1
|
Lu J, Cai J, Zhou Z, Ma J, Han T, Lu N, Zhu L. Gel@CAT-L hydrogel mediates mitochondrial unfolded protein response to regulate reactive oxygen species and mitochondrial homeostasis in osteoarthritis. Biomaterials 2025; 321:123283. [PMID: 40222260 DOI: 10.1016/j.biomaterials.2025.123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE This study investigates the role of Gelatin-Catalase (Gel@CAT)-L hydrogel in mediating reactive oxygen species (ROS) production and maintaining mitochondrial homeostasis through SIRT3-mediated unfolded protein response (UPRmt), while exploring its involvement in the molecular mechanism of osteoarthritis (OA). METHODS Self-assembled Gel@CAT-L hydrogels were fabricated and characterized using transmission electron microscopy, mechanical testing, external release property evaluation, and oxygen production measurement. Biocompatibility was assessed via live/dead cell staining and CCK8 assays. An OA mouse model was established using destabilization of the medial meniscus (DMM) surgery. X-ray and micro-CT imaging were employed to evaluate the structural integrity of the mouse knee joints, while histological staining was used to assess cartilage degeneration. Immunohistochemistry was performed to analyze the expression of proteins including Col2a1, Aggrecan, MMP13, ADAMTS5, SIRT3, PINK1, and Parkin. Multi-omics analyses-encompassing high-throughput sequencing, proteomics, and metabolomics-were conducted to identify key genes and metabolic pathways targeted by Gel@CAT-L hydrogel intervention in OA. Immunofluorescence techniques were utilized to measure ROS levels, mitochondrial membrane potential, and the expression of SIRT3, PINK1, Parkin, LYSO, LC3B, Col2a1, and MMP13 in primary mouse chondrocytes and mouse knee joints. Flow cytometry was applied to quantify ROS-positive cells. RT-qPCR analysis was conducted to determine mRNA levels of Aggrecan, Col2a1, ADAMTS5, MMP13, SIRT3, mtDNA, HSP60, LONP1, CLPP, and Atf5 in primary mouse chondrocytes, mouse knee joints, and human knee joints. Western blotting was performed to measure protein expression levels of SIRT3, HSP60, LONP1, CLPP, and Atf5 in both primary mouse chondrocytes and mouse knee joints. Additionally, 20 samples each from the control (CON) and OA groups were collected for analysis. Hematoxylin and eosin staining was used to evaluate cartilage degeneration in human knee joints. The Mankin histological scoring system quantified the degree of cartilage degradation, while immunofluorescence analyzed SIRT3 protein expression in human knee joints. RESULTS In vitro experiments demonstrated that self-assembled Gel@CAT-L hydrogels exhibited excellent biodegradability and oxygen-releasing capabilities, providing a stable three-dimensional environment conducive to cell viability and proliferation while reducing ROS levels. Multi-omics analysis identified SIRT3 as a key regulatory gene in mitigating OA and revealed its central role in the UPRmt pathway. Furthermore, Gel@CAT-L was confirmed to regulate mitochondrial homeostasis. Both in vitro experiments and in vivo mouse model studies confirmed that Gel@CAT-L significantly reduced ROS levels and regulated mitochondrial autophagy by activating the SIRT3-mediated UPRmt pathway, thereby improving the pathological state of OA. Clinical trials indicated downregulation of SIRT3 and UPRmt-related proteins in OA patients. CONCLUSION Gel@CAT-L hydrogel activates SIRT3-mediated UPRmt to regulate ROS and mitochondrial homeostasis, providing potential therapeutic benefits for OA.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Jiao Cai
- Department of Medical Administration, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China
| | - Jun Ma
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China; Department of Orthopaedic Trauma, Naval Medical Center of PLA, Naval Medical University, Shanghai, 200001, China
| | - Tianyu Han
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China.
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China.
| |
Collapse
|
2
|
Mthembu SXH, Mazibuko-Mbeje SE, Silvestri S, Orlando P, Nkambule BB, Muller CJF, Tiano L, Dludla PV. Prolonged exposure to simvastatin affects coenzyme Q 9/10 status leading to impaired mitochondrial respiratory capacity and reduced viability of cultured cardiac cells. Toxicol In Vitro 2025; 106:106052. [PMID: 40089196 DOI: 10.1016/j.tiv.2025.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
This study investigates the effects of prolonged simvastatin exposure on coenzyme Q9/10 (CoQ9/10) levels, an essential component of antioxidant defense, in cultured cardiac cells. Statins, commonly used to manage dyslipidemia and reduce cardiovascular risk, may impair mitochondrial function, but their impact on CoQ10 depletion and oxidative stress is not well understood. We examined the influence of simvastatin on mitochondrial oxidative capacity, reactive oxygen species (ROS) production, and CoQ9/10 status at concentrations of 0.3, 0.6, 1.25, 2.5, 5, 10, and 20 μM, over durations of 24, 48, and 72 h. Using an in vitro model of cultured H9c2 cardiomyoblasts, our results showed that short-term exposure (24 h) at lower concentrations (<5 μM) enhanced cytosolic and mitochondrial ROS levels without affecting mitochondrial function or CoQ9/10 status. However, prolonged exposure to higher concentrations (≥10 μM for >48 h) resulted in impaired mitochondrial oxidative capacity, indicated by increased proton leak and elevated ROS levels, which were followed by significantly reduced cell viability. These findings suggest that prolonged, high-dose simvastatin exposure may disrupt the oxidative balance of CoQ9/10, leading to myocardial injury. This research addresses a gap in understanding the long-term effects of statins on mitochondrial health and underscores the need for further studies to optimize statin therapy and minimize adverse effects on myocardial function.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho 2735, South Africa.
| | | | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
3
|
Ma Y, Zhang H, Dou L, Sun H, Jing Y, Gu Z, Wang L, Gao C. Mitochondrial uncoupler BAM15 enhances the function of CD7CAR-T CD7- cells and reduces the release of cytokines for the therapy of T-cell malignancies. Int Immunopharmacol 2025; 155:114577. [PMID: 40215779 DOI: 10.1016/j.intimp.2025.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Traditional therapies for relapsed/refractory T-cell malignancies, such as T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphomas, have limited efficacy. Chimeric antigen receptor T-cell (CAR-T) therapy has shown potential in treating hematologic malignancies, but challenges such as tumor immune evasion, CAR-T resistance, and cytokine release syndrome (CRS) hinder its clinical application. In this study, we generated CD7CAR-TCD7- cells by modifying naturally occurring CD7 negative T cells from human peripheral blood with a novel CD7 targeted CAR construct. The cytotoxic efficacy of CD7CAR-TCD7- cells against CD7 positive T cell malignancies was assessed through in vitro experiments and xenograft mouse models. To address CAR-T therapy limitations, we identified BAM15, a mitochondrial uncoupling agent, from a small molecule library. BAM15 enhanced the cytotoxic function of CD7CAR-TCD7- cells in a concentration-dependent manner while reducing cytokine release profile in both cellular assays and xenograft models. Notably, at low concentrations (2.5μM, 1 μM and 0.5 μM), BAM15 improved antitumor efficacy at suboptimal effector-to-target ratios (E:T = 1:1 and 1:2), reduced inflammatory cytokines like IL-6 and TNFα, and alleviated inflammatory cell infiltration in lung and liver. This study confirms the feasibility of constructing CD7CAR-TCD7- cells from CD7- T cells and first reveals the synergistic effects of BAM15 on CD7CAR-TCD7- cells, for overcoming dose limitations and CRS of CAR-T therapy, and providing a novel strategy for T-cell malignancies.
Collapse
Affiliation(s)
- Yanqing Ma
- Medical School of Chinese PLA, Beijing 100853, China; State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Zhang
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang 065201, China
| | - Liping Dou
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Huiyan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang 065201, China; The Sanly-Health Cell Technology Inc, Beijing, China
| | - Yu Jing
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenyang Gu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chunji Gao
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
4
|
Kalinová K, Gottschalk B, Hirtl M, Ostaku J, Gabrijelčič S, Sokolowski A, Malle E, Graier WF, Madreiter-Sokolowski CT. Targeting enhanced mitochondrial respiration chain activity as a potential therapeutic approach for endometriosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167885. [PMID: 40320187 DOI: 10.1016/j.bbadis.2025.167885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/07/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Endometriosis is a chronic condition defined by the presence of endometrial-like tissue outside the uterus. Since endometriotic cells share similarities with cancer cells, including uncontrolled cell growth and invasion, we investigated whether cancer cell-specific rewiring of mitochondrial signaling is also present in endometriotic cells. We utilized the endometriotic cell line 12Z and investigated its mitochondrial function in comparison with the uterine cancer cell line SK-UT-1 and the mammary epithelial cell line hTERT-HME1. We could show that the endometriotic 12Z cells share structural similarities with cancerous SK-UT-1 cells with enhanced colocalization between the endoplasmic reticulum and mitochondria and increased cristae width and density associated with facilitated mitochondrial Ca2+ uptake. However, an increase in the reduction equivalent yield and oxygen consumption rate was exclusively found in 12Z cells, whereas the reduced ΔΨm and the reverse mode of FOF1-ATP synthase were also detected in SK-UT-1 cells. These features rendered both cell types susceptible to quercetin and oligomycin A treatment. We assume that the complexes of the electron transport chain and the FOF1-ATP synthase in reverse mode have a crucial role in maintaining mitochondrial membrane potential and, thereby, mitochondrial integrity of endometriotic 12Z cells. Therefore, targeting the electron transport chain or the reverse mode of FOF1-ATP synthase may represent a promising new treatment strategy for endometriosis.
Collapse
Affiliation(s)
- Katarína Kalinová
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Martin Hirtl
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Julian Ostaku
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Sonja Gabrijelčič
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Alwin Sokolowski
- Division of Restorative Dentistry, Periodontology and Prosthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Wolfgang F Graier
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
5
|
Zheng M, Wen H, Meng Z, Guo W, Wang K, Yu M, Li K, Zhang Y, Liu K, Cai L, Zhu B, Sheng W. Biological evaluation of a new highly sensitive and selective fluorescent probe for hypochlorous acid and its imaging application in cell and zebrafish. Bioorg Chem 2025; 158:108358. [PMID: 40073596 DOI: 10.1016/j.bioorg.2025.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Hypochlorous acid is one of the most widely distributed reactive oxygen species in vivo. It is usually used as a signal molecule to participate in various life activities such as immunity and metabolism, and plays a notable role in maintaining homeostasis. When hypochlorous acid level is abnormal in the body, it will lead to a variety of diseases, such as Parkinson's disease, Alzheimer's disease, atherosclerosis and cancer. Therefore, it is necessary to develop a bio-friendly fluorescent probe with fast sensitivity and specific accuracy. In this study, the innovative probe PRS owns good optical properties, sensitivity and selectivity, and the response mechanism that the generation of new bond enhanced the fluorescence intensity is studied. Biocompatibility of probe is systematically and innovatively evaluated by using cells and zebrafish models. Note that the biocompatibility valuation of probe results from cytotoxicity test, zebrafish behavioral test, hepatotoxicity test, cardiotoxicity test, nephrotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test, and experimental indicators like swimming duration, swimming distance, swimming speed, pericardial rub, fractional shortening, stroke volume, heart rate, SV-BA, shortening rate of the ventricular short axis, liver area, liver fluorescence intensity, total length of intersegmental vessels, number of vessels, and average vessel length show that the probe has good biocompatibility. Moreover, the detection performance of the probe shows that the probe can target hypochlorous acid in cell and zebrafish models. The probe is proved to be much essential for the monitoring of hypochlorous acid in vivo. Therefore, it has been proven that the meaningful detection of probe PRS for HOCl is promising in the living organism. Moreover, our innovative biocompatibility testing can be used to evaluate the biosafety of fluorescent probe as well.
