzed the most essential genes in the development of IDD. Then, this study further conducted structural biology method to discover the potential lead compounds through a suite of advanced approaches like high-throughput screening (HTVS), pharmaceutical characteristics assessment, CDOCKER module as well as molecular dynamics simulation, etc., aiming to ameliorate the progression of IDD. Totally 5 NP subpopulations were identified with distinct biological functions based on their unique gene expression patterns. The predominant dynamics changes mainly involved RegNPs and EffNPs, the RegNPs were mainly aggregated in normal NP tissues and drastically decreased in degenerative NP, while EffNPs, as pathogenic subtype, exhibited opposite phenomenon. Importantly, this study further reported the essential roles of Menaquinone in alleviating degenerative NP cells for the first time, which could provide solid evidence for the application of nutritional therapy in the treatment of IDD. This study combined scRNA-seq, bulk-RNA seq and HTVS techniques to systematically decipher the longitudinal changes of NP subtypes during IDD. EffNPs were considered to be 'chief culprit' in IDD progression, while the novel natural drug Menaquinone could reverse this phenomenon.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yujia Zou
- China-Japan Union Hospital, Jilin University, Jilin, China
- Department of Cardiology, Xinhua Hospital Affiliated to School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xin Lei
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Rui Ji
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bingqian Wei
- Basic Medical College, Air Force Medical University, Xi'an, China
| | - Tianyu Wei
- Basic Medical College, Air Force Medical University, Xi'an, China
| | - Tianxing Lu
- Zonglian College, Xi'an Jiaotong University, Xi'an, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Xinhui Wang
- Department of Oncology, The Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
33
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
34
|
Liu C, Chu X, Biao Y, Jin Q, Zhang Y, Gao Y, Feng S, Ma J, Zhang Y. Association between lipid-lowering agents with intervertebral disc degeneration, sciatica and low back pain: a drug-targeted mendelian randomized study and cross-sectional observation. Lipids Health Dis 2024; 23:327. [PMID: 39358768 PMCID: PMC11445963 DOI: 10.1186/s12944-024-02311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Abnormal lipid metabolism is linked to intervertebral disc degeneration (IVDD), sciatica, and low back pain (LBP), but it remains unclear whether targeted interventions can prevent these issues. This study investigated the causal effects of lipid-lowering drug use on IVDD, sciatica, and LBP development. METHODS Single-nucleotide polymorphisms (SNPs) linked to total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and non-high-density-lipoprotein cholesterol (non-HDL-C) were obtained from the Global Lipids Genetics Consortium's genome-wide association study (GWAS). Genes near HMGCR, PCSK9, and NPC1L1 were selected to represent therapeutic inhibition targets. Using Mendelian randomization (MR) focusing on these drug targets, we identified causal effects of PCSK9, HMGCR, and NPC1L1 on the risk of developing IVDD, sciatica, and LBP, with coronary heart disease risk serving as a positive control. Using summary data from Mendelian randomization (SMR) analysis, we evaluated potential therapeutic targets for IVDD, sciatica, and LBP through protein quantitative trait loci (pQTL). The genetic associations with IVDD, sciatica, LBP, and coronary heart disease were derived from FinnGen (discovery) and UK Biobank (replication). Additionally, a cross-sectional observational study was performed using data from the National Health and Nutrition Examination Survey (NHANES) to further investigate the connection between LBP and statin use, with a sample size of 4343 participants. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to assess the outcomes. RESULTS The NHANES-based cross-sectional study indicated that non-statin use was associated with an increased risk of developing LBP (OR = 1.29, 95% CI [1.04, 1.59], P = 0.019). Moreover, Inverse-variance weighting (IVW) analysis revealed that NPC1L1-mediated reductions in TC, LDL-C, and non-HDL-C concentrations were associated with a decreased risk of developing IVDD (P = 9.956E-03; P = 3.516E-02; P = 1.253E-04). Similarly, PCSK9-mediated reductions in LDL-C and TC concentrations were linked to a lower risk of developing sciatica (P = 3.825E-02; P = 2.709E-02). Sensitivity analysis confirmed the stability and reliability of the MR results. MST1 (macrophage stimulating 1) levels was inversely associated with IVDD, sciatica, and LBP risks. CONCLUSION The results of cross-sectional study suggested that non-use of statins was positively correlated with LBP. The results of Mendelian randomization study suggest that NPC1L1 could lower the risk of developing IVDD by reducing TC, LDL-C, and non-HDL-C levels. Additionally, PCSK9 may reduce the risk of developing sciatica by lowering LDL-C and TC levels. In contrast, HMGCR appears to have no significant effect on IVDD, sciatica, or LBP development. Nonetheless, further research is needed to verify these preliminary results. MST1 warrants further exploration as a potential therapeutic target. It is necessary to do further research to validate these findings.
