1
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
2
|
Wei Y, Xie C, Wei Y, Li Z, Li L, Chen Y, Jia C, Xie H, Liao J. SVF Cell Sheets as a New Multicellular Material-Based Strategy for Promoting Angiogenesis and Regeneration in Diced Cartilage Grafts. J Craniofac Surg 2025:00001665-990000000-02621. [PMID: 40209026 DOI: 10.1097/scs.0000000000011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
Autologous diced cartilage, while biocompatible and easy to shape, is limited in clinical application due to its high adsorption rate and challenges in establishing timely and effective neovascularization postsurgery. In this study, the authors produced SVF cell sheets from adipose-derived stromal vascular fraction (SVF) through enzymatic digestion, employing a temperature-sensitive culture system. Our in vivo and in vitro experiments validated that SVF cell sheets, when wrapped around granular cartilage, exhibited a notable promotion of cartilage regeneration and mitigated granular cartilage adsorption in a rabbit diced cartilage graft model. Our findings demonstrate that SVF cell sheets facilitated effective neovascularization and timely cartilage block formation by secreting VEGF and Ang-1 while also suppressing the expression of pyroptotic proteins like NLRP3, Caspase1, and GSDMD. As a biofilm, derived from a multicellular source, SVF cell sheets can replace perichondrium and promote the expression of proangiogenic growth factors Ang-1 and VEGF, thereby promoting local microvascular regeneration, reducing chondrocyte pyroptosis, and promoting the formation of cartilage blocks. This strategy provides a potential new method for autologous cartilage grafting, which will help solve the dilemma of limited sources of cartilage tissue in clinical practice and provide natural autologous cartilage filling materials for the treatment of craniofacial defects.
Collapse
Affiliation(s)
- Yangchen Wei
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Cong Xie
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yi Wei
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital
| | - Zhengyang Li
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Li Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yan Chen
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Chiyu Jia
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Hongju Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Junlin Liao
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| |
Collapse
|
3
|
Liu Y, Wang Q, Ma J, Li J, Li C, Xie X, Xiao Q, Xie C, Liu H, Hong Y, Wang J. Discovery of Novel Sulfonylurea NLRP3 Inflammasome Inhibitor for the Treatment of Multiple Inflammatory Diseases. J Med Chem 2025; 68:7243-7262. [PMID: 40112040 DOI: 10.1021/acs.jmedchem.4c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
NLRP3 inflammasome is critical in innate immunity and inflammatory responses. A series of novel sulfonylurea-based NLRP3 inflammasome inhibitors was designed and synthesized. Notably, compound 15 exhibited the potent NLRP3 inhibitory activity, effectively suppressing IL-1β secretion in THP-1 (IC50 = 23 nM), demonstrating better efficacy compared to MCC950. It selectively inhibits NLRP3 activation by disrupting inflammasome assembly, with no effect on NLRC4 or AIM2 inflammasomes. Molecular docking showed that the 1-methyl-4-(methylamino)piperidine moiety forms a novel hydrogen bond with Asp662 in the hydrophilic region of NLRP3. Additionally, compound 15 displayed excellent pharmacokinetic properties with 99.6% oral bioavailability in mice. It exhibited superior efficacy in acute peritonitis and diabetic kidney disease models, surpassing MCC950. Tissue distribution studies confirmed that compound 15 specifically targeted the gut and showed efficacy in an IBD model, comparable to MCC950. These findings highlight compound 15 as a promising lead for novel oral NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Yiting Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Jiyuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiannan Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cen Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
4
|
Wan C, Wu Q, Wang Y, Sun Y, Ji T, Gu Y, Wang L, Chen Q, Yang Z, Wang Y, Wang B, Zhong W. Machine learning-based characterization of PANoptosis-related biomarkers and immune infiltration in ulcerative colitis: A comprehensive bioinformatics analysis and experimental validation. Int Immunopharmacol 2025; 151:114298. [PMID: 39986196 DOI: 10.1016/j.intimp.2025.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/25/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Ulcerative colitis (UC) is a heterogeneous autoimmune condition. PANoptosis, a new form of programmed cell death, plays a role in inflammatory diseases. This study aimed to identify differentially expressed PANoptosis-related genes (PRGs) involved in immune dysregulation in UC. Three key PRGs-BIRC3, MAGED1, and PSME2 were found using weighted gene co-expression network analysis (WGCNA) and machine learning. Immune infiltration analysis revealed that these key PRGs were associated with neutrophils, CD8+ T cells, activated CD4 T cells, and NK cells. Moreover, these key PRGs were significantly enriched in pathways related to inflammatory bowel disease, the IL-17 signaling pathway, and NOD-like receptor signaling pathway. The expression levels of the key PRGs were validated in various datasets, animal models, and UC intestinal tissue samples. Our findings confirmed the involvement of PANoptosis in UC and predict hub genes and immune characteristics, providing new insights for further investigations into UC pathogenic mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Changshan Wan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyan Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yali Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yan Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; Department of Digestive Gastroenterology and Hepatology, Linyi People's Hospital, Shandong 276000, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Liwei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyu Chen
- Department of Gastroenterology, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, China
| | - Zhen Yang
- Department of Clinical Laboratory, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, China.
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine,Harbin 150040, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
5
|
Khadour FA, Khadour YA, Xu T. Electroacupuncture delays the progression of juvenile collagen-induced arthritis via regulation NLRP3/ NF-κB signaling pathway -mediated pyroptosis and its influence on autophagy. Clin Rheumatol 2025; 44:1713-1728. [PMID: 40067573 DOI: 10.1007/s10067-025-07354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. Electroacupuncture (EA) effectively treats various synovium-related conditions, including symptoms of synovial inflammation, in both human and animal models. However, the specific mechanism by which EA protects against JIA remains unclear. Therefore, we conducted a comprehensive study to investigate the protective mechanisms of EA in a rat model. We aimed to examine the impact of EA on pathological changes in synovial tissue of juvenile collagen-induced arthritis (CIA) rats. METHODS The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of EA on JIA by regulating the NLRP3-NF-κB axis in juvenile CIA rats and its influence on autophagy. To verify the effect of EA on juvenile CIA, the expression of NLRP3 was overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. RESULTS In this study, we observed that NLRP3 plays an important role in developing juvenile CIA and that NLRP3 overexpression exacerbates inflammation and increases synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found increases in the expression of NLRP3 by impairing autophagy capacity and activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. CONCLUSION Moreover, we also discovered that EA decreased the expression of NLRP3 by restoring the impaired autophagy capacity and inhibiting the NLRP3-NF-κB axis, thereby delaying the progression of juvenile CIA. These results showed that EA is effective in inhibiting inflammation and synovial degeneration and alleviating the progression of juvenile CIA. As a result, our results provide new insight into the mechanism by which EA delays the development of juvenile CIA, offering a novel therapeutic regimen for JIA. This trial was registered with ClinicalTrials.gov, number NCT10203935. Registered October 07, 2023. Key Points • NLRP3 plays a critical role in juvenile collagen-induced arthritis (CIA), with its overexpression linked to increased inflammation in synovial tissue. • Electroacupuncture (EA) reduces NLRP3 expression and inhibits the NLRP3-NF-κB axis, mitigating inflammatory responses and delaying juvenile CIA progression. • EA restores impaired autophagy in juvenile CIA rats, promoting cellular health and inflammation management. • EA alleviates synovial degeneration, improving joint health and function in juvenile CIA models.
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Ling X, Dong Z, He J, Chen D, He D, Guo R, He Q, Li M. Advances in Polymer-Based Self-Adjuvanted Nanovaccines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409021. [PMID: 40079071 DOI: 10.1002/smll.202409021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Nanovaccines, as a new generation of vaccines, have garnered significant interest due to their exceptional potential in enhancing disease prevention and treatment. Their unique features, such as high stability, antigens protection, prolonged retention, and targeted delivery to lymph nodes, immune cells, and tumors, set them apart as promising candidates in the field of immunotherapy. Polymers, with their superior degradability, capacity to mimic pathogen characteristics, and surface functionality that facilitates modifications, serve as ideal carriers for vaccine components. Polymer-based self-adjuvanted nanovaccines have the remarkable ability to augment immune responses. The inherent adjuvant-like properties of polymers themselves offer a pathway toward more efficient exploitation of nanomaterials and the optimization of nanovaccines. This review article aims to summarize the categorization of polymers and elucidate their mechanisms of action as adjuvants. Additionally, it delves into the advantages and limitations of polymer-based self-adjuvanted nanovaccines in disease management and prevention, providing valuable insights for their design and application. This comprehensive analysis could contribute to the development of more effective and tailored nanovaccines for a wide range of diseases.