Collapse
Affiliation(s)
- Min Zheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Huayan Wen
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Zhengxiang Meng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenli Guo
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Ke Li
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lei Cai
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
6
|
Asghari Alashti F, Goliaei B. Rethinking fat Browning: Uncovering new molecular insights into the synergistic roles of fasting, exercise, and cold exposure. Eur J Pharmacol 2025; 998:177651. [PMID: 40274179 DOI: 10.1016/j.ejphar.2025.177651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
The global obesity epidemic highlights the need to understand the molecular mechanisms that regulate energy metabolism. Among emerging research areas, fat browning-the transformation of white adipose tissue into beige fat-has gained significant attention. This review explores the molecular pathways involved in fat browning triggered by fasting, physical exercise, and cold exposure, emphasizing both shared and distinct regulatory mechanisms. These stimuli consistently induce physiological responses such as lipolysis, mitochondrial biogenesis, and improved insulin sensitivity. Notably, PGC-1α and SIRT3 are upregulated across all three conditions, underscoring their central roles in mitochondrial function and energy metabolism and identifying them as promising therapeutic targets. In contrast, UCP1 and PRDM16 exhibit condition-specific regulation, suggesting they may not be universally essential for fat browning. In addition, the review discusses species-specific differences in brown adipose tissue (BAT) activation, particularly between rodents and humans, highlighting the challenges of translating animal model findings to human therapies. Future research should aim to develop selective pharmacological activators of PGC-1α and SIRT3 to enhance therapeutic outcomes while minimizing adverse effects. This review also proposes that integrating fasting, exercise, and cold exposure could provide innovative strategies to promote metabolic health.
Collapse
Affiliation(s)
- Fariborz Asghari Alashti
- Institute of Biochemistry and Biophysics (IBB), Laboratory of Biophysics and Molecular Biology, University of Tehran, Tehran, Iran; Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, M4N 3M5, Canada.
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics (IBB), Laboratory of Biophysics and Molecular Biology, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Marcos-Ríos D, Rochano-Ortiz A, San Sebastián-Jaraba I, Fernández-Gómez MJ, Méndez-Barbero N, Oller J. Mitochondrial Dysfunction: A New Hallmark in Hereditable Thoracic Aortic Aneurysm Development. Cells 2025; 14:618. [PMID: 40277943 PMCID: PMC12026022 DOI: 10.3390/cells14080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Thoracic aortic aneurysms (TAAs) pose a significant health burden due to their asymptomatic progression, often culminating in life-threatening aortic rupture, and due to the lack of effective pharmacological treatments. Risk factors include elevated hemodynamic stress on the ascending aorta, frequently associated with hypertension and hereditary genetic mutations. Among the hereditary causes, Marfan syndrome is the most prevalent, characterized as a connective tissue disorder driven by FBN1 mutations that lead to life-threatening thoracic aortic ruptures. Similarly, mutations affecting the TGF-β pathway underlie Loeys-Dietz syndrome, while mutations in genes encoding extracellular or contractile apparatus proteins, such as ACTA2, are linked to non-syndromic familial TAA. Despite differences in genetic origin, these hereditary conditions share central pathophysiological features, including aortic medial degeneration, smooth muscle cell dysfunction, and extracellular remodeling, which collectively weaken the aortic wall. Recent evidence highlights mitochondrial dysfunction as a crucial contributor to aneurysm formation in Marfan syndrome. Disruption of the extracellular matrix-mitochondrial homeostasis axis exacerbates aortic wall remodeling, further promoting aneurysm development. Beyond its structural role in maintaining vascular integrity, the ECM plays a pivotal role in supporting mitochondrial function. This intricate relationship between extracellular matrix integrity and mitochondrial homeostasis reveals a novel dimension of TAA pathophysiology, extending beyond established paradigms of extracellular matrix remodeling and smooth muscle cell dysfunction. This review summarizes mitochondrial dysfunction as a potential unifying mechanism in hereditary TAA and explores how understanding mitochondrial dysfunction, in conjunction with established mechanisms of TAA pathogenesis, opens new avenues for developing targeted treatments to address these life-threatening conditions. Mitochondrial boosters could represent a new clinical opportunity for patients with hereditary TAA.
Collapse
Affiliation(s)
- Daniel Marcos-Ríos
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (D.M.-R.); (A.R.-O.); (I.S.S.-J.); (M.J.F.-G.)
| | - Antonio Rochano-Ortiz
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (D.M.-R.); (A.R.-O.); (I.S.S.-J.); (M.J.F.-G.)
| | - Irene San Sebastián-Jaraba
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (D.M.-R.); (A.R.-O.); (I.S.S.-J.); (M.J.F.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María José Fernández-Gómez
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (D.M.-R.); (A.R.-O.); (I.S.S.-J.); (M.J.F.-G.)
| | - Nerea Méndez-Barbero
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (D.M.-R.); (A.R.-O.); (I.S.S.-J.); (M.J.F.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, 28691 Madrid, Spain
| | - Jorge Oller
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (D.M.-R.); (A.R.-O.); (I.S.S.-J.); (M.J.F.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, 28691 Madrid, Spain
| |
Collapse
|
8
|
Ma M, Zhong J, Tai Y, Xu S, Pei Z, Wang X. Combining RNA-seq, molecular docking and experimental verification to explore the mechanism of BAM15 as a potential drug for atherosclerosis. Sci Rep 2025; 15:13347. [PMID: 40247008 PMCID: PMC12006321 DOI: 10.1038/s41598-025-98209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
BAM15 is a novel mitochondrial uncoupling agent derived from a synthetic source, that has been wildly explored for its ability to enhance mitochondrial respiration and metabolic flexibility. In this study, we investigated the underlying mechanisms of BAM15 on atherosclerosis (AS) through experimental validation, RNA-seq and molecular docking. The results showed that oral administration of BAM15 suppressed atherosclerosis in western diet (WD)-fed ApoE(-/-) mice and significantly improved the hyperlipidemia. And the increased serum ALT, AST and liver TC, TG, ALT, AST in ApoE(-/-) mice were reduced by BAM15 treatment. In in vitro experiments BAM15 inhibited RAW264.7 macrophages invasive ability and reduced palmitic acid-induced lipid accumulation. RNA-seq results confirmed the differential genes after BAM15 treatment and 140 common targets were identified by intersecting with AS-related targets. A protein-protein interaction (PPI) network analysis high-lighted IL1A, SRC and CSF3 as key targets of BAM15 against AS, which is further verified by molecular docking and western blot. Molecular dynamics analysis results confirmed that BAM15 exhibits strong affinity with the IL-1α, SRC and CSF3 proteins. This study indicates that BAM15 inhibits atherosclerosis through a multi-molecular mechanism, and we propose it as a novel anti-atherosclerotic drug.
Collapse
Affiliation(s)
- Minghui Ma
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Jiao Zhong
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Yu Tai
- Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Shuo Xu
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Zejun Pei
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China.
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
| | - Xin Wang
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China.
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Wexler AC, Dooge H, Serban L, Tewari A, Tehrani BM, Alvarado FJ, Ramratnam M. Pharmacologic ROMK Inhibition Protects Against Myocardial Ischemia Reperfusion Injury. Int J Mol Sci 2025; 26:3795. [PMID: 40332433 PMCID: PMC12028082 DOI: 10.3390/ijms26083795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Mitochondrial ATP-sensitive K+ channels are closely linked to cardioprotection and are potential therapeutic targets during ischemia reperfusion (IR) injury. The renal outer medullary K+ channel isoform 2 (ROMK2) is an ATP-sensitive K+ channel found in the mitochondria of cardiomyocytes. While the germline knockout of ROMK does not mediate myocardial IR injury, the effect of ROMK loss of function on IR injury in the adult myocardium is unknown. By using a selective small molecule inhibitor of ROMK, we paradoxically found that mouse hearts were protected from IR injury after ROMK inhibition compared to vehicle-treated animals. In addition, we found that ROMK inhibition leads to exaggerated mitochondrial uncoupling and increased ROS production. Phosphatidylinositol 4,5-bisphosphate (PIP2), an activator of ROMK, increased the effect of ATP to hyperpolarize cardiac mitochondrial membrane potential. ROMK inhibition also increased mitochondrial swelling in the absence of ATP. In conclusion, pharmacologic ROMK inhibition protects the murine heart from IR injury and may promote a phenotype of enhanced mitochondrial matrix K+. ROMK may be more important during conditions that promote mitochondrial matrix K+ efflux than influx. Further research to understand its role in mitochondrial K+ handling and as a therapeutic target in IR injury is needed.
Collapse
Affiliation(s)
- Allison C. Wexler
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.C.W.); (H.D.); (L.S.); (A.T.); (B.M.T.); (F.J.A.)
- Cardiology Section, Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Holly Dooge
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.C.W.); (H.D.); (L.S.); (A.T.); (B.M.T.); (F.J.A.)
- Cardiology Section, Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Lara Serban
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.C.W.); (H.D.); (L.S.); (A.T.); (B.M.T.); (F.J.A.)
| | - Aditya Tewari
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.C.W.); (H.D.); (L.S.); (A.T.); (B.M.T.); (F.J.A.)
| | - Babak M. Tehrani
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.C.W.); (H.D.); (L.S.); (A.T.); (B.M.T.); (F.J.A.)
| | - Francisco J. Alvarado
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.C.W.); (H.D.); (L.S.); (A.T.); (B.M.T.); (F.J.A.)
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.C.W.); (H.D.); (L.S.); (A.T.); (B.M.T.); (F.J.A.)
- Cardiology Section, Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
10
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
11
|
Cheng M, Wu W, Li Q, Tao X, Jiang F, Li J, Shen N, Wang F, Luo P, He Q, Huang P, Xu Z, Zhang Y. Sotorasib-impaired degradation of NEU1 contributes to cardiac injury by inhibiting AKT signaling. Cell Death Discov 2025; 11:169. [PMID: 40221400 PMCID: PMC11993734 DOI: 10.1038/s41420-025-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Sotorasib, the inaugural targeted inhibitor sanctioned for the management of patients afflicted with locally advanced or metastatic non-small cell lung cancer presenting the KRAS G12C mutation, has encountered clinical application constraints due to its potential for cardiac injury as evidenced by safety trials. This investigation has elucidated that the heightened expression of neuraminidase-1 (NEU1) constitutes the principal etiology of cardiac damage induced by sotorasib. Mechanistically, sotorasib treatment inhibited the ubiquitinated degradation of NEU1, leading to its elevated expression, which induced downstream AKT signaling pathway inhibition and mitochondrial dysfunction leading to cardiomyocyte apoptosis. Meanwhile, in vivo and in vitro studies showed that D-pantothenic acid (D-PAC) alleviated sotorasib-induced cardiac damage by promoting NEU1 degradation. In conclusion, this study revealed that NEU1 is a key protein in sotorasib cardiotoxicity and that reducing the level of this protein is a critical strategy for the clinical treatment of sotorasib-induced cardiac injury. Schematic representation of a mechanism.
