1
|
Tiberio F, Polito L, Salvati M, Di Pietro L, Massimi L, Parolini O, Tamburrini G, Lattanzi W. Current Understanding of Crouzon Syndrome Pathophysiology and New Therapeutic Approaches. J Craniofac Surg 2025:00001665-990000000-02627. [PMID: 40227035 DOI: 10.1097/scs.0000000000011376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Crouzon syndrome (CS) is a rare genetic disorder characterized by the premature fusion of cranial sutures, leading to craniofacial abnormalities and potential neurological complications. CS is caused primarily by gain-of-function mutations in the FGFR2 gene and, less commonly, by mutations in the FGFR3 gene (specifically associated with CS with acanthosis nigricans). Managing CS requires a multidisciplinary approach, combining early and later surgical interventions to prevent intracranial hypertension and correct craniofacial deformities, along with ongoing care to address associated complications. Recent advancements in CS classification on the basis of cranial suture involvement have refined phenotype-genotype correlations, improving personalized therapeutic strategies. This review aims to provide a comprehensive and updated overview of CS, including detailed insights into molecular genetics and biological mechanisms underlying its pathophysiology, and a depiction of the clinical features, diagnosis, and surgical aspects of CS. In addition, we delve into innovative theranostic views, where molecular genetic testing allows the design of personalized noninvasive therapeutic approaches based on innovative biotechnologies, including RNA-interference molecules, pharmacological modulation of FGFR signaling pathways, and recombinant proteins. These advancements underscore the importance of integrating molecular studies into diagnostic and therapeutic protocols to increase the precision and effectiveness of nonsurgical treatments for CS.
Collapse
Affiliation(s)
- Federica Tiberio
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Polito
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Massimi
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianpiero Tamburrini
- Unità Operativa Complessa di Neurochirurgia Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
2
|
Jin B, Su G, Zhou X, Xu L, Wang W, Zhou T, Tan Y, Wang S, Li G. Basic Fibroblast Growth Factor Supports the Function of Limbal Niche Cells via the Wnt/β-Catenin Pathway. J Ocul Pharmacol Ther 2024; 40:571-580. [PMID: 39083404 DOI: 10.1089/jop.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Purpose: To test the effects and underlying mechanisms of basic fibroblast growth factor (bFGF) on the limbal niche cell (LNC) function ex vivo. Methods: By using different concentrations of bFGF (0, 4, 8, 12, and 16 ng/mL) and fibroblast growth factor receptor (FGFR) inhibitors, the effects of bFGF on LNC proliferation, expression of stem cell markers, and transcription levels of the β-catenin were investigated. Single-cell RNA sequencing (scRNA-seq) was used to analyze the action and mechanisms of FGFR subtypes and the Wnt/β-catenin pathway during LNC culture. An mature corneal epithelial cell (MCEC)/LNC three-dimensional model was constructed to verify whether bFGF activates the Wnt/β-catenin pathway in LNC by inhibiting FGFR or β-catenin targets. Results: scRNA-seq showed that FGFR1 is the main receptor in LNC, along with the molecules in the Wnt pathway, including WNT2, FZD7, LRP5, LRP6, and β-catenin. The 12 ng/mL bFGF treatment group showed higher LNC proliferation rate and transcription levels of OCT4, SOX2, NANOG, and β-catenin than any other groups (P < 0.001). In the MCEC/LNC co-culture model, MCEC/LNC treated with 12 ng/mL bFGF promoted the aggregation of the spheres than other groups, associated with increased transcription levels of P63α, WNT2, β-catenin, and a decreased transcription level of CK12 (P < 0.001). Wnt/β-catenin inhibitor LF3 treatment reversed the abovementioned effect of bFGF. Conclusions: bFGF could maintain and promote the stemness of LNC via the FGFR1/Wnt2/FZD7/LRP6 axis in a concentration-dependent manner.
Collapse
Affiliation(s)
- Bihui Jin
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanyu Su
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Zhou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shusheng Wang
- Department of Cell and Molecular Biology & Ophthalmology, Tulane University, New Orleans, Louisiana, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
4
|
Matsumoto M, Ogawa N, Fukuda T, Bando Y, Nishimura T, Usuda J. Protein interaction networks characterizing the A549 cells Klotho transfected are associated with activated pro-apoptotic Bim and suppressed Wnt/β-catenin signaling pathway. Sci Rep 2024; 14:2130. [PMID: 38267588 PMCID: PMC10808115 DOI: 10.1038/s41598-024-52616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
Invasive assays and lung tumor-bearing mice models using a human lung adenocarcinoma cell line A549 cells transfected with the Klotho (KL) gene, A549/KL cells, have confirmed that KL suppresses invasive/metastatic potential. This study aimed to identify the co-expression protein networks and proteomic profiles associated with A549/KL cells to understand how Klotho protein expression affects molecular networks associated with lung carcinoma malignancy. A two-step application of a weighted network correlation analysis to the cells' quantitative proteome datasets of a total of 6,994 proteins, identified by mass spectrometry-based proteomic analysis with data-independent acquisition (DIA), identified one network module as most significantly associated with the A549/KL trait. Upstream analyses, confirmed by western blot, implicated the pro-apoptotic Bim (Bcl-2-like protein 11) as a master regulator of molecular networks affected by Klotho. GeneMANIA interaction networks and quantitative proteome data implicated that Klotho interacts with two signaling axes: negatively with the Wnt/β-catenin axis, and positively by activating Bim. Our findings might contribute to the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Mitsuo Matsumoto
- Department of Thoracic Surgery, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Naomi Ogawa
- Department of Thoracic Surgery, Nippon Medical School, Tokyo, 113-8602, Japan
| | | | | | - Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School, Tokyo, 113-8602, Japan.
| |
Collapse
|
5
|
Boichuk S, Dunaev P, Skripova V, Galembikova A, Bikinieva F, Shagimardanova E, Gazizova G, Deviatiiarov R, Valeeva E, Mikheeva E, Vasilyeva M, Kopnin P, Strelnikov V, Kiyamova R. Unraveling the Mechanisms of Sensitivity to Anti-FGF Therapies in Imatinib-Resistant Gastrointestinal Stromal Tumors (GIST) Lacking Secondary KIT Mutations. Cancers (Basel) 2023; 15:5354. [PMID: 38001614 PMCID: PMC10670741 DOI: 10.3390/cancers15225354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
We showed previously that inhibition of KIT signaling in GISTs activates FGFR-signaling pathway rendering cancer cells resistant to receptor tyrosine kinase inhibitor (RTKi) imatinib mesylate (IM) (Gleevec) despite of absence of secondary KIT mutations and thereby illustrating a rationale for the combined (e.g., KIT- and FGFR-targeted) therapies. We show here that long-term culture of IM-resistant GISTs (GIST-R1) with IM substantially down-regulates KIT expression and induces activation of the FGFR-signaling cascade, evidenced by increased expression of total and phosphorylated forms of FGFR1 and 2, FGF-2, and FRS-2, the well-known adaptor protein of the FGF-signaling cascade. This resulted in activation of both AKT- and MAPK-signaling pathways shown on mRNA and protein levels, and rendered cancer cells highly sensitive to pan-FGFR-inhibitors (BGJ 398, AZD 4547, and TAS-120). Indeed, we observed a significant decrease of IC50 values for BGJ 398 in the GIST subclone (GIST-R2) derived from GIST-R1 cells continuously treated with IM for up to 12 months. An increased sensitivity of GIST-R2 cells to FGFR inhibition was also revealed on the xenograft models, illustrating a substantial (>70%) decrease in tumor size in BGJ 398-treated animals when treated with this pan-FGFR inhibitor. Similarly, an increased intra-tumoral apoptosis as detected by immunohistochemical (IHC)-staining for cleaved caspase-3 on day 5 of the treatment was found. As expected, both BGJ 398 and IM used alone lacked the pro-apoptotic and growth-inhibitory activities on GIST-R1 xenografts, thereby revealing their resistance to these TKis when used alone. Important, the knockdown of FGFR2, and, in much less content, FGF-2, abrogated BGJ 398's activity against GIST-R2 cells both in vitro and in vivo, thereby illustrating the FGF-2/FGFR2-signaling axis in IM-resistant GISTs as a primary molecular target for this RTKi. Collectively, our data illustrates that continuous inhibition of KIT signaling in IM-resistant GISTs lacking secondary KIT mutations induced clonal heterogeneity of GISTs and resulted in accumulation of cancer cells with overexpressed FGF-2 and FGFR1/2, thereby leading to activation of FGFR-signaling. This in turn rendered these cells extremely sensitive to the pan-FGFR inhibitors used in combination with IM, or even alone, and suggests a rationale to re-evaluate the effectiveness of FGFR-inhibitors in order to improve the second-line therapeutic strategies for selected subgroups of GIST patients (e.g., IM-resistant GISTs lacking secondary KIT mutations and exhibiting the activation of the FGFR-signaling pathway).