Collapse
Affiliation(s)
- Xiaoli Ling
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ziyan Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Rong Guo
- West China College of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
7
|
Jiang T, Liu X, Wang S, Chen Y, Wang Y, Li X, Yao G. Paeoniflorin alleviated experimental Sjögren's syndrome by inhibiting NLRP3 inflammasome activation of submandibular gland cells via activating Nrf2/HO-1 pathway. Free Radic Biol Med 2025; 233:355-364. [PMID: 40158745 DOI: 10.1016/j.freeradbiomed.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/15/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Total glucosides of white paeony (TGP) has been used for treatment of Sjögren's syndrome (SS) patients. Paeoniflorin (PF) is the main active ingredient of TGP and has antioxidant and anti-inflammatory effects, but its underlying mechanism on SS remains to be explored. Aberrant activation of NLRP3 inflammasome can cause injury of submandibular gland (SG) in SS. However, whether PF regulates NLRP3 inflammasome activation in SS is unknown. OBJECTIVE This study aims to investigate whether PF alleviated SS through suppressing NLRP3 inflammation activation and to explore the mechanism of PF in improving Sjögren-like symptoms in non-obese diabetic (NOD) mice. METHODS The gene expression profiles of the labial gland (LG) between SS patients and non-SS patients were analyzed by bioinformatics. Non-obese diabetic (NOD) mice were selected as SS model. Mice were divided into normal saline group and two different doses of PF-treatment groups (50 and 100 mg/kg). The SS-like symptoms and pathological changes of submandibular gland (SG) were analyzed after 4 weeks of administration. SG cells were treated with or without PF and with or without ML385 (a specific inhibitor of Nrf2) in vitro, and then lipopolysaccharide(LPS) and adenosine triphosphate (ATP) were used to induce NLRP3 inflammasome activation in SG cells. Results NLRP3 was up-regulated in LG of SS patients and SG of SS mice. PF alleviated SS-like symptoms in SS mice. Compared with control group, NLRP3 and caspase-1 in the SG, and serum IL-1β and IL-18 of NOD mice were decreased in PF group. Furthermore, we found that PF inhibited NLRP3 activation via activating the Nrf2/HO-1 pathway in SG cells. In addition, we observed the activation of Nrf2/HO-1 in the SG of mice after PF administration. CONCLUSIONS Our findings suggested that PF inhibited NLRP3 inflammasome activation through regulating the Nrf2/HO-1 axis in SG of SS mice, which might be the underlying mechanism for the therapeutic effects of PF on SS.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xuanqi Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Shumin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Xiaojing Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China; State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
8
|
Wang H, Tang Z, Xie K, Hao T, Su G. Roquin-1 interaction with Regnase-1 inhibits the progression of rheumatoid arthritis via suppressing FGF2 expression and NF-κB pathway. Inflamm Res 2025; 74:55. [PMID: 40097661 DOI: 10.1007/s00011-025-02012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE This study aimed to explore the effect of Roquin-1 on rheumatoid arthritis (RA) and its potential mechanisms. METHODS Firstly, we used TNF-α to stimulate fibroblast-like synoviocytes (FLSs) to establish an in vitro model of RA. Moreover, a rat model of RA was established with bovine type II collagen and complete Freund's adjuvant. EdU and transwell assays were applied for evaluating the proliferation and migration of FLSs. The multiple mRNA and proteins expressions in FLSs and rats synovial tissues were measured using qRT-PCR, ELISA, western blot, immunohistochemistry staining and immunofluorescence staining. Double immunofluorescence staining and co-IP assay were used to validate the protein interaction between Roquin-1 and Regnase-1. Additionally, cycloheximide (CHX) chase assay was applied for assessing the degradation of fibroblast growth factor 2 (FGF2). Besides, the state of synovial hyperplasia and articular cartilage were also evaluated using HE and Safranin O/Fast Green staining. RESULTS The mRNA and protein expressions of Roquin-1 were significantly reduced in TNF-α-stimulated FLSs and the synovial tissues of RA rats. Roquin-1 interacted with Regnase-1 to promote FGF2 degradation and further inhibit the proliferation, migration and inflammation response in TNF-α-stimulated FLSs. Moreover, we also demonstrated that Roquin-1 interacted with Regnase-1 to inhibit NF-κB pathway via suppressing FGF2 expression in TNF-α-stimulated FLSs. In addition, Roquin-1 suppressed inflammatory response in RA rats. CONCLUSION Our findings demonstrated that Roquin-1 could interact with Regnase-1 to inhibit the progression of RA via suppressing FGF2 expression and NF-κB pathway.
Collapse
Affiliation(s)
- Hui Wang
- Department of Rheumatology, The Fourth Hospital of Jinan, Jinan, 250031, Shandong, People's Republic of China
| | - Zizheng Tang
- Department of Rheumatology, The Fourth Hospital of Jinan, Jinan, 250031, Shandong, People's Republic of China
| | - Kangqi Xie
- Department of Rheumatology, The Fourth Hospital of Jinan, Jinan, 250031, Shandong, People's Republic of China
| | - Tiantian Hao
- Department of Rheumatology, The Fourth Hospital of Jinan, Jinan, 250031, Shandong, People's Republic of China
| | - Gang Su
- Department of Science and Education and Foreign Affairs, The Fourth Hospital of Jinan, No. 50 Shifan Road, Jinan, 250031, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Khadour FA, Khadour YA, Xu T. NLRP3 overexpression exacerbated synovium tissue degeneration in juvenile collagen-induced arthritis. Sci Rep 2025; 15:7024. [PMID: 40016261 PMCID: PMC11868420 DOI: 10.1038/s41598-025-86720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. As an inflammatory regulator, Nod-like receptor 3 (NLRP3) has been implicated in various autoimmune diseases. However, the specific mechanism by which NLRP3 impacts the progress of JIA remains unclear. Therefore, we conducted this study to investigate the specific mechanism of NLRP3 on the progress of synovial inflammation in juvenile collagen-induced arthritis (CIA). The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of NLRP3 on JIA by regulating the NLRP3-NF-κB axis in CIA rats. To verify the effect of NLRP3 on JIA, the expression of NLRP3 was knocked down or overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. In this study, we observed that NLRP3 plays an important role in the development of juvenile CIA, and knocking down NLRP3 inhibited inflammation and alleviated synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found that increases in the expression of NLRP3 impairs autophagy capacity and increases activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. The results demonstrated that NLRP3 interferes with synovial inflammation in juvenile CIA. These results provide new insight into the mechanism by which NLRP3 impacts the development of JIA and suggest that targeting the NLRP3 inflammasome may represent a promising therapeutic strategy for managing JIA.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Rats
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/genetics
- Rats, Sprague-Dawley
- Arthritis, Juvenile/metabolism
- Arthritis, Juvenile/pathology
- Arthritis, Juvenile/genetics
- NF-kappa B/metabolism
- Male
- Signal Transduction
- Disease Models, Animal
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/genetics
- Inflammasomes/metabolism
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Qiao M, Ni J, Qing H, Qiu Y, Quan Z. Role of Peripheral NLRP3 Inflammasome in Cognitive Impairments: Insights of Non-central Factors. Mol Neurobiol 2025:10.1007/s12035-025-04779-8. [PMID: 40000575 DOI: 10.1007/s12035-025-04779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Cognitive impairments are common clinical manifestation of Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and autoimmune diseases. Emerging evidence has suggested a strong correlation between peripheral chronic inflammation and cognitive impairments. For example, nearly 40% of individuals with inflammatory bowel disease also suffer from cognitive impairments. In this condition, NLRP3 inflammasome (NLRP3-I) generating pro-inflammatory cytokines like IL-1β serves as a significant effector, and its persistence exerts adverse effects to both periphery and the brain. Moreover, investigations on serum biomarkers of mild cognitive impairments have shown NLRP3-I components' upregulation, suggesting the involvement of peripheral inflammasome pathway in this disorder. Here, we systematically reviewed the current knowledge of NLRP3-I in inflammatory disease to uncover its potential role in bridging peripheral chronic inflammation and cognitive impairments. This review summarizes the molecular features and ignition process of NLRP3-I in inflammatory response. Meanwhile, various effects of NLRP3-I involved in peripheral inflammation-associated disease are also reviewed, especially its chronic disturbances to brain homeostasis and cognitive function through routes including gut-brain, liver-brain, and kidney-brain axes. In addition, current promising compounds and their targets relative to NLRP3-I are discussed in the context of cognitive impairments. Through the detailed investigation, this review highlights the critical role of peripheral NLRP3-I in the pathogenesis of cognitive disorders, and offers novel perspectives for developing effective therapeutic interventions for diseases associated with cognitive impairments. The present review outlines the current knowledge on the ignition of NLRP3-I in inflammatory disease and more importantly, emphasizes the role of peripheral NLRP3-I as a causal pathway in the development of cognitive disorders. Although major efforts to restrain cognitive decline are mainly focused on the central nervous system, it has become clear that disturbances from peripheral immune are closely associated with the dysfunctional brain. Therefore, attenuation of these inflammatory changes through inhibiting the NLRP3-I pathway in early inflammatory disease may reduce future risk of cognitive impairments, and in the meantime, considerations on such pathogenesis for combined drug therapy will be required in the clinical evaluation of cognitive disorders.
Collapse
Affiliation(s)
- Mengfan Qiao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
11
|
Rigante D. The Golden Card of Interleukin-1 Blockers in Systemic Inflammasomopathies of Childhood. Int J Mol Sci 2025; 26:1872. [PMID: 40076498 PMCID: PMC11899952 DOI: 10.3390/ijms26051872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
A growing number of systemic hereditary inflammatory diseases characterized by periodic fevers and elevated acute-phase proteins during flares has been linked to deregulated inflammasome function and excessive bioactivity of interleukin (IL)-1. All these conditions respond, at varying degrees, to the specific blockade of IL-1. The remarkable progress with IL-1 antagonists in treating hereditary inflammasome-based disorders has offered new hope for several patients with further non-hereditary autoinflammatory conditions from multifactorial backgrounds. The effectiveness of the IL-1 blockade has transformed our understanding and management of many complex diseases and highlighted the role of aberrant IL-1 signaling in enigmatic conditions, characterized by recurrent or continuous inflammation and a lack of a role for autoreactive T-cells or autoantibody production. To date, the long-term blockade of IL-1 has been found to restore the clinical equilibrium in systemic inflammasomopathies of childhood, and IL-1 inhibitors have become cardinal weapons in managing both monogenic innate immunity defects and a plethora of polygenic diseases occurring in children, including Still's disease, Kawasaki disease, recurrent pericarditis, chronic non-bacterial osteomyelitis, and Behçet's disease. Very few side effects have been reported with the long-term use of anakinra, rilonacept, or canakinumab, and their safety profile has been largely documented even in childhood. Further investigations into the role of inflammasomes in the pathogenesis of autoimmune conditions as well as brain degenerative or cardiovascular disorders can be expected, paving the way for precision medicine with benefits beyond inhibiting signaling by individual IL-1-family cytokines.