Collapse
Affiliation(s)
- Chenxu Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xinqiao Chu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, 100053, China
| | - Yaning Biao
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China
| | - Qiubai Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, 100053, China
| | - Yufang Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China
| | - Ya Gao
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China
| | - Shuo Feng
- Guang'anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jizheng Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, 100053, China.
| | - Yixin Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
35
|
Dan X, Gu X, Zi Y, Xu J, Wang C, Li C, Hu X, Wu Z, Yu Y, Ma B. ARRB1 inhibits extracellular matrix degradation and apoptosis of nucleus pulposus cells by promoting autophagy and attenuates intervertebral disc degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119769. [PMID: 38838859 DOI: 10.1016/j.bbamcr.2024.119769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain (LBP). β-arrestin 1 (ARRB1) is a multifunctional protein that regulates numerous pathological processes. The aim of this study was to investigate the role of ARRB1 in IVDD. METHODS The expression of ARRB1 in nucleus pulposus (NP) of rats with IVDD was assayed. Next, rat nucleus pulposus cells (NPCs) were infected with lentiviruses containing shArrb1 (LV-shArrb1) and overexpressing Arrb1 (LV-oeArrb1). The roles of Arrb1 in serum-deprived NPCs were investigated by measuring apoptosis, extracellular matrix degradation, and autophagic flux. For experiments in vivo, LV-oeArrb1 lentivirus was injected into the NP tissues of IVDD rats to evaluate the effects of Arrb1 overexpression on NP. RESULTS In the NP tissues of IVDD rats, ARRB1 and cleaved caspase-3 expression increased, and the ratio of LC3II/LC3I protein expression was upregulated. Arrb1 knockdown aggravated extracellular matrix degradation, cellular apoptosis, and impairment of autophagic flux in rat NPCs under serum-deprived conditions, whereas Arrb1 overexpression significantly reversed these effects. ARRB1 interacted with Beclin 1, and Arrb1 knockdown suppressed the formation of the Beclin1-PIK3C3 core complex. The autophagy inhibitor 3-methyladenine (3-MA) offset the protective effects of Arrb1 overexpression in serum-deprived NPCs. Furthermore, Arrb1 overexpression inhibited apoptosis and extracellular matrix degradation, promoted autophagy in NP, and delayed the development of IVDD in rats. CONCLUSION ARRB1 prevents extracellular matrix degradation and apoptosis of NPCs by upregulating autophagy and ameliorating IVDD progression, presenting an innovative strategy for the treatment of IVDD.
Collapse
Affiliation(s)
- Xuejian Dan
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaochuan Gu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Ying Zi
- Department of Emergency Medicine, Air Force Hospital of the Northern Theater of Chinese People's Liberation Army (PLA), Shenyang, Liaoning, China
| | - Jiahui Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Chenggang Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Bin Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
36
|
Zhang TL, Chen WK, Huang XP, Zheng BW, Wu PF, Zheng BY, Jiang LX, Escobar D, Li J, Lv GH, Huang W, Zhou H, Xu Z, Zou MX. Single-cell RNA sequencing reveals the MIF/ACKR3 receptor-ligand interaction between neutrophils and nucleus pulposus cells in intervertebral disc degeneration. Transl Res 2024; 272:1-18. [PMID: 38823438 DOI: 10.1016/j.trsl.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES To unravel the heterogeneity and function of microenvironmental neutrophils during intervertebral disc degeneration (IDD). METHODS Single-cell RNA sequencing (scRNA-seq) was utilized to dissect the cellular landscape of neutrophils in intervertebral disc (IVD) tissues and their crosstalk with nucleus pulposus cells (NPCs). The expression levels of macrophage migration inhibitory factor (MIF) and ACKR3 in IVD tissues were detected. The MIF/ACKR3 axis was identified and its effects on IDD were investigated in vitro and in vivo. RESULTS We sequenced here 71520 single cells from 5 control and 9 degenerated IVD samples using scRNA-seq. We identified a unique cluster of neutrophils abundant in degenerated IVD tissues that highly expressed MIF and was functionally enriched in extracellular matrix organization (ECMO). Cell-to-cell communication analyses showed that this ECMO-neutrophil subpopulation was closely interacted with an effector NPCs subtype, which displayed high expression of ACKR3. Further analyses revealed that MIF was positively correlated with ACKR3 and functioned via directly binding to ACKR3 on effector NPCs. MIF inhibition attenuated degenerative changes of NPCs and extracellular matrix, which could be partially reversed by ACKR3 overexpression. Clinically, a significant correlation of high MIF/ACKR3 expression with advanced IDD grade was observed. Furthermore, we also found a positive association between MIF+ ECMO-neutrophil counts and ACKR3+ effector NPCs density as well as higher expression of the MIF/ACKR3 signaling in areas where these two cell types were neighbors. CONCLUSIONS These data suggest that ECMO-neutrophil promotes IDD progression by their communication with NPCs via the MIF/ACKR3 axis, which may shed light on therapeutic strategies.
