1
|
Santos-Sousa DC, da Rosa S, Filippi-Chiela E. Molecular signatures of cellular senescence in cancer: a critical review of prognostic implications and therapeutic opportunities. Mech Ageing Dev 2025; 225:112052. [PMID: 40120861 DOI: 10.1016/j.mad.2025.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Cellular senescence is a state of permanent loss of proliferative capacity. Therefore, cells that reach a senescent state prevent tumor initiation, acting as an anti-tumor mechanism. However, despite not being proliferative, senescent cells have high secretory activity, constituting the Senescence-Associated Secretory Phenotype (SASP). SASP includes thousands of soluble molecules and extracellular vesicles, through which senescent cells can affect other cells and the extracellular matrix. In advanced tumors, the enrichment of senescent cells can have anti- or pro-tumor effects depending on features like SASP composition, tumor microenvironment (TME) composition, the anatomic site, histopathologic characteristics of malignancy, and tumor molecular background. We reviewed the studies assessing the impact of the senescence status, measured by mRNA or lncRNA molecular signatures, in the prognosis and other clinically relevant information in cancer, including anti-tumor immunity and response to therapy. We discussed the pros and cons of different strategies to define those molecular signatures and the main limitations of the studies. Finally, we also raised clinical challenges regarding the crossroad between cellular senescence and cancer prognosis, including some therapeutic opportunities in the field.
Collapse
Affiliation(s)
- Débora C Santos-Sousa
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil.
| | - Solon da Rosa
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil.
| | - Eduardo Filippi-Chiela
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul 90035-903, Brazil; Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| |
Collapse
|
2
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
3
|
Zhao C, Kong K, Liu P, Chen X, Rong K, Zhang P, Wang L, Wang X. Regulating obesity-induced osteoarthritis by targeting p53-FOXO3, osteoclast ferroptosis, and mesenchymal stem cell adipogenesis. Nat Commun 2025; 16:4532. [PMID: 40374649 PMCID: PMC12081733 DOI: 10.1038/s41467-025-59883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2025] [Indexed: 05/17/2025] Open
Abstract
Obesity-related osteoarthritis (OA) and the molecular mechanisms governing multiple joint structural changes that occur with obesity are not well understood. This study investigated the progression of obesity in mice and validated the results using human joint samples post-arthroplasty. The results show that obesity is associated with the degeneration of the cartilage layer and abnormal remodeling of the subchondral bone layer, and this occurs alongside aging and DNA damage in chondrocytes, osteoclasts, and stem cells. Regulation of p53-FOXO3 gene loop expression in response to DNA damage effectively inhibits chondrocyte apoptosis, catabolism, and excessive osteoclast differentiation, while the intra-articular delivery of a lentivirus expressing FOXO3 to mouse joints alleviates the progression of OA. The excessive differentiation of subchondral bone marrow osteoclasts is ferroptosis-dependent and driven by the senescence-associated secretory phenotype. The results have identified multiple potential targets for future research into the progression of obesity-related OA.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Kong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Rim C, Sung S, Kim HJ, Kim SH, Nahm M, Kwon MS. Nuclear Profilin-1 for DNA Damage Repair Is Involved in Phagocytic Impairment of Senescent Microglia. Glia 2025. [PMID: 40317528 DOI: 10.1002/glia.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Accumulation of DNA damage is a hallmark of cellular senescence and plays a critical role in brain aging. Although the DNA damage repair mechanisms are crucial in cellular senescence, they are not well understood in microglia. In this study, we found that profilin-1 (PFN1), an actin-binding protein, relocates from the cytoplasm to the nucleus in response to DNA double-strand breaks (DSBs) induced by doxorubicin. This nuclear PFN1 subsequently translocates back to the cytoplasm during the recovery period. In response to DSBs, we detected enhanced expression of genes associated with nonhomologous end joining (NHEJ), but not with homologous recombination (HR), along with increased nuclear F-actin accumulation. However, this repair process is compromised when PFN1 is either knocked down or its nuclear transport is blocked. Notably, in DNA damage-induced senescent microglia, increased nuclear localization of PFN1 and nuclear F-actin formation are associated with phagocytic dysfunction. Both ex vivo aged microglia and publicly available single-cell RNA sequencing data from aged mouse brains recapitulate the in vitro findings described above. Despite cytochalasin D treatment for actin depolymerization, the return of PFN1 to the cytoplasm was not facilitated due to its aggregation. We propose that PFN1 plays an important role in DNA damage repair in microglia. In addition, the dysregulation of the nucleocytoplasmic balance of PFN1 alongside DNA damage accumulation may contribute to the phagocytic impairment of microglia in the aged brain.
Collapse
Affiliation(s)
- Chan Rim
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Soyoung Sung
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hui-Ju Kim
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, Seongnam-si, Gyeonggi-do, Republic of Korea
- Brainimmunex Inc. 7F, Gyeonggi Bio Center, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Donovan LJ, Brewer CL, Bond SF, Laslavic AM, Pena Lopez A, Colman L, Jordan CE, Hansen LH, González OC, Pujari A, de Lecea L, Quarta M, Kauer JA, Tawfik VL. Aging and injury drive neuronal senescence in the dorsal root ganglia. Nat Neurosci 2025; 28:985-997. [PMID: 40369367 PMCID: PMC12081305 DOI: 10.1038/s41593-025-01954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2025] [Indexed: 05/16/2025]
Abstract
Aging negatively impacts central nervous system function; however, there is limited information about the cellular impact of aging on peripheral nervous system function. Importantly, injury to vulnerable peripheral axons of dorsal root ganglion (DRG) neurons results in somatosensory dysfunction, such as pain, at higher rates in aged individuals. Cellular senescence is common to both aging and injury and contributes to the aged pro-inflammatory environment. We discovered DRG neuron senescence in the context of aging and pain-inducing peripheral nerve injury in young (~3 months) and aged (~24 months) male and female mice. Senescent neurons were dynamic and heterogeneous in their expression of multiple senescence markers, including pro-inflammatory factor IL6. Senescence marker-expressing neurons had nociceptor-like profiles, included high-firing phenotypes and displayed increased excitability after IL6 application. Furthermore, elimination of senescent cells resulted in improvement of nociceptive behaviors in nerve-injured mice. Finally, male and female post-mortem human DRG contained senescent neurons that increased with age (~32 years old versus 65 years old). Overall, we describe a susceptibility of the peripheral nervous system to neuronal senescence-a potential targetable mechanism to treat sensory dysfunction, such as chronic pain, particularly in aged populations.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.