Collapse
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; ; Tel.: +39-06-30155210
- Periodic Fever and Rare Diseases Research Centre, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
12
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Wang L, Zhu K, Tian Z, Wang H, Jia Y, Feng C, Qi L, Tang W, Hu Y. Discovery of novel biaryl urea derivatives against IL-1β release with low toxicity based on NEK7 inhibitor. Eur J Med Chem 2025; 283:117125. [PMID: 39647417 DOI: 10.1016/j.ejmech.2024.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Aberrant activation of NLRP3 inflammasome is involved in various inflammatory diseases, making it a promising target for therapeutic intervention. NEK7, a member of the NIMA-related kinase (NEK) family, functions as a key NLRP3-binding protein and plays a crucial role in the regulation of NLRP3 inflammasome assembly and activation. Thus, disrupting NLRP3-NEK7 interactions by targeting NEK7 could be a promising strategy to inhibit the activation of NLRP3 inflammasome. In this work, a series of novel urea derivatives were designed and synthesized based on the reported NEK7 inhibitors. Among these, compound 23 exhibited potent activity against IL-1β release with low cytotoxicity. Moreover, compound 23 enhanced the thermal stability of NEK7 and disrupted the NLRP3-NEK7 interaction, thereby regulating NLRP3 inflammasome assembly.
Collapse
Affiliation(s)
- Leibo Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, 1 Xiangshanzhi Road, Hangzhou, 310024, China
| | - Kehan Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Ziyang Tian
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, 1 Xiangshanzhi Road, Hangzhou, 310024, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Haoyu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yulei Jia
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, 1 Xiangshanzhi Road, Hangzhou, 310024, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Luyao Qi
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Wei Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China.
| | - Youhong Hu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, 1 Xiangshanzhi Road, Hangzhou, 310024, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China; State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong, 264117, China.
| |
Collapse
|
14
|
Yang J, He B, Dang L, Liu J, Liu G, Zhao Y, Yu P, Wang Q, Wang L, Xin W. Celastrol Regulates the Hsp90-NLRP3 Interaction to Alleviate Rheumatoid Arthritis. Inflammation 2025; 48:346-360. [PMID: 38874810 DOI: 10.1007/s10753-024-02060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Biyao He
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longjiao Dang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayu Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Guohao Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuwei Zhao
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Pengfei Yu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lei Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
15
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
16
|
Kong K, Qiao X, Liu T, Wang X, Li R, Fang J, Zhang X. Identification of Novel Hub Genes Associated with Inflammation and Autophagy in Astragaloside Membranaceus ameliorates Lupus Nephritis by Bioinformatics Analysis and Molecular Dynamics Simulation. Comb Chem High Throughput Screen 2025; 28:306-318. [PMID: 38299290 DOI: 10.2174/0113862073255980231113071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Lupus nephritis is an autoimmune disease, and its pathogenesis involves inflammation and autophagy disorders. Studies have demonstrated that Astragalus membranaceus can effectively suppress the progression of LN, but the underlying therapeutic target is still unclear. OBJECTION This study aimed to investigate the therapeutic target whereby AM ameliorates LN. METHOD We downloaded AM and LN-related chips from the TCMSP and GEO databases, respectively. We selected the two compound targets for the subsequent analysis via WGCNA, and constructed protein interaction networks of compound targets and determined the core targets. GO, KEGG analyses were conducted on compound targets to identify enriched functional and genomic pathways. The core genes were further validated in clinical and external datasets. Molecular docking of AS with the core targets was performed using the AutoDock software, and molecular dynamics simulation was conducted for the optimal core protein ligand obtained by molecular docking by Gromacs 2020.6 software. RESULT We obtained 10 core targets, namely IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, PPARγ, AR, CXCL10, and KDR, from the 24 compound targets identified. The results of the GO enrichment analysis mainly included cell growth regulation. The results of the KEGG enrichment analysis showed that 7 out of 23 valid targets were significantly enriched in the mitogen-activated protein kinase pathway (p < 0.01). Combined with the clinical datasets, we found that IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, and PPARγ have high diagnostic values for LN. In the validation dataset, all the core targets were significantly differentially expressed, except for EGF deletion. The molecular docking and molecular dynamics simulation results showed that AM and IL- 1β, CASP3, STAT1, and PPARγ all had binding energies < -5 kJ·mol-1 and good binding properties. CONCLUSION IL-1β, CASP3, STAT1, and PPARγ could be potential biomarkers and therapeutic targets in AM ameliorates LN.
Collapse
Affiliation(s)
- Kaili Kong
- Shanxi Medicial University, Taiyuan, China
| | | | - Ting Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Rui Li
- Shanxi Medicial University, Taiyuan, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
17
|
Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16:689-706. [PMID: 39734818 PMCID: PMC11669974 DOI: 10.4330/wjc.v16.i12.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. Consequently, a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases. This review first elucidates the vital physiological roles of ATP in the cardiovascular system, subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xue-Mei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 73000, Gansu Province, China
| | - Hao-Long Zhang
- University Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
18
|
Kong R, Peng L, Bao H, Sun L, Feng Y, Li H, Wang D. The role of Gαq in regulating NLRP3 inflammasome activation. Inflamm Res 2024; 73:2249-2261. [PMID: 39455437 DOI: 10.1007/s00011-024-01961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND G proteins are a class of important signal transducers in mammalians. G proteins can corpoarated with G proteincoupled receptors (GPCRs) and transmit signals from extracellular stimuli into intracellular response, which will regulate a series of biological functions. G-proteins are heterotrimeric proteins composed of Gα, Gβ, and Gγ subunits. Based on structural and functional similarity of their α-subunits, G proteins are typically grouped into four classes (Gi, Gs, Gq/11, and G12/13). The Gq/11 subfamily consists of Gq, G11, G14, and G15/16 proteins. Gαq is the α-subunit of Gq protein and encoded by GNAQ. Our previous studies revealed that Gαq play an important role in regulating T cell survival and T cell differentiation. Inflammasomes are multiprotein complexes that play a critical role in modulating innate inflammatory response. NLRP3 inflammasome is currently the most extensively studied inflammasome. METHODS We found that Gαq suppressed NLRP3 inflammasome activation in macrophage, Gαq also suppressed NLRP3 inflammasome activation in a LPS-induced sepsis mouse model. Gαq can locate to mitochondria and Gαq was required for the maintenance of mitochondrial homeostasis. Gαq regulated NLRP3 inflammasome activation by modulating mitochondrial reactive oxygen species (mtROS). RESULTS We found that Gαq suppressed NLRP3 inflammasome activation in macrophage, Gαq also suppressed NLRP3 inflammasome activation in a LPS-induced sepsis mouse model. Gαq can locate to mitochondria and Gαq was required for the maintenance of mitochondrial homeostasis. Gαq regulated NLRP3 inflammasome activation by modulating mitochondrial reactive oxygen species (mtROS). CONCLUSION Our results indicate that Gαq regulates NLRP3 inflammasome activation by modulating mitochondrial ROS production. Our research provides new mechanistic insight into the activation of NLRP3 inflammasome. As it has been proved that NLRP3 inflammasome plays an important role in the pathogenesis many diseases such as Alzheimer's disease, cancer, and inflammatory bowel disease, Gαq might become a novel drug target for these diseases in future.
Collapse
Affiliation(s)
- Ruixue Kong
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Lijun Peng
- Department of Gastroenterology, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Honggang Bao
- Department of Laboratory Medicine, Linyi Cancer Hospital, Linyi, 276000, Shandong, China
| | - Lulu Sun
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yan Feng
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hua Li
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Dashan Wang
- Research Center, Shandong Medical College, Linyi, 276000, Shandong, China.
| |
Collapse
|
19
|
Niibo P, Nikopensius T, Jagomägi T, Voog Ü, Haller T, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Genetic susceptibility to temporomandibular joint involvement in juvenile idiopathic arthritis. J Oral Rehabil 2024; 51:2445-2451. [PMID: 39192486 DOI: 10.1111/joor.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/17/2023] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Temporomandibular joint (TMJ) is among the most commonly affected joints in JIA patients. When JIA involves the TMJ, it may affect condylar growth in the joint; therefore, JIA patients are at risk of unfavourable long-term outcomes from associated joint damage. If undetected, TMJ involvement can lead to various functional disabilities such as reduced mandibular mobility and disorders of the mastication muscles. Limitations in sagittal and vertical mandibular growth can result in micrognathia and anterior open bite with aesthetic and functional restrictions. OBJECTIVE Genetic factors may play a role in determining which individuals are more prone to develop TMJ disorders or in predicting the severity of the disease process. Therefore, we applied a GWAS approach to identify loci associated with TMJ involvement in a sample of Estonian patients with JIA. Our aim was to address the potential role of genetic susceptibility factors in TMJ-JIA, a condition not previously studied in this context. METHODS The case group consisted of 55 JIA patients with TMJ involvement and 208 patients without TMJ involvement comprised the control group. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. Imputation was performed using a nationwide reference panel obtained of 2240 individuals whose data were obtained from the Estonian Biobank. RESULTS We identified six loci as being associated with the risk of TMJ-JIA in Estonian JIA patients. The strongest associations were identified at CD6 rs3019551 (P = 3.80 × 10-6), SLC26A8/MAPK14 rs9470191 (P = 6.15 × 10-6), NLRP3 rs2056795 (P = 8.91 × 10-6) and MAP2K4 rs7225328 (P = 1.64 × 10-5). CONCLUSION This study provides first insights into the risk-associated loci between JIA and its manifestation in the TMJ. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that render the TMJ susceptible to involvement by JIA in Estonian patients.