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow 127051, Russia
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Vera Skripova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Firyuza Bikinieva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
- Loginov Moscow Clinical Scientific Center, Moscow 111123, Russia
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
| | - Ekaterina Mikheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Maria Vasilyeva
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Pavel Kopnin
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Vladimir Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow 115522, Russia;
| | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| |
Collapse
|
6
|
Roles of Local Soluble Factors in Maintaining the Growth Plate: An Update. Genes (Basel) 2023; 14:genes14030534. [PMID: 36980807 PMCID: PMC10048135 DOI: 10.3390/genes14030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The growth plate is a cartilaginous tissue found at the ends of growing long bones, which contributes to the lengthening of bones during development. This unique structure contains at least three distinctive layers, including resting, proliferative, and hypertrophic chondrocyte zones, maintained by a complex regulatory network. Due to its soft tissue nature, the growth plate is the most susceptible tissue of the growing skeleton to injury in childhood. Although most growth plate damage in fractures can heal, some damage can result in growth arrest or disorder, impairing leg length and resulting in deformity. In this review, we re-visit previously established knowledge about the regulatory network that maintains the growth plate and integrate current research displaying the most recent progress. Next, we highlight local secretary factors, such as Wnt, Indian hedgehog (Ihh), and parathyroid hormone-related peptide (PTHrP), and dissect their roles and interactions in maintaining cell function and phenotype in different zones. Lastly, we discuss future research topics that can further our understanding of this unique tissue. Given the unmet need to engineer the growth plate, we also discuss the potential of creating particular patterns of soluble factors and generating them in vitro.
Collapse
|
7
|
Kutaish H, Bengtsson L, Tscholl PM, Marteyn A, Braunersreuther V, Guérin A, Béna F, Gimelli S, Longet D, Ilmjärv S, Dietrich PY, Gerstel E, Jaquet V, Hannouche D, Menetrey J, Assal M, Krause KH, Cosset E, Tieng V. Hyaline Cartilage Microtissues Engineered from Adult Dedifferentiated Chondrocytes: Safety and Role of WNT Signaling. Stem Cells Transl Med 2022; 11:1219-1231. [PMID: 36318262 PMCID: PMC9801297 DOI: 10.1093/stcltm/szac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
The repair of damaged articular cartilage is an unmet medical need. Chondrocyte-based cell therapy has been used to repair cartilage for over 20 years despite current limitations. Chondrocyte dedifferentiation upon expansion in monolayer is well known and is the main obstacle to their use as cell source for cartilage repair. Consequently, current approaches often lead to fibrocartilage, which is biomechanically different from hyaline cartilage and not effective as a long-lasting treatment. Here, we describe an innovative 3-step method to engineer hyaline-like cartilage microtissues, named Cartibeads, from high passage dedifferentiated chondrocytes. We show that WNT5A/5B/7B genes were highly expressed in dedifferentiated chondrocytes and that a decrease of the WNT signaling pathway was instrumental for full re-differentiation of chondrocytes, enabling production of hyaline matrix instead of fibrocartilage matrix. Cartibeads showed hyaline-like characteristics based on GAG quantity and type II collagen expression independently of donor age and cartilage quality. In vivo, Cartibeads were not tumorigenic when transplanted into SCID mice. This simple 3-step method allowed a standardized production of hyaline-like cartilage microtissues from a small cartilage sample, making Cartibeads a promising candidate for the treatment of cartilage lesions.
Collapse
Affiliation(s)
| | | | - Philippe Matthias Tscholl
- University Medical Center, University of Geneva, Geneva, Switzerland,Department of Orthopaedics Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Antoine Marteyn
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Vincent Braunersreuther
- Service of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Alexandre Guérin
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Frédérique Béna
- Service of Genetic Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Stefania Gimelli
- Service of Genetic Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - David Longet
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Laboratory of Tumor Immunology, Oncology Department, Center for Translational Research in Onco-Hematology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Eric Gerstel
- University Medical Center, University of Geneva, Geneva, Switzerland,Clinique la Colline, Hirslanden, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland,READS Unit, Medical School, University of Geneva, Geneva, Switzerland
| | - Didier Hannouche
- University Medical Center, University of Geneva, Geneva, Switzerland,Department of Orthopaedics Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Jacques Menetrey
- University Medical Center, University of Geneva, Geneva, Switzerland,Centre for Sports Medicine and Exercise, Clinique la Colline, Hirslanden, Geneva, Switzerland
| | - Mathieu Assal
- University Medical Center, University of Geneva, Geneva, Switzerland,Foot and Ankle Surgery Centre, Centre Assal, Clinique La Colline, Hirslanden Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | | | - Vannary Tieng
- Corresponding author: Vannary Tieng, Vanarix SA, Avenue Mon-Repos 14, 1005 Lausanne, Switzerland.
| |
Collapse
|
8
|
Ellinghaus P, Neureiter D, Nogai H, Stintzing S, Ocker M. Patient Selection Approaches in FGFR Inhibitor Trials-Many Paths to the Same End? Cells 2022; 11:3180. [PMID: 36231142 PMCID: PMC9563413 DOI: 10.3390/cells11193180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/16/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) signaling have been investigated in various human cancer diseases. Recently, the first compounds received FDA approval in biomarker-selected patient populations. Different approaches and technologies have been applied in clinical trials, ranging from protein (immunohistochemistry) to mRNA expression (e.g., RNA in situ hybridization) and to detection of various DNA alterations (e.g., copy number variations, mutations, gene fusions). We review, here, the advantages and limitations of the different technologies and discuss the importance of tissue and disease context in identifying the best predictive biomarker for FGFR targeting therapies.
Collapse
Affiliation(s)
- Peter Ellinghaus
- Global Clinical Development Oncology, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | | | - Sebastian Stintzing
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Matthias Ocker
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany
- Anji Pharmaceuticals, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Cao H, Zhou X, Li H, Wang M, Wu W, Zou J. Study on the Role of MicroRNA-214 in the Rehabilitation of Cartilage in Mice with Exercise-Induced Traumatic Osteoarthritis. Curr Issues Mol Biol 2022; 44:4100-4117. [PMID: 36135193 PMCID: PMC9497662 DOI: 10.3390/cimb44090281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023] Open
Abstract
This study aimed to explore the possible relationship between the expression of Micro RNA-214 (miR-214) and the pathogenesis and recovery in mice with post-traumatic osteoarthritis (PTOA). In this study, 40 male C57BL/6 mice were randomly divided into five groups: model control (MC) group, model (M) group, rehabilitation control (RC) group, model + rehabilitation (M + R) group, and model + convalescent (M + C) group. Four weeks of high-intensity treadmill exercise (HITE) and 4 weeks of moderate-intensity treadmill exercise (MITE) were implemented for PTOA modeling and rehabilitation, respectively. In vitro, 10% elongation mechanical strain was used for IL-1β stimulated chondrocytes. We found that compared with the MC group, there was a significant increase in the aspect of inflammation and catabolism while a dramatic fall in miR-214 expression was observed in the M group. After the 4 weeks of MITE, the level of inflammation and metabolism, as well as miR-214 expression, was partially reversed in the M + R group compared with the M + C group. The expression of miR-214 decreased dramatically after chondrocyte stimulation by IL-1β and then increased significantly after 10% strain was applied to IL-1β-treated cells. These results suggest that a suitable mechanical load can increase the expression of miR-214, and that miR-214 may play a chondroprotective effect in the development of OA.
Collapse
Affiliation(s)
- Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
10
|
Pesl M, Verescakova H, Skutkova L, Strenkova J, Krejci P. A registry of achondroplasia: a 6-year experience from the Czechia and Slovak Republic. Orphanet J Rare Dis 2022; 17:229. [PMID: 35710503 PMCID: PMC9205086 DOI: 10.1186/s13023-022-02374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background Achondroplasia (ACH) is one of the most prevalent genetic forms of short-limbed skeletal dysplasia, caused by gain-of-function mutations in the receptor tyrosine kinase FGFR3. In August 2021, the C-type natriuretic peptide (CNP) analog vosoritide was approved for the treatment of ACH. A total of six other inhibitors of FGFR3 signaling are currently undergoing clinical evaluation for ACH. This progress creates an opportunity for children with ACH, who may gain early access to the treatment by entering clinical trials before the closure of their epiphyseal growth plates and cessation of growth. Pathophysiology associated with the ACH, however, demands a long observational period before admission to the interventional trial. Public patient registries can facilitate the process by identification of patients suitable for treatment and collecting the data necessary for the trial entry.