| | - Chelsie L Brewer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sabrina F Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | | | - Aleishai Pena Lopez
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Laura Colman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Claire E Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Linus H Hansen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Oscar C González
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
7
|
Légaré C, Berglund JA, Duchesne E, Dumont NA. New Horizons in Myotonic Dystrophy Type 1: Cellular Senescence as a Therapeutic Target. Bioessays 2025; 47:e202400216. [PMID: 39723693 PMCID: PMC11848125 DOI: 10.1002/bies.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging). This hypervariable disease affects multiple systems, such as the musculoskeletal, central nervous, gastrointestinal, and others. Despite advances in understanding the underlying pathogenic mechanism of DM1, numerous gaps persist in our understanding, hindering elucidation of the heterogeneity and severity of its symptoms. Accumulating evidence indicates that the toxic intracellular RNA accumulation associated with DM1 triggers cellular senescence. These cells are in a state of irreversible cell cycle arrest and secrete a cocktail of cytokines, referred to as a senescence-associated secretory phenotype (SASP), that can have harmful effects on neighboring cells and more broadly. We hypothesize that cellular senescence contributes to the pathophysiology of DM1, and clearance of senescent cells is a promising therapeutic approach for DM1. We will discuss the therapeutic potential of different senotherapeutic drugs, especially senolytics that eliminate senescent cells, and senomorphics that reduce SASP expression.
Collapse
Affiliation(s)
- Cécilia Légaré
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
| | - J. Andrew Berglund
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- Department of Biological Sciences, College of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
| | - Elise Duchesne
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris)Centre Intégré Universitaire de Santé et de Services Sociaux Capitale‐NationaleQuébecQuebecCanada
| | - Nicolas A. Dumont
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- School of rehabilitationFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
8
|
González I, Maldonado-Agurto R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J Physiol 2025. [PMID: 39977444 DOI: 10.1113/jp287387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Haemodialysis (HD) is often required for patients with end-stage renal disease. Arteriovenous fistulas (AVFs), a surgical procedure connecting an artery to a vein, are the preferred vascular access for HD due to their durability and lower complication rates. The aim of AVFs is to promote vein remodelling to accommodate increased blood flow needed for dialysis. However, many AVFs fail to mature properly, making them unsuitable for dialysis. Successful maturation requires remodelling, resulting in an increased luminal diameter and thickened walls to support the increased blood flow. After AVF creation, haemodynamic changes due to increased blood flow on the venous side of the AVF initiate a cascade of events that, when successful, lead to the proper maturation of the AVF, making it suitable for cannulation. In this process, endothelial cells play a crucial role since they are in direct contact with the frictional forces exerted by the blood, known as shear stress. Patients requiring HD often have other conditions that increase the burden of senescent cells, such as ageing, diabetes and hypertension. These senescent cells are characterized by irreversible growth arrest and the secretion of pro-inflammatory and pro-thrombotic factors, collectively known as the senescence-associated secretory phenotype (SASP). This accumulation can impair vascular function by promoting inflammation, reducing vasodilatation, and increasing thrombosis risk, thus hindering proper AVF maturation and function. This review explores the contribution of senescent endothelial cells to AVF maturation and explores potential therapeutic strategies to alleviate the effects of senescent cell accumulation, aiming to improve AVF maturation rates.
Collapse
Affiliation(s)
- Ignacia González
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
9
|
Wang C, Li X, Tang Q, Wu J, Chen JG. Induction of age-related ocular disorders in a mouse model of pulmonary fibrosis. Exp Eye Res 2025; 251:110238. [PMID: 39800285 DOI: 10.1016/j.exer.2025.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease linked to aging. This study investigates potential connections between IPF and age-related eye problems using a bleomycin-induced IPF mouse model. Intratracheal administration of bleomycin induces rapid lung injury in mice, followed by IPF with characteristics of cellular senescence. IPF-injured mice had reduced amplitudes of scotopic ERG and immunostaining of visual arrestin, suggesting declined rod-related visual function. Interestingly, the mice's eyes also showed increased susceptibility to Staphylococcus aureus infections, reminiscent of the aging eyes. To determine whether an early onset of aging contributes to the eye disorders, we examined complement and senescence markers in the retina. In bleomycin-injury IPF mice, DNA damage-related senescence marker γH2AX was found in the retinal out nuclear layer where photoreceptors are located. Additionally, IPF mice displayed elevated levels of C3b, a complement fragment resulting from C3 activation that occurs frequently in aging eyes. These findings underscore the potential of IPF as a valuable mouse model for investigating early-onset age-related ocular disorders.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, PR China
| | - Xue Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, PR China
| | - Qi Tang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, PR China
| | - Jialu Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, PR China
| | - Jie-Guang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, PR China.
| |
Collapse
|
10
|
Ding H, Zhang Q, Yang R, Fu L, Jiang H, Zhu Q, Tai S. Aberrant STING activation promotes macrophage senescence by suppressing autophagy in vascular aging from diabetes. iScience 2025; 28:111594. [PMID: 39834861 PMCID: PMC11742833 DOI: 10.1016/j.isci.2024.111594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Diabetic vascular aging is driven by macrophage senescence, which propagates senescence-associated secretory phenotypes (SASP), exacerbating vascular dysfunction. This study utilized a type 2 diabetes mellitus (T2DM) mouse model induced by streptozotocin injection and a high-fat diet to investigate the role of STING in macrophage senescence. Vascular aging markers and senescent macrophages were assessed in vivo, while in vitro, high glucose treatment induced macrophage senescence, enhancing senescence in co-cultured vascular smooth muscle cells. Mechanistic studies revealed that STING activation inhibits autophagy by phosphorylating ULK1 at S757, accelerating senescence. Pharmacological modulation showed that the STING inhibitor H-151 alleviates, while the agonist DMXAA enhances, senescence. These findings highlight the STING-autophagy axis as a critical driver of macrophage senescence, offering insights into the molecular mechanisms of diabetic vascular aging and identifying potential therapeutic targets to mitigate vascular complications in diabetes.