Collapse
Affiliation(s)
- Tao-Lan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wen-Kang Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xian-Peng Huang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bo-Wen Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Peng-Fei Wu
- Department of Genetics and Endocrinology, National Children's Medical Center for South Central Region, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Bo-Yv Zheng
- Department of Orthopedics Surgery, General Hospital of the Central Theater Command, Wuhan 430061, China
| | - Ling-Xiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202 USA
| | - David Escobar
- Department of Cancer Biology, University of Toledo, College of Medicine & Life Sciences, Toledo, Ohio 43614, USA
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Huang
- Health Management Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Zhou
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhun Xu
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
37
|
Tang P, Liu B. Overactivation of NF-kB pathway can induce apoptosis by down-regulating glycolysis in human degenerative nucleus pulposus cells. Heliyon 2024; 10:e36905. [PMID: 39281505 PMCID: PMC11395756 DOI: 10.1016/j.heliyon.2024.e36905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Intervertebral disc herniation, a prevalent condition in spinal surgery that frequently results in low back pain and lower limb dysfunction, significantly impacting patients' quality of life. Several factors, including spine biomechanics, biology, nutrition, injury, and abnormal inflammatory responses, have been associated with the development of intervertebral disc herniation. Among these factors, abnormal inflammatory responses have received considerable attention as a crucial mediator of both clinical symptoms and disease progression during the intervertebral disc herniation process. However, the underlying mechanisms of inflammation-induced intervertebral disc herniation remain inadequately explored. The NF-κB (Nuclear Factor-κB) pathway plays a central role in regulating the expression of proinflammatory cytokines. Research on intervertebral disc herniation has suggested that NF-κB can activate the NLRP3 inflammasome, thereby exacerbating intervertebral disc degeneration. Targeting the NF-κB pathway has shown promise in alleviating disc degeneration and associated pain. Previous research indicated that the upregulation of the NF-κB pathway, achieved through the inhibition of A20 (zinc finger protein A20), accelerated intervertebral disc herniation. In the present study, we observed that increased activation of NF-κB pathway activation suppressed the glycolysis process in nucleus pulposus cells (NPCs), leading to NPC apoptosis. Conversely, inhibition of the NF-κB pathway overactivated promoted the restoration of glycolysis and reversed NPC apoptosis, especially when treated with Lipopolysaccharide (LPS).
Collapse
Affiliation(s)
- Pan Tang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, China
- Orthopaedic Research Laboratory of Chongqing Medical University, China
| | - Bo Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, China
- Orthopaedic Research Laboratory of Chongqing Medical University, China
| |
Collapse
|
38
|
Yang S, Liu Y, Chen B, Mi J, Tai X, Ma W. Epidemiology of Canine Wei Syndrome and Its Hemorheology Characteristics. Animals (Basel) 2024; 14:2658. [PMID: 39335249 PMCID: PMC11428416 DOI: 10.3390/ani14182658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Canine paraplegia is a common condition in small animal medicine, referred to as Wei Syndrome (WS) in Traditional Chinese Veterinary Medicine (TCVM). Common clinical manifestations encompass hind limb paralysis, motor dysfunction, muscle atrophy, and the absence of pain perception. WS is considered a difficult-to-treat disease in small animal practice. The objective of this study was to investigate the epidemiology of canine WS and the characteristics of hemorheology. A total of 53 dogs with WS and 53 healthy dogs were included in this study. A retrospective case-controlled study design was employed. Data regarding the gender, season of WS occurrence, breed, and age of dogs with WS, as well as hemorheology from dogs with WS and healthy dogs, were collected and analyzed using SPSS 27.0. The study findings revealed that male dogs were more susceptible to WS (77.36%, 41/53). WS cases occurred more frequently in Winter (33.96%, 18/53), and were commonly found in Poodle breeds (43.40%, 23/53). The most affected age of WS was between 3 and 6 years old (54.72%, 29/53). Except for plasma viscosity and fibrinogen, the hemorheology indices of canine WS were significantly higher than those of healthy dogs (p < 0.05), especially in male dogs, Poodles and Bulldogs, those between 3 to 10 years, and in Autumn and Winter. This study provides evidence that male Poodles and Bulldogs aged 3 to 6 years are more prone to developing WS, with Winter being the season of high disease incidence. Abnormal hemorheology is a characteristic feature in dogs with WS, which should be considered during the treatment of WS.