Results In 2015, we established the prospective ACH registry in the Czechia and the Slovak Republic (http://www.achondroplasia-registry.cz). Patient data is collected through pediatric practitioners and other relevant specialists. After informed consent is given, the data is entered to the online TrialDB system and stored in the Oracle 9i database. The initial cohort included 51 ACH children (average age 8.5 years, range 3 months to 14 years). The frequency of selected neurological, orthopedic, or ORL diagnoses is also recorded. In 2015–2021, a total of 89 measurements of heights, weights, and other parameters were collected. The individual average growth rate was calculated and showed values without exception in the lower decile for the appropriate age. Evidence of paternal age effect was found, with 58.7% of ACH fathers older than the general average paternal age and 43.5% of fathers older by two or more years. One ACH patient had orthopedic limb extension and one patient received growth hormone therapy. Low blood pressure or renal impairment were not found in any patient. Conclusion The registry collected the clinical information of 51 pediatric ACH patients during its 6 years of existence, corresponding to ~ 60% of ACH patients living in the Czechia and Slovak Republic. The registry continues to collect ACH patient data with annual frequency to monitor the growth and other parameters in preparation for future therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02374-x.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne University Hospital, Brno, Czech Republic.,1st Department of Internal Medicine, Cardioangiology, St. Anne University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Verescakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Linda Skutkova
- Department of Pediatrics, University Hospital Brno, Brno, Czech Republic
| | - Jana Strenkova
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,International Clinical Research Center, St. Anne University Hospital, Brno, Czech Republic. .,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
11
|
Yuan Z, Yang Z. The Effect of Naringin on the Apoptosis of Degenerative Nucleus Pulposus Cells: A Study on the Function and Mechanism. Drug Des Devel Ther 2022. [DOI: 10.2147/dddt.s338355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
12
|
Chen H, Cui Y, Zhang D, Xie J, Zhou X. The role of fibroblast growth factor 8 in cartilage development and disease. J Cell Mol Med 2022; 26:990-999. [PMID: 35001536 PMCID: PMC8831980 DOI: 10.1111/jcmm.17174] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 8 (FGF‐8), also known as androgen‐induced growth factor (AIGF), is presumed to be a potent mitogenic cytokine that plays important roles in early embryonic development, brain formation and limb development. In the bone environment, FGF‐8 produced or received by chondrocyte precursor cells binds to fibroblast growth factor receptor (FGFR), causing different levels of activation of downstream signalling pathways, such as phospholipase C gamma (PLCγ)/Ca2+, RAS/mitogen‐activated protein kinase‐extracellular regulated protein kinases (RAS/MAPK‐MEK‐ERK), and Wnt‐β‐catenin‐Axin2 signalling, and ultimately controlling chondrocyte proliferation, differentiation, cell survival and migration. However, the molecular mechanism of FGF‐8 in normal or pathological cartilage remains unclear, and thus, FGF‐8 represents a novel exploratory target for studies of chondrocyte development and cartilage disease progression. In this review, studies assessing the relationship between FGF‐8 and chondrocytes that have been published in the past 5 years are systematically summarized to determine the probable mechanism and physiological effect of FGF‐8 on chondrocytes. Based on the existing research results, a therapeutic regimen targeting FGF‐8 is proposed to explore the possibility of treating chondrocyte‐related diseases.
Collapse
Affiliation(s)
- Haoran Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Yamaguchi H, Kitami M, Uchima Koecklin KH, He L, Wang J, Lagor WR, Perrien DS, Komatsu Y. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice. Dev Biol 2021; 482:91-100. [PMID: 34929174 DOI: 10.1016/j.ydbio.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023]
Abstract
Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, the unique functions and roles of each IFT during endochondral ossification remain unclear. Here, we show that IFT20 is required for endochondral ossification in mice. Utilizing osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre and Col2-Cre), we deleted Ift20 to examine its function. Although chondrocyte-specific Ift20 deletion with Col2-Cre mice did not cause any overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) mice resulted in shortened limb outgrowth. Primary cilia were absent on chondrocytes of Ift20:Prx1-Cre mice, and ciliary-mediated Hedgehog signaling was attenuated in Ift20:Prx1-Cre mice. Interestingly, loss of Ift20 also increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate that IFT20 is a critical regulator of temporospatial FGF signaling that is required for endochondral ossification.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Megumi Kitami
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | | | - Li He
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Jianbo Wang
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, 30232, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth, Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Spicer LJ. Wingless-type mouse mammary tumor virus integration site regulation of bovine theca cells. J Anim Sci 2021; 99:6309027. [PMID: 34166505 DOI: 10.1093/jas/skab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Ovarian paracrine mediation by components of the wingless-type mouse mammary tumor virus integration site ligands (WNT1 to 11) and their receptors, frizzled family members (FZD1 to 10), has been proposed. Secreted truncated forms of FZD proteins (e.g., secreted frizzled-related protein 4 [SFRP4]) block the action of WNT ligands. Dickkopf-1 (DKK1) is another WNT antagonist, and R-spondin-1 (RSPO1) is one of a group of four secreted proteins that enhance WNT/β-catenin signaling. Our hypothesis was that granulosa cells signal theca cells (TCs) via SFRP4, DKK1, RSPO1, and WNT secretion to regulate TC differentiation and proliferation. Therefore, in vitro experiments were conducted to study the effects of WNT family member 3A (WNT3A), WNT5A, RSPO1, DKK1, insulin-like growth factor 1 (IGF1), bone morphogenetic protein 7 (BMP7), Indian hedgehog (IHH), and fibroblast growth factor 9 (FGF9) on bovine TC proliferation and steroidogenesis. TCs of large (8 to 20 mm) and small (3 to 6 mm) follicles were collected from bovine ovaries; TC monolayers were established in vitro and treated with various doses of recombinant human WNT3A, WNT5A, RSPO1, DKK1, IGF1, FGF9, BMP7, IHH, and/or ovine luteinizing hormone (LH) in serum-free medium for 48 h. In experiment 1, using LH-treated TC, IGF1, IHH, and WNT3A increased (P < 0.05) cell numbers and androstenedione production, whereas WNT3A and BMP7 inhibited (P < 0.05) progesterone production. In experiment 2, FGF9 blocked (P < 0.05) the WNT3A-induced increase in androstenedione production in LH plus IGF1-treated TC. In experiment 3, RSPO1 further increased (P < 0.05) LH plus IGF1-induced progesterone and androstenedione production. In experiment 4, SFRP4 and DKK1 alone had no significant effect on TC proliferation or progesterone production of large-follicle TC but both blocked the inhibitory effect of WNT5A on androstenedione production. In contrast, DKK1 alone inhibited (P < 0.05) small-follicle TC androstenedione production whereas SFRP4 was without effect. We conclude that the ovarian TC WNT system is functional in cattle, with WNT3A increasing proliferation and androstenedione production of TC.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Hu Y, Zhao QW, Wang ZC, Fang QQ, Zhu H, Hong DS, Liang XG, Lou D, Tan WQ. Co-transfection with BMP2 and FGF2 via chitosan nanoparticles potentiates osteogenesis in human adipose-derived stromal cells in vitro. J Int Med Res 2021; 49:300060521997679. [PMID: 33769121 PMCID: PMC8166400 DOI: 10.1177/0300060521997679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate if co-transfection of human bone morphogenetic protein 2 (BMP-2, BMP2) and human fibroblast growth factor 2 (FGF2, FGF2) via chitosan nanoparticles promotes osteogenesis in human adipose tissue-derived stem cells (ADSCs) in vitro. MATERIALS AND METHODS Recombinant BMP2 and/or FGF2 expression vectors were constructed and packaged into chitosan nanoparticles. The chitosan nanoparticles were characterized by atomic force microscopy. Gene and protein expression levels of BMP-2 and FGF2 in ADSCs in vitro were evaluated by real-time polymerase chain reaction (PCR), western blot, and enzyme-linked immunosorbent assay. Osteocalcin (OCN) and bone sialoprotein (BSP) gene expression were also evaluated by real-time PCR to assess osteogenesis. RESULTS The prepared chitosan nanoparticles were spherical with a relatively homogenous size distribution. The BMP2 and FGF2 vectors were successfully transfected into ADSCs. BMP-2 and FGF2 mRNA and protein levels were significantly up-regulated in the co-transfection group compared with the control group. OCN and BSP mRNA levels were also significantly increased in the co-transfection group compared with cells transfected with BMP2 or FGF2 alone, suggesting that co-transfection significantly enhanced osteogenesis. CONCLUSIONS Co-transfection of human ADSCs with BMP2/FGF2 via chitosan nanoparticles efficiently promotes the osteogenic properties of ADSCs in vitro.