Collapse
Affiliation(s)
- Mengting Cheng
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qing Li
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, People's Republic of China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Nikopaschou M, Samiotaki M, Stylianaki EA, Król K, Gragera P, Raja A, Aidinis V, Chroni A, Fruci D, Panayotou G, Stratikos E. ERAP1 Activity Modulates the Immunopeptidome but Also Affects the Proteome, Metabolism, and Stress Responses in Cancer Cells. Mol Cell Proteomics 2025; 24:100964. [PMID: 40189142 DOI: 10.1016/j.mcpro.2025.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) metabolizes peptides inside the ER and shapes the peptide repertoire available for binding to major histocompatibility complex class I molecules (MHC-I). However, it may have additional effects on cellular homeostasis, which have not been explored. To address these questions, we used both genetic silencing of ERAP1 expression as well as treatment with a selective allosteric ERAP1 inhibitor to probe changes in the immunopeptidome and proteome of the A375 melanoma cancer cell line. We observed significant immunopeptidome shifts with both methods of functional ERAP1 disruption, which were distinct for each method. Both methods of inhibition led to an enhancement, albeit slight, in tumor cell killing by stimulated human peripheral blood mononuclear cells and in significant proteomic alterations in pathways related to metabolism and cellular stress. Similar proteomic changes were also observed in the leukemia cell line THP-1. Biochemical analyses suggested that ERAP1 inhibition affected sensitivity to ER stress, reactive oxygen species production, and mitochondrial metabolism. Although the proteomics shifts were significant, their potential in shaping immunopeptidome shifts was limited since only 9.6% of differentially presented peptides belonged to proteins with altered expression and only 4.0% of proteins with altered expression were represented in the immunopeptidome shifts. Taken together, our findings suggest that modulation of ERAP1 activity can generate unique immunopeptidomes, mainly due to altered peptide processing in the ER, but also induce changes in the cellular proteome and metabolic state which may have further effects on tumor cells.
Collapse
Affiliation(s)
- Martha Nikopaschou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece; Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, Vari, Greece
| | - Elli-Anna Stylianaki
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Fundamental Biomedical Research, Vari, Greece
| | - Kamila Król
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paula Gragera
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Aroosha Raja
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vassilis Aidinis
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Fundamental Biomedical Research, Vari, Greece
| | - Angeliki Chroni
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
| | - Doriana Fruci
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, Vari, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece; Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
13
|
Ghanizadeh-Kazerouni E, Negrete B, Jones SRM, Fast MD, Brauner CJ. Mitochondrial respiration capacity impacts gill tissue regeneration in Atlantic salmon. J Exp Biol 2025; 228:jeb249704. [PMID: 40013343 DOI: 10.1242/jeb.249704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Gill regeneration in fish varies inter- and intra-specifically. The latter may be associated with myriad factors including capacity of energy metabolism. This study investigated whether mitochondrial respiration capacity influences the degree of gill regeneration and features of mitochondria in regenerated tissue by feeding fish an experimental diet aimed at modulating mitochondrial efficiency. Atlantic salmon reared on standard and experimental diet were subjected to 50% filament resection on a subset of filaments on the ventral and dorsal regions of the first gill arch. Mitochondrial respiration and citrate synthase activity (CSA) were measured in the resected tips of filaments (week-0) and then in the regenerated tissue at 20 weeks post-resection (week-20). The degree of filament regeneration was measured at week-20. The experimental diet reduced CSA and respiratory control ratio (RCR), and increased proton leak at week-0, which was associated with a 30% reduction in tissue regeneration compared with fish on standard diet. While CSA increased in the regenerated tissue of experimental diet fish, there was a decline in other metrics of mitochondrial respiration including state 3, proton leak and RCR irrespective of diet. Overall, mitochondrial respiration efficiency at week-0 was positively correlated with the degree of subsequent gill tissue regeneration. Additionally, state 3 respiration and proton leak at week-20 were positively correlated with tissue regeneration, whereas CSA exhibited a negative relationship. Our results indicate that the capacity of mitochondrial respiration may at least partially explain the inter-individual variation in tissue regeneration, but mitochondrial function in the regenerating tissue may be limited.
Collapse
Affiliation(s)
| | - Benjamin Negrete
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Simon R M Jones
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada, V9T 6N7
| | - Mark D Fast
- Department of Pathology and Microbiology, University of Prince Edward Island, Charlottetown, PE, Canada, C1A 4P3
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
14
|
Jiang X, Wang Z, Wang L, Wang Y, Zhao L, Jiang H. Voluntarily wheel running protects doxorubicin-induced kidney injury by inhibiting oxidative stress through mitochondrial function. PLoS One 2025; 20:e0321121. [PMID: 40168406 PMCID: PMC11960966 DOI: 10.1371/journal.pone.0321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/02/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX) has a broad anticancer spectrum and precise anticancer effects, but its clinical application is limited by severe multiorgan toxicity, among which nephrotoxicity is one of the main adverse reactions. In this study, the protective effect of voluntary wheel running on nephrotoxicity induced by DOX was observed, and its mechanism was initially discussed. METHODS Forty male C57BL/6 mice were randomly divided into a control group (CTR), a voluntary wheel running group (EX), a doxorubicin model group (DOX) and a doxorubicin combined with voluntary wheel running group (COM). After 2 weeks of exercise, the mice were sacrificed. Serum creatinine (CREA), urea nitrogen (BUN), uric acid (UA), carbon dioxide combining power (CO2-CP), renal tissue apoptosis, oxidative stress and mitochondrial function indicators were assessed. RESULTS Compared with those in the DOX group, the concentrations of CREA, BUN and UA decreased, the number of TUNEL-positive cells in kidney tissue decreased, the expression of antiapoptotic proteins increased, and the expression of proapoptotic proteins decreased in the COM group. In addition, the COM can reduce the ROS and MDA contents in kidney tissue, reduce peroxide accumulation and alleviate mitochondrial respiratory chain damage caused by DOX. CONCLUSIONS Voluntary wheel running can improve the mitochondrial function of renal cells and reduce oxidative stress damage, thus playing a protective role against nephrotoxicity caused by DOX. This study provides a new way to reduce the adverse reactions to chemotherapy in combination with the application of chemical drugs.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Rehabilitation, Physical examination center of the first Hospital of Jilin University, Changchun, Jilin, China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Longyun Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yuqi Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Hongyu Jiang
- Department of Rehabilitation, Physical examination center of the first Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Cao T, Ho CT, Wang W, Lu M. Capsaicin Mitigates Reverb α-Involved Lipid Metabolism Disorder in HepG2 Cells and Obese Mice through a Trpv1-Dependent Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5300-5310. [PMID: 39993721 DOI: 10.1021/acs.jafc.5c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Capsaicin (CAP), the active component of chili peppers, exerts a range of health benefits, including anti-inflammatory, antitumor, obesity-prevention, metabolic control, and biological rhythm-modulating effects, primarily through the activation of the transient receptor potential vanilloid 1 (TRPV1) receptor. The research explores the role of TRPV1 and its interaction with hepatic circadian clock regulation in modulating lipid metabolism and liver health. The effect of CAP on lipid metabolism and the potential mechanism was examined in HepG2 cells and high-fat, high-sugar diet (HFFD)-induced obese mice. In vitro, CAP (50 μM) decreased lipid droplet overaccumulation (from 152.8 ± 2.30 to 110.13 ± 3.91%), enhanced mitochondrial function (from 57.94 ± 1.93 to 86.74 ± 1.83%), and alleviated circadian desynchrony through a Trpv1-dependent mechanism in HepG2 cells. In vivo, CAP (5 mg/kg) reduced the body weight gain (from 50.61 ± 3.77 to 38.36 ± 2.04%), restored the hepatic circadian rhythm, and modulated the expression of lipid-related genes through the involvement of TRPV1 in mice. This study highlighted the potential of CAP to attenuate Reverbα-mediated lipid metabolic dysfunction through a Trpv1-dependent mechanism, revealing a complex interplay between circadian regulation and lipid metabolism.
Collapse
Affiliation(s)
- Ting Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Wenshuo Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Lee SE, Kim DY, Jeong TS, Park YS. Micro- and Nano-Plastic-Induced Adverse Health Effects on Lungs and Kidneys Linked to Oxidative Stress and Inflammation. Life (Basel) 2025; 15:392. [PMID: 40141737 PMCID: PMC11944196 DOI: 10.3390/life15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Micro- and nano-plastics (MNPs) are small plastic particles that result from the breakdown of larger plastics. They are widely dispersed in the environment and pose a threat to wildlife and humans. MNPs are present in almost all everyday items, including food, drinks, and household products. Air inhalation can also lead to exposure to MNPs. Research in animals indicates that once MNPs are absorbed, they can spread to various organs, including the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys, and even the brain by crossing the blood-brain barrier. Furthermore, MPs can transport persistent organic pollutants or heavy metals from invertebrates to higher levels in the food chain. When ingested, the additives and monomers that comprise MNPs can disrupt essential biological processes in the human body, thereby leading to disturbances in the endocrine and immune systems. During the 2019 coronavirus (COVID-19) pandemic, there was a significant increase in the global use of polypropylene-based face masks, leading to insufficient waste management and exacerbating plastic pollution. This review examines the existing research on the impact of MNP inhalation on human lung and kidney health based on in vitro and in vivo studies. Over the past decades, a wide range of studies suggest that MNPs can impact both lung and kidney tissues under both healthy and diseased conditions. Therefore, this review emphasizes the need for additional studies employing multi-approach analyses of various associated biomarkers and mechanisms to gain a comprehensive and precise understanding of the impact of MNPs on human health.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
17
|
de Oliveira MP, da Silva LE, Fernandes BB, Steiner MR, Pistóia DG, Santos Cichella TD, Jacinto LB, Spuldaro KM, Pinto Moehlecke Iser B, Rezin GT. The impact of obesity on mitochondrial dysfunction during pregnancy. Mol Cell Endocrinol 2025; 598:112463. [PMID: 39832615 DOI: 10.1016/j.mce.2025.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Mitochondria play a central role in nutrient metabolism, besides being responsible for the production of adenosine triphosphate (ATP), the main source of cellular energy. However, the ATP production process is associated with the generation of reactive oxygen species (ROS), which excessive accumulation can cause mitochondrial dysfunction. This dysfunction, in turn, causes the accumulation of fatty acids in the adipose tissue, triggering a local inflammatory process that can evolve into systemic inflammation. In women with obesity, an increase in lipid levels in the placental environment is observed. The high presence of fatty acids compromises the structural integrity and mitochondrial membrane, culminating in the release of ROS. This process damages the DNA of placental cells and causes an inflammatory state, affecting metabolic efficiency. This vicious cycle is characterized by defects in mitochondrial ATP production, which can lead to lipid accumulation and inflammation. In pregnant women with obesity, these mitochondrial changes play a determining role in pregnancy outcomes. Hence, the objective of this study was to search the literature to review the impact of mitochondrial dysfunction in the maternal obesity.