Collapse
Affiliation(s)
- P Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - T Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - T Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ü Voog
- Institute of Dentistry, University of Tartu, Tartu, Estonia
- Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - T Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - N Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - A Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - M Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - C Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Chun C, Byun JM, Cha M, Lee H, Choi B, Kim H, Hong S, Lee Y, Park H, Koh Y, Yoon TY. Profiling protein-protein interactions to predict the efficacy of B-cell-lymphoma-2-homology-3 mimetics for acute myeloid leukaemia. Nat Biomed Eng 2024; 8:1379-1395. [PMID: 39025942 PMCID: PMC11584402 DOI: 10.1038/s41551-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
B-cell-lymphoma-2 (BCL2) homology-3 (BH3) mimetics are inhibitors of protein-protein interactions (PPIs) that saturate anti-apoptotic proteins in the BCL2 family to induce apoptosis in cancer cells. Despite the success of the BH3-mimetic ABT-199 for the treatment of haematological malignancies, only a fraction of patients respond to the drug and most patients eventually develop resistance to it. Here we show that the efficacy of ABT-199 can be predicted by profiling the rewired status of the PPI network of the BCL2 family via single-molecule pull-down and co-immunoprecipitation to quantify more than 20 types of PPI from a total of only 1.2 × 106 cells per sample. By comparing the obtained multidimensional data with BH3-mimetic efficacies determined ex vivo, we constructed a model for predicting the efficacy of ABT-199 that designates two complexes of the BCL2 protein family as the primary mediators of drug effectiveness and resistance, and applied it to prospectively assist therapeutic decision-making for patients with acute myeloid leukaemia. The characterization of PPI complexes in clinical specimens opens up opportunities for individualized protein-complex-targeting therapies.
Collapse
Affiliation(s)
- Changju Chun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minkwon Cha
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hongwon Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Byungsan Choi
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hyunwoo Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Saem Hong
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Yunseo Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hayoung Park
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea.
| |
Collapse
|
21
|
Chen J, Xie S, Qiu D, Xie M, Wu M, Li X, Zhang X, Wu Q, Xiong Y, Wu C, Ren J, Peng Y. The NLRP3 molecule influences the therapeutic effects of mesenchymal stem cells through Glut1-mediated energy metabolic reprogramming. J Adv Res 2024; 65:125-136. [PMID: 38070595 PMCID: PMC11519012 DOI: 10.1016/j.jare.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Numerous studies demonstrated that NLRP3 has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Mesenchymal stem cells (MSCs) regulated the NLRP3 inflammasome, which has emerged as a novel therapeutic approach for treating IBD. OBJECTIVES The exact role of NLRP3 in regulating MSCs' function is unclear. Our study aimed to explore how NLRP3 affects the therapeutic effects of MSCs in colitis. METHODS We extracted MSCs from the bone marrow of C57BL/6 mice and Nlrp3 KO mice, and identified them using differentiation assays and flow cytometry. In vitro, Both WT MSCs and Nlrp3 KO MSCs were stimulated with inflammatory factor Lipopolysaccharide (LPS), and only WT MSCs were stimulated with varying concentrations of the NLRP3 inhibitor MCC950, then, quantified IL-10 levels in the supernatant. RNA-seq was performed to examine gene expression patterns and Seahorse was used to assess oxidative phosphorylation (OXPHOS) and glycolysis levels. Western blot was used to evaluate protein expression. In vivo, we treated DSS-induced colitis with either WT or Nlrp3 KO MSCs, monitoring weight, measuring colon length, and further evaluation. We also treated DSS-induced colitis with pretreated MSCs (BAY876, oe-Glut1, or oe-NLRP3), following the same experimental procedures as described above. RESULTS Our results demonstrate that Nlrp3 deletion did not affect MSC phenotypes, but rather promoted osteogenic differentiation. However, the absence of Nlrp3 reduced IL-10 production in MSCs in the presence of LPS, leading to impaired protection on DSS-induced colitis. Conversely, overexpression of NLRP3 promotes the production of IL-10, enhancing therapeutic effects. Further investigation revealed that Nlrp3 deficiency downregulated Glut1 expression and glycolysis activation in MSCs, resulting in decreased IL-10 production. Notably, overexpressing Glut1 in Nlrp3 KO MSCs restored their therapeutic effect that was previously dampened due to Nlrp3 deletion. CONCLUSION Our findings demonstrate that NLRP3 heightens the therapeutic effects of MSC treatment on DSS-induced colitis.
Collapse
Affiliation(s)
- Jingrou Chen
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shujuan Xie
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Dongbo Qiu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Maosheng Xie
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengye Wu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qili Wu
- Medical Research Center, Guangdong Provincial Hospital, Guangzhou 510080, China
| | - Yi Xiong
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Changyou Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Ren
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China.
| | - Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
22
|
He J, Xu M, Chen Y, Wu S. Grp78 regulates NLRP3 inflammasome and participates in Sjogren's syndrome. Int Immunopharmacol 2024; 140:112815. [PMID: 39088921 DOI: 10.1016/j.intimp.2024.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
OBJECTIVE The purpose of the present study was to potential effects of forsythiaside A (FA) on Sjogren's syndrome (SS). METHODS Enzyme linked immunosorbent assay for detecting cytokines and Western blotting was used for detecting related protein expression. RESULTS FA effectively reduced the secretion of inflammatory cytokines, the expression of Caspase-1 and NLRP3 proteins and the expression of p65 in SS. FA also effectively inhibited the high expression of Grp78 in SS. When Grp78 expression was silenced, it effectively reduced the secretion of inflammatory cytokines, the expression of Caspase-1 and NLRP3 proteins and the expression of p65 in the nucleus in SS. FA effectively inhibit the secretion of inflammatory cytokines induced by overexpression of Grp78, the expression of Caspase-1 and NLRP3 proteins and the expression of p65 in the nucleus in SS. CONCLUSION FA induces the degradation of Grp78 protein, regulates the NF-κB signaling pathway in SS and inhibited NLRP3 inflammasome activation and reduced the release of inflammatory cytokines to alleviate SS.
Collapse
Affiliation(s)
- Jing He
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Meimei Xu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueyue Chen
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Suling Wu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
23
|
Gopalaswamy R, Aravindhan V, Subbian S. The Ambivalence of Post COVID-19 Vaccination Responses in Humans. Biomolecules 2024; 14:1320. [PMID: 39456253 PMCID: PMC11506738 DOI: 10.3390/biom14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include the whole virus or its parts like DNA, mRNA, or protein subunits administered directly or through vectors. Beginning in 2020, a few mRNA (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) and adenovirus-based (AstraZeneca ChAdOx1-S and the Janssen Ad26.COV2.S) vaccines were recommended by WHO for emergency use before the completion of the phase 3 and 4 trials. These vaccines were mostly administered in two or three doses at a defined frequency between the two doses. While these vaccines, mainly based on viral nucleic acids or protein conferred protection against the progression of SARS-CoV-2 infection into severe COVID-19, and prevented death due to the disease, their use has also been accompanied by a plethora of side effects. Common side effects include localized reactions such as pain at the injection site, as well as systemic reactions like fever, fatigue, and headache. These symptoms are generally mild to moderate and resolve within a few days. However, rare but more serious side effects have been reported, including allergic reactions such as anaphylaxis and, in some cases, myocarditis or pericarditis, particularly in younger males. Ongoing surveillance and research efforts continue to refine the understanding of these adverse effects, providing critical insights into the risk-benefit profile of COVID-19 vaccines. Nonetheless, the overall safety profile supports the continued use of these vaccines in combating the pandemic, with regulatory agencies and health organizations emphasizing the importance of vaccination in preventing COVID-19's severe outcomes. In this review, we describe different types of COVID-19 vaccines and summarize various adverse effects due to autoimmune and inflammatory response(s) manifesting predominantly as cardiac, hematological, neurological, and psychological dysfunctions. The incidence, clinical presentation, risk factors, diagnosis, and management of different adverse effects and possible mechanisms contributing to these effects are discussed. The review highlights the potential ambivalence of human response post-COVID-19 vaccination and necessitates the need to mitigate the adverse side effects.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625021, India;
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Taramani, Chennai 600005, India;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
24
|
Zhang S, Hou B, Xu A, Wen Y, Zhu X, Cai W, Han Z, Chen J, Nhamdriel T, Mi M, Qiu L, Sun H. Ganlu formula ethyl acetate extract (GLEE) blocked the development of experimental arthritis by inhibiting NLRP3 activation and reducing M1 type macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118377. [PMID: 38782307 DOI: 10.1016/j.jep.2024.118377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tibetan medicine Ganlu Formula, as a classic prescription, is widely used across the Qinghai-Tibet Plateau area of China, which has a significant effect on relieving the course of rheumatoid arthritis (RA). However, the active compounds and underlying mechanisms of Ganlu Formula in RA treatment remain largely unexplored. AIM OF THE STUDY This study aimed to elucidate the active substances and potential mechanisms of the ethyl acetate extract of Ganlu Formula ethyl acetate extract (GLEE) in the treatment of RA. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was utilized to analyze and identify the chemical constituents within GLEE. Discovery Studio molecular virtual docking technology was utilized to dock the interaction of GLEE with inflammation-related pathway proteins. The GLEE gene library was obtained by transcriptome sequencing. Collagen-induced arthritic(CIA) rats were utilized to assess the antiarthritic efficacy of GLEE. Micro-CT imaging was employed to visualize the rat paw, and ultrasound imaging revealed knee joint effusion. Evaluation of synovial tissue pathological changes was conducted through hematoxylin-eosin staining and saffranine solid green staining, while immunohistochemical staining was employed to assess NLRP3 expression along with inflammatory markers. Immunofluorescence staining was utilized to identify M1 macrophages. RESULTS Metabolomic analysis via UPLC-Q-TOF-MS identified 28 potentially bioactive compounds in GLEE, which interacted with the active sites of key proteins such as NLRP3, NF-κB, and STAT3 through hydrogen bonds, C-H bonds, and electrostatic attractions. In vitro analyses demonstrated that GLEE significantly attenuated NLRP3 inflammasome activation and inhibited the polarization of bone marrow-derived macrophages (BMDMs) towards the M1 phenotype. In vivo, GLEE not only prevented bone mineral density (BMD) loss but also reduced ankle swelling in CIA rats. Furthermore, it decreased the expression of the NLRP3 inflammasome and curtailed the release of inflammatory mediators within the knee joint. CONCLUSION GLEE effectively mitigated inflammatory responses in both blood and knee synovial membranes of CIA rats, potentially through the down-regulation of the NLRP3/Caspase-1/IL-1β signaling pathway and reduction in M1 macrophage polarization.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Anjing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi, 214001, Jiangsu Province, China
| | - Jing Chen
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China
| | - Ma Mi
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China.