Collapse
Affiliation(s)
- Ying Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - He Zhu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dong-Sheng Hong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xing-Guang Liang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dong Lou
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
16
|
Mou TC, Feng JY. Research advances in cartilage stem cells markers and induced differentiation. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:108-114. [PMID: 33723946 DOI: 10.7518/hxkq.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cartilage stem cells (CSCs) are cells that self-proliferate, have surface antigen expression, and have multidirectional differentiation potential in the articular cartilage. CSCs, as an ideal source of stem cells, has a good application prospect in stem cell therapy. This article reviews the CSCs markers, cartilage differentiation signaling pathway, and clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Ting-Chen Mou
- Dept. of Stomatological, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Jian-Ying Feng
- College of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
17
|
Kacew A, Sweis RF. FGFR3 Alterations in the Era of Immunotherapy for Urothelial Bladder Cancer. Front Immunol 2020; 11:575258. [PMID: 33224141 PMCID: PMC7674585 DOI: 10.3389/fimmu.2020.575258] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
FGFR3 is a prognostic and predictive marker and is a validated therapeutic target in urothelial bladder cancer. Its utility as a marker and target in the context of immunotherapy is incompletely understood. We review the role of FGFR3 in bladder cancer and discuss preclinical and clinical clues of its effectiveness as a patient selection factor and therapeutic target in the era of immunotherapy.
Collapse
Affiliation(s)
- Alec Kacew
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Randy F Sweis
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, United States.,Committee on Immunology, The University of Chicago, Chicago, IL, United States.,Comprehensive Cancer Center, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Oichi T, Otsuru S, Usami Y, Enomoto-Iwamoto M, Iwamoto M. Wnt signaling in chondroprogenitors during long bone development and growth. Bone 2020; 137:115368. [PMID: 32380258 PMCID: PMC7354209 DOI: 10.1016/j.bone.2020.115368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
Wnt signaling together with other signaling pathways governs cartilage development and the growth plate function during long bone formation and growth. β-catenin-dependent Wnt signaling is a specific lineage determinant of skeletal mesenchymal cells toward chondrogenic or osteogenic direction. Once cartilage forms and the growth plate organize, Wnt signaling continues to regulate proliferation and differentiation of the growth plate chondrocytes. Although chondrocytes in the growth plate have a high capacity to proliferate, new cells must be supplied to the growth plate from chondroprogenitor population. Advances in in vivo cell tracking techniques have demonstrated the importance of Wnt signaling in driving tissue renewal. The Wnt-responsive cells, genetically marked by the Wnt-reporter system, are found as stem cells in various tissues. Similarly, Wnt-responsive cells are found in the periphery of the growth plate and expanded to constitute entire column structure, indicating that Wnt signaling participates in the regulation of chondroprogenitors in the growth plate. This review will discuss advancements in research of progenitors in the growth plate, specifically focusing on Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Takeshi Oichi
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Satoru Otsuru
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
19
|
Sun X, Zhang R, Chen H, Du X, Chen S, Huang J, Liu M, Xu M, Luo F, Jin M, Su N, Qi H, Yang J, Tan Q, Zhang D, Ni Z, Liang S, Zhang B, Chen D, Zhang X, Luo L, Chen L, Xie Y. Fgfr3 mutation disrupts chondrogenesis and bone ossification in zebrafish model mimicking CATSHL syndrome partially via enhanced Wnt/β-catenin signaling. Theranostics 2020; 10:7111-7130. [PMID: 32641982 PMCID: PMC7330844 DOI: 10.7150/thno.45286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
CATSHL syndrome, characterized by camptodactyly, tall stature and hearing loss, is caused by loss-of-function mutations of fibroblast growth factor receptors 3 (FGFR3) gene. Most manifestations of patients with CATSHL syndrome start to develop in the embryonic stage, such as skeletal overgrowth, craniofacial abnormalities, however, the pathogenesis of these phenotypes especially the early maldevelopment remains incompletely understood. Furthermore, there are no effective therapeutic targets for this skeleton dysplasia. Methods: We generated fgfr3 knockout zebrafish by CRISPR/Cas9 technology to study the developmental mechanisms and therapeutic targets of CATSHL syndrome. Several zebrafish transgenic lines labeling osteoblasts and chondrocytes, and live Alizarin red staining were used to analyze the dynamical skeleton development in fgfr3 mutants. Western blotting, whole mount in situ hybridization, Edu labeling based cell proliferation assay and Wnt/β-catenin signaling antagonist were used to explore the potential mechanisms and therapeutic targets. Results: We found that fgfr3 mutant zebrafish, staring from early development stage, showed craniofacial bone malformation with microcephaly and delayed closure of cranial sutures, chondroma-like lesion and abnormal development of auditory sensory organs, partially resembling the clinical manifestations of patients with CATSHL syndrome. Further studies showed that fgfr3 regulates the patterning and shaping of pharyngeal arches and the timely ossification of craniofacial skeleton. The abnormal development of pharyngeal arch cartilage is related to the augmented hypertrophy and disordered arrangement of chondrocytes, while decreased proliferation, differentiation and mineralization of osteoblasts may be involved in the delayed maturation of skull bones. Furthermore, we revealed that deficiency of fgfr3 leads to enhanced IHH signaling and up-regulated canonical Wnt/β-catenin signaling, and pharmacological inhibition of Wnt/β-catenin could partially alleviate the phenotypes of fgfr3 mutants. Conclusions: Our study further reveals some novel phenotypes and underlying developmental mechanism of CATSHL syndrome, which deepens our understanding of the pathogenesis of CATSHL and the role of fgfr3 in skeleton development. Our findings provide evidence that modulation of Wnt/β-catenin activity could be a potential therapy for CATSHL syndrome and related skeleton diseases.
Collapse
Affiliation(s)
- Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ruobin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuai Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Junlan Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Mi Liu
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Meng Xu
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sen Liang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
20
|
Zhang W, Xia Y, Ling Y, Yang W, Dong ZX, Wang DA, Fan C. A Transcriptome Sequencing Study on Genome-Wide Gene Expression Differences of 3D Cultured Chondrocytes in Hydrogel Scaffolds with Different Gel Density. Macromol Biosci 2020; 20:e2000028. [PMID: 32187455 DOI: 10.1002/mabi.202000028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Hydrogel is considered as a promising cell delivery vehicle in cartilage tissue engineering, whose tunable microenvironments may influence the function and fate of encapsulated chondrocytes. Here, the transcriptomes of chondrocytes that are encapsulated and cultured in hydrogel constructs respectively made of 0.8% and 4% alginate solution are investigated. Differences in chondrocyte transcriptome are detected via RNA-sequencing from these two cultural conditions. The differentially expressed genes (DEGs) are reflected in extracellular matrix (ECM) secretion, cell cycle, proliferation, cartilage development, and so on. Significantly, the expression of DEGs associated with cartilage ECM and cell proliferation are upregulated in 0.8% constructs; whilst the expressions of DEGs involved in cell cycle and matrix degradation are upregulated in 4% constructs. Moreover, interestingly, the expressions of chondrocyte hypertrophy markers are upregulated in 0.8% constructs; while 4% constructs seemingly favor the long-term maintenance of chondrocyte phenotype. Taken together, this study confirms on transcriptomic level that gel density affects gene expression and phenotype of the encapsulated chondrocytes; therefore, it may provide guidance for future design and fabrication of cartilage tissue engineering scaffolds.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Ling
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Yang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Zuo-Xiang Dong
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, 266021, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Changjiang Fan
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
21
|
Yu L, Hao Y, Peng C, Zhang P, Zhu J, Cai Y, Zhu G. Effect of Ginsenoside Rg1 on the intervertebral disc degeneration rats and the degenerative pulposus cells and its mechanism. Biomed Pharmacother 2020; 123:109738. [PMID: 31951975 DOI: 10.1016/j.biopha.2019.109738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in vivo and in vitro and its mechanism. METHODS 60 rats were underwent surgery to construct rat models of IVDD and divided in the sham group, model group and gradient G-Rg1 groups (10 mg/kg/d, 20 mg/kg/d and 40 mg/kg/d).The change of histology was observed by HE staining, the water content and the expression of β-catenin in IVD were detected. Rat nucleus pulposus cells(NPCs) were isolated from IVDD rats and divided in D-NPCs group, and gradient G-Rg1 groups(20 μg/ml, 50 μg/ml and 100 μg/ml).The cell proliferation activity, cell apoptosis rate,the expression of proteins related to ECM and Wnt/β-catenin were detected respectively, Finally the agonist of Wnt/β-catenin pathway LiCl was used for reversed experiments. RESULTS In vivo, G-Rg1 treatment could improve the structural disorganization, low water content, NPCs number and aggrecan and collagenⅡ expression in IVD and down-regulate the expression of β-catenin. In vitro NPCs, G-Rg1 treatment could improve the low cell proliferation, high apoptosis rate and low expression of aggrecan and collagenⅡ in degenerative NPCs in a dose-dependent manner.G-Rg1 treatment could down-regulate the expression of proteins related to β-catenin signal and LiCl could reverse the increase of cell proliferation and ECM synthesis, decrease of apoptosis of degenerative NPCs induced by G-Rg1. CONCLUSION G-Rg1 could promote ECM synthesis of degenerative NPCs and inhibiting its apoptosis, improve the IVDD via inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, 450001, Henan Province, China
| | - Yingjie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, 450001, Henan Province, China.