Collapse
Affiliation(s)
- Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol Steiner
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Debora Gehrke Pistóia
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Tamires Dos Santos Cichella
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Luana Bahia Jacinto
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Karoline Marcondes Spuldaro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Betine Pinto Moehlecke Iser
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
18
|
Qian M, Sun W, Cheng L, Wu Y, Wang L, Liu H. Transcriptome-based analysis reveals the toxic effects of perfluorononanoic acid by affecting the development of the cardiovascular system and lipid metabolism in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110108. [PMID: 39647647 DOI: 10.1016/j.cbpc.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Perfluorononanoic acid (PFNA) is a perfluoroalkyl acid containing nine carbon chains, with an additional carbon‑fluorine bond that makes it more stable and toxic. Studies have shown that PFNA can harm the reproductive, immune, and nervous systems, as well as many organs, which can increase the risk of cancer. In this study, zebrafish embryos were treated with 0 and 100 μM PFNA for 72 and 96 hpf, and their angiogenesis and haematopoiesis were observed under laser confocal microscopy using Tg (fli1:EGFP) and Tg (gata1:DsRed) transgenic zebrafish. The data showed that PFNA exposure decreased heart rate and slowed blood flow in zebrafish. PFNA was found to inhibit erythropoiesis by O-dianisidine staining. RNA-seq analysis was used to compare gene expression changes in zebrafish from control and 100 μM PFNA-exposed groups at 72 hpf. KEGG results showed significant enrichment of PPAR signaling pathway, fatty acid metabolism, steroid biosynthesis and apoptosis. The RNA-seq results were validated by real-time fluorescence quantitative PCR (RT-qPCR). Oil red O staining and Filipin staining showed increased lipid accumulation after PFNA exposure, and TUNEL staining showed that PFNA exposure led to apoptosis. In conclusion, exposure to PFNA may cause toxic effects in zebrafish by affecting cardiovascular development, causing lipid accumulation and promoting apoptosis.
Collapse
Affiliation(s)
- Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Weiqiang Sun
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
19
|
Zelentsova AS, Skorkina MY, Deykin AV. The P2X3 receptor blocker AF-353 (Ro-4) reduces bioenergetic index of a primary mixed culture of hippocampal neurons. BIOMEDITSINSKAIA KHIMIIA 2025; 71:137-145. [PMID: 40326020 DOI: 10.18097/pbmcr1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In clinical studies, the purinergic receptor P2X3 is considered as a molecular target for pain correction in spinal sensory neurons by highly selective antagonists based on diaminopyrimidine derivatives. In the CNS, P2X3 receptors are involved in synaptic plasticity underlying memory and learning. Currently, potent and selective allosteric modulators of P2X3 and P2X2/3 receptors have been recognized among diaminopyrimidine derivatives. These include 5-(5-iodo-2-isopropyl-4-methoxyphenoxy)pyrimidine-2,4-diamine (Ro-4 or AF-353), gefapixant, which have a good pharmacokinetic profile and are less active with respect to a wide range of kinases, receptors, and ion channels. Although the therapeutic value of P2X3 receptor blockade in CNS neurons has not been studied, however, certain evidence exists in the literature that this receptor could represent a new target in the search for antiepileptic drugs, as well as drugs that reduce anxiety and stress. The aim of the work was to study the effect of the P2X3 receptor antagonist AF-353 (Ro-4) on the neuronal bioenergetic health index (BHI) in a primary mixed hippocampal culture. The P2X3 receptor blockade in embryonic and postnatal mouse hippocampal neuron cultures increased non-mitochondrial respiration by 27.5% and 15.8%, respectively, proton loss by 31.0% and 61.4%, and decreased basal respiration by 89% and 39% compared to the control. The neuronal BHI decrease in the postnatal culture was 68% compared to the control. The obtained results indicate the effect of AF-353 on mitochondrial respiration of a primary mixed culture of hippocampal neurons; this reveals the potential of the P2X3 receptor as a pharmacological target in hypoxic conditions of the brain.
Collapse
Affiliation(s)
- A S Zelentsova
- Belgorod State National Research University, Belgorod, Russia
| | - M Yu Skorkina
- Belgorod State National Research University, Belgorod, Russia
| | - A V Deykin
- Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|
20
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2025; 42:421-441. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
21
|
Chambion-Diaz M, Manferdelli G, Narang BJ, Giardini G, Debevec T, Pialoux V, Millet GP. Oxidative stress and nitric oxide metabolism responses during prolonged high-altitude exposure in preterm born adults. JOURNAL OF SPORT AND HEALTH SCIENCE 2025; 14:101034. [PMID: 40021057 PMCID: PMC12060470 DOI: 10.1016/j.jshs.2025.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 12/27/2024] [Indexed: 03/03/2025]
Abstract
BACKGROUND Prematurely-born individuals tend to exhibit higher resting oxidative stress, although evidence suggests they may be more resistant to acute hypoxia-induced redox balance alterations. We aimed to investigate the redox balance changes across a 3-day hypobaric hypoxic exposure at 3375 m in healthy adults born preterm (gestational age ≤ 32 weeks) and their term-born (gestational age ≥ 38 weeks) counterparts. METHODS Resting venous blood was obtained in normoxia (prior to altitude exposure), immediately upon arrival to altitude, and the following 3 mornings. Antioxidant (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and ferric reducing antioxidant power (FRAP)), pro-oxidant (xanthine oxidase (XO) and myeloperoxidase (MPO)) enzyme activity, oxidative stress markers (advanced oxidation protein product (AOPP) and malondialdehyde (MDA)), nitric oxide (NO) metabolites (nitrites, nitrates, and total nitrite and nitrate (NOx)), and nitrotyrosine were measured in plasma. RESULTS SOD increased only in the preterm group (p < 0.05). Catalase increased at arrival in preterm group (p < 0.05). XO activity increased at Day 3 for the preterm group, while it increased acutely (arrival and Day 1) in control group. MPO increased in both groups throughout the 3 days (p < 0.05). AOPP only increased at arrival in the preterm (p < 0.05) whereas it decreased at arrival up to Day 3 (p < 0.05) for control. MDA decreased in control group from arrival onward. Nitrotyrosine decreased in both groups (p < 0.05). Nitrites increased on Day 3 (p < 0.05) in control group and decreased on Day 1 (p < 0.05) in preterm group. CONCLUSION These data indicate that antioxidant enzymes seem to increase immediately upon hypoxic exposure in preterm adults. Conversely, the blunted pro-oxidant enzyme response to prolonged hypoxia exposure suggests that these enzymes may be less sensitive in preterm individuals. These findings lend further support to the potential hypoxic preconditioning effect of preterm birth.
Collapse
Affiliation(s)
- Marie Chambion-Diaz
- Laboratoire Interuniversitaire de biologie de la motricité (LIBM), Université Lyon 1 Claude Bernard, Villeurbanne 69100, France; Laboratoire de kinésiologie du PEPS, Département de kinésiologie, Faculté de médecine, Université Laval, Québec G1V 0A6, Canada
| | - Giorgio Manferdelli
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Faculty for Sport, University of Ljubljana, Ljubljana 1600, Slovenia
| | - Guido Giardini
- Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta 11100, Italy
| | - Tadej Debevec
- Faculty for Sport, University of Ljubljana, Ljubljana 1600, Slovenia; Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta 11100, Italy
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de biologie de la motricité (LIBM), Université Lyon 1 Claude Bernard, Villeurbanne 69100, France; Institut Universitaire de France, Paris 75231, France.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
22
|
Bai X, Wei H, Liu G, Li L. Astragalus polyphenols attenuates doxorubicin-induced cardiotoxicity by activating the PI3K/AKT/NRF2 pathway. PLoS One 2025; 20:e0319067. [PMID: 39999034 PMCID: PMC11856579 DOI: 10.1371/journal.pone.0319067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX) is a powerful chemotherapeutic agent commonly employed in cancer treatment. However, its clinical utility is constrained by dose-dependent cardiotoxicity, which can result in heart failure and sudden cardiac death. The molecular mechanisms of DOX-induced cardiotoxicity (DIC) include oxidative stress, mitochondrial dysfunction, and the activation of cell death pathways, including ferroptosis. There is an urgent need for effective therapeutic strategies to mitigate DIC. METHODS This study investigates the cardioprotective effects of Astragalus Polyphenols (ASP), a bioactive compound extracted from Astragalus membranaceus. In the context of DIC, we utilized AC16 and H9C2 cardiomyocytes to establish a DIC model and assessed the effects of ASP on cell viability, oxidative stress, mitochondrial function, and the PI3K/AKT/NRF2 signaling pathway. The expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), markers of cardiac injury, was also evaluated. RESULTS ASP treatment significantly reversed DOX-induced reductions in cell viability and mitochondrial membrane potential (MMP) while also decreasing the levels of reactive oxygen species (ROS). Additionally, ASP also downregulated the expression of ANP and BNP, indicating a protective effect on cardiomyocytes. Furthermore, ASP activated the PI3K/AKT/NRF2 pathway, which was suppressed by DOX. Inhibition of this pathway using LY294002 and ML385 abolishes the protective effects of ASP, suggesting that ASP mediates its effects through the PI3K/AKT/NRF2 signaling axis. CONCLUSION ASP exhibits a protective effect against DOX-induced cardiotoxicity by regulating the PI3K/AKT/NRF2 pathway to reduce oxidative stress and preserve mitochondrial function. These findings suggest that ASP may serve as a potential therapeutic agent to alleviate DIC. Our results provide a novel strategy to protect the heart in patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Xueyang Bai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Cardiology, Hami Central Hospital, Hami, Xinjiang, China
| | - Hua Wei
- Department of Cardiology, Hami Central Hospital, Hami, Xinjiang, China
| | - Gangqiong Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Chen M, He K, Wang K, Cai Y, Ying Z, Li X, Liu Y, Xiang L, Yang P, Wu H, Jiang J. Low-dose radiation ameliorates doxorubicin-induced renal injury via reducing oxidative stress and protecting mitochondrial function. PLoS One 2025; 20:e0313649. [PMID: 39932912 PMCID: PMC11813107 DOI: 10.1371/journal.pone.0313649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/28/2024] [Indexed: 02/13/2025] Open
Abstract
Doxorubicin (DOX) is a well-established chemotherapy drug, but its clinical application is restricted due to significant tissue toxicity, of which nephrotoxicity is a serious adverse reaction. Low-dose radiation (LDR) exerts effects through stimulating diverse cell and molecular mechanisms, which has been shown to have anti-inflammatory and alter immune adaptation effects. This study aims to investigate how LDR protects against DOX-induced nephrotoxicity and to explore the underlying mechanism involved. Sixty mice were randomly divided into control (CTR), LDR, DOX, and combination (COM) group. Nephrotoxicity was induced by injecting a single dose of DOX (7.5 mg/kg) in mice abdominal cavity, and LDR was performed 72 h before DOX treatment. Histological analysis, immunohistochemical analysis, immunofluorescence analysis and western-blotting were used to detect the related indicators. Research data was showed as mean ±SD and tested by One-way ANOVA. The results showed that compared with DOX group, the contents of serum UREA, UA, and the expression level of Bax and caspase 9 were significantly reduced in COM group (P<0.05). Western-blotting and immunohistochemical analysis showed that the expression level of MDA and Nrf2 in COM group were significantly lower than that in DOX group (P<0.05). In addition, the activity of complex Ⅰ, ATP, NDUFA1 and CYC1 were enhanced in COM group compared with DOX group (P<0.05). All the results suggested that LDR pretreatment prevented excessive accumulation of peroxides, restored antioxidants activity (SOD, GSH, CAT), activated Nrf2/HO-1/NQO1 signaling pathway, attenuated damage to the mitochondrial respiratory chain, and protected kidney cells from DOX attack. This study demonstrated that LDR could effectively and safely inhibit the progression of DOX-induced nephrotoxicity. Future studies should further investigate the mechanism of LDR protecting tissues from DOX-induced damage and find an optimal radiation dose for humans.