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
25
|
Hu B, Peng X, Tang C, Geng M, Yao S, Ai J, Ye Y. 13,14-seco withaphysalins from Physalis minima and their inhibitory effects on NLRP3 inflammasome activation. Bioorg Chem 2024; 151:107630. [PMID: 39059073 DOI: 10.1016/j.bioorg.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Seven new 13,14-seco withaphysalins including two new skeletons (1 and 9) were isolated from the whole plants of Physalis minima, together with three known analogues (6-8). Among them, compound 1 was an extremely rare steroid with a 6, 8-cyclo ring. Their structures were established by extensive analysis of spectroscopic data, experimental electronic circular dichroism measurements, and single-crystal X-ray crystallographic analysis. In Raw264.7 cells, compounds 1-3, 5, 6, and 8 demonstrated potent ability to reduce the NLRP3-dependent caspase-1 activation. Among these compounds, 1 and 2 showed a superior potential, consistently concentration-dependent downregulating NLRP3-dependent proinflammatory cytokine IL-1β production in macrophage. Mechanistically, compounds 1 and 2 reduced the cleavage of caspase-1 and GSDMD, and exhibited no obvious impact both on the NF-κB activation and the expression of NLRP3 and IL-1β, suggesting that the compounds target the activation of the NLRP3 pathway mainly by inhibiting the NLRP3 inflammasome activation step rather than the priming step.
Collapse
Affiliation(s)
- Bintao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.
| |
Collapse
|
26
|
Dai N, Yang X, Pan P, Zhang G, Sheng K, Wang J, Liang X, Wang Y. Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome. Microbiol Res 2024; 287:127856. [PMID: 39079268 DOI: 10.1016/j.micres.2024.127856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of Bacillus paralicheniformis HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of B. paralicheniformis HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, B. paralicheniformis HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of B. paralicheniformis as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.
Collapse
Affiliation(s)
- Nini Dai
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xinting Yang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Peilong Pan
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| |
Collapse
|
27
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
28
|
Hu D, Li Y, Wang X, Zou H, Li Z, Chen W, Meng Y, Wang Y, Li Q, Liao F, Wu K, Wu J, Li G, Wang W. Palmitoylation of NLRP3 Modulates Inflammasome Activation and Inflammatory Bowel Disease Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:481-493. [PMID: 38949555 PMCID: PMC11299489 DOI: 10.4049/jimmunol.2300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Aberrant activity of NLRP3 has been shown associations with severe diseases. Palmitoylation is a kind of protein post-translational modification, which has been shown to regulate cancer development and the innate immune system. Here, we showed that NLRP3 is palmitoylated at Cys419 and that palmitoyltransferase ZDHHC17 is the predominant enzyme that mediates NLRP3 palmitoylation and promotes NLRP3 activation by interacting with NLRP3 and facilitating NIMA-related kinase 7 (NEK7)-NLRP3 interactions. Blockade of NLRP3 palmitoylation by a palmitoylation inhibitor, 2-bromopalmitate, effectively inhibited NLRP3 activation in vitro. Also, in a dextran sulfate sodium-induced colitis model in mice, 2-bromopalmitate application could attenuate weight loss, improve the survival rate, and rescue pathological changes in the colon of mice. Overall, our study reveals that palmitoylation of NLPR3 modulates inflammasome activation and inflammatory bowel disease development. We propose that drugs targeting NLRP3 palmitoylation could be promising candidates in the treatment of NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Dingwen Hu
- Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haimei Zou
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingchong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Wenbiao Wang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
30
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
He J, Chen Y, Xu M, Wu S. USP5 negatively regulates the activation of NLRP3 inflammasomes and participates in the pathological and physiological processes of Sjogren's syndrome. Int Immunopharmacol 2024; 135:112274. [PMID: 38772301 DOI: 10.1016/j.intimp.2024.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVE The current treatment and mechanism of Sjogren's syndrome (SS) are unclear. The purpose of the present study was to potential molecular mechanisms of SS. METHODS Immunohistochemical and immunofluorescence techniques reveal the targets and therapeutic approaches of SS. RESULTS We found through molecular biology techniques such as immunoblotting and immunoprecipitation that USP5 is a novel regulator of NLRP3 involvement in the pathological process of SS. USP5 was significantly downregulated in submandibular gland tissue of SS. Meanwhile, it was found that USP5 is a negative regulator of NLRP3 via ubiquitination NLRP3. In addition, SalvianolicacidB (SaB), a natural USP5 agonist, can alleviate ss by regulating the USP5/NLRP3 signaling pathway. CONCLUSION Therefore, this study provides a new mechanism for SS and also provides new therapeutic targets for treating SS.
Collapse
Affiliation(s)
- Jing He
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueyue Chen
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Meimei Xu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| | - Suling Wu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
32
|
Martinez Valenzuela L, Vidal-Alabró A, Rubio B, Antón-Pàmpols P, Gómez-Preciado F, Fulladosa X, Cruzado JM, Torras J, Lloberas N, Draibe J. Evaluating Single-Nucleotide Polymorphisms in Inflammasome Proteins and Serum Levels of IL-18 and IL-1β in Kidney Interstitial Damage in Anti-Neutrophilic Cytoplasmic Antibody-Associated Vasculitis. Int J Mol Sci 2024; 25:6479. [PMID: 38928186 PMCID: PMC11203640 DOI: 10.3390/ijms25126479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The inflammasome regulates the innate inflammatory response and is involved in autoimmune diseases. In this study, we explored the levels of IL-18 and IL-1β in serum and urine and the influence of various single-nucleotide polymorphisms (SNPs) on kidney lesions at diagnosis in patients with ANCA-associated vasculitis (AAV) and their clinical outcomes. Ninety-two patients with renal AAV were recruited, and blood and urine were collected at diagnosis. Serum and urine cytokine levels were measured by ELISA. DNA was extracted and genotyped using TaqMan assays for SNPs in several inflammasome genes. Lower serum IL-18 (p = 0.049) and the IL-18 rs187238 G-carrier genotype (p = 0.042) were associated with severe fibrosis. The IL-18 rs1946518 TT genotype was associated with an increased risk of relapse (p = 0.05), whereas GG was related to better renal outcomes (p = 0.031). The rs187238 GG genotype was identified as a risk factor for mortality within the first year after AAV diagnosis, independent of the requirement for dialysis or lung involvement (p = 0.013). We suggest that decreased cytokine levels could be a surrogate marker of scarring and chronicity of the renal lesions, together with the rs187238 GG genotype. If our results are validated, the rs1946518 TT genotype predicts the risk of relapse and renal outcomes during follow-up.
Collapse
Affiliation(s)
- Laura Martinez Valenzuela
- Nephrology Department, Bellvitge University Hospital, 08907 L'Hospitalet de Llobregat, Spain
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
| | - Anna Vidal-Alabró
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Belén Rubio
- Nephrology Department, Bellvitge University Hospital, 08907 L'Hospitalet de Llobregat, Spain
| | - Paula Antón-Pàmpols
- Nephrology Department, Bellvitge University Hospital, 08907 L'Hospitalet de Llobregat, Spain
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
| | | | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital, 08907 L'Hospitalet de Llobregat, Spain
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Josep Maria Cruzado
- Nephrology Department, Bellvitge University Hospital, 08907 L'Hospitalet de Llobregat, Spain
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Juan Torras
- Nephrology Department, Bellvitge University Hospital, 08907 L'Hospitalet de Llobregat, Spain
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Nuria Lloberas
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital, 08907 L'Hospitalet de Llobregat, Spain
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Spain
| |
Collapse
|
33
|
Shen J, Li F, Han X, Fu D, Xu Y, Zhu C, Liang Z, Tang Z, Zheng R, Hu X, Lin R, Pei Q, Nie J, Luo N, Li X, Chen W, Mao H, Zhou Y, Yu X. Gasdermin D deficiency aborts myeloid calcium influx to drive granulopoiesis in lupus nephritis. Cell Commun Signal 2024; 22:308. [PMID: 38831451 PMCID: PMC11149269 DOI: 10.1186/s12964-024-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Gasdermin D (GSDMD) is emerging as an important player in autoimmune diseases, but its exact role in lupus nephritis (LN) remains controversial. Here, we identified markedly elevated GSDMD in human and mouse LN kidneys, predominantly in CD11b+ myeloid cells. Global or myeloid-conditional deletion of GSDMD was shown to exacerbate systemic autoimmunity and renal injury in lupus mice with both chronic graft-versus-host (cGVH) disease and nephrotoxic serum (NTS) nephritis. Interestingly, RNA sequencing and flow cytometry revealed that myeloid GSDMD deficiency enhanced granulopoiesis at the hematopoietic sites in LN mice, exhibiting remarkable enrichment of neutrophil-related genes, significant increases in total and immature neutrophils as well as granulocyte/macrophage progenitors (GMPs). GSDMD-deficient GMPs and all-trans-retinoic acid (ATRA)-stimulated human promyelocytes NB4 were further demonstrated to possess enhanced clonogenic and differentiation abilities compared with controls. Mechanistically, GSDMD knockdown promoted self-renewal and granulocyte differentiation by restricting calcium influx, contributing to granulopoiesis. Functionally, GSDMD deficiency led to increased pathogenic neutrophil extracellular traps (NETs) in lupus peripheral blood and bone marrow-derived neutrophils. Taken together, our data establish that GSDMD deletion accelerates LN development by promoting granulopoiesis in a calcium influx-regulated manner, unraveling its unrecognized critical role in LN pathogenesis.