| | - Cheng Peng
- Department of Orthopedics, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, 450001, Henan Province, China
| | - Panke Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, 450001, Henan Province, China
| | - Jian Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, 450001, Henan Province, China
| | - Yingchun Cai
- Department of Orthopedics, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, 450001, Henan Province, China
| | - Guangduo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
22
|
Xiao L, Williams D, Hurley MM. Inhibition of FGFR Signaling Partially Rescues Osteoarthritis in Mice Overexpressing High Molecular Weight FGF2 Isoforms. Endocrinology 2020; 161:5696655. [PMID: 31901095 PMCID: PMC6959088 DOI: 10.1210/endocr/bqz016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptors (FGFRs) are key regulatory factors in osteoarthritis (OA). HMWTg mice overexpress the high molecular weight FGF2 isoforms (HMWFGF2) in osteoblast lineage and phenocopy both Hyp mice (which overexpress the HMWFGF2 isoforms in osteoblasts and osteocytes) and humans with X-linked hypophosphatemia (XLH). We previously reported that, similar to Hyp mice and XLH subjects who develop OA, HMWTg mice also develop an OA phenotype associated with increased degradative enzymes and increased FGFR1 compared with VectorTg mice. Therefore, in this study, we examined whether in vivo treatment with the FGFR tyrosine kinase inhibitor NVP-BGJ398 (BGJ) would modulate development of the OA phenotype in knee joints of HMWTg mice. VectorTg and HMWTg mice (21 days of age) were treated with vehicle or BGJ for 13 weeks. Micro-computed tomography images revealed irregular shape and thinning of the subchondral bone with decreased trabecular number and thickness within the epiphyses of vehicle-treated HMWTg knees, which was partially rescued following BGJ treatment. Articular cartilage thickness was decreased in vehicle-treated HMWTg mice, and was restored to the cartilage thickness of VectorTg mice in the BGJ-treated HMWTg group. Increased OA degradative enzymes present in HMWTg vehicle-treated joints decreased after BGJ treatment. OA in HMWTg mice was associated with increased Wnt signaling that was rescued by BGJ treatment. This study demonstrates that overexpression of the HMWFGF2 isoforms in preosteoblasts results in osteoarthropathy that can be partially rescued by FGFR inhibitor via reduction in activated Wnt signaling.
Collapse
Affiliation(s)
- Liping Xiao
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, UConn Health, Farmington, CT
| | - Donyell Williams
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, UConn Health, Farmington, CT
| | - Marja M Hurley
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, UConn Health, Farmington, CT
- Correspondence: Marja Hurley, MD, Department of Medicine MC-3023, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3105. E-mail:
| |
Collapse
|
23
|
Tellegen AR, Dessing AJ, Houben K, Riemers FM, Creemers LB, Mastbergen SC, Meij BP, Miranda-Bedate A, Tryfonidou MA. Dog as a Model for Osteoarthritis: The FGF4 Retrogene Insertion May Matter. J Orthop Res 2019; 37:2550-2560. [PMID: 31373395 PMCID: PMC6899624 DOI: 10.1002/jor.24432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/24/2019] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease associated with chronic pain and disability in humans and companion animals. The canine species can be subdivided into non-chondrodystrophic (NCD) and chondrodystrophic (CD) dogs, the latter having disproportionally short limbs due to disturbance in endochondral ossification of long bones. This phenotype is associated with retrogene insertions of the fibroblast growth factor 4 (FGF4) gene, resulting in enhanced fibroblast growth factor receptor 3 (FGFR3) signaling. The effect on cartilage is unknown and in experimental studies with dogs, breeds are seemingly employed randomly. The aim of this study was to determine whether CD- and NCD-derived cartilage differs on a structural and biochemical level, and to explore the relationship between FGF4 associated chondrodystrophy and OA. Cartilage explants from CD and NCD dogs were cultured for 21 days. Activation of canonical Wnt signaling was assessed in primary canine chondrocytes. OA and synovitis severity from an experimental OA model were compared between healthy and OA samples from CD and NCD dogs. Release of glycosaminoglycans, DNA content, and cyclooxygenase 2 (COX-2) expression were higher in NCD cartilage explants. Healthy cartilage from NCD dogs displayed higher cartilage degeneration and synovitis scores, which was aggravated by the induction of OA. Dikkopf-3 gene expression was higher in NCD cartilage. No differences in other Wnt pathway read outs were found. To conclude, chondrodystrophy associated with the FGF4 retrogene seems to render CD dogs less susceptible to the development of OA when compared with NCD dogs. These differences should be considered when choosing a canine model to study the pathobiology and new treatment strategies of OA. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 37:2550-2560, 2019.
Collapse
Affiliation(s)
- Anna R Tellegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aileen J Dessing
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kaat Houben
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Laura B Creemers
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Pan T, Tong X, Ye L, Ji M, Jiao J. EFFECTS OF CONTUSION AND EXHAUSTIVE EXERCISE ON MG53, PTRF IN SKELETAL MUSCLE OF RATS. REV BRAS MED ESPORTE 2019. [DOI: 10.1590/1517-869220192506197718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objectives To study the effects of contusion and exhaustive exercise on gene expression of MG53, PTRF, Pax7 and β-catenin in skeletal muscle of rats, and reveal the repair mechanism of skeletal muscle injury. Methods Forty-two male Wistar rats were randomly divided into 7 groups, with 6 rats in each group. All groups were euthanized at different time points after exhaustive exercise and contusion, respectively, while the control group was euthanized in resting state. The right gastrocnemius muscles were measured for mRNAs of MG53, PTRF, Pax7 and β-catenin by real time PCR. Results MG53 mRNA and PTRF mRNA of skeletal muscle in groups immediately after exhaustive exercise and after contusion increased significantly (p<0.05), while the two indices decreased constantly at 24 and 48 hours after injury with a similar change trend. Compared with the control group, Pax7 mRNA of skeletal muscle as a marker showed no significant difference in exhaustive exercise groups, but decreased at 48 hours after contusion (p<0.05). β-catenin mRNA of skeletal muscle down-regulated significantly over 24 hours after injury, then activated with an increased value at 48 hours after contusion (p<0.05). As a whole, the variations in the above indices in the contusion groups covered a wider range than in the exhaustive exercise groups. Conclusion The cytomembrane repair mechanism of MG53 and PTRF began immediately after the end of exhaustive exercise and contusion. Activation of Pax7 as the satellite cell marker took longer, and Wnt/β-catenin pathway showed first a decrease and then an increase resulting from the time-dependent gene expression during the repair of skeletal muscle injury. Level of evidence III, Therapeutic studies investigating the results of treatment.