Collapse
Affiliation(s)
- Mengmeng Chen
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yibo Cai
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhaohui Ying
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xueting Li
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yating Liu
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Liting Xiang
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Pingping Yang
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongjuan Wu
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
24
|
Ren J, Chen X, Wang T, Liu C, Wang K. Regenerative therapies for myocardial infarction: exploring the critical role of energy metabolism in achieving cardiac repair. Front Cardiovasc Med 2025; 12:1533105. [PMID: 39991634 PMCID: PMC11842438 DOI: 10.3389/fcvm.2025.1533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Cardiovascular diseases are the most lethal diseases worldwide, of which myocardial infarction is the leading cause of death. After myocardial infarction, in order to ensure normal blood supply to the heart, the remaining cardiomyocytes compensate for the loss of cardiomyocytes mainly by working at high capacity rather than by proliferating to produce new cardiomyocytes. This is partly due to the extremely limited ability of the adult heart to repair itself. A growing body of research suggests that the loss of cardiac regenerative capacity is closely related to metabolic shifts in energy sources. Currently, a large number of studies have focused on changes in metabolic levels before and after the proliferation window of cardiomyocytes, so it is crucial to search for relevant factors in metabolic pathways to regulate the cell cycle in cardiomyocyte progression. This paper presents a review of the role of myocardial energy metabolism in regenerative repair after cardiac injury. It aims to elucidate the effects of myocardial metabolic shifts on cardiomyocyte proliferation in adult mammals and to point out directions for cardiac regeneration research and clinical treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jiahao Ren
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xinzhe Chen
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Cuiyun Liu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
25
|
Wen P, Sun Z, Yang D, Li J, Li Z, Zhao M, Wang D, Gou F, Wang J, Dai Y, Zhao D, Yang L. Irisin regulates oxidative stress and mitochondrial dysfunction through the UCP2-AMPK pathway in prion diseases. Cell Death Dis 2025; 16:66. [PMID: 39900919 PMCID: PMC11790890 DOI: 10.1038/s41419-025-07390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Prion diseases are a group of fatal neurodegenerative disorders characterized by the abnormal folding of cellular prion proteins into pathogenic forms. The development of these diseases is intricately linked to oxidative stress and mitochondrial dysfunction. Irisin, an endogenous myokine, has demonstrated considerable neuroprotective potential due to its antioxidative properties. However, the protective effects of irisin against prion diseases have yet to be clarified. Our findings indicate that treatment with exogenous irisin can mitigate the apoptosis induced by PrP106-126. Additionally, irisin significantly reduces oxidative stress and alleviates the mitochondrial dysfunction triggered by PrP106-126. Furthermore, irisin treatment targets uncoupling protein 2 (UCP2) and activates the AMPK-Nrf2 pathway, substantially improving oxidative stress and mitochondrial dysfunction in N2a cells induced by PrP106-126. These results suggest that irisin represents a novel and promising therapeutic approach for treating prion diseases.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - DongDong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
26
|
Berg K, Ertugrul I, Seefeldt JM, Jespersen NR, Dalsgaard FF, Ryhammer PK, Pedersen M, Ilkjaer LB, Hu M, Erasmus ME, Nielsen BRR, Bøtker HE, Moeslund N, Westenbrink D, Eiskjær H. Mitochondrial Function After Normothermic Regional Perfusion or Direct Procurement Followed by Hypothermic Oxygenated Machine Perfusion in Heart Transplantation After Circulatory Death. Transplantation 2025; 109:300-308. [PMID: 39107867 DOI: 10.1097/tp.0000000000005157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
BACKGROUND Strategies to minimize ischemic damage during heart transplantation (HTX) by donation after circulatory death (DCD) are warranted because the inevitable ischemic injury linked to DCD HTX deteriorates mitochondrial respiratory capacity and ultimately graft quality. This study aimed to examine the myocardial mitochondrial function during DCD HTX with hypothermic oxygenated machine perfusion (HOPE) and compare the effect of normothermic regional perfusion (NRP) with that of direct procurement and perfusion (DPP). METHODS A porcine DCD HTX model was used with hearts subjected to either DPP (n = 6) or NRP (n = 7) followed by HOPE and orthotopic HTX. Mitochondrial respiratory function was analyzed by high-resolution respirometry in left ventricle biopsies at baseline, after 180 min of HOPE, and after 60 min of reperfusion post-HTX. RESULTS Mitochondrial oxidative phosphorylation ( P = 0.0008), respiratory control ratio ( P = 0.04), and coupling efficiency ( P = 0.04) declined during DCD HTX. Fatty acid oxidation was preserved after 3 h of HOPE with a modest, statistically nonsignificant decline after reperfusion ( P = 0.2). Oxidative phosphorylation was inversely correlated with troponin-T levels ( r = -0.70, P = 0.0004). No statistically significant difference in mitochondrial respiratory capacity was observed between participants exposed to NRP and DPP. CONCLUSIONS Mitochondrial respiratory capacity declined gradually throughout the course of DCD HTX and correlated with the degree of myocardial damage. Following HOPE, the extent of mitochondrial deterioration was comparable between NRP and DPP.
Collapse
Affiliation(s)
- Katrine Berg
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Imran Ertugrul
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Jacob M Seefeldt
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Frederik F Dalsgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Pia K Ryhammer
- Department of Anesthesiology, Region Hospital Silkeborg, Falkevej 1A, Silkeborg, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Bo Ilkjaer
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Michiel Hu
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Michiel E Erasmus
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Bent R R Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
27
|
Zhou M, Qin Z, Zhu X, Ruan Y, Ling H, Li C, Gan X. Pyruvate dehydrogenase kinases: key regulators of cellular metabolism and therapeutic targets for metabolic diseases. J Physiol Biochem 2025; 81:21-34. [PMID: 40117090 DOI: 10.1007/s13105-025-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/27/2025] [Indexed: 03/23/2025]
Abstract
Pyruvate dehydrogenase kinases (PDKs) can regulate the conversion of pyruvate to acetyl coenzyme A through the mitochondrial pyruvate dehydrogenase complex (PDHC). As the rate-limiting enzymes of PDHC, PDKs link glycolysis to the tricarboxylic acid cycle. Pathological changes in many diseases involve alterations in cellular metabolism, which are partly reflected in changes in mitochondrial function. The intermediate role of PDKs in metabolic processes allows for the influence of both glycolysis and oxidative phosphorylation. Recent studies have shown that PDKs play a crucial role in regulating metabolic reprogramming, mitochondrial function and cellular activities in both oncological studies and various non-oncological diseases. This paper aims to clarify the molecular regulatory mechanisms of PDKs; review the relationship of PDKs with cellular metabolic reprogramming, regulation of ROS, and apoptosis; and the present status of research on PDKs in osteoporosis, diabetes mellitus, and vascular diseases. With this review, we have increased our understanding and insight at the molecular level, providing new insights into targeting PDKs to reverse metabolism-related diseases.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ziqi Qin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiting Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifeng Ruan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiling Ling
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
28
|
Liu Q, Gao Z, Zhang X, Duan Q, Zhang Y, Midgley AC, Jiao L, Liu R, Zhu M, Kong D, Zhuang J, Huang X. Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging. Nat Commun 2025; 16:1123. [PMID: 39875380 PMCID: PMC11775132 DOI: 10.1038/s41467-025-56414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9H2E) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG). Utilizing endosome-escaping ability, we design iFTn-based tetrameric cascade nanozymes with high superoxide dismutase- and catalase-mimicking activities. The in vivo protective effects of these ionizable cascade nanozymes against cardiac oxidative injury are demonstrated in female mouse models of cardiac ischemia-reperfusion (IR). RNA-sequencing analysis highlight the crucial role of these nanozymes in modulating superoxide anions-, hydrogen peroxide- and mitochondrial functions-relevant genes in IR injured cardiac tissue. These genetically engineered ionizable protein nanocarriers provide opportunities for developing ionizable drug delivery systems.
Collapse
Affiliation(s)
- Qiqi Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Zhanxia Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Qiannan Duan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Yue Zhang
- Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Li Jiao
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Ruming Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Muchová L, Šranková M, Balasubramani S, Mehta P, Vlachopoulou D, Kapoor A, Ramundo A, Jézéquel YA, Bożek I, Hurtová M, Klán P, Křen V, Vítek L. Carbon Monoxide-Releasing Activity of Plant Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1308-1318. [PMID: 39740217 PMCID: PMC11741109 DOI: 10.1021/acs.jafc.4c09069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Flavonoids are naturally occurring compounds found in fruits, vegetables, and other plant-based foods, and they are known for their health benefits, such as UV protection, antioxidant, anti-inflammatory, and antiproliferative properties. This study investigates whether flavonoids, such as quercetin and 2,3-dehydrosilybin, can act as photoactivatable carbon monoxide (CO)-releasing molecules under physiological conditions. CO has been recently recognized as an important signaling molecule. Here, we show that upon direct irradiation, CO was released from both flavonoids in PBS with chemical yields of up to 0.23 equiv, which increased to almost unity by sensitized photooxygenation involving singlet oxygen. Photoreleased CO reduced cellular toxicity caused by high flavonol concentrations, partially restored mitochondrial respiration, reduced superoxide production induced by rotenone and high flavonol levels, and influenced the G0/G1 and G2/M phases of the cell cycle, showing antiproliferative effects. The findings highlight the potential of quercetin and 2,3-dehydrosilybin as CO-photoreleasing molecules with chemopreventive and therapeutic implications in human pathology and suggest their possible roles in plant biology.
Collapse
Affiliation(s)
- Lucie Muchová
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Mária Šranková
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Sriram Balasubramani
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Panshul Mehta
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Dafni Vlachopoulou
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Akshat Kapoor
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| | - Andrea Ramundo
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Yann Anton Jézéquel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Igor Bożek
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Martina Hurtová
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ 14200, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 62500, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Vladimír Křen
- Laboratory
of Biotransformation, Institute of Microbiology
of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ 14200, Czech Republic
| | - Libor Vítek
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University Hospital in Prague and 1st
Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic
| |
Collapse
|
30
|
Yelisyeyeva O, Kaminskyy D, Semen M, Chelpanova I, Semen KO. Redox Metabolism and Autonomic Regulation During Aging: Can Heart Rate Variability Be Used to Monitor Healthy Longevity? Biomedicines 2025; 13:161. [PMID: 39857745 PMCID: PMC11761282 DOI: 10.3390/biomedicines13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The functionality of redox metabolism is frequently named as an important contributor to the processes of aging and anti-aging. Excessive activation of free radical reactions accompanied by the inability of the antioxidant defense (AOD) mechanisms to control the flow of the reactive oxygen species (ROS) leads to the persistence of oxidative stress, hypoxia, impaired mitochondrial energy function and reduced ATP potential. From a long-term perspective, such changes contribute to the development of chronic diseases and facilitate aging. In turn, preconditioning of a biosystem with small doses of stressful stimuli might cause mobilization of the mechanisms of AOD and control an excessive flow of ROS, which supports optimal functioning of the redox reactions. Those mechanisms are of crucial importance for anti-aging and are also known as a eustress or hormetic response. To ensure continuous support of mild pro-oxidant activity in a metabolic system, close monitoring and timely corrections preventing the development of excessive ROS production are required. The paper introduces the potential of heart rate variability (HRV) as a biomarker of functional and metabolic reserves and a tool to measure stress resilience during aging. The practical approaches to interpretation of HRV are provided based on total power, changes in total power in response to an orthostatic test and activities of all spectral components. It is suggested that the complex of those parameters can reflect the depth of oxidative stress and may be used to guide lifestyle interventions and promote active longevity.