Collapse
Affiliation(s)
- Jiani Shen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Feng Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xu Han
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Dongying Fu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yiping Xu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Changjian Zhu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhou Liang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ziwen Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ruilin Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ruoni Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Qiaoqiao Pei
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Jing Nie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xiaoyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
- Department of Nephrology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
34
|
Xu X, Han Y, Deng J, Wang S, Zhuo S, Zhao K, Zhou W. Repurposing disulfiram with CuET nanocrystals: Enhancing anti-pyroptotic effect through NLRP3 inflammasome inhibition for treating inflammatory bowel diseases. Acta Pharm Sin B 2024; 14:2698-2715. [PMID: 38828135 PMCID: PMC11143773 DOI: 10.1016/j.apsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.
Collapse
Affiliation(s)
- Xueming Xu
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanfeng Han
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jiali Deng
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Chidren's Hospital, Changsha 410007, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shijie Zhuo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kai Zhao
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410008, China
| |
Collapse
|
35
|
Ren W, Sun Y, Zhao L, Shi X. NLRP3 inflammasome and its role in autoimmune diseases: A promising therapeutic target. Biomed Pharmacother 2024; 175:116679. [PMID: 38701567 DOI: 10.1016/j.biopha.2024.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines IL-1β and IL-18. Numerous studies have highlighted its crucial role in the pathogenesis and development of inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid diseases, and other autoimmune diseases. Therefore, investigating the underlying mechanisms of NLRP3 in disease and targeted drug therapies holds clinical significance. This review summarizes the structure, assembly, and activation mechanisms of the NLRP3 inflammasome, focusing on its role and involvement in various autoimmune diseases. This review also identifies studies where the involvement of the NLRP3 inflammasome in the disease mechanism within the same disease appears contradictory, as well as differences in NLRP3-related gene polymorphisms among different ethnic groups. Additionally, the latest therapeutic advances in targeting the NLRP3 inflammasome for autoimmune diseases are outlined, and novel clinical perspectives are discussed. Conclusively, this review provides a consolidated source of information on the NLRP3 inflammasome and may guide future research efforts that have the potential to positively impact patient outcomes.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
36
|
Zhao C, Zheng T, Wang R, Lin X, Hu Z, Zhao Z, Dai Z, Sun D. Synergistically Augmenting Cancer Immunotherapy by Physical Manipulation of Pyroptosis Induction. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:298-312. [PMID: 39398428 PMCID: PMC11466912 DOI: 10.1007/s43657-023-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/15/2024]
Abstract
Pyroptosis is a newly recognized type of programmed cell death mediated by the gasdermin family and caspase. It is characterized by the formation of inflammasomes and the following inflammatory responses. Recent studies have elucidated the value of pyroptosis induction in cancer treatment. The inflammatory cytokines produced during pyroptosis can trigger immune responses to suppress malignancy. Physical approaches for cancer treatment, including radiotherapy, light-based techniques (photodynamic and photothermal therapy), ultrasound-based techniques (sonodynamic therapy and focused ultrasound), and electricity-based techniques (irreversible electroporation and radiofrequency ablation), are effective in clinical application. Recent studies have reported that pyroptosis is involved in the treatment process of physical approaches. Manipulating pyroptosis using physical approaches can be utilized in combating cancer, according to recent studies. Pyroptosis-triggered immunotherapy can be combined with the original anti-tumor methods to achieve a synergistic therapy and improve the therapeutic effect. Studies have also revealed that enhancing pyroptosis may increase the sensitivity of cancer cells to some physical approaches. Herein, we present a comprehensive review of the literature focusing on the associations between pyroptosis and various physical approaches for cancer and its underlying mechanisms. We also discussed the role of pyroptosis-triggered immunotherapy in the treatment process of physical manipulation.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Tingting Zheng
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Run Wang
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Xiaona Lin
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zhengming Hu
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zhuofei Zhao
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Centre, Peking University, Beijing, 100871 China
| | - Desheng Sun
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| |
Collapse
|
37
|
Jiang L, Wang Z, Xu T, Zhang L. When pyro(ptosis) meets palm(itoylation). Cytokine Growth Factor Rev 2024; 77:30-38. [PMID: 38472042 DOI: 10.1016/j.cytogfr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Pyroptosis, a programmed cell death process, is vital for the immune response against microbial infections and internal danger signals. Recent studies have highlighted the importance of protein palmitoylation, a modification that involves attaching palmitate to cysteine residues, in regulating key proteins involved in pyroptosis. Palmitoylation of cGAS at residue C474 by ZDHHC18 affects its enzymatic activity and DNA binding ability. Similarly, ZDHHC9 promotes cGAS activity through palmitoylation at residues C404/405. NLRP3 palmitoylation at residue C844, mediated by ZDHHC12, impacts its stability and interactions with other proteins, crucial for activating the NLRP3 inflammasome and triggering inflammation. However, the role of ZDHHC5 in NLRP3 palmitoylation remains uncertain due to conflicting findings. Palmitoylation at C88/91 is essential for STING activation and induction of type I interferons. It modulates the formation of multimeric complexes and downstream signaling pathways. GSDMD palmitoylation at C191 is necessary for pore formation and membrane translocation, while GSDME palmitoylation at C407/408 is associated with drug-induced pyroptosis. Moreover, palmitoylation of NOD1 and NOD2 influences their membrane recruitment and immune signaling pathways in response to bacterial peptidoglycans, acting as upstream regulators of pyroptosis. This review summarizes the important roles for palmitoylation in regulating the function of key pyroptosis-related proteins, shedding light on the intricate mechanisms governing immune responses and inflammation.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zirui Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ting Xu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
38
|
Huang J, Dong S, Wu Y, Yi H, Zhang W, Ai X. Sirtuin 6 Deacetylates Apoptosis-Associated Speck-Like Protein (ASC) to Inhibit Endothelial Cell Pyroptosis in Atherosclerosis. Int Heart J 2024; 65:466-474. [PMID: 38749754 DOI: 10.1536/ihj.23-334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Endothelial cell dysfunction is the main pathology of atherosclerosis (AS). Sirtuin 6 (SIRT6), a deacetylase, is involved in AS progression. This study aimed to investigate the impacts of SIRT6 on the pyroptosis of endothelial cells and its underlying mechanisms. ApoE-/- mice were fed a high-fat diet (HFD) to establish the AS mouse model, atherosclerotic lesions were evaluated using oil red O staining, and blood lipids and inflammatory factors were measured using corresponding kits. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the cell model, and pyroptosis was evaluated by flow cytometry, ELISA, and western blot. Immunoprecipitation (IP), co-IP, western blot, and immunofluorescence were used to detect the molecular mechanisms. The results showed that SIRT6 expression was downregulated in the blood of HFD-induced mice and ox-LDL-induced HUVECs. Overexpression of SIRT6 reduced atherosclerotic lesions, blood lipids, and inflammation in vivo and suppressed pyroptosis of HUVECs in vitro. Moreover, SIRT6 interacted with ASC to inhibit the acetylation of ASC, thus, reducing the interaction between ASC and NLRP3. Moreover, SIRT6 inhibits endothelial cell pyroptosis in the aortic roots of mice by deacetylating ASC. In conclusion, SIRT6 deacetylated ASC to inhibit its interaction with NLRP3 and then suppressed pyroptosis of endothelial cells, thus, decelerating the progression of AS. The findings provide new insights into the function of SIRT6 in AS.
Collapse
Affiliation(s)
- Jian Huang
- Department of Vascular and Interventional Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University
| | - Shuilin Dong
- Hepatic Surgery Center, Vascular Surgery, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Yanhui Wu
- Hepatic Surgery Center, Vascular Surgery, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Huiming Yi
- Department of Medical Ultrasound, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Wei Zhang
- Department of Medical Ultrasound, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Xi Ai
- Department of General Surgery, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| |
Collapse
|
39
|
Tan L, Zhang H, Ding Y, Huang Y, Sun D. CRTAC1 identified as a promising diagnosis and prognostic biomarker in lung adenocarcinoma. Sci Rep 2024; 14:11223. [PMID: 38755183 PMCID: PMC11099150 DOI: 10.1038/s41598-024-61804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
CRTAC1, one of the pyroptosis-related genes, has been identified as a protective factor in certain kinds of cancer, such as gastric adenocarcinoma and bladder cancer. The study aimed to investigate the role of CRTAC1 in lung adenocarcinoma (LUAD). LUAD datasets were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), pyroptosis-related genes from GeneCard. Limma package used to find differentially expressed genes (DEGs), least absolute shrinkage and selection operator (LASSO) regression and weighted genes co-expression network analysis (WGCNA) to identify CRTAC1 as hub gene. CRTAC1 expression was confirmed in a real-world cohort using quantitative polymerase chain reaction (qPCR) and Western Blot (WB) analyses. Cellular experiments were conducted to investigate CRTAC1's potential oncogenic mechanisms. CRTAC1 mRNA expression was significantly lower in LUAD tissues (p < 0.05) and showed high accuracy in diagnosing LUAD. Reduced CRTAC1 expression was associated with a poor prognosis. Higher CRTAC1 expression correlated with increased immune cell infiltration. Individuals with high CRTAC1 expression showed increased drug sensitivity. Additionally, qPCR and WB analyses showed that CRTAC1 expression was lower in tumor tissue compared to adjacent normal tissue at both the RNA and protein levels. Upregulation of CRTAC1 significantly inhibited LUAD cell proliferation, invasion, and migration in cellular experiments. CRTAC1 has the potential to serve as a diagnostic and prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Lin Tan
- Tianjin Medical University Graduate School, Tianjin, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Han Zhang
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Yun Ding
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Yangyun Huang
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
40
|
Osman NA, Soltan MK, Rezq S, Flaherty J, Romero DG, Abdelkhalek AS. Dual COX-2 and 15-LOX inhibition study of novel 4-arylidine-2-mercapto-1-phenyl-1H-imidazolidin-5(4H)-ones: Design, synthesis, docking, and anti-inflammatory activity. Arch Pharm (Weinheim) 2024; 357:e2300615. [PMID: 38315093 PMCID: PMC11073913 DOI: 10.1002/ardp.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Nermine A. Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mostafa K. Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Oman College of Health Sciences, Muscat, Sultanate Oman
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joseph Flaherty
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ahmed S. Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Song SC, Ren BD, Wu XW, Xie YF, Cheng B, Wei Q, Pang WH, Wu ZK, Zhang XJ, Li XL, Xiao WL. Asiaticasics A-O, structurally intriguing coumarins from Toddalia asiatica with potential inflammatory inhibitory activity. PHYTOCHEMISTRY 2024; 221:114042. [PMID: 38417721 DOI: 10.1016/j.phytochem.2024.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Ethyl acetate fraction of Toddalia asiatica was fractionated to yield fifteen previously undescribed prenylated coumarins, asiaticasics A-O (1-15) along with nine (16-24) known derivatives. The structures of these undescribed coumarins were established by spectroscopic analysis and reference data. Biological activity evaluation showed that compound 3 with the IC50 value of 2.830 μM and compound 12 with the IC50 value of 0.682 μM owned anti-inflammatory activity by detecting the rate of lactate dehydrogenase release in pyroptosis J774A.1 cells. The results showed that the expression of Caspase-1 and IL-1β was decreased in a dose-dependent manner in the compound 12 treatment group, suggesting that compound 12 may reduce pyroptosis by inhibiting NLRP3 inflammasome. To further determine that compound 12 treatment can inhibit macrophage pyroptosis, morphological observation was performed and the results were consistent with the bioactivity evaluation.