Collapse
Affiliation(s)
- Shuo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yuting Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Bingjie Chen
- Xi'an Veterinary Teaching Hospital, Northwest A&F University, Xi'an 710065, China
| | - Jie Mi
- Xi'an Veterinary Teaching Hospital, Northwest A&F University, Xi'an 710065, China
| | - Xiangbo Tai
- Xi'an Veterinary Teaching Hospital, Northwest A&F University, Xi'an 710065, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Xi'an Veterinary Teaching Hospital, Northwest A&F University, Xi'an 710065, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
39
|
Tripathi G, Guha L, Kumar H. Seeing the unseen: The role of bioimaging techniques for the diagnostic interventions in intervertebral disc degeneration. Bone Rep 2024; 22:101784. [PMID: 39040156 PMCID: PMC11261287 DOI: 10.1016/j.bonr.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Intervertebral Disc Degeneration is a pathophysiological condition that primarily affects the spinal discs, causing back pain and neurological deficits. It is caused by the contribution of several factors such as genetic predisposition, age-related degeneration, and lifestyle choices like obesity and physical activity. Even though there are medications to treat pain, there is a lack of medicines for a complete cure. The main difficulty lies in poor diagnosis of the morphological and functional changes in the disc. With the ever-increasing research on bioimaging techniques, new techniques are being developed and repurposed to evaluate disc shape and composition, and their defects like thinning or deformities on the disc, leading to the proper diagnostic intervention in intervertebral disc degeneration. In this review, we aim to present a comprehensive overview of the imaging techniques used in the pre-clinical and clinical stages for the diagnosis of intervertebral disc degeneration. First, we will discuss about patho-anatomy and the pathophysiology of degenerative disc disease with the significance and a brief description of various dyes and tracers utilized for bioimaging. Then we will shed light on the latest advancements in diagnostic modalities in intervertebral disc degeneration; concluded by an analysis of the repercussions of the methodologies and experimental systems employed in identifying mechanisms and developing therapeutic strategies in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Gyanoday Tripathi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education And Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education And Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education And Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
40
|
Yao T, Gao J, You C, Xu Y, Qiao D, Shen S, Ma J. A new animal model of lumbar disc degeneration in rabbits. Spine J 2024; 24:1519-1526. [PMID: 38437919 DOI: 10.1016/j.spinee.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/21/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND CONTEXT There are many models of lumbar disc degeneration, but mechanical stress-induced lumbar disc degeneration is rare. Here we propose a mechanical stress-induced lumbar disc degeneration model to better understand the molecular mechanism of lumbar disc degeneration under stress stimulation. PURPOSE To design a new model of lumbar disc degeneration under mechanical stress. STUDY DESIGN The anatomic approach of the oblique lateral approach to lumbar fusion surgery was used to design a longitudinal compression device across the vertebral body of the rabbit to impose longitudinal load on the lumbar disc. METHODS New Zealand white rabbits (n=30) were used. Screws were used to cross the rabbits' lumbar vertebral bodies, and both sides of the screws were pressurized. Continuous compression was then performed for 28 days. Adjacent unpressurized lumbar discs serve as controls for pressurized lumbar discs. At 28 days after surgery, micro-computed tomography (CT) and magnetic resonance imaging (MRI) were performed on the rabbits' lumbar discs. After the imaging examination, lumbar disc samples were removed, Safranin-O fast green and immunofluorescence was performed to detect the expression level of intervertebral disc degeneration-related proteins. RESULTS The CT results showed that the disc height did not decrease significantly after mechanical loading. The MRI results showed that the signals in the pressurized disc decreased 28 days after loading. The results of Safranin-O fast green showed that the cartilage component of the intervertebral disc after mechanical compression was significantly reduced. The immunofluorescence results showed that the expression of ADAMTS5 and MMP13 protein in the nucleus pulposus of the intervertebral disc after mechanical compression increased, while the expression of SOX9 decreased, and the difference was statistically significant. Aggrecan's protein expression decreased, but was not statistically significant. CONCLUSIONS This study designed a reliable model of disc degeneration in rabbits. It is more likely to mimic disc compression in the human body. CLINICAL SIGNIFICANCE This animal model can be used as a basic model to study the molecular physiological mechanisms of discogenic low back pain.