Collapse
Affiliation(s)
- Olha Yelisyeyeva
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Marta Semen
- Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Ilona Chelpanova
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | | |
Collapse
|
31
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Lei J, Zhu Q, Guo J, Chen J, Qi L, Cui M, Jiang Z, Fan C, Wang L, Lai T, Jin Y, Si L, Liu Y, Yang Q, Bao D, Guo R. TEFM facilitates uterine corpus endometrial carcinoma progression by activating ROS-NFκB pathway. J Transl Med 2024; 22:1151. [PMID: 39731053 DOI: 10.1186/s12967-024-05833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Mitochondrial transcription elongation factor (TEFM) is a recently discovered factor involved in mitochondrial DNA replication and transcription. Previous studies have reported that abnormal TEFM expression can disrupt the assembly of mitochondrial respiratory chain and thus mitochondrial function. However, the role of TEFM on Uterine corpus endometrial carcinoma (UCEC) progression remains unclear. The present study aims to investigate the expression of TEFM in tumor tissue of UCEC and the effect of abnormal TEFM expression on malignant phenotype of UCEC cells. METHODS The expressions of TEFM were measured in tumor tissues and cell lines of UCEC by immunohistochemistry, Western blotting, and real-time quantitative PCR assays. Besides, the effects of TEFM knockdown or overexpression on UCEC cell growth, metastasis, apoptosis, and autophagy were also determined using EdU, colony formation, flow cytometry, TUNEL, and transmission electron microscopy assays. Xenograft model was used to confirm the role of TEFM on proliferative potential of UECE cells in vivo. RESULTS Our bioinformatics analysis of CPTAC data showed that TEFM is abnormally overexpressed in UCEC and its upregulation was significantly associated with poor survival of patients with UCEC. We found that TEFM upregulation significantly promoted the growth and metastasis of UCEC cells. Mechanically, TEFM upregulation impaired the function of mitochondria, decreased their membrane potential and activated the AKT-NFκB pathway by promoting reactive oxygen species (ROS) production, leading to enhanced intracellular autophagy and thus UCEC growth and metastasis. CONCLUSION This study demonstrates that TEFM positively regulates autophagy to promote the growth and metastasis of UCEC cells, which provides a potential prognostic biomarker and therapeutic target for the treatment of UCEC.
Collapse
Affiliation(s)
- Jia Lei
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Radiotheraphy Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Qingguo Zhu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Jianghao Guo
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Jiaxing Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Lixia Qi
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Mengmeng Cui
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Zhixiong Jiang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Chunhui Fan
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Lin Wang
- Radiotheraphy Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tianjiao Lai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Yuxi Jin
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Lulu Si
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Yana Liu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China
| | - Qi Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dengke Bao
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, Henan, 475004, China.
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan Key Medical Laboratory for the Prevention and Treatment of Gynecological Malignant Tumors, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
33
|
Mustafa NH, Siti HN, Kamisah Y. Role of Quercetin in Diabetic Cardiomyopathy. PLANTS (BASEL, SWITZERLAND) 2024; 14:25. [PMID: 39795285 PMCID: PMC11722747 DOI: 10.3390/plants14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Diabetic cardiomyopathy is a significant and severe complication of diabetes that affects a large portion of the global population, with its prevalence continuing to rise. Secondary metabolites, including quercetin, have shown promising effects in mitigating the progression of diabetic cardiomyopathy by targeting multiple pathological mechanisms, including impaired insulin signaling, glucotoxicity, lipotoxicity, oxidative stress, inflammation, fibrosis, apoptosis, autophagy, mitochondrial dysfunction, cardiac stiffness, and disrupted calcium handling. Addressing these mechanisms is crucial to prevent left ventricular diastolic and systolic dysfunction in advanced stages of diabetic heart disease. Scientific evidence has highlighted the cardioprotective properties of quercetin at both the myocardial and cellular/molecular levels in diabetic models. Therefore, this review aims to present a comprehensive overview of the proposed mechanisms underlying quercetin's beneficial effects, providing valuable insights that could inform future drug discovery efforts specific to diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Hawa Nordin Siti
- Department of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
34
|
Wang K, Zhang L, Deng B, Zhao K, Chen C, Wang W. Mitochondrial uncoupling protein 2: a central player in pancreatic disease pathophysiology. Mol Med 2024; 30:259. [PMID: 39707176 DOI: 10.1186/s10020-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numerous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, UCP2's role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancreatic steatosis are largely unknown. Additionally, the mechanisms connecting various pancreatic diseases are intricate and not yet fully elucidated. Given UCP2's diverse functionality, broad expression in pancreatic tissue, and the distinct pathophysiological features of pancreatic diseases, this review offers a comprehensive analysis of current findings on UCP2's involvement in these conditions. We discuss recent insights into UCP2's complex regulatory mechanisms, propose that UCP2 may serve as a central regulatory factor in pancreatic disease progression, and hypothesize that UCP2 dysfunction could significantly contribute to disease pathogenesis. Understanding UCP2's role and mechanisms in pancreatic diseases may pave the way for innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Zhang Y, Wu W, Shi Y, Huang Y, Dai T, Ke L, Chen L, Chen M, Wang Q. Apoptosis-Inducing and Proliferation-Inhibiting Effects of Doramectin on Mz-ChA-1 Human Cholangiocarcinoma Cells. Int J Mol Sci 2024; 25:13440. [PMID: 39769205 PMCID: PMC11676298 DOI: 10.3390/ijms252413440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Cholangiocarcinoma is a malignant tumor that emerges in the intrahepatic or extrahepatic bile ducts. Doramectin (DOR), a third-generation derivative of avermectins (AVMs), is renowned for its low toxicity and high efficiency. However, no research has hitherto focused on the anti-cholangiocarcinoma effects of these drugs. In this study, we undertook a preliminary exploration of the mechanism through which DOR inhibits the viability of human cholangiocarcinoma cells (Mz-ChA-1) via transcriptome analysis and molecular validation at the cellular level. The results indicated that DOR could suppress the growth and proliferation of Mz-ChA-1 cells in a dose-dependent manner. Moreover, it significantly diminished their migration and invasion abilities. Cell cycle analysis disclosed arrest in the G1 phase, accompanied by an increase in p21 expression and a decrease in the levels of the cyclin E1 and CDK2 proteins. Additionally, DOR induced apoptosis via the ROS-triggered mitochondrial pathway. This was attested by an elevation in the BAX/BCL-2 ratio, the activation of caspase 3/7 and the cleavage of PARP1. These mechanistic insights underscore DOR's potential as a therapeutic agent against cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunfang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Wei Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Yan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Ting Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Lina Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Lizhu Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| |
Collapse
|
36
|
Lee DC, Ta L, Mukherjee P, Duraj T, Domin M, Greenwood B, Karmacharya S, Narain NR, Kiebish M, Chinopoulos C, Seyfried TN. Amino Acid and Glucose Fermentation Maintain ATP Content in Mouse and Human Malignant Glioma Cells. ASN Neuro 2024; 16:2422268. [PMID: 39621724 PMCID: PMC11792161 DOI: 10.1080/17590914.2024.2422268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
Energy is necessary for tumor cell viability and growth. Aerobic glucose-driven lactic acid fermentation is a common metabolic phenotype seen in most cancers including malignant gliomas. This metabolic phenotype is linked to abnormalities in mitochondrial structure and function. A luciferin-luciferase bioluminescence ATP assay was used to measure the influence of amino acids, glucose, and oxygen on ATP content and viability in mouse (VM-M3 and CT-2A) and human (U-87MG) glioma cells that differed in cell biology, genetic background, and species origin. Oxygen consumption was measured using the Resipher system. Extracellular lactate and succinate were measured as end products of the glycolysis and glutaminolysis pathways, respectively. The results showed that: (1) glutamine was a source of ATP content irrespective of oxygen. No other amino acid could replace glutamine in sustaining ATP content and viability; (2) ATP content persisted in the absence of glucose and under hypoxia, ruling out substantial contribution through either glycolysis or oxidative phosphorylation (OxPhos) under these conditions; (3) Mitochondrial complex IV inhibition showed that oxygen consumption was not an accurate measure for ATP production through OxPhos. The glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine (DON), reduced ATP content and succinate export in cells grown in glutamine. The data suggests that mitochondrial substrate level phosphorylation in the glutamine-driven glutaminolysis pathway contributes to ATP content in these glioma cells. A new model is presented highlighting the synergistic interaction between the high-throughput glycolysis and glutaminolysis pathways that drive malignant glioma growth and maintain ATP content through the aerobic fermentation of both glucose and glutamine.
Collapse
Affiliation(s)
- Derek C. Lee
- Department of Biology, Boston College, Massachusetts, USA
| | - Linh Ta
- Department of Biology, Boston College, Massachusetts, USA
| | | | - Tomas Duraj
- Department of Biology, Boston College, Massachusetts, USA
| | - Marek Domin
- Mass Spectrometry Center, Chemistry Department, Boston College, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Takahashi N, Nagamatsu T, Akaike N, Kudo Y. TND1128, a 5-deazaflavin derivative with auto-redox ability, facilitates polarization of mitochondrial membrane potential (ΔΨ m) and on-demand ATP synthesis in mice brain slices. J Pharmacol Sci 2024; 156:218-229. [PMID: 39608846 DOI: 10.1016/j.jphs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/30/2024] Open
Abstract
TND1128, a 5-deazaflavin derivative, is a drug with self-redox ability. We examined the effect of TND1128 on the level of mitochondrial membrane potential (ΔΨm), which is the most critical motive power for the biosynthesis of ATP. We prepared brain slices from mice pretreated with TND1128 (0.1-10 mg/kg, intraperitoneally) and detected ΔΨm level with JC-1, a fluorescence ΔΨm indicator. We further examined the depolarization of ΔΨm under 5-min exposure to 25 mM KCl-ACSF (25K-ACSF), which activated neuronal voltage-dependent Ca2+ channels. We evaluated the effect of TND1128 by using the inverse number of the ΔΨm value as the ATP synthesis index (ASI). The level of ΔΨm increased significantly by 24-h pretreatment with TND1128 (10 mg/kg), and significantly higher depolarization of the ΔΨm was observed with 25K-ACSF exposure than in non-treated control. We found a significant decrease in 25K-ACSF induced [Ca2+]c and [Ca2+]m levels in the TND1128-pretreated preparations. We confirmed the dose and time-dependent facilitatory effects of TND1128 on the ASI. This study suggested that TND1128 could be incorporated into the TCA cycle and electron transfer chains to facilitate the polarization of ΔΨm and activate on-demand ATP synthesis. TND1128 might rescue neurons in various brain diseases caused by energy defects. (198).