Collapse
Affiliation(s)
- Si-Chen Song
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Bai-Dong Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Xue-Wen Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yi-Fan Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Bin Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Qiong Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Wen-Hui Pang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Ze-Kai Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China.
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China.
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, People's Republic of China; Southwest United Graduate School, Kunming, 650592, People's Republic of China.
| |
Collapse
|
42
|
Sanabria-Castro A, Alape-Girón A, Flores-Díaz M, Echeverri-McCandless A, Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev Neurosci 2024; 35:355-371. [PMID: 38163257 DOI: 10.1515/revneuro-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune debilitating disease of the central nervous system caused by a mosaic of interactions between genetic predisposition and environmental factors. The pathological hallmarks of MS are chronic inflammation, demyelination, and neurodegeneration. Oxidative stress, a state of imbalance between the production of reactive species and antioxidant defense mechanisms, is considered one of the key contributors in the pathophysiology of MS. This review is a comprehensive overview of the cellular and molecular mechanisms by which oxidant species contribute to the initiation and progression of MS including mitochondrial dysfunction, disruption of various signaling pathways, and autoimmune response activation. The detrimental effects of oxidative stress on neurons, oligodendrocytes, and astrocytes, as well as the role of oxidants in promoting and perpetuating inflammation, demyelination, and axonal damage, are discussed. Finally, this review also points out the therapeutic potential of various synthetic antioxidants that must be evaluated in clinical trials in patients with MS.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Departamento de Farmacología, Toxicología y Farmacodependencia, Facultad de Farmacia, Universidad de Costa Rica, San Pedro de Montes de Oca, 11501, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Ann Echeverri-McCandless
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
| | - Alexander Parajeles-Vindas
- Servicio de Neurología, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Servicio de Neurología, Hospital Clínica Bíblica, San José, 10104, Costa Rica
| |
Collapse
|
43
|
Hu H, Cai Y, Shi Y, Zhang S, Yu X, Ma T, Liao S. Dimethyl fumarate covalently modifies Cys673 of NLRP3 to exert anti-inflammatory effects. iScience 2024; 27:109544. [PMID: 38585664 PMCID: PMC10995871 DOI: 10.1016/j.isci.2024.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in various chronic inflammation-driven human diseases. However, no drugs specifically targeting NLRP3 inflammasome have been approved by the Food and Drug Administration (FDA) of the United States. In our current study, we showed that dimethyl fumarate (DMF) efficiently suppressed the activation of the NLRP3 inflammasome induced by multiple agonists and covalently modified Cys673 of NLRP3, thereby impeding the interaction between NLRP3 and NEK7. The inhibitory effect of DMF was nullified by anaplerosis of the Cys673 mutant (but not the wild-type) NLRP3 in Nlrp3-/- THP-1 cells. In vivo experiments, DMF demonstrated protective effects in the dextran sodium sulfate (DSS)-induced ulcerative colitis of WT mice, but not in Nlrp3-/- mice. In summary, our study identified DMF as a direct covalent inhibitor of NLRP3 and a potential candidate for the treatment of NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Huiting Hu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuqian Cai
- Center for Analysis and Testing, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yuanfang Shi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shengyu Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shanting Liao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
44
|
Li Y, Zhang S, Tang C, Yang B, Atrooz F, Ren Z, Mohan C, Salim S, Wu T. Autoimmune and neuropsychiatric phenotypes in a Mecp2 transgenic mouse model on C57BL/6 background. Front Immunol 2024; 15:1370254. [PMID: 38524134 PMCID: PMC10960363 DOI: 10.3389/fimmu.2024.1370254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Systemic Lupus Erythematosus (SLE) impacts the central nervous system (CNS), leading to severe neurological and psychiatric manifestations known as neuropsychiatric lupus (NPSLE). The complexity and heterogeneity of clinical presentations of NPSLE impede direct investigation of disease etiology in patients. The limitations of existing mouse models developed for NPSLE obstruct a comprehensive understanding of this disease. Hence, the identification of a robust mouse model of NPSLE is desirable. Methods C57BL/6 mice transgenic for human MeCP2 (B6.Mecp2Tg1) were phenotyped, including autoantibody profiling through antigen array, analysis of cellularity and activation of splenic immune cells through flow cytometry, and measurement of proteinuria. Behavioral tests were conducted to explore their neuropsychiatric functions. Immunofluorescence analyses were used to reveal altered neurogenesis and brain inflammation. Various signaling molecules implicated in lupus pathogenesis were examined using western blotting. Results B6.Mecp2Tg1 exhibits elevated proteinuria and an overall increase in autoantibodies, particularly in female B6.Mecp2Tg1 mice. An increase in CD3+CD4+ T cells in the transgenic mice was observed, along with activated germinal center cells and activated CD11b+F4/80+ macrophages. Moreover, the transgenic mice displayed reduced locomotor activity, heightened anxiety and depression, and impaired short-term memory. Immunofluorescence analysis revealed IgG deposition and immune cell infiltration in the kidneys and brains of transgenic mice, as well as altered neurogenesis, activated microglia, and compromised blood-brain barrier (BBB). Additionally, protein levels of various key signaling molecules were found to be differentially modulated upon MeCP2 overexpression, including GFAP, BDNF, Albumin, NCoR1, mTOR, and NLRP3. Discussion Collectively, this work demonstrates that B6.Mecp2Tg1 mice exhibit lupus-like phenotypes as well as robust CNS dysfunctions, suggesting its utility as a new animal model for NPSLE.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Bowen Yang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Zhifeng Ren
- Department of Physics, University of Houston, Houston, TX, United States
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
45
|
Hou B, Yin J, Liu S, Guo J, Zhang B, Zhang Z, Yang L, Tan X, Long Y, Feng S, Zhou J, Wu Y, Wang X, Han S, Wang Z, He X. Inhibiting the NLRP3 Inflammasome with MCC950 Alleviates Neurological Impairment in the Brain of EAE Mice. Mol Neurobiol 2024; 61:1318-1330. [PMID: 37702910 PMCID: PMC10896958 DOI: 10.1007/s12035-023-03618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by demyelination and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) mice are used to model the disease progression of MS and mirror MS-like pathology. Previous researches have confirmed that inhibition of NLRP3 inflammasome significantly alleviated the severity of EAE mice and the demyelination of spinal cord, but its effect on neuronal damage and oligodendrocyte loss in the brain remains unclear. In this study, female C57BL/6 mice were immunized with MOG35-55 and PTX to establish experimental autoimmune encephalomyelitis (EAE) model. MCC950, a selective NLRP3 inflammasome inhibitor, was used to investigate the effect of NLRP3 inflammasome on the pathological changes and glial cell activation in the brain of EAE mice by immunohistochemistry. Our results demonstrated that MCC950 ameliorated the neuronal damage, demyelination, and oligodendrocyte loss in the brain of EAE mice. This protective effect of MCC950 may be attributed to its ability to suppress the activation of glial cells and prevents microglia polarization to M1 phenotype. Our work indicates that inhibition of NLRP3 inflammasome has the therapeutic effects of neuroprotection through immunomodulation and is a promising therapeutic strategy for MS.