Collapse
Affiliation(s)
| | | | - Leilei Ye
- Nanjing Institute of Physical Education and Sports, China
| | | | | |
Collapse
|
25
|
Wang T, Duan YM, Fu Q, Liu T, Yu JC, Sui ZY, Huang L, Wen GQ. IM-12 activates the Wnt-β-catenin signaling pathway and attenuates rtPA-induced hemorrhagic transformation in rats after acute ischemic stroke. Biochem Cell Biol 2019; 97:702-708. [PMID: 31770017 DOI: 10.1139/bcb-2018-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke (AIS) who are treated with tissue plasminogen activator (tPA). HT is associated with high morbidity and mortality, but no effective treatments are currently available to reduce the risk of HT. Therefore, methods to prevent HT are urgently needed. In this study, we used IM-12, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt-β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke, and then were either administered rtPA, rtPA combined with IM-12, or the vehicle at 4 h after stroke was induced. Our results indicate that rats subjected to HT had more severe neurological deficits, brain edema, and blood-brain barrier (BBB) breakdown, and had a greater infarction volume than the control group. Rats treated with IM-12 had improved outcomes compared with those of rats treated with rtPA alone. Moreover, IM-12 increased the protein expression of β-catenin and downstream proteins while suppressing the expression of GSK-3β. These results suggest that IM-12 reduces rtPA-induced HT and attenuates BBB disruption, possibly through activation of the Wnt-β-catenin signaling pathway, and provides a potential therapeutic strategy for preventing tPA-induced HT after AIS.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, Hainan General Hospital Affiliated to University of South China, Haikou 570311, Hainan Province, China
| | - Yu-Mei Duan
- Department of Neurology, Hainan General Hospital Affiliated to University of South China, Haikou 570311, Hainan Province, China
| | - Qiao Fu
- Department of Rehabilitation Medicine, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Jin-Cheng Yu
- Department of Rehabilitation Medicine, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Zhi-Yan Sui
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Li Huang
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Guo-Qiang Wen
- Department of Neurology, Hainan General Hospital, Haikou 570311, Hainan Province, China
| |
Collapse
|
26
|
Wu J, Du Y, Song J, Dang X, Wang K, Wen Y, Zhang F, Liu R. Genome-wide DNA methylation profiling of hip articular cartilage identifies differentially methylated loci associated with osteonecrosis of the femoral head. Bone 2019; 127:296-304. [PMID: 31233934 DOI: 10.1016/j.bone.2019.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/09/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Recent studies demonstrated a critical role of hip articular cartilage destruction in the development of osteonecrosis of the femoral head (ONFH). The aim of this study was to characterize the genome-wide DNA methylation profile of hip cartilage obtained from patients with ONFH and healthy subjects. METHODS Hip articular cartilage specimens were collected from 15 ONFH patients (including 11 males and 4 females) and 15 control subjects (including 11 males and 4 females) with femoral neck fracture. The average ages of the ONFH patients and control subjects were 50.27 ± 5.27 years and 61.67 ± 3.38 years, respectively. Genome-wide DNA methylation profiles of 5 ONFH and 5 control cartilages were determined by Illumina HumanMethylation850 array. Differential methylation analysis of DNA methylation profiles were performed by the empirical Bayes moderated t-test of the limma package. Mass spectrograph (MS) analysis of 10 ONFH cartilages and 10 normal cartilages were performed to validate the results of genome-wide DNA methylation profiling. Immunohistochemistry (IHC) of 4 ONFH cartilages and 4 control cartilages were conducted to evaluate the expression levels of proteins encoded by identified differentially methylated genes. t-test was used to assess the significance of protein expression differences between ONFH patients and controls in IHC. RESULTS We identified a total of 2872 differentially methylated CpG sites, annotated to 480 hypermethylated genes and 1335 hypomethylated genes for ONFH. The results of MS validation were consistent with that of genome-wide DNA methylation profiling. IHC further confirmed the increased protein expression of CARS (mean and 95%CI of superficial zone 59.67% [48.46, 56.14], and deep zone 31% [25.85, 30.61]), PDE4D (superficial zone 50.33% [33.64, 40.68] and deep zone 28.67% [10.81, 36.47]), ADAMTS12 (superficial zone 53.67% [36.01, 40.93] and deep zone 34.67% [22.56, 37.18]), LRP5 (superficial zone 59.63% [27.32, 39.61] and deep zone 22.95% [5.28, 19.29]), RUNX2 (superficial zone 52.58% [11.64, 31.33] and deep zone 35.01% [10.03, 27.44]) in ONFH articular cartilage. CONCLUSION Our results suggest the implication of DNA methylation alterations in the development of ONFH, and provide novel clues for pathogenetic and therapeutic studies of ONFH.
Collapse
Affiliation(s)
- Junlong Wu
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China; Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province, 471009, China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Jidong Song
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiaoqian Dang
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Kunzheng Wang
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China.
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
27
|
The Autocrine FGF/FGFR System in both Skin and Uveal Melanoma: FGF Trapping as a Possible Therapeutic Approach. Cancers (Basel) 2019; 11:cancers11091305. [PMID: 31487962 PMCID: PMC6770058 DOI: 10.3390/cancers11091305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factors (FGFs) play non-redundant autocrine/paracrine functions in various human cancers. The Cancer Genome Atlas (TCGA) data mining indicates that high levels of FGF and/or FGF receptor (FGFR) expression are associated with reduced overall survival, chromosome 3 monosomy and BAP1 mutation in human uveal melanoma (UM), pointing to the FGF/FGFR system as a target for UM treatment. Here, we investigated the impact of different FGF trapping approaches on the tumorigenic and liver metastatic activity of liver metastasis-derived murine melanoma B16-LS9 cells that, similar to human UM, are characterized by a distinctive hepatic tropism. In vitro and in vivo experiments demonstrated that the overexpression of the natural FGF trap inhibitor long-pentraxin 3 (PTX3) inhibits the oncogenic activity of B16-LS9 cells. In addition, B16-LS9 cells showed a reduced tumor growth and liver metastatic activity when grafted in PTX3-overexpressing transgenic mice. The efficacy of the FGF trapping approach was confirmed by the capacity of the PTX3-derived pan-FGF trap small molecule NSC12 to inhibit B16-LS9 cell growth in vitro, in a zebrafish embryo orthotopic tumor model and in an experimental model of liver metastasis. Possible translational implications for these observations were provided by the capacity of NSC12 to inhibit FGF signaling and cell proliferation in human UM Mel285, Mel270, 92.1, and OMM2.3 cells. In addition, NSC12 caused caspase-3 activation and PARP cleavage followed by apoptotic cell death as well as β-catenin degradation and inhibition of UM cell migration. Together, our findings indicate that FGF trapping may represent a novel therapeutic strategy in UM.
Collapse
|
28
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
29
|
Al-Qattan MM, Alkuraya FS. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am J Med Genet A 2018; 179:266-279. [PMID: 30569497 DOI: 10.1002/ajmg.a.60694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Cenani-Lenz (C-L) syndrome is characterized by oligosyndactyly, metacarpal synostosis, phalangeal disorganization, and other variable facial and systemic features. Most cases are caused by homozygous and compound heterozygous missense and splice mutations of the LRP4 gene. Currently, the syndrome carries one OMIM number (212780). However, C-L syndrome-like phenotypes as well as other syndactyly disorders with or without metacarpal synostosis/phalangeal disorganization are also known to be associated with specific LRP4 mutations, adenomatous polyposis coli (APC) truncating mutations, genomic rearrangements of the GREM1-FMN1 locus, as well as FMN1 mutations. Surprisingly, patients with C-L syndrome-like phenotype caused by APC truncating mutations have no polyposis despite the increased levels of β catenin. The LRP4 and APC proteins act on the WNT (wingless-type integration site family) canonical pathway, whereas the GREM-1 and FMN1 proteins act on the bone morphogenetic protein (BMP) pathway. In this review, we discuss the different mutations associated with C-L syndrome, classify its clinical features, review familial adenomatous polyposis caused by truncating APC mutations and compare these mutations to the splicing APC mutation associated with syndactyly, and finally, explore the pathophysiology through a review of the cross talks between the WNT canonical and the BMP antagonistic pathways.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia.,Division of Plastic Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Pizzute T, He F, Zhang XB, Pei M. Impact of Wnt signals on human intervertebral disc cell regeneration. J Orthop Res 2018; 36:3196-3207. [PMID: 30035326 PMCID: PMC7261601 DOI: 10.1002/jor.24115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023]
Abstract
Although preconditioning strategies are growing areas of interest for therapies targeting intervertebral discs (IVDs), it is unknown whether the Wnt signals previously implicated in chondrogenesis, Wnt3A, Wnt5A, and Wnt11, play key roles in the promotion of human nucleus pulposus (NP) cell redifferentiation. In this study, NP cells isolated from herniated disc patients were transduced with lentiviral vectors to overexpress the WNT3A, WNT5A, or WNT11 genes, or CRISPR associated protein 9 (Cas9)/single-guide RNA (sgRNA) vectors to knock out these genes. Following expansion, transduced NP cells were induced for redifferentiation toward the NP phenotype. The overexpression of specific WNT factors led to increases in both glycosaminoglycan (GAG) deposition and expression of redifferentiation genes. These effects were attenuated by knockout of the same WNT genes. These results indicate that specific WNT signals can regulate the expression of redifferentiation genes, unequally impact GAG deposition, and contribute to the redifferentiation of human NP cells. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3196-3207, 2018.