Collapse
Affiliation(s)
- Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China
| | - Chenan You
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Shaoxing University School of Medicine, Zhejiang Province, China
| | - Yining Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Shaoxing University School of Medicine, Zhejiang Province, China
| | - Di Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Shaoxing University School of Medicine, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
41
|
Qi W, Pan H, Wang D. Answer to the letter to the editor of Li S, et al. concerning "Causal associations between Sarcopenia-related traits and intervertebral disc degeneration: a two-sample mendelian randomization analysis" by Qi W, et al. (Eur Spine J [2024]: doi:10.1007/s00586-024-08291-w). EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:3293. [PMID: 39009845 DOI: 10.1007/s00586-024-08337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Weihui Qi
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| |
Collapse
|
42
|
Chen C, Deng Z, Yu Z, Chen Y, Yu T, Liang C, Ye Y, Huang Y, Lyu FJ, Liang G, Chang Y. The role of melatonergic system in intervertebral disc degeneration and its association with low back pain: a clinical study. PeerJ 2024; 12:e17464. [PMID: 39006038 PMCID: PMC11243980 DOI: 10.7717/peerj.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/05/2024] [Indexed: 07/16/2024] Open
Abstract
Objective The mechanisms of intervertebral disc degeneration (IVDD) in low back pain (LBP) patients are multiples. In this study, we attempt to investigate whether melatonergic system plays a potential role in IVDD patients with LBP by analyzing their clinical specimens. The fucus will be given to the correlation between the melatonin receptor expression and intervertebral disc tissue apoptosis. Methods In this clinical study, 107 lumbar intervertebral disc nucleus pulposus (NP) specimens from patients with LBP were collected with patients' consents. The disc height (DH) discrepancy ratio, range of motion and sagittal parameters of the pathological plane were measured and Pfirrmann grade was used to classified the grades of IVDD level. Discs at grades 1-3 were served as normal control and grades 4-5 were considered as IVDD. The expression levels of melatonin receptor 1A (MT1) and 1B (MT2) were measured by immunohistochemistry. The apoptosis of NP was assessed using TUNEL staining. Their potential associations among MT1/2, DH, apoptosis, sagittal parameters with IVDD and LBP were evaluated with statistical analysis. Results The incidence of IVDD was positively associated with age and negatively related to VAS scores for LBP (p < 0.001). Patients with higher degree of IVDD also have higher DH discrepancy ratio (p < 0.001), higher prevalence of lumbar instability (p = 0.003) and higher cell apoptosis compared to the control. Nevertheless, no statistically significant correlation was identified between Pfirrmann grade and lumbar sagittal parameters. MT1 and MT2 both were highly expressed in the NP tissues. Importantly, MT1 expression but not MT2 was significantly increased in the intervertebral disc tissue of patients with IVDD and its level correlated well with cell apoptosis level and the severity of IVDD as well as lower VAS scores for LBP. Conclusion The highly elevated MT1 expression was found in NP tissues of patients with IVDD and LBP compared to the control. This phenomenon probably reflects the compensating response of the body to the pathological alteration of the IVDD and LBP. Therefore, these findings provide the novel information to use selective agonists of MT1 to target IVDD and LBP clinically.
Collapse
Affiliation(s)
- Chong Chen
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zongyuan Deng
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengran Yu
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Chen
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Yu
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Changxiang Liang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyu Ye
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yongxiong Huang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Feng-Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guoyan Liang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunbing Chang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Yang J, Li Y, Han X, Li T, Li D, Liu Q, Yan L, Li F, Pei X, Feng Y, Lin Z, Fu Z, Wang C, Sun Q, Li C. Targeting estrogen mediated CYP4F2/CYP4F11-20-HETE metabolic disorder decelerates tumorigenesis in ER+ breast cancer. Biochem Biophys Rep 2024; 38:101706. [PMID: 38646426 PMCID: PMC11033080 DOI: 10.1016/j.bbrep.2024.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose As the most common subset of breast cancer (BC), estrogen receptor positive (ER+) BC accounting for 80% of cases, has become a global public health concern. The female hormone estrogen (E2) unequivocally drives ER + breast malignancies. The reasons that estrogen affects BC development has long been considered, yet further study remains to be conducted of the molecular events in the E2-estrogen receptor α (ERα) signaling pathway in ER + BC progression, especially lipid metabolism, so providing more options for tailored and individualized therapy. Our aim is to find out new targets and clinical biomarkers for ER + breast cancer treatment from the perspective of lipid metabolism. Methods Lipid metabolomics profiling was used to examine the membrane phospholipid stimulated by E2. Clinical