Collapse
Affiliation(s)
- Huiqing Ding
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Quan Zhang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Rukai Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Liyao Fu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hejun Jiang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Qingyi Zhu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
11
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
13
|
Chen H, Lee YJ, Ovando-Ricardez JA, Rosas L, Rojas M, Mora AL, Bar-Joseph Z, Lugo-Martinez J. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. CELL REPORTS METHODS 2024; 4:100864. [PMID: 39326411 PMCID: PMC11574286 DOI: 10.1016/j.crmeth.2024.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Many popular spatial transcriptomics techniques lack single-cell resolution. Instead, these methods measure the collective gene expression for each location from a mixture of cells, potentially containing multiple cell types. Here, we developed scResolve, a method for recovering single-cell expression profiles from spatial transcriptomics measurements at multi-cellular resolution. scResolve accurately restores expression profiles of individual cells at their locations, which is unattainable with cell type deconvolution. Applications of scResolve on human breast cancer data and human lung disease data demonstrate that scResolve enables cell-type-specific differential gene expression analysis between different tissue contexts and accurate identification of rare cell populations. The spatially resolved cellular-level expression profiles obtained through scResolve facilitate more flexible and precise spatial analysis that complements raw multi-cellular level analysis.
Collapse
Affiliation(s)
- Hao Chen
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Young Je Lee
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jose A Ovando-Ricardez
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lorena Rosas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mauricio Rojas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ana L Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ziv Bar-Joseph
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jose Lugo-Martinez
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
15
|
Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D. Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence. FRONTIERS IN AGING 2024; 5:1448543. [PMID: 39267611 PMCID: PMC11390594 DOI: 10.3389/fragi.2024.1448543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8-11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.
Collapse
Affiliation(s)
- R-L Scanlan
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Pease
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - H O'Keefe
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - A Martinez-Guimera
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Wordsworth
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - D Shanley
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
16
|
Zhao C, Rong K, Liu P, Kong K, Li H, Zhang P, Chen X, Fu Q, Wang X. Preventing periprosthetic osteolysis in aging populations through lymphatic activation and stem cell-associated secretory phenotype inhibition. Commun Biol 2024; 7:962. [PMID: 39122919 PMCID: PMC11315686 DOI: 10.1038/s42003-024-06664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
With increases in life expectancy, the number of patients requiring joint replacement therapy and experiencing periprosthetic osteolysis, the most common complication leading to implant failure, is growing or underestimated. In this study, we found that osteolysis progression and osteoclast differentiation in the surface of the skull bone of adult mice were accompanied by significant expansion of lymphatic vessels within bones. Using recombinant VEGF-C protein to activate VEGFR3 and promote proliferation of lymphatic vessels in bone, we counteracted excessive differentiation of osteoclasts and osteolysis caused by titanium alloy particles or inflammatory cytokines LPS/TNF-α. However, this effect was not observed in aged mice because adipogenically differentiated mesenchymal stem cells (MSCs) inhibited the response of lymphatic endothelial cells to agonist proteins. The addition of the JAK inhibitor ruxolitinib restored the response of lymphatic vessels to external stimuli in aged mice to protect against osteolysis progression. These findings suggest that inhibiting SASP secretion by adipogenically differentiated MSCs while activating lymphatic vessels in bone offers a new method to prevent periprosthetic osteolysis during joint replacement follow-up.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Kong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haikuo Li
- Division of Biology & Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Pu Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Stuart A, de Lange T. Replicative senescence is ATM driven, reversible, and accelerated by hyperactivation of ATM at normoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600514. [PMID: 38979390 PMCID: PMC11230194 DOI: 10.1101/2024.06.24.600514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed telomere shortening limits tumorigenesis through the induction of replicative senescence. Here we address three long-standing questions concerning senescence. First, we show that the ATM kinase is solely responsible for the induction of replicative senescence. Senescence was delayed by ATM inhibition (ATMi) or overexpression of TRF2, the shelterin subunit dedicated to ATM repression. In contrast, there was no evidence for ATR signaling contributing to replicative senescence even when ATMi was combined with ATR inhibition. Second, we show ATMi can induce apparently normal cell divisions in a subset of senescent cells, indicating that senescence can be reversed. Third, we show that the extended replicative life span at low (physiological) oxygen is due to diminished ATM activity. At low oxygen, cells show a decreased ATM response to dysfunctional telomeres and genome-wide DSBs compared to 20% oxygen. As this effect could be reversed by NAC, the attenuated response of ATM to critically short telomeres and the resulting extended life span at low oxygen is likely due to ROS-induced formation of cysteine disulfide-bridges that crosslink ATM dimers into a form that is not activated by DSBs. These findings show how primary human cells detect shortened telomeres and reveal the molecular mechanism underlying the telomere tumor suppressor pathway.
Collapse
Affiliation(s)
- Alexander Stuart
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
18
|
Pretto L, Nabinger E, Filippi-Chiela EC, Fraga LR. Cellular senescence in reproduction: a two-edged sword†. Biol Reprod 2024; 110:660-671. [PMID: 38480995 DOI: 10.1093/biolre/ioae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/16/2024] Open
Abstract
Cellular senescence (CS) is the state when cells are no longer capable to divide even after stimulation with grown factors. Cells that begin to undergo CS stop in the cell cycle and enter a suspended state without committing to programmed cell death. These cells assume a specific phenotype and influence their microenvironment by secreting molecules and extracellular vesicles that are part of the so-called senescent cell-associated secretory phenotype (SASP). Cellular senescence is intertwined with physiological and pathological conditions in the human organism. In terms of reproduction, senescent cells are present from reproductive tissues and germ cells to gestational tissues, and participate from fertilization to delivery, going through adverse reproductive outcomes such as pregnancy losses. Furthermore, various SASP molecules are enriched in gestational tissues throughout pregnancy. Thus, the aim of this review is to provide a basis about the features and potential roles played by CS throughout the reproductive process, encompassing its implication in each step of it and proposing a way to manage it in adverse reproductive contexts.