Collapse
Affiliation(s)
- Tyler Pizzute
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA;,Exercise Physiology, West Virginia University, Morgantown, WV, USA
| | - Fan He
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Tianjin, China;,Department of Medicine, Loma Linda University, Loma Linda, CA, USA;,Co-Corresponding Author: Xiao-Bing Zhang PhD, Division of Regenerative Medicine MC 1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92350, USA,
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA;,Exercise Physiology, West Virginia University, Morgantown, WV, USA;,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
31
|
Fafilek B, Balek L, Bosakova MK, Varecha M, Nita A, Gregor T, Gudernova I, Krenova J, Ghosh S, Piskacek M, Jonatova L, Cernohorsky NH, Zieba JT, Kostas M, Haugsten EM, Wesche J, Erneux C, Trantirek L, Krakow D, Krejci P. The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Sci Signal 2018; 11:11/548/eaap8608. [PMID: 30228226 DOI: 10.1126/scisignal.aap8608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.
Collapse
Affiliation(s)
- Bohumil Fafilek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Michaela Kunova Bosakova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Jitka Krenova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Somadri Ghosh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lucie Jonatova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | | | - Jennifer T Zieba
- Department of Orthopedic Surgery, University of California Los Angeles, CA 90095, USA
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Christophe Erneux
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopedic Surgery, University of California Los Angeles, CA 90095, USA.,Department of Human Genetics, University of California Los Angeles, CA 90095, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
32
|
Balek L, Buchtova M, Kunova Bosakova M, Varecha M, Foldynova-Trantirkova S, Gudernova I, Vesela I, Havlik J, Neburkova J, Turner S, Krzyscik MA, Zakrzewska M, Klimaschewski L, Claus P, Trantirek L, Cigler P, Krejci P. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials 2018; 176:106-121. [DOI: 10.1016/j.biomaterials.2018.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/31/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022]
|
33
|
Zhou Y, Shu B, Xie R, Huang J, Zheng L, Zhou X, Xiao G, Zhao L, Chen D. Deletion of Axin1 in condylar chondrocytes leads to osteoarthritis-like phenotype in temporomandibular joint via activation of β-catenin and FGF signaling. J Cell Physiol 2018; 234:1720-1729. [PMID: 30070692 DOI: 10.1002/jcp.27043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a degenerative disease in the adult, which is characterized by the pathological degeneration of condylar cartilage. Axin1 plays a critical role in the regulation of cartilage development and homeostasis. To determine the role of Axin1 in TMJ tissue at the adult stage, we generated Axin1Agc1ER mice, in which Axin1 was deleted in aggrecan-expressing chondrocytes at 2 months of age. Histology, histomorphometry, and immunostaining analyses were performed using TMJ tissues harvested from 4- and 6-month-old mice after tamoxifen administration. Total RNA isolated from TMJ cartilage of 6-month-old mice was used for gene expression analysis. Progressive OA-like degeneration was observed in condylar cartilage in Axin1 knockout (KO) mice with loss of surface continuity and the formation of vertical fissures. In addition, reduced alcian blue staining in condylar cartilage was also found in Axin1 KO mice. Immunostaining and reverse transcription quantitative polymerase chain reaction (qRT-PCR) assays revealed disturbed homeostasis in condylar cartilage with increased expressions of MMP13 and Adamts5 and decreased lubricin expression in Axin1-deficient chondrocytes. Less proliferative cells with increased hypertrophic and apoptotic activities were presented in the condylar cartilage of Axin1Agc1ER KO mice. As a scaffolding protein, the deletion of Axin1 stimulated not only the β-catenin but also the fibroblast growth factor (FGF) signaling via extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. The qRT-PCR results showed an increased expression of Fgfr1 in Axin1 KO cartilage. Overall, the deletion of Axin1 in condylar chondrocytes altered the β-catenin and FGF/ERK1/2 signaling pathways, thus cooperatively contribute to the cartilage degeneration.
Collapse
Affiliation(s)
- Yachuan Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Bing Shu
- Department of Orthopedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guozhi Xiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
34
|
Meo Burt P, Xiao L, Hurley MM. FGF23 Regulates Wnt/β-Catenin Signaling-Mediated Osteoarthritis in Mice Overexpressing High-Molecular-Weight FGF2. Endocrinology 2018; 159:2386-2396. [PMID: 29718273 PMCID: PMC6457004 DOI: 10.1210/en.2018-00184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/21/2018] [Indexed: 12/23/2022]
Abstract
Although humans with X-linked hypophosphatemia (XLH) and the Hyp mouse, a murine homolog of XLH, are known to develop degenerative joint disease, the exact mechanism that drives the osteoarthritis (OA) phenotype remains unclear. Mice that overexpress high-molecular-weight fibroblast growth factor (FGF) 2 isoforms (HMWTg mice) phenocopy both XLH and Hyp, including OA with increased FGF23 production in bone and serum. Because HMWTg cartilage also has increased FGF23 and there is cross-talk between FGF23-Wnt/β-catenin signaling, the purpose of this study was to determine if OA observed in HMWTg mice is due to FGF23-mediated canonical Wnt signaling in chondrocytes, given that both pathways are implicated in OA pathogenesis. HMWTg OA joints had decreased Dkk1, Sost, and Lrp6 expression with increased Wnt5a, Wnt7b, Lrp5, Axin2, phospho-GSK3β, Lef1, and nuclear β-catenin, as indicated by immunohistochemistry or quantitative PCR analysis. Chondrocytes from HMWTg mice had enhanced alcian blue and alkaline phosphatase staining as well as increased FGF23, Adamts5, Il-1β, Wnt7b, Wnt16, and Wisp1 gene expression and phospho-GSK3β protein expression as indicated by Western blot, compared with chondrocytes of vector control and chondrocytes from mice overexpressing the low-molecular-weight isoform, which were protected from OA. Canonical Wnt inhibitor treatment rescued some of those parameters in HMWTg chondrocytes, seemingly delaying the initially accelerated chondrogenic differentiation. FGF23 neutralizing antibody treatment was able to partly ameliorate OA abnormalities in subchondral bone and reduce degradative/hypertrophic chondrogenic marker expression in HMWTg joints in vivo. These results demonstrate that osteoarthropathy of HMWTg is at least partially due to FGF23-modulated Wnt/β-catenin signaling in chondrocytes.