Collapse
Affiliation(s)
- Nanae Takahashi
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan.
| | - Tomohisa Nagamatsu
- Laboratory of Curative Medicine Creation Study for Geriatric-diseases Prevention, Faculty of Pharmacological Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryou Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan.
| | - Yoshihisa Kudo
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan.
| |
Collapse
|
38
|
Hu C, Zhang R, Zhang W, Zheng Y, Cao J, Zhao Z. Body size influences the capacity to cope with extreme cold or hot temperatures in the striped hamster. J Therm Biol 2024; 126:104008. [PMID: 39637607 DOI: 10.1016/j.jtherbio.2024.104008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Body size of organisms is a key trait influencing nearly all aspects of their life history. Despite growing evidence of Bergmann's rule, there is considerably less known about the links between body size and the maximum capacity to thermoregulate of an animal in response to extreme cold or hot environment. Thermal characteristics such as resting metabolic rate (RMR) and non-shivering thermogenesis (NST), and the upper- and lower-critical temperatures of the thermal neutral zone (TNZ) were investigated in small and large body sized striped hamsters (Cricetulus barabensis). The maximum capacity to thermoregulate in response to extreme cold (-15 °C) or hot temperature (38 °C) was also examined, where both, different sized hamsters had similar RMR and NST regardless of temperature exposure. The large hamsters had 29.9% more body mass compared to small hamsters. The large hamsters showed a wider TNZ, with lower, lower-critical temperature, and showed considerable hyperthermia at the end of a 17-h hot exposure. In contrast, the small hamsters showed hypothermia following a 17-h cold exposure relative to large hamsters. In addition, the large hamsters showed 17.2% lower basal thermal conductance, and 14.9% lower maximum thermal conductance than the small hamsters after cold exposure, and 22.6% lower thermal conductance following heat exposure. Several molecular markers indicative of thermogenesis and oxidative stress did not differ significantly between the large and small hamsters. These findings suggest that individuals with larger body sizes have greater capacity to thermoregulate to cope with extreme cold, and a reduced capacity in response to extreme hot. In contrast, smaller individuals demonstrated the opposite trend. Body size may decide the capacity to thermoregulate to cope with extreme cold and heat, within which body heat dissipation is likely more important than heat production.
Collapse
Affiliation(s)
- Chenxiao Hu
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Ruihan Zhang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Wenting Zhang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yuxin Zheng
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
39
|
Jing Q, Liu F, Yao W, Zhang X. pH responsive fabrication of PVA-stabilized selenium nano formulation encapsulated with luteolin to reduce diabetic ureteral injury by decreasing NLRP3 inflammasome via Nrf2/ARE signaling. Regen Ther 2024; 27:434-444. [PMID: 38699396 PMCID: PMC11063996 DOI: 10.1016/j.reth.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Diabetic ureteral injury (DUI) is a condition characterized by damage to the ureter, causing functional and morphological changes in the urinary system, which have a significant impact on a quality of life and requires appropriate medical treatment. The present study describes to novel design of luteolin (LT), a type of natural flavonoid, encapsulated selenium nanoparticles (Se NPs) to attain therapeutic potential for DUI. The physico-chemical characterizations of prepared Se NPs have benefitted zeta potential (-18 mV) and particle size (10-50 nm). In vitro assays were demonstrated the potential of LT-SeNPs by HEK 293 cells stimulated by STZ for DUI. Cytotoxicity assays on HEK 293 and NIH-3T3 showed >90% cell viability, which demonstrates the suitability of the nanoformulation for DUI treatment. The LT-SeNPs significantly inhibits the NLRP3 inflammasome through Nrf2/ARE pathway, which benefits for DUI treatment. The developed LT-SeNPs could be an effective formulation for the DUI therapy.
Collapse
Affiliation(s)
- Qiang Jing
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Fan Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Weitao Yao
- Shanxi Medical University, Taiyuan 030000, China
| | - Xuhui Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
40
|
Huang Y, Li W, Sun H, Guo X, Zhou Y, Liu J, Liu F, Fan Y. Mitochondrial transfer in the progression and treatment of cardiac disease. Life Sci 2024; 358:123119. [PMID: 39395616 DOI: 10.1016/j.lfs.2024.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mitochondria are the primary site for energy production and play a crucial role in supporting normal physiological functions of the human body. In cardiomyocytes (CMs), mitochondria can occupy up to 30 % of the cell volume, providing sufficient energy for CMs contraction and relaxation. However, some pathological conditions such as ischemia, hypoxia, infection, and the side effect of drugs, can cause mitochondrial dysfunction in CMs, leading to various myocardial injury-related diseases including myocardial infarction (MI), myocardial hypertrophy, and heart failure. Self-control of mitochondria quality and conversion of metabolism pathway in energy production can serve as the self-rescue measure to avoid autologous mitochondrial damage. Particularly, mitochondrial transfer from the neighboring or extraneous cells enables to mitigate mitochondrial dysfunction and restore their biological functions in CMs. Here, we described the homeostatic control strategies and related mechanisms of mitochondria in injured CMs, including autologous mitochondrial quality control, mitochondrial energy conversion, and especially the exogenetic mitochondrial donation. Additionally, this review emphasizes on the therapeutic effects and potential application of utilizing mitochondrial transfer in reducing myocardial injury. We hope that this review can provide theoretical clues for the developing of advanced therapeutics to treat cardiac diseases.
Collapse
Affiliation(s)
- Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xin Guo
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
41
|
Cossu V, Bertola N, Fresia C, Sabatini F, Ravera S. Redox Imbalance and Antioxidant Defenses Dysfunction: Key Contributors to Early Aging in Childhood Cancer Survivors. Antioxidants (Basel) 2024; 13:1397. [PMID: 39594539 PMCID: PMC11590913 DOI: 10.3390/antiox13111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Survival rates for childhood cancer survivors (CCS) have improved, although they display a risk for early frailty due to the long-term effects of chemo/radiotherapy, including early aging. This study investigates antioxidant defenses and oxidative damage in mononuclear cells (MNCs) from CCS, comparing them with those from age-matched and elderly healthy individuals. Results show impaired antioxidant responses and increased oxidative stress in CCS MNCs, which exhibited uncoupled oxidative phosphorylation, leading to higher production of reactive oxygen species, similar to metabolic issues seen in elderly individuals. Key antioxidant enzymes, namely glucose-6-phosphate dehydrogenase, hexose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, showed reduced activity, likely due to lower expression of nuclear factor erythroid 2-related factor 2 (Nrf2). This imbalance caused significant damage to lipids, proteins, and DNA, potentially contributing to cellular dysfunction and a higher risk of cancer recurrence. These oxidative and metabolic dysfunctions persist over time, regardless of cancer type or treatment. However, treatment with N-acetylcysteine improved Nrf2 expression, boosted antioxidant defenses, reduced oxidative damage, and restored oxidative phosphorylation efficiency, suggesting that targeting the redox imbalance could enhance long-term CCS health.
Collapse
Affiliation(s)
- Vanessa Cossu
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Chiara Fresia
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Federica Sabatini
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| |
Collapse
|
42
|
Huang B, Lin G, Chen F, Yang W, Zhang C, Yao Y, Zeng Q, Yang Y, Huang J. UCP2 knockout exacerbates sepsis-induced intestinal injury by promoting NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 141:112935. [PMID: 39159561 DOI: 10.1016/j.intimp.2024.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Sepsis-induced intestinal injury is a common complication that increases the morbidity and mortality associated with sepsis. UCP2, a mitochondrial membrane protein, is involved in numerous cellular processes, including metabolism, inflammation, and pyroptosis. According to our previous studies, UCP2 expression increases in septic intestinal tissue. However, its function in intestinal damage is not known. This work investigated UCP2's role in intestinal injury caused by sepsis. A sepsis mouse model was established in wild-type and UCP2-knockout (UCP2-KO) animals using cecal ligation and puncture (CLP). MCC950, an NLRP3 inflammasome inhibitor, was injected intraperitoneally 3 h before CLP surgery. Overall, significantly higher levels of UCP2 were observed in the intestines of septic mice. UCP2-KO mice subjected to CLP exhibited exacerbated intestinal damage, characterized by enhanced mucosal erosion, inflammatory cell infiltration, and increased intestinal permeability. Furthermore, UCP2 knockout significantly increased oxidative stress, inflammation, and pyroptosis in the CLP mouse intestines. Interestingly, MCC950 not only inhibited pyroptosis but also reversed inflammation, oxidative stress as well as damage to intestinal tissues as a result of UCP2 knockout. Our results highlighted the protective functions of UCP2 in sepsis-associated intestinal injury through modulation of inflammation and oxidative stress via NLRP3 inflammasome-induced pyroptosis.
Collapse
Affiliation(s)
- Bolun Huang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Gangxi Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 350007, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Feiyan Chen
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Wenmin Yang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Chunmin Zhang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Yu Yao
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyu Yang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| | - Jinda Huang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| |
Collapse
|
43
|
Castillo RL, Farías J, Sandoval C, González-Candia A, Figueroa E, Quezada M, Cruz G, Llanos P, Jorquera G, Kostin S, Carrasco R. Role of NLRP3 Inflammasome in Heart Failure Patients Undergoing Cardiac Surgery as a Potential Determinant of Postoperative Atrial Fibrillation and Remodeling: Is SGLT2 Cotransporter Inhibition an Alternative for Cardioprotection? Antioxidants (Basel) 2024; 13:1388. [PMID: 39594530 PMCID: PMC11591087 DOI: 10.3390/antiox13111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
In heart failure (HF) patients undergoing cardiac surgery, an increased activity of mechanisms related to cardiac remodeling may determine a higher risk of postoperative atrial fibrillation (POAF). Given that atrial fibrillation (AF) has a negative impact on the course and management of HF, including the need for anticoagulation therapy, identifying the factors associated with AF occurrence after cardiac surgery is crucial for the prognosis of these patients. POAF is thought to occur when various clinical and biochemical triggers act on susceptible cardiac tissue (first hit), with oxidative stress and inflammation during cardiopulmonary bypass (CPB) surgery being potential contributing factors (second hit). However, the molecular mechanisms involved in these processes remain poorly characterized. Recent research has shown that patients who later develop POAF often have pre-existing abnormalities in calcium handling and activation of NLRP3-inflammasome signaling in their atrial cardiomyocytes. These molecular changes may make cardiomyocytes more susceptible to spontaneous Ca2+-releases and subsequent arrhythmias, particularly when exposed to inflammatory mediators. Additionally, some clinical studies have linked POAF with elevated preoperative inflammatory markers, but there is a need for further research in order to better understand the impact of CPB surgery on local and systemic inflammation. This knowledge would make it possible to determine whether patients susceptible to POAF have pre-existing inflammatory conditions or cellular electrophysiological factors that make them more prone to developing AF and cardiac remodeling. In this context, the NLRP3 inflammasome, expressed in cardiomyocytes and cardiac fibroblasts, has been identified as playing a key role in the development of HF and AF, making patients with pre-existing HF with reduced ejection fraction (HFrEF) the focus of several clinical studies with interventions that act at this level. On the other hand, HFpEF has been linked to metabolic and non-ischemic risk factors, but more research is needed to better characterize the myocardial remodeling events associated with HFpEF. Therefore, since ventricular remodeling may differ between HFrEF and HFpEF, it is necessary to perform studies in both groups of patients due to their pathophysiological variations. Clinical evidence has shown that pharmacological therapies that are effective for HFrEF may not provide the same anti-remodeling benefits in HFpEF patients, particularly compared to traditional adrenergic and renin-angiotensin-aldosterone system inhibitors. On the other hand, there is growing interest in medications with pleiotropic or antioxidant/anti-inflammatory effects, such as sodium-glucose cotransporter 2 inhibitors (SGLT-2is). These drugs may offer anti-remodeling effects in both HFrEF and HFpEF by inhibiting pro-inflammatory, pro-oxidant, and NLRP3 signaling pathways and their mediators. The anti-inflammatory, antioxidant, and anti-remodeling effects of SGLT-2 i have progressively expanded from HFrEF and HFpEF to other forms of cardiac remodeling. However, these advances in research have not yet encompassed POAF despite its associations with inflammation, oxidative stress, and remodeling. Currently, the direct or indirect effects of NLRP3-dependent pathway inhibition on the occurrence of POAF have not been clinically assessed. However, given that NLRP3 pathway inhibition may also indirectly affect other pathways, such as inhibition of NF-kappaB or inhibition of matrix synthesis, which are strongly linked to POAF and cardiac remodeling, it is reasonable to hypothesize that this type of intervention could play a role in preventing these events.