Collapse
Affiliation(s)
- Luiza Pretto
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduarda Nabinger
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Cremonesi Filippi-Chiela
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Teratology Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
19
|
Raviola S, Griffante G, Iannucci A, Chandel S, Lo Cigno I, Lacarbonara D, Caneparo V, Pasquero S, Favero F, Corà D, Trisolini E, Boldorini R, Cantaluppi V, Landolfo S, Gariglio M, De Andrea M. Human cytomegalovirus infection triggers a paracrine senescence loop in renal epithelial cells. Commun Biol 2024; 7:292. [PMID: 38459109 PMCID: PMC10924099 DOI: 10.1038/s42003-024-05957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.
Collapse
Affiliation(s)
- Stefano Raviola
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Gloria Griffante
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Andrea Iannucci
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Shikha Chandel
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Irene Lo Cigno
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Lacarbonara
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Valeria Caneparo
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
| | - Selina Pasquero
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Francesco Favero
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Corà
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Elena Trisolini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Marisa Gariglio
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy.
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| |
Collapse
|
20
|
Rim C, You MJ, Nahm M, Kwon MS. Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Transl Neurodegener 2024; 13:10. [PMID: 38378788 PMCID: PMC10877780 DOI: 10.1186/s40035-024-00402-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Brain aging is a recognized risk factor for neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), but the intricate interplay between brain aging and the pathogenesis of these conditions remains inadequately understood. Cellular senescence is considered to contribute to cellular dysfunction and inflammaging. According to the threshold theory of senescent cell accumulation, the vulnerability to neurodegenerative diseases is associated with the rates of senescent cell generation and clearance within the brain. Given the role of microglia in eliminating senescent cells, the accumulation of senescent microglia may lead to the acceleration of brain aging, contributing to inflammaging and increased vulnerability to neurodegenerative diseases. In this review, we propose the idea that the senescence of microglia, which is notably vulnerable to aging, could potentially serve as a central catalyst in the progression of neurodegenerative diseases. The senescent microglia are emerging as a promising target for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chan Rim
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Min-Jung You
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
- Brainimmunex Inc., 26 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13522, Republic of Korea.
| |
Collapse
|
21
|
Kita A, Yamamoto S, Saito Y, Chikenji TS. Cellular senescence and wound healing in aged and diabetic skin. Front Physiol 2024; 15:1344116. [PMID: 38440347 PMCID: PMC10909996 DOI: 10.3389/fphys.2024.1344116] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Cellular senescence is a biological mechanism that prevents abnormal cell proliferation during tissue repair, and it is often accompanied by the secretion of various factors, such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). SASP-mediated cell-to-cell communication promotes tissue repair, regeneration, and development. However, senescent cells can accumulate abnormally at injury sites, leading to excessive inflammation, tissue dysfunction, and intractable wounds. The effects of cellular senescence on skin wound healing can be both beneficial and detrimental, depending on the condition. Here, we reviewed the functional differences in cellular senescence that emerge during wound healing, chronic inflammation, and skin aging. We also review the latest mechanisms of wound healing in the epidermis, dermis, and subcutaneous fat, with a focus on cellular senescence, chronic inflammation, and tissue regeneration. Finally, we discuss the potential clinical applications of promoting and inhibiting cellular senescence to maximize benefits and minimize detrimental effects.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | |
Collapse
|
22
|
Alessio N, Aprile D, Peluso G, Mazzone V, Patrone D, Di Bernardo G, Galderisi U. IGFBP5 is released by senescent cells and is internalized by healthy cells, promoting their senescence through interaction with retinoic receptors. Cell Commun Signal 2024; 22:122. [PMID: 38351010 PMCID: PMC10863175 DOI: 10.1186/s12964-024-01469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Cells that are exposed to harmful genetic damage, either from internal or external sources, may undergo senescence if they are unable to repair their DNA. Senescence, characterized by a state of irreversible growth arrest, can spread to neighboring cells through a process known as the senescence-associated secretory phenotype (SASP). This phenomenon contributes to both aging and the development of cancer. The SASP comprises a variety of factors that regulate numerous functions, including the induction of secondary senescence, modulation of immune system activity, remodeling of the extracellular matrix, alteration of tissue structure, and promotion of cancer progression. Identifying key factors within the SASP is crucial for understanding the underlying mechanisms of senescence and developing effective strategies to counteract cellular senescence. Our research has specifically focused on investigating the role of IGFBP5, a component of the SASP observed in various experimental models and conditions.Through our studies, we have demonstrated that IGFBP5 actively contributes to promoting senescence and can induce senescence in neighboring cells. We have gained valuable insights into the mechanisms through which IGFBP5 exerts its pro-senescence effects. These mechanisms include its release following genotoxic stress, involvement in signaling pathways mediated by reactive oxygen species and prostaglandins, internalization via specialized structures called caveolae, and interaction with a specific protein known as RARα. By uncovering these mechanisms, we have advanced our understanding of the intricate role of IGFBP5 in the senescence process. The significance of IGFBP5 as a pro-aging factor stems from an in vivo study we conducted on patients undergoing Computer Tomography analysis. In these patients, we observed an elevation in circulating IGFBP5 levels in response to radiation-induced organismal stress.Globally, our findings highlight the potential of IGFBP5 as a promising therapeutic target for age-related diseases and cancer.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | | | - Valeria Mazzone
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | - Deanira Patrone
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy.
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy.
- Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey.
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine Temple University, PA, Philadelphia, USA.
| |
Collapse
|
23
|
Donovan LJ, Brewer CL, Bond SF, Lopez AP, Hansen LH, Jordan CE, González OC, de Lecea L, Kauer JA, Tawfik VL. Aging and injury drive neuronal senescence in the dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576299. [PMID: 39829815 PMCID: PMC11741248 DOI: 10.1101/2024.01.20.576299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction. One cellular mechanism common to both aging and injury is cellular senescence, a complex cell state that can contribute to the aged pro-inflammatory environment. We uncovered, for the first time, DRG neuron senescence in the context of aging and pain-inducing peripheral nerve injury in young and aged mice. Aged DRG neurons displayed multiple markers of senescence (SA-β-gal, p21, p16, IL6) when compared to young DRG neurons. Peripheral nerve injury triggered a further accumulation of senescent DRG neurons over time post-injury in young and aged DRG. These senescent neurons were dynamic and heterogeneous in their expression of senescence markers, p16, p21, and senescence-associated secretory phenotype (SASP) expression of IL6, which was influenced by age. An electrophysiological characterization of senescence marker-expressing neurons revealed high-firing and nociceptor-like phenotypes within these populations. In addition, we observed improvement in nociceptive behaviors in young and aged nerve-injured mice after treatment with a senolytic agent that eliminates senescent cells. Finally, we confirmed in human post-mortem DRG samples that neuronal senescence is present and increases with age. Overall, we describe a susceptibility of the peripheral nervous system to neuronal senescence with age or injury that may be a targetable mechanism to treat sensory dysfunction, such as chronic pain, particularly in aged populations.