Collapse
Affiliation(s)
- Patience Meo Burt
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
| | - Liping Xiao
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
| | - Marja M Hurley
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
- Correspondence: Marja M. Hurley, MD, Department of Medicine MC-3023, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030. E-mail:
| |
Collapse
|
35
|
Liu H, Shen J, Zhou H, Xu S, Hu Z. [Resveratrol regulate the extracellular matrix expression via Wnt/β-catenin pathway in nucleus pulposus cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:476-483. [PMID: 29806307 DOI: 10.7507/1002-1892.201709097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective To investigate the regulatory effect of resveratrol (RES) on the extracellular matrix (ECM) expression of nucleus pulposus cells (NPC), and its relative molecular mechanism. Methods Ten patients receiving discectomy were collected, of which 5 patients were young with spinal burst fracture, classified as control group; the rest 5 patients were senile with lumbar disc herniation, classified as degenerative group. The nucleus pulposus tissue of 2 groups were collected, the in situexpression of β-catenin was detected by immunohistochemistry, and the protein expressions of collagen type Ⅱ and Aggrecan were detected by Western blot. The NPC were isolated and cultured from degenerative nucleus pulposus tissues. RES treated the third-passage NPC with (group B) or without IL-1β (group C), to further determine the protein expressions of collagen type Ⅱ and Aggrecan by Western blot, the unstimulated cells were set up as blank control group (group A). Moreover, NPC treated with small interfering RNA (siRNA) targeted silent SIRT1 or β-catenin were used to determine the protein and gene expressions of β-catenin and SIRT1 by Western blot and real-time fluorescence quantitative PCR. In addition, the third-passage NPC treated with complete medium (group 1), IL-1β (group 2), RES+IL-1β (group 3), and SIRT1-siRNA+RES+IL-1β (group 4) for 24 hours were used to detect the nuclear translocation of β-catenin by cell immunofluorescence staining. Finally, the third-passage NPC treated with complete medium (group Ⅰ), IL-1β (group Ⅱ), IL-1β+β-catenin-siRNA (group Ⅲ), IL-1β+RES (group Ⅳ), and IL-1β+RES+SIRT1-siRNA (group Ⅴ) for 24 hours were used to detect the protein expressions of collagen type Ⅱ and Aggrecan by Western blot. Results Immunohistochemical staining and Western blot detection showed that when compared with control group, the cell proportion of expression of β-catenin were significantly increased in degenerative group ( t=4.616, P=0.010); the protein expression of β-catenin was also significantly increased and the protein expressions of collagen type Ⅱ and Aggrecan were significantly decreased ( P<0.05). In cytology experiments, the protein expression of β-catenin in group B was significantly higher than that in groups A and C, and the protein expressions of collagen type Ⅱ and Aggrecan in group B were significantly lower than those in groups A and C ( P<0.05). After transfection of siRNA, the protein expressions of SIRT1 and β-catenin significantly decreased ( P<0.05). The results of cell immunofluorescence staining further confirmed that when compared with group 3, after the SIRT1 was silenced by siRNA in group 4, the attenuated nuclear translocation of β-catenin by RES treatment was aggravated. Western blot results showed that the protein expressions of collagen type Ⅱ and Aggrecan in group Ⅱ were significantly lower than those in group Ⅰ( P<0.05); after transfection of β-catenin-siRNA in group Ⅲ, the degradation of ECM by IL-1β was obviously inhibited, the protein expressions of collagen type Ⅱ and Aggrecan were significantly increased when compared with group Ⅱ ( P<0.05); after transfection of SIRT1-siRNA in group Ⅴ, the protective effect of RES on the degradation of ECM was inhibited, the protein expressions of collagen type Ⅱ and Aggrecan were significantly decreased when compared with group Ⅳ ( P<0.05). Conclusion RES regulates the ECM expression of NPC via Wnt/β-catenin signaling pathway, which provide a new idea for intervertebral disc degeneration disease treatment.
Collapse
Affiliation(s)
- Huzhe Liu
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Jieliang Shen
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Hao Zhou
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Shengxi Xu
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R.China
| | - Zhenming Hu
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016,
| |
Collapse
|
36
|
Lin Y, Gao H, Chen C, Zhu Y, Li T, Liu B, Ma C, Jiang H, Li Y, Huang Y, Wu Q, Li H, Liang X, Jin C, Ye J, Huang X, Lu L. Clinical and next-generation sequencing findings in a Chinese family exhibiting severe familial exudative vitreoretinopathy. Int J Mol Med 2018; 41:773-782. [PMID: 29207047 PMCID: PMC5752179 DOI: 10.3892/ijmm.2017.3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a rare hereditary retinal disorder characterized by the premature arrest of vascularization in the peripheral retina. The aim of the present study was to characterize the clinical presentations of a Chinese family affected by bilateral severe FEVR, and to identify the underlying genetic variations. One family that presented with bilateral FEVR was recruited for this study. Comprehensive ophthalmic examinations, including best‑corrected visual acuity, slit‑lamp examination, fundus photography, fundus fluorescein angiography imaging and electroretinogram were performed. Genomic DNA was extracted from leukocytes of the peripheral blood collected from the affected and unaffected family members, as well as 200 unrelated control subjects from the same population. Next‑generation sequencing of the candidate genes associated with ocular diseases was performed, and the identified mutations were validated by conventional polymerase chain reaction‑based sequencing. The functional effects of the mutations were analyzed by polymorphism phenotyping (PolyPhen) and sorting intolerant from tolerant (SIFT). One heterozygous ATP binding cassette subfamily A member 4 (ABCA4) c.5693G>A (p.R1898H) mutation in exon 40 and one heterozygous LDL receptor related protein 5 (LRP5) c.260T>G (p.I87S) mutation in exon 2 were identified in this family. To the best of our knowledge, the ABCA4 c.5693G>A (p.R1898H) mutation has not been reported in FEVR, and the LRP5 c.260T>G (p.I87S) mutation is a novel mutation. PolyPhen and SIFT predicted that the amino acid substitution R1898H in protein ABCA4 is benign, whereas the amino acid substitution I87S in protein LRP5 is damaging. A single nucleotide polymorphism c.266A>G (p.Q89R, rs41494349) was identified in exon 2 of LRP5. These findings expand the mutation spectrums of ABCA4 and LRP5, and will be valuable for genetic counseling and development of therapeutic interventions for patients with FEVR.
Collapse
Affiliation(s)
- Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Hongbin Gao
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Guangdong Laboratory Animals Monitoring Institute, Key Laboratory of Guangdong Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Chenghong Ma
- Department of Endocrine, College of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Qingxiu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Haichun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Jianhua Ye
- Department of Endocrine, College of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Xinhua Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Correspondence to: Dr Lin Lu or Dr Xinhua Huang, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, P.R. China, E-mail: , E-mail:
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Correspondence to: Dr Lin Lu or Dr Xinhua Huang, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, P.R. China, E-mail: , E-mail:
| |
Collapse
|
37
|
Balek L, Gudernova I, Vesela I, Hampl M, Oralova V, Kunova Bosakova M, Varecha M, Nemec P, Hall T, Abbadessa G, Hatch N, Buchtova M, Krejci P. ARQ 087 inhibits FGFR signaling and rescues aberrant cell proliferation and differentiation in experimental models of craniosynostoses and chondrodysplasias caused by activating mutations in FGFR1, FGFR2 and FGFR3. Bone 2017; 105:57-66. [PMID: 28826843 DOI: 10.1016/j.bone.2017.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/16/2023]
Abstract
Tyrosine kinase inhibitors are being developed for therapy of malignancies caused by oncogenic FGFR signaling but little is known about their effect in congenital chondrodysplasias or craniosynostoses that associate with activating FGFR mutations. Here, we investigated the effects of novel FGFR inhibitor, ARQ 087, in experimental models of aberrant FGFR3 signaling in cartilage. In cultured chondrocytes, ARQ 087 efficiently rescued all major effects of pathological FGFR3 activation, i.e. inhibition of chondrocyte proliferation, loss of extracellular matrix and induction of premature senescence. In ex vivo tibia organ cultures, ARQ 087 restored normal growth plate architecture and eliminated the suppressing FGFR3 effect on chondrocyte hypertrophic differentiation, suggesting that it targets the FGFR3 pathway specifically, i.e. without interference with other pro-growth pathways. Moreover, ARQ 087 inhibited activity of FGFR1 and FGFR2 mutants associated with Pfeiffer, Apert and Beare-Stevenson craniosynostoses, and rescued FGFR-driven excessive osteogenic differentiation in mouse mesenchymal micromass cultures or in ex vivo calvarial organ cultures. Our data warrant further development of ARQ 087 for clinical use in skeletal disorders caused by activating FGFR mutations.
Collapse
Affiliation(s)
- Lukas Balek
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Vesela
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Marek Hampl
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Veronika Oralova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | | | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Pavel Nemec
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | | | | | - Nan Hatch
- University of Michigan School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcela Buchtova
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.
| |
Collapse
|
38
|
Xu W, Luo F, Wang Q, Tan Q, Huang J, Zhou S, Wang Z, Sun X, Kuang L, Jin M, Su N, Jiang W, Chen L, Qi H, Zhu Y, Chen B, Chen H, Chen S, Gao Y, Xu X, Deng C, Chen L, Xie Y, Du X. Inducible Activation of FGFR2 in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. J Bone Miner Res 2017. [PMID: 28650109 DOI: 10.1002/jbmr.3204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apert syndrome is one of the most severe craniosynostoses, resulting from gain-of-function mutations in fibroblast growth factor receptor 2 (FGFR2). Previous studies have shown that gain-of-function mutations of FGFR2 (S252W or P253R) cause skull malformation of human Apert syndrome by affecting both chondrogenesis and osteogenesis, underscoring the key role of FGFR2 in bone development. However, the effects of FGFR2 on bone formation at the adult stage have not been fully investigated. To investigate the role of FGFR2 in bone formation, we generated mice with tamoxifen-inducible expression of mutant FGFR2 (P253R) at the adult stage. Mechanical bone marrow ablation (BMX) was performed in both wild-type and Fgfr2 mutant (MT) mice. Changes in newly formed trabecular bone were assessed by micro-computed tomography and