BC samples were used to assess the association of CYP4F2, CYP4F11 expression with clinicopathological characteristics and patient outcomes. Some inhibitors of main enzymes in AA metabolism were used combined with E2 to assess roles of CYP4F2/CYP4F11 in the progression of ER + BC. CYP4F2, CYP4F11 overexpression and knockdown BC cell lines were employed to examine the effects of CYP4F2, CYP4F11 on cellular proliferation, apoptosis and tumor growth. Western blotting, qPCR, Immunohistochemical staining and flow cytometry were also conducted to determine the underlying mechanisms related to CYP4F2, CYP4F11 function. Results The activation of the CYP450 signaling pathway in arachidonic acid metabolism contributed to ER + BC tumorigenesis. In ER + BC, CYP4F2 and CYP4F11 overexpression induced by E2 could promote cancer cell proliferation and resistance to apoptosis by producing the metabolite 20-HETE and activating the antiapoptotic protein Bcl-2. CYP4F2 and CYP4F11 elevation correlates with poorer overall survival and disease-free survival in ER + BC patients. Conclusion CYP4F2, CYP4F11 and their metabolite 20-HETE could serve as effective prognostic markers and attractive therapeutic targets for novel anticancer drug development about ER + BC.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Qiao Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Lizhong Yan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Fei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhenkun Fu
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, PR China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
44
|
Mao T, Fan J. Myricetin Restores Autophagy to Attenuate Lumbar Intervertebral Disk Degeneration Via Negative Regulation of the JAK2/STAT3 Pathway. Biochem Genet 2024:10.1007/s10528-024-10838-x. [PMID: 38842745 DOI: 10.1007/s10528-024-10838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Autophagy is a critical player in lumbar intervertebral disk degeneration (IDD), and autophagy activation has been suggested to prevent the apoptosis of nucleus pulposus cells (NPCs). Myricetin has anti-cancer, anti-inflammatory, and antioxidant potentials and can activate autophagy. Thus, this study focused on the roles and mechanisms of myricetin in IDD. A puncture-induced rat IDD model was established and intraperitoneally injected with 20-mg/kg/day myricetin. Histopathological changes of intervertebral disks (IVDs) were assessed by hematoxylin and eosin staining and Safranin O/Fast Green staining. The isolated NPCs from IVDs of healthy rats were stimulated with IL-1β to mimic IDD-like conditions. The roles of myricetin in cell apoptosis, extracellular matrix (ECM) degradation, autophagy repression, and the JAK2/STAT3 pathway activation were examined by cell counting kit-8, flow cytometry, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence staining. Myricetin treatment attenuated the apoptosis and ECM degradation, and enhanced autophagy in the IL-1β-treated NPCs, whereas the myricetin-mediated protection was limited by autophagy inhibition. Mechanistically, myricetin activated autophagy through blocking the JAK2/STAT3 signaling. In vivo experiments revealed that intraperitoneal injection of myricetin activated NPC autophagy to relieve puncture injury in rats. Myricetin prevents IDD by attenuating NPC apoptosis and ECM degradation through blocking the JAK2/STAT3 pathway to enhance autophagy.
Collapse
Affiliation(s)
- Tian Mao
- School of Acupuncture-Moxibustion and Orthopedic, Hubei University of Chinese Medicine, Wuhan, 430060, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
45
|
Qi W, Mei Z, Mao X, Zhu L, Shao Y, Ge G, Zhang W, Pan H, Wang D. Causal associations between sarcopenia-related traits and intervertebral disc degeneration: a two-sample mendelian randomization analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2430-2438. [PMID: 38733399 DOI: 10.1007/s00586-024-08291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Sarcopenia (SP) and intervertebral disc degeneration (IVDD) have a higher incidence in the elderly population. Previous studies have indicated a potential association between SP and IVDD. The objective of this study is to elucidate the potential causal relationship between sarcopenia-related traits and IVDD through Two-sample Mendelian randomization (MR) analysis. METHODS We utilized a genome-wide association study conducted on the European population to collect aggregated data on sarcopenia and IVDD. Inverse variance weighting was primarily employed, supplemented by MR Egger, weighted median, simple model, and weighted model methods. Additionally, sensitivity analysis was performed to assess the robustness of the findings. RESULTS Appendicular lean mass is positively associated with "Other intervertebral disc disorders" (OIDD) and "Prolapsed or slipped disc" (POSD) (OIDD: p = 0.002, OR = 1.120; POSD: p < 0.001, OR = 1.003), while grip strength (GS) is positively associated with POSD (left: p = 0.004, OR = 1.008; right: p < 0.001, OR = 1.010). It is worth mentioning that walking pace has significant causal relationship with "Low back pain" (LBP), "Lower back pain or/and sciatica" (LBPOAS), "Sciatica with lumbago" (SWL) and OIDD (LBP: p < 0.001, OR = 0.204; LBPOAS: p < 0.001, OR = 0.278; SWL: p = 0.003, OR = 0.249; OIDD: p < 0.001, OR = 0.256). CONCLUSION The present study revealed the causal relationship between SP-related traits and IVDD and recommended to prevent and treat sarcopenia as a means of preventing IVDD in clinic practice.