Collapse
Affiliation(s)
- Lauren J. Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chelsie L. Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F. Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aleishai Pena Lopez
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Linus H. Hansen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E. Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oscar C. González
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Martín-Vicente P, López-Martínez C, Rioseras B, Albaiceta GM. Activation of senescence in critically ill patients: mechanisms, consequences and therapeutic opportunities. Ann Intensive Care 2024; 14:2. [PMID: 38180573 PMCID: PMC10769968 DOI: 10.1186/s13613-023-01236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Whereas aging is a whole-organism process, senescence is a cell mechanism that can be triggered by several stimuli. There is increasing evidence that critical conditions activate cell senescence programs irrespective of patient's age. In this review, we briefly describe the basic senescence pathways and the consequences of their activation in critically ill patients. The available evidence suggests a paradigm in which activation of senescence can be beneficial in the short term by rendering cells resistant to apoptosis, but also detrimental in a late phase by inducing a pro-inflammatory and pro-fibrotic state. Senescence can be a therapeutic target. The use of drugs that eliminate senescent cells (senolytics) or the senescence-associated phenotype (senomorphics) will require monitoring of these cell responses and identification of therapeutic windows to improve the outcome of critically ill patients.
Collapse
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Beatriz Rioseras
- Servicio de Inmunología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avenida del Hospital Universitario s/n, 33011, Oviedo, Spain.
| |
Collapse
|
25
|
Chen H, Lee YJ, Ovando JA, Rosas L, Rojas M, Mora AL, Bar-Joseph Z, Lugo-Martinez J. scResolve: Recovering single cell expression profiles from multi-cellular spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572269. [PMID: 38187629 PMCID: PMC10769299 DOI: 10.1101/2023.12.18.572269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Many popular spatial transcriptomics techniques lack single-cell resolution. Instead, these methods measure the collective gene expression for each location from a mixture of cells, potentially containing multiple cell types. Here, we developed scResolve, a method for recovering single-cell expression profiles from spatial transcriptomics measurements at multi-cellular resolution. scResolve accurately restores expression profiles of individual cells at their locations, which is unattainable from cell type deconvolution. Applications of scResolve on human breast cancer data and human lung disease data demonstrate that scResolve enables cell type-specific differential gene expression analysis between different tissue contexts and accurate identification of rare cell populations. The spatially resolved cellular-level expression profiles obtained through scResolve facilitate more flexible and precise spatial analysis that complements raw multi-cellular level analysis.
Collapse
Affiliation(s)
- Hao Chen
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Young Je Lee
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jose A. Ovando
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Lorena Rosas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Mauricio Rojas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Ana L. Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Ziv Bar-Joseph
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jose Lugo-Martinez
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
27
|
Power H, Valtchev P, Dehghani F, Schindeler A. Strategies for senolytic drug discovery. Aging Cell 2023; 22:e13948. [PMID: 37548098 PMCID: PMC10577556 DOI: 10.1111/acel.13948] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Senolytics are a category of drugs that reduce the impact of cellular senescence, an effect associated with a range of chronic and age-related diseases. Since the discovery of the first senolytics in 2015, the number of known senolytic agents has grown dramatically. This review discusses the broad categories of known senolytics-kinase inhibitors, Bcl-2 family protein inhibitors, naturally occurring polyphenols, heat shock protein inhibitors, BET family protein inhibitors, P53 stabilizers, repurposed anti-cancer drugs, cardiac steroids, PPAR-alpha agonists, and antibiotics. The approaches used to screen for new senolytics are articulated including a range of methods to induce senescence, different target cell types, various senolytic assays, and markers. The choice of methods can greatly influence the outcomes of a screen, with high-quality screens featuring robust systems, adequate controls, and extensive validation in alternate assays. Recent advances in single-cell analysis and computational methods for senolytic identification are also discussed. There is significant potential for further drug discovery, but this will require additional research into drug targets and mechanisms of actions and their subsequent rigorous evaluation in pre-clinical models and human trials.
Collapse
Affiliation(s)
- Helen Power
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
- Bioengineering and Molecular Medicine LaboratoryThe Children's Hospital at Westmead and The Westmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| | - Peter Valtchev
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Fariba Dehghani
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Aaron Schindeler
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
- Bioengineering and Molecular Medicine LaboratoryThe Children's Hospital at Westmead and The Westmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| |
Collapse
|
28
|
Gong GS, Muyayalo KP, Zhang YJ, Lin XX, Liao AH. Flip a coin: cell senescence at the maternal-fetal interface†. Biol Reprod 2023; 109:244-255. [PMID: 37402700 DOI: 10.1093/biolre/ioad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
During pregnancy, cell senescence at the maternal-fetal interface is required for maternal well-being, placental development, and fetal growth. However, recent reports have shown that aberrant cell senescence is associated with multiple pregnancy-associated abnormalities, such as preeclampsia, fetal growth restrictions, recurrent pregnancy loss, and preterm birth. Therefore, the role and impact of cell senescence during pregnancy requires further comprehension. In this review, we discuss the principal role of cell senescence at the maternal-fetal interface, emphasizing its "bright side" during decidualization, placentation, and parturition. In addition, we highlight the impact of its deregulation and how this "dark side" promotes pregnancy-associated abnormalities. Furthermore, we discuss novel and less invasive therapeutic practices associated with the modulation of cell senescence during pregnancy.