Collapse
Affiliation(s)
- Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago 7500922, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro González-Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Esteban Figueroa
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Mauricio Quezada
- Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Gonzalo Cruz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Paola Llanos
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago 8380544, Chile
| | - Gonzalo Jorquera
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8331051, Chile;
| | - Sawa Kostin
- Faculty of Health Sciences, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany;
| | - Rodrigo Carrasco
- Departamento de Cardiología, Clínica Alemana de Santiago, Santiago 7500922, Chile;
| |
Collapse
|
44
|
Kitamura H, Fujimoto M, Hashimoto M, Yasui H, Inanami O. USP2 Mitigates Reactive Oxygen Species-Induced Mitochondrial Damage via UCP2 Expression in Myoblasts. Int J Mol Sci 2024; 25:11936. [PMID: 39596006 PMCID: PMC11593688 DOI: 10.3390/ijms252211936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Ubiquitin-specific protease 2 (USP2) maintains mitochondrial integrity in culture myoblasts. In this study, we investigated the molecular mechanisms underlying the protective role of USP2 in mitochondria. The knockout (KO) of the Usp2 gene or the chemical inhibition of USP2 induced a robust accumulation of mitochondrial reactive oxygen species (ROS), accompanied by defects in mitochondrial membrane potential, in C2C12 myoblasts. ROS removal by N-acetyl-L-cysteine restored the mitochondrial dysfunction induced by USP2 deficiency. Comprehensive RT-qPCR screening and following protein analysis indicated that both the genetic and chemical inhibition of USP2 elicited a decrease in uncoupling protein 2 (UCP2) at mRNA and protein levels. Accordingly, the introduction of a Ucp2-expressing construct effectively recovered the mitochondrial membrane potential, entailing an increment in the intracellular ATP level in Usp2KO C2C12 cells. In contrast, USP2 deficiency also decreased peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) protein in C2C12 cells, while it upregulated Ppargc1a mRNA. Overexpression studies indicated that USP2 potentially stabilizes PGC1α in an isopeptidase-dependent manner. Given that PGC1α is an inducer of UCP2 in C2C12 cells, USP2 might ameliorate mitochondrial ROS by maintaining the PGC1α-UCP2 axis in myoblasts.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Disease Models, School of Veterinary Medicine, Rakuno Gakuen University, Ebestsu 069-8501, Japan;
| | - Masaki Fujimoto
- Laboratory of Disease Models, School of Veterinary Medicine, Rakuno Gakuen University, Ebestsu 069-8501, Japan;
| | - Mayuko Hashimoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan;
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (H.Y.); (O.I.)
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (H.Y.); (O.I.)
| |
Collapse
|
45
|
Luo Y, Li J, Zheng L, Reyimjan Y, Ma Y, Huang S, Liu H, Zhou G, Bai J, Zhu Y, Sun Y, Zou X, Hou Y, Fu X. Procyanidin B2 improves developmental capacity of bovine oocytes via promoting PPARγ/UCP1-mediated uncoupling lipid catabolism during in vitro maturation. Cell Prolif 2024; 57:e13687. [PMID: 38864666 PMCID: PMC11533046 DOI: 10.1111/cpr.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024] Open
Abstract
Metabolic balance is essential for oocyte maturation and acquisition of developmental capacity. Suboptimal conditions of in vitro cultures would lead to lipid accumulation and finally result in disrupted oocyte metabolism. However, the effect and mechanism underlying lipid catabolism in oocyte development remain elusive currently. In the present study, we observed enhanced developmental capacity in Procyanidin B2 (PCB2) treated oocytes during in vitro maturation. Meanwhile, reduced oxidative stress and declined apoptosis were found in oocytes after PCB2 treatment. Further studies confirmed that oocytes treated with PCB2 preferred to lipids catabolism, leading to a notable decrease in lipid accumulation. Subsequent analyses revealed that mitochondrial uncoupling was involved in lipid catabolism, and suppression of uncoupling protein 1 (UCP1) would abrogate the elevated lipid consumption mediated by PCB2. Notably, we identified peroxisome proliferator-activated receptor gamma (PPARγ) as a potential target of PCB2 by docking analysis. Subsequent mechanistic studies revealed that PCB2 improved oocyte development capacity and attenuated oxidative stress by activating PPARγ mediated mitochondrial uncoupling. Our findings identify that PCB2 intricately improves oocyte development capacity through targeted activation of the PPARγ/UCP1 pathway, fostering uncoupling lipid catabolism while concurrently mitigating oxidative stress.
Collapse
Affiliation(s)
- Yuwen Luo
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical CenterThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lv Zheng
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yizaitiguli Reyimjan
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan Ma
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shuaixiang Huang
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Hongyu Liu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Guizhen Zhou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jiachen Bai
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yixiao Zhu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yidan Sun
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xinhua Zou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- State Key Laboratory of Sheep Genetic Improvement and Healthy BreedingXinjiang Academy of Agricultural and Reclamation SciencesShihezi, XinjiangChina
| |
Collapse
|
46
|
Tian L, Liu Q, Guo H, Zang H, Li Y. Fighting ischemia-reperfusion injury: Focusing on mitochondria-derived ferroptosis. Mitochondrion 2024; 79:101974. [PMID: 39461581 DOI: 10.1016/j.mito.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of mortality and morbidity. Current treatments for IRI have limited efficacy and novel therapeutic strategies are needed. Mitochondrial dysfunction not only initiates IRI but also plays a significant role in ferroptosis pathogenesis. Recent studies have highlighted that targeting mitochondrial pathways is a promising therapeutic approach for ferroptosis-induced IRI. The association between ferroptosis and IRI has been reviewed many times, but our review provides the first comprehensive overview with a focus on recent mitochondrial research. First, we present the role of mitochondria in ferroptosis. Then, we summarize the evidence on mitochondrial manipulation of ferroptosis in IRI and review recent therapeutic strategies aimed at targeting mitochondria-related ferroptosis to mitigate IRI. We hope our review will provide new ideas for the treatment of IRI and accelerate the transition from bench to bedside.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honggang Zang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
47
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
48
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
49
|
Wu Y, Ma Y, Li Q, Li J, Zhang D, Zhang Y, Li Y, Li X, Xu P, Bai L, Zhou X, Xue M. Multi-omics analysis reveals phenylalanine enhance mitochondrial function and hypoxic endurance via LKB1/AMPK activation. J Transl Med 2024; 22:920. [PMID: 39390477 PMCID: PMC11465566 DOI: 10.1186/s12967-024-05696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Many studies have focused on the effects of small molecules, such as amino acids, on metabolism under hypoxia. Recent findings have indicated that phenylalanine levels were markedly elevated in adaptation to chronic hypoxia. This raises the possibility that phenylalanine treatment could markedly improve the hypoxic endurance. However, the importance of hypoxia-regulated phenylalanine is still unclear. This study investigates the role of phenylalanine in hypoxia adaptation using a hypoxic zebrafish model and multi-omics analysis. We found that phenylalanine-related metabolic pathways are significantly up-regulated under hypoxia, contributing to enhanced hypoxic endurance. Phenylalanine treatment reduced ROS levels, improved mitochondrial oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) in hypoxic cells. Western blotting revealed increased phenylalanine uptake via L-type amino transporters (LAT1), activating the LKB1/AMPK signaling pathway. This activation up-regulated peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and the Bcl-2/Bax ratio, while down-regulating uncoupling protein 2 (UCP2), thereby improving mitochondrial function under hypoxia. This is the first comprehensive multi-omics analysis to demonstrate phenylalanine's crucial role in hypoxia adaptation, providing insights for the development of anti-hypoxic drugs.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yi Ma
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Di Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuxin Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yue Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lu Bai
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China.
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China.
| |
Collapse
|
50
|
Li J, Feng R, Yang W, Liang P, Qiu T, Zhang J, Sun X, Li Q, Yang G, Yao X. Lysosomal iron accumulation and subsequent lysosomes-mitochondria iron transmission mediate PFOS-induced hepatocyte ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116890. [PMID: 39146593 DOI: 10.1016/j.ecoenv.2024.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is known as a persistent organic pollutant. A significant correlation between PFOS and liver ferroptosis has been unveiled, but the precise mechanism needs to be elucidated. In prior research, we found that PFOS treatment provoked mitochondrial iron overload. In this study, we observed a gradual increase in lysosomal iron in L-O2 cells after exposure to PFOS for 0.5-24 h. In PFOS-exposed L-O2 cells, suppressing autophagy relieved the lysosomal iron overload. Inhibiting transient receptor potential mucolipin 1 (TRPML1), a calcium efflux channel on the lysosomal membrane, led to a further rise in lysosomal iron levels and decreased mitochondrial iron overload during PFOS treatment. Suppressing VDAC1, a subtype of voltage-dependent anion-selective channels (VDACs) on the outer mitochondrial membrane, had no impact on PFOS-triggered mitochondrial iron overload, whereas restraining VDAC2/3 relieved this condition. Although silencing VDAC2 relieved PFOS-induced mitochondrial iron overload, it had no effect on PFOS-triggered lysosomal iron overload. Silencing VDAC3 alleviated PFOS-mediated mitochondrial iron overload and led to an additional increase in lysosomal iron. Therefore, we regarded VDAC3 as the specific VDACs subtype that mediated the lysosomes-mitochondria iron transfer. Additionally, in the presence of PFOS, an enhanced association between TRPML1 and VDAC3 was found in mice liver tissue and L-O2 cells. Our research unveils a novel regulatory mechanism of autophagy on the iron homeostasis and the effect of TRPML1-VDAC3 interaction on lysosomes-mitochondria iron transfer, giving an explanation of PFOS-induced ferroptosis and shedding some light on the role of classic calcium channels in iron transmission.
Collapse
Affiliation(s)
- Jixun Li
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Ruzhen Feng
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Wei Yang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Peiyao Liang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Tianming Qiu
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Jingyuan Zhang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Xiance Sun
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Qiujuan Li
- Nutrition and Food Safety Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Guang Yang
- Nutrition and Food Safety Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China.
| |
Collapse
|