Collapse
Affiliation(s)
- Weihui Qi
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou, 310021, China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Zhenglin Mei
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Xinning Mao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou, 310021, China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Hangzhou, 310021, China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| |
Collapse
|
46
|
Zheng Q, Lin R, Wang D, Zheng C, Xu W. Effects of circulating inflammatory proteins on spinal degenerative diseases: Evidence from genetic correlations and Mendelian randomization study. JOR Spine 2024; 7:e1346. [PMID: 38895179 PMCID: PMC11183170 DOI: 10.1002/jsp2.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Background Numerous investigations have suggested links between circulating inflammatory proteins (CIPs) and spinal degenerative diseases (SDDs), but causality has not been proven. This study used Mendelian randomization (MR) to investigate the causal associations between 91 CIPs and cervical spondylosis (CS), prolapsed disc/slipped disc (PD/SD), spinal canal stenosis (SCS), and spondylolisthesis/spondylolysis. Methods Genetic variants data for CIPs and SDDs were obtained from the genome-wide association studies (GWAS) database. We used inverse variance weighted (IVW) as the primary method, analyzing the validity and robustness of the results through pleiotropy and heterogeneity tests and performing reverse MR analysis to test for reverse causality. Results The IVW results with Bonferroni correction indicated that beta-nerve growth factor (β-NGF), C-X-C motif chemokine 6 (CXCL6), and interleukin-6 (IL-6) can increase the risk of CS. Fibroblast growth factor 19 (FGF19), sulfotransferase 1A1 (SULT1A1), and tumor necrosis factor-beta (TNF-β) can increase PD/SD risk, whereas urokinase-type plasminogen activator (u-PA) can decrease the risk of PD/SD. FGF19 and TNF can increase SCS risk. STAM binding protein (STAMBP) and T-cell surface glycoprotein CD6 isoform (CD6 isoform) can increase the risk of spondylolisthesis/spondylolysis, whereas monocyte chemoattractant protein 2 (MCP2) and latency-associated peptide transforming growth factor beta 1 (LAP-TGF-β1) can decrease spondylolisthesis/spondylolysis risk. Conclusions MR analysis indicated the causal associations between multiple genetically predicted CIPs and the risk of four SDDs (CS, PD/SD, SCS, and spondylolisthesis/spondylolysis). This study provides reliable genetic evidence for in-depth exploration of the involvement of CIPs in the pathogenic mechanism of SDDs and provides novel potential targets for SDDs.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Rongjie Lin
- Department of Orthopedic SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People's HospitalBeijingChina
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Weihong Xu
- Department of Spinal SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
47
|
Wang Z, Zhu D, Yang F, Chen H, Kang J, Liu W, Lin A, Kang X. POSTN knockdown suppresses IL-1β-induced inflammation and apoptosis of nucleus pulposus cells via inhibiting the NF-κB pathway and alleviates intervertebral disc degeneration. J Cell Commun Signal 2024; 18:e12030. [PMID: 38946726 PMCID: PMC11208126 DOI: 10.1002/ccs3.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024] Open
Abstract
The aim of this study is to investigate the effects of POSTN on IL-1β induced inflammation, apoptosis, NF-κB pathway and intervertebral disc degeneration (IVDD) in Nucleus pulposus (NP) cells (NPCs). NP tissue samples with different Pfirrmann grades were collected from patients with different degrees of IVDD. Western blot and immunohistochemical staining were used to compare the expression of POSTN protein in NP tissues. Using the IL-1β-induced IVDD model, NPCs were transfected with lentivirus-coated si-POSTN to down-regulate the expression of POSTN and treated with CU-T12-9 to evaluate the involvement of NF-κB pathway. Western blot, immunofluorescence, and TUNEL staining were used to detect the expression changes of inflammation, apoptosis and NF-κB pathway-related proteins in NPCs. To investigate the role of POSTN in vivo, a rat IVDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-POSTN, and H&E staining and immunohistochemical staining were performed. POSTN expression is positively correlated with the severity of IVDD in human. POSTN expression was significantly increased in the IL-1β-induced NPCs degeneration model. Downregulation of POSTN protects NPCs from IL-1β-induced inflammation and apoptosis. CU-T12-9 treatment reversed the protective effect of si-POSTN on NPCs. Furthermore, lentivirus-coated si-POSTN injection partially reversed NP tissue damage in the IVDD model in vivo. POSTN knockdown reduces inflammation and apoptosis of NPCs by inhibiting NF-κB pathway, and ultimately prevents IVDD. Therefore, POSTN may be an effective target for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhaoheng Wang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Daxue Zhu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Fengguang Yang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Haiwei Chen
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Jihe Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Wenzhao Liu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Aixin Lin
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xuewen Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