Collapse
Affiliation(s)
- Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Kahindo P Muyayalo
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D.R. Congo
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
29
|
Evangelou K, Belogiannis K, Papaspyropoulos A, Petty R, Gorgoulis VG. Escape from senescence: molecular basis and therapeutic ramifications. J Pathol 2023; 260:649-665. [PMID: 37550877 DOI: 10.1002/path.6164] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 08/09/2023]
Abstract
Cellular senescence constitutes a stress response mechanism in reaction to a plethora of stimuli. Senescent cells exhibit cell-cycle arrest and altered function. While cell-cycle withdrawal has been perceived as permanent, recent evidence in cancer research introduced the so-called escape-from-senescence concept. In particular, under certain conditions, senescent cells may resume proliferation, acquiring highly aggressive features. As such, they have been associated with tumour relapse, rendering senescence less effective in inhibiting cancer progression. Thus, conventional cancer treatments, incapable of eliminating senescence, may benefit if revisited to include senolytic agents. To this end, it is anticipated that the assessment of the senescence burden in everyday clinical material by pathologists will play a crucial role in the near future, laying the foundation for more personalised approaches. Here, we provide an overview of the investigations that introduced the escape-from-senescence phenomenon, the identified mechanisms, as well as the major implications for pathology and therapy. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
30
|
Conte TC, Duran-Bishop G, Orfi Z, Mokhtari I, Deprez A, Côté I, Molina T, Kim TY, Tellier L, Roussel MP, Maggiorani D, Benabdallah B, Leclerc S, Feulner L, Pellerito O, Mathieu J, Andelfinger G, Gagnon C, Beauséjour C, McGraw S, Duchesne E, Dumont NA. Clearance of defective muscle stem cells by senolytics restores myogenesis in myotonic dystrophy type 1. Nat Commun 2023; 14:4033. [PMID: 37468473 PMCID: PMC10356779 DOI: 10.1038/s41467-023-39663-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Muscle stem cells, the engine of muscle repair, are affected in myotonic dystrophy type 1 (DM1); however, the underlying molecular mechanism and the impact on the disease severity are still elusive. Here, we show using patients' samples that muscle stem cells/myoblasts exhibit signs of cellular senescence in vitro and in situ. Single cell RNAseq uncovers a subset of senescent myoblasts expressing high levels of genes related to the senescence-associated secretory phenotype (SASP). We show that the levels of interleukin-6, a prominent SASP cytokine, in the serum of DM1 patients correlate with muscle weakness and functional capacity limitations. Drug screening revealed that the senolytic BCL-XL inhibitor (A1155463) can specifically remove senescent DM1 myoblasts by inducing their apoptosis. Clearance of senescent cells reduced the expression of SASP, which rescued the proliferation and differentiation capacity of DM1 myoblasts in vitro and enhanced their engraftment following transplantation in vivo. Altogether, this study identifies the pathogenic mechanism associated with muscle stem cell defects in DM1 and opens a therapeutic avenue that targets these defective cells to restore myogenesis.
Collapse
Affiliation(s)
- Talita C Conte
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Gilberto Duran-Bishop
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of obstetrics and gynecology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Inès Mokhtari
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
| | - Alyson Deprez
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Côté
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Tae-Yeon Kim
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of microbiology, infectiology and immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Lydia Tellier
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Marie-Pier Roussel
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
- Department of Fundamental Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Damien Maggiorani
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | | | - Lara Feulner
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | | | - Jean Mathieu
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
- CHU Sherbrooke Research Center, and Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gregor Andelfinger
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Gagnon
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
- CHU Sherbrooke Research Center, and Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Beauséjour
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Serge McGraw
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of obstetrics and gynecology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Elise Duchesne
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada.
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada.
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, QC, Canada.
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
31
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
32
|
Jiang GJ, You XG, Fan TJ. Carteolol triggers senescence via activation of β-arrestin-ERK-NOX4-ROS pathway in human corneal endothelial cells in vitro. Chem Biol Interact 2023; 380:110511. [PMID: 37120125 DOI: 10.1016/j.cbi.2023.110511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Carteolol is a commonly-used topical medication for primary open-angle glaucoma. However, long-term and frequent ocular application of carteolol entails its residuals at low concentration in the aqueous humor for a long duration and may exert latent toxicity in the human corneal endothelial cells (HCEnCs). Here, we treated the HCEnCs in vitro with 0.0117% carteolol for 10 days. Thereafter, we removed the cartelolol and normally cultured the cells for 25 days to investigate the chronical toxicity of carteolol and the underlying mechanism. The results exhibited that 0.0117% carteolol induces senescent features in the HCEnCs, such as increased senescence-associated β-galactosidase positive rates, enlarged relative cell area and upregulated p16INK4A and senescence-associated secretory phenotypes, including IL-1α, TGF-β1, IL-10, TNF-α, CCL-27, IL-6 and IL-8, as well as decreased Lamin B1 expression and cell viability and proliferation. Thereby, further exploration demonstrated that the carteolol activates β-arrestin-ERK-NOX4 pathway to increase reactive oxygen species (ROS) production that imposes oxidative stress on energetic metabolism causing a vicious cycle between declining ATP and increasing ROS production and downregulation of NAD+ resulting in metabolic disturbance-mediated senescence of the HCEnCs. The excess ROS also impair DNA to activate the DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with diminished poly(ADP-Ribose) polymerase (PARP) 1, a NAD+-dependent enzyme for DNA damage repair, resulting in cell cycle arrest and subsequent DDR-mediated senescence. Taken together, carteolol induces excess ROS to trigger HCEnC senescence via metabolic disturbance and DDR pathway.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong province, 266003, China
| | - Xin-Guo You
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong province, 261053, China
| | - Ting-Jun Fan
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong province, 266003, China.