Collapse
Affiliation(s)
- Baohua Hou
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
- Central Laboratory, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Shuyan Liu
- Department of Endocrinology, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, 454000, China
| | - Jincheng Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, 454000, China
| | - Baobao Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhenzhen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Lanping Yang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiying Tan
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yijiao Long
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Sijie Feng
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jingchun Zhou
- Beijing Bencaoyuan Pharmaceutical Co, Ltd, Beijing, 102629, China
| | - Yifan Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Xueyang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Zhenhui Wang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
46
|
Ha J, Kim M, Park JS, Lee Y, Lee JY, Shin JC, Seo D, Park SS, You J, Jung SM, Kim HY, Mizuno S, Takahashi S, Kim SJ, Park SH. SERTAD1 initiates NLRP3-mediated inflammasome activation through restricting NLRP3 polyubiquitination. Cell Rep 2024; 43:113752. [PMID: 38341852 DOI: 10.1016/j.celrep.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/13/2024] Open
Abstract
We here demonstrate that SERTAD1 is an adaptor protein responsible for the regulation of lysine 63 (K63)-linked NLRP3 polyubiquitination by the Cullin1 E3 ubiquitin ligase upon inflammasome activation. SERTAD1 specifically binds to NLRP3 but not to other inflammasome sensors. This endogenous interaction increases after inflammasome activation, interfering with the interaction between NLRP3 and Cullin1. Interleukin (IL)-1β and IL-18 secretion, as well as the cleavage of gasdermin D, are decreased in SERTAD1 knockout bone-marrow-derived macrophages, together with reduced formation of the NLRP3 inflammasome complex. Additionally, SERTAD1-deficient mice show attenuated severity of monosodium-uric-acid-induced peritonitis and experimental autoimmune encephalomyelitis. Analysis of public datasets indicates that expression of SERTAD1 mRNA is significantly increased in the patients of autoimmune diseases. Thus, our findings uncover a function of SERTAD1 that specifically reduces Cullin1-mediated NLRP3 polyubiquitination via direct binding to NLRP3, eventually acting as a crucial factor to regulate the initiation of NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Jihoon Ha
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minbeom Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yerin Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin-Cheol Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongyeob Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Shil Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon You
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8578, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8578, Japan
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
47
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
48
|
Fang L, Wang Z, Liu J, Lin Y, Hao W. General Control Non-derepressible 2 Alleviates Cartilage Degeneration and Inhibits NLRP3 Inflammasome Activation in Osteoarthritis. J Histochem Cytochem 2024; 72:95-108. [PMID: 38213081 PMCID: PMC10851878 DOI: 10.1369/00221554231225514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
This study aimed to evaluate the effects of general control non-derepressible 2 (GCN2) on osteoarthritis (OA) in vivo and in vitro. First, anterior cruciate ligament transection (ACLT)-induced rat model and interleukin (IL)-1β-induced ATDC5 chondrocyte were established. Hematoxylin and eosin staining and safranin O/fast green staining were employed for analyzing the histological changes in the rat cartilage. In addition, immunohistochemistry, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, western blot, and immunofluorescence staining were employed for examining cartilage degeneration-, inflammation-, autophagy-, and NLR family pyrin domain containing 3 (NLRP3) inflammasome-associated genes expression. Moreover, 2,7-dichlorodihydrofluorescein acetoacetic acid probe was utilized for examining the intracellular reactive oxygen species. In addition, 5-ethynyl-2'-deoxyuridine assay and flow cytometry were applied for detecting chondrocyte proliferation and apoptosis IL-1β-treated ATDC5 chondrocytes. GCN2 overexpression ameliorated articular cartilage degeneration and inflammation but promoted chondrocyte autophagy in ACLT-induced OA rats. Similarly, we demonstrated that the upregulation of GCN2 could promote chondrocyte proliferation, suppress chondrocyte apoptosis, attenuate chondrocyte inflammation and extracellular matrix degradation, and promote chondrocyte autophagy. Moreover, GCN2 overexpression could inhibit the activation of NLRP3 inflammasome in IL-1β-induced ATDC5 chondrocyte. Furthermore, 3-methyladenine neutralized the protective and autophagy-promoting effects of GCN2 overexpression on ATDC5 chondrocytes. GCN2 could attenuate inflammation and cartilage degeneration, promote chondrocyte autophagy, and inhibit NLRP3 inflammasome activation in OA.
Collapse
Affiliation(s)
- Long Fang
- Spine Surgery Division, Department of Orthopaedics and Traumatology, Shandong Provincial Third Hospital, Jinan, P.R. China
| | - Zhengyu Wang
- Joint and Sports Medicine Division, Department of Orthopaedics and Traumatology, Shandong Provincial Third Hospital, Jinan, P.R. China
| | - Jisong Liu
- Joint and Sports Medicine Division, Department of Orthopaedics and Traumatology, Shandong Provincial Third Hospital, Jinan, P.R. China
| | - Yongjie Lin
- Joint and Sports Medicine Division, Department of Orthopaedics and Traumatology, Shandong Provincial Third Hospital, Jinan, P.R. China
| | - Wei Hao
- Joint and Sports Medicine Division, Department of Orthopaedics and Traumatology, Shandong Provincial Third Hospital, Jinan, P.R. China
| |
Collapse
|
49
|
Tan Y, Qiao J, Yang S, Wang Q, Liu H, Liu Q, Feng W, Yang B, Li Z, Cui L. ARID5B-mediated LINC01128 epigenetically activated pyroptosis and apoptosis by promoting the formation of the BTF3/STAT3 complex in β2GPI/anti-β2GPI-treated monocytes. Clin Transl Med 2024; 14:e1539. [PMID: 38224186 PMCID: PMC10788880 DOI: 10.1002/ctm2.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Alterations of the trimethylation of histone 3 lysine 4 (H3K4me3) mark in monocytes are implicated in the development of autoimmune diseases. Therefore, the purpose of our study was to elucidate the role of H3K4me3-mediated epigenetics in the pathogenesis of antiphospholipid syndrome (APS). METHODS H3K4me3 Cleavage Under Targets and Tagmentation and Assay for Transposase-Accessible Chromatin were performed to determine the epigenetic profiles. Luciferase reporter assay, RNA immunoprecipitation, RNA pull-down, co-immunoprecipitation and chromatin immunoprecipitation were performed for mechanistic studies. Transmission electron microscopy and propidium iodide staining confirmed cell pyroptosis. Primary monocytes from patients with primary APS (PAPS) and healthy donors were utilised to test the levels of key molecules. A mouse model mimicked APS was constructed with beta2-glycoprotein I (β2GPI) injection. Blood velocity was detected using murine Doppler ultrasound. RESULTS H3K4me3 signal and open chromatin at the ARID5B promoter were increased in an in vitro model of APS. The epigenetic factor ARID5B directly activated LINC01128 transcription at its promoter. LINC01128 promoted the formation of the BTF3/STAT3 complex to enhance STAT3 phosphorylation. Activated STAT3 interacted with the NLRP3 promoter and subsequently stimulated pyroptosis and apoptosis. ARID5B or BTF3 depletion compensated for LINC01128-induced pyroptosis and apoptosis by inhibiting STAT3 phosphorylation. In mice with APS, β2GPI exposure elevated the levels of key proteins of pyroptosis and apoptosis pathways in bone marrow-derived monocytes, reduced the blood velocity of the ascending aorta, increased the thrombus size of the carotid artery, and promoted the release of interleukin (IL)-18, IL-1β and tissue factor. Patients with PAPS had the high-expressed ARID5B and LINC01128, especially those with triple positivity for antiphospholipid antibodies. Moreover, there was a positive correlation between ARID5B and LINC01128 expression. CONCLUSION This study indicated that ARID5B/LINC01128 was synergistically upregulated in APS, and they aggravated disease pathogenesis by enhancing the formation of the BTF3/STAT3 complex and boosting p-STAT3-mediated pyroptosis and apoptosis, thereby providing candidate therapeutic targets for APS. HIGHLIGHTS The H3K4me3 mark and chromatin accessibility at the ARID5B promoter are increased in vitro model mimicked APS. ARID5B-mediated LINC01128 induces pyroptosis and apoptosis via p-STAT3 by binding to BTF3. ARID5B is high- expressed in patients with primary APS and positively correlated with LINC01128 expression. OICR-9429 treatment mitigates pyroptosis and related inflammation in vivo and in vitro models mimicked APS.
Collapse
Affiliation(s)
- Yuan Tan
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Jiao Qiao
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qingchen Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qi Liu
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Weimin Feng
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Boxin Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Zhongxin Li
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Liyan Cui
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
50
|
Xue W, Luo Y, He W, Yan M, Zhao H, Qing L. Network Pharmacology and Bioinformatics Analyses Identify the Core Genes and Pyroptosis-Related Mechanisms of Nardostachys Chinensis for Atrial Fibrillation. Curr Comput Aided Drug Des 2024; 20:1070-1086. [PMID: 38178669 PMCID: PMC11475257 DOI: 10.2174/0115734099259071231115072421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Nardostachys chinensis is an herbal medicine widely used in the treatment of atrial fibrillation (AF), but the mechanism is unclear. OBJECTIVE To explore the molecular mechanism of N. chinensis against AF. METHODS The TCMSP was used to screen the active N. chinensis compounds and their targets. Differentially expressed genes (DEGs) for AF were identified using open-access databases. Using Venn diagrams, the cross-targets of N. chinensis, pyroptosis, and AF were obtained. The genes underwent molecular docking as well as gene set enrichment analysis (GSEA). A nomogram based on candidate genes was constructed and evaluated with the clinical impact curve. After that, the immune infiltration of the dataset was analyzed by single sample GSEA (ssGSEA). Finally, microRNAs (miRNAs) and transcription factors (TFs) were predicted based on candidate genes. RESULTS Tumor necrosis factor (TNF) and caspase-8 (CASP8) were obtained as candidate genes by taking the intersection of DEGs, targets of N. chinensis, and pyroptosis-related genes. Tolllike receptor (TLR) and peroxisome proliferator-activated receptor (PPAR) signaling pathways were linked to candidate genes. Additionally, immune cell infiltration analysis revealed that CASP8 was associated with natural killer T cells, natural killer cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), macrophages, CD8 T cells, and CD4 T cells. Finally, miR-34a-5p and several TFs were found to regulate the expression of CASP8 and TNF. CONCLUSION CASP8 and TNF are potential targets of N. chinensis intervention in pyroptosisrelated AF, and the TLR/NLRP3 signaling pathway may be associated with this process.
Collapse
Affiliation(s)
- Weiqi Xue
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Luo
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weifeng He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengyuan Yan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|