48
|
Li M, Yu X, Chen X, Jiang Y, Zeng Y, Ren R, Nie M, Zhang Z, Bao Y, Kang H. Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence. Int Immunopharmacol 2024; 133:112101. [PMID: 38640717 DOI: 10.1016/j.intimp.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1β-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1β. Furthermore, genkwanin alleviated Interleukin-1β-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongqiao Jiang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunqian Zeng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ranyue Ren
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mingbo Nie
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hao Kang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
49
|
Chen E, Li M, Liao Z, Yao D, Li Y, Huang L. Phillyrin reduces ROS production to alleviate the progression of intervertebral disc degeneration by inhibiting NF-κB pathway. J Orthop Surg Res 2024; 19:308. [PMID: 38773639 PMCID: PMC11110443 DOI: 10.1186/s13018-024-04695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is an increasingly important cause of low back pain (LBP) that results in substantial health and economic burdens. Inflammatory pathway activation and the production of reactive oxygen species (ROS) play vital roles in the progression of IDD. Several studies have suggested that phillyrin has a protective role and inhibits inflammation and the production of ROS. However, the role of phillyrin in IDD has not been confirmed. PURPOSE The purpose of this study was to investigate the role of phillyrin in IDD and its mechanisms. STUDY DESIGN To establish IDD models in vivo, ex-vivo, and in vitro to verify the function of phillyrin in IDD. METHOD The effects of phillyrin on extracellular matrix (ECM) degeneration, inflammation, and oxidation in nucleus pulposus (NP) cells were assessed using immunoblotting and immunofluorescence analysis. Additionally, the impact of phillyrin administration on acupuncture-mediated intervertebral disc degeneration (IDD) in rats was evaluated using various techniques such as MRI, HE staining, S-O staining, and immunohistochemistry (IHC). RESULT Pretreatment with phillyrin significantly inhibited the IL-1β-mediated reduction in the degeneration of ECM and apoptosis by alleviating activation of the NF-κB inflammatory pathway and the generation of ROS. In addition, in vivo and ex-vivo experiments verified the protective effect of phillyrin against IDD. CONCLUSION Phillyrin can attenuate the progression of IDD by reducing ROS production and activating inflammatory pathways.
Collapse
Affiliation(s)
- Enming Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zhuangyao Liao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Dengbo Yao
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Shenzhen, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Lin Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
50
|
Morimoto T, Kobayashi T, Ito H, Tsukamoto M, Yoshihara T, Hirata H, Otani K, Izuhara K, Nunomura S, Mawatari M. Serum periostin levels correlate with severity of intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2007-2013. [PMID: 38340176 DOI: 10.1007/s00586-024-08162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE Periostin, an extracellular matrix protein closely related to mechanical stress, inflammation, and ageing, has been implicated in intervertebral disc degeneration (IVDD) in basic research. However, it has not been examined in clinical cases. This study aimed to evaluate the association between IVDD severity and serum periostin concentration as well as to analyse potential associations between IVDD and clinical and demographic factors. METHODS This retrospective cohort study included 198 patients who underwent lumbar disc herniation and lumbar canal stenosis between January 2020 and December 2022. The severity of IVDD was evaluated using the Pfirrmann grading, whereas serum periostin levels were measured using ELISA kits. Clinical demographics, including age, sex, body mass index, comorbidities, psoas muscle index, and spinal disease, were also recorded. RESULTS This study demonstrated a significant correlation between high serum periostin levels and IVDD severity, as indicated by a high cumulative Pfirrmann score. Serum periostin levels were identified as an independent risk factor for IVDD in a multivariate regression model. Correlation analysis showed a correlation between periostin levels and Pfirrmann grade at each lumbar level (ρ = 0.458-0.550, p < 0.001) and a strong correlation with cumulative Pfirrmann score (ρ = 0.690, p < 0.001). CONCLUSION The higher the serum periostin level, the higher the cumulative Pfirrmann score. Multivariate analysis showed that serum periostin was an independent risk factor for IVDD. Periostin levels may be a clinically suitable and useful biomarker for diagnosing IVDD, estimating disease progression and activity, providing prognostic information, and evaluating treatment options.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan.
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan
| | - Hayato Ito
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan
| | - Tomohito Yoshihara
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan
| | - Koji Otani
- Department of Orthopaedic Surgery, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga University, Saga, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan
| |
Collapse
|