| |
Collapse
|
33
|
Liu X, Gu Y, Kumar S, Amin S, Guo Q, Wang J, Fang CL, Cao X, Wan M. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab 2023; 35:667-684.e6. [PMID: 37019080 PMCID: PMC10127143 DOI: 10.1016/j.cmet.2023.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023]
Abstract
The chronic use of glucocorticoids decreases bone mass and quality and increases bone-marrow adiposity, but the underlying mechanisms remain unclear. Here, we show that bone-marrow adipocyte (BMAd) lineage cells in adult mice undergo rapid cellular senescence upon glucocorticoid treatment. The senescent BMAds acquire a senescence-associated secretory phenotype, which spreads senescence in bone and bone marrow. Mechanistically, glucocorticoids increase the synthesis of oxylipins, such as 15d-PGJ2, for peroxisome proliferator-activated receptor gamma (PPARγ) activation. PPARγ stimulates the expression of key senescence genes and also promotes oxylipin synthesis in BMAds, forming a positive feedback loop. Transplanting senescent BMAds into the bone marrow of healthy mice is sufficient to induce the secondary spread of senescent cells and bone-loss phenotypes, whereas transplanting BMAds harboring a p16INK4a deletion did not show such effects. Thus, glucocorticoid treatment induces a lipid metabolic circuit that robustly triggers the senescence of BMAd lineage cells that, in turn, act as the mediators of glucocorticoid-induced bone deterioration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yiru Gu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sahran Amin
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaoyue Guo
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiekang Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ching-Lien Fang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
35
|
Admasu TD, Kim K, Rae M, Avelar R, Gonciarz RL, Rebbaa A, Pedro de Magalhães J, Renslo AR, Stolzing A, Sharma A. Selective ablation of primary and paracrine senescent cells by targeting iron dyshomeostasis. Cell Rep 2023; 42:112058. [PMID: 36753419 DOI: 10.1016/j.celrep.2023.112058] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Senescent cells can spread the senescent phenotype to other cells by secreting senescence-associated secretory phenotype factors. The resulting paracrine senescent cells make a significant contribution to the burden of senescent cell accumulation with age. Previous efforts made to characterize paracrine senescence are unreliable due to analyses being based on mixed populations of senescent and non-senescent cells. Here, we use dipeptidyl peptidase-4 (DPP4) as a surface maker to isolate senescent cells from mixed populations. Using this technique, we enrich the percentage of paracrine senescence from 40% to 85%. We then use this enriched culture to characterize DPP4+ primary and paracrine senescent cells. We observe ferroptosis dysregulation and ferrous iron accumulation as a common phenomenon in both primary and paracrine senescent cells. Finally, we identify ferroptosis induction and ferrous iron-activatable prodrug as a broad-spectrum senolytic approach to ablate multiple types of primary and paracrine senescent cells.
Collapse
Affiliation(s)
| | - Kristie Kim
- SENS Research Foundation, Mountain View, CA 94041, USA
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA
| | - Roberto Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra Stolzing
- Loughborough University, Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Epinal Way, Loughborough LE113TU, UK
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA.
| |
Collapse
|
36
|
Mas-Bargues C, Alique M. Extracellular Vesicles as "Very Important Particles" (VIPs) in Aging. Int J Mol Sci 2023; 24:ijms24044250. [PMID: 36835661 PMCID: PMC9964932 DOI: 10.3390/ijms24044250] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
In recent decades, extracellular vesicles have been recognized as "very important particles" (VIPs) associated with aging and age-related disease. During the 1980s, researchers discovered that these vesicle particles released by cells were not debris but signaling molecules carrying cargoes that play key roles in physiological processes and physiopathological modulation. Following the International Society for Extracellular Vesicles (ISEV) recommendation, different vesicle particles (e.g., exosomes, microvesicles, oncosomes) have been named globally extracellular vesicles. These vesicles are essential to maintain body homeostasis owing to their essential and evolutionarily conserved role in cellular communication and interaction with different tissues. Furthermore, recent studies have shown the role of extracellular vesicles in aging and age-associated diseases. This review summarizes the advances in the study of extracellular vesicles, mainly focusing on recently refined methods for their isolation and characterization. In addition, the role of extracellular vesicles in cell signaling and maintenance of homeostasis, as well as their usefulness as new biomarkers and therapeutic agents in aging and age-associated diseases, has also been highlighted.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.M.-B.); (M.A.)
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence: (C.M.-B.); (M.A.)
| |
Collapse
|
37
|
Role of cellular senescence in inflammatory lung diseases. Cytokine Growth Factor Rev 2023; 70:26-40. [PMID: 36797117 DOI: 10.1016/j.cytogfr.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Cellular senescence, a characteristic sign of aging, classically refers to permanent cell proliferation arrest and is a vital contributor to the pathogenesis of cancer and age-related illnesses. A lot of imperative scientific research has shown that senescent cell aggregation and the release of senescence-associated secretory phenotype (SASP) components can cause lung inflammatory diseases as well. In this study, the most recent scientific progress on cellular senescence and phenotypes was reviewed, including their impact on lung inflammation and the contributions of these findings to understanding the underlying mechanisms and clinical relevance of cell and developmental biology. Within a dozen pro-senescent stimuli, the irreparable DNA damage, oxidative stress, and telomere erosion are all crucial in the long-term accumulation of senescent cells, resulting in sustained inflammatory stress activation in the respiratory system. An emerging role for cellular senescence in inflammatory lung diseases was proposed in this review, followed by the identification of the main ambiguities, thus further understanding this event and the potential to control cellular senescence and pro-inflammatory response activation. In addition, novel therapeutic strategies for the modulation of cellular senescence that might help to attenuate inflammatory lung conditions and improve disease outcomes were also presented in this research.
Collapse
|
38
|
Wu T, Wu Y, Jiang D, Sun W, Zou M, Vasamsetti SB, Dutta P, Leers SA, Di W, Li G. SATB2, coordinated with CUX1, regulates IL-1β-induced senescence-like phenotype in endothelial cells by fine-tuning the atherosclerosis-associated p16 INK4a expression. Aging Cell 2023; 22:e13765. [PMID: 36633253 PMCID: PMC9924951 DOI: 10.1111/acel.13765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have validated a strong association of atherosclerosis with the CDKN2A/B locus, a locus harboring three tumor suppressor genes: p14ARF , p15INK4b , and p16INK4a . Post-GWAS functional analysis reveals that CUX is a transcriptional activator of p16INK4a via its specific binding to a functional SNP (fSNP) rs1537371 on the atherosclerosis-associated CDKN2A/B locus, regulating endothelial senescence. In this work, we characterize SATB2, another transcription factor that specifically binds to rs1537371. We demonstrate that even though both CUX1 and SATB2 are the homeodomain transcription factors, unlike CUX1, SATB2 is a transcriptional suppressor of p16INK4a and overexpression of SATB2 competes with CUX1 for its binding to rs1537371, which inhibits p16INK4a and p16INK4a -dependent cellular senescence in human endothelial cells (ECs). Surprisingly, we discovered that SATB2 expression is transcriptionally repressed by CUX1. Therefore, upregulation of CUX1 inhibits SATB2 expression, which enhances the binding of CUX1 to rs1537371 and subsequently fine-tunes p16INK4a expression. Remarkably, we also demonstrate that IL-1β, a senescence-associated secretory phenotype (SASP) gene itself and a biomarker for atherosclerosis, induces cellular senescence also by upregulating CUX1 and/or downregulating SATB2 in human ECs. A model is proposed to reconcile our findings showing how both primary and secondary senescence are activated via the atherosclerosis-associated p16INK4a expression.
Collapse
Affiliation(s)
- Ting Wu
- Department of Cardiovascular Medicine, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yuwei Wu
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Medicine, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Danli Jiang
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Meijuan Zou
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sathish Babu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Steven A. Leers
- UPMC Vascular LaboratoriesUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Wu Di
- Department of PeriodontologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gang Li
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Medicine, Division of CardiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
39
|
Zhao JL, Qiao XH, Mao JH, Liu F, Fu HD. The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front Pharmacol 2022; 13:974361. [PMID: 36091755 PMCID: PMC9459105 DOI: 10.3389/fphar.2022.974361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasingly serious public health problem in the world, but the effective therapeutic approach is quite limited at present. Cellular senescence is characterized by the irreversible cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Renal senescence shares many similarities with CKD, including etiology, mechanism, pathological change, phenotype and outcome, however, it is difficult to judge whether renal senescence is a trigger or a consequence of CKD, since there is a complex correlation between them. A variety of cellular signaling mechanisms are involved in their interactive association, which provides new potential targets for the intervention of CKD, and then extends the researches on senotherapy. Our review summarizes the common features of renal senescence and CKD, the interaction between them, the strategies of senotherapy, and the open questions for future research.
Collapse
Affiliation(s)
- Jing-Li Zhao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Jian-Hua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jian-Hua Mao,
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hai-Dong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
40
|
Tan H, Xu J, Liu Y. Ageing, cellular senescence and chronic kidney disease: experimental evidence. Curr Opin Nephrol Hypertens 2022; 31:235-243. [PMID: 35142744 PMCID: PMC9035037 DOI: 10.1097/mnh.0000000000000782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is often viewed as an accelerated and premature ageing of the kidney, as they share common pathological features characterized by cellular senescence. In this review, we summarize the experimental evidence linking cellular senescence to the pathobiology of kidney ageing and CKD, and discuss the strategies for targeting senescent cells in developing therapeutics for ageing-related kidney disorders. RECENT FINDINGS Kidney ageing and CKD are featured with increased cellular senescence, an irreversible state of cell cycle arrest and the cessation of cell division. Senescent cells secrete a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP). Secondary senescence can be induced by primary senescent cells via a mechanism involving direct contact or the SASP. Various senolytic therapies aiming to selectively remove senescent cells in vivo have been developed. Senostatic approaches to suppress senescence or inhibit SASP, as well as nutrient signalling regulators are also validated in animal models of ageing. SUMMARY These recent studies provide experimental evidence supporting the notion that accumulation of senescent cells and their associated SASP is a main driver leading to structural and functional organ degeneration in CKD and other ageing-related disorder.
Collapse
Affiliation(s)
- Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Phoenix A, Chandran R, Ergul A. Cerebral Microvascular Senescence and Inflammation in Diabetes. Front Physiol 2022; 13:864758. [PMID: 35574460 PMCID: PMC9098835 DOI: 10.3389/fphys.2022.864758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/14/2022] [Indexed: 01/16/2023] Open
Abstract
Stress-induced premature senescence can contribute to the accelerated metabolic aging process in diabetes. Progressive accumulation of senescent cells in the brain, especially those displaying the harmful inflammatory senescence-associated secretory phenotype (SASP), may lead to cognitive impairment linked with metabolic disturbances. In this context, the senescence within the neurovascular unit (NVU) should be studied as much as in the neurons as emerging evidence shows that neurogliovascular communication is critical for brain health. It is also known that cerebrovascular dysfunction and decreased cerebral blood flow (CBF) precede the occurrence of neuronal pathologies and overt cognitive impairment. Various studies have shown that endothelial cells, the major component of the NVU, acquire a senescent phenotype via various molecular mediators and pathways upon exposure to high glucose and other conditions mimicking metabolic disturbances. In addition, senescence in the other cells that are part of the NVU, like pericytes and vascular smooth cells, was also triggered upon exposure to diabetic conditions. The senescence within the NVU may compromise functional and trophic coupling among glial, vascular, and neuronal cells and the resulting SASP may contribute to the chronic neurovascular inflammation observed in Alzheimer's Disease and Related Dementias (ADRD). The link between diabetes-mediated cerebral microvascular dysfunction, NVU senescence, inflammation, and cognitive impairment must be widely studied to design therapeutic strategies.
Collapse
Affiliation(s)
- Ashley Phoenix
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Raghavendar Chandran
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States,*Correspondence: Adviye Ergul,
| |
Collapse
|
42
|
Kim K, Admasu TD, Stolzing A, Sharma A. Enhanced co-culture and enrichment of human natural killer cells for the selective clearance of senescent cells. Aging (Albany NY) 2022; 14:2131-2147. [PMID: 35245208 PMCID: PMC8954966 DOI: 10.18632/aging.203931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
In the context of aging and age-associated diseases, Natural Killer (NK) cells have been revealed as a key cell type responsible for the immune clearance of senescent cells. Subsequently, NK cell-based therapies have emerged as promising alternatives to drug-based therapeutic interventions for the prevention and treatment of age-related disease and debility. Given the promise of NK cell-mediated immunotherapies as a safe and effective treatment strategy, we outline an improved method by which primary NK cells can be efficiently enriched from human peripheral blood across multiple donors (ages 20-42 years old), with a practical protocol that reliably enhances both CD56dim and CD56bright NK cells by 15-fold and 3-fold, respectively. Importantly, we show that our co-culture protocol can be used as an easily adaptable tool to assess highly efficient and selective killing of senescent cells by primary NK cells enriched via our method using longer co-culture durations and a low target to effector ratio, which may be more physiological than has been achieved in previous literature.
Collapse
Affiliation(s)
- Kristie Kim
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA.,Loughborough University, Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough, UK
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA
| |
Collapse
|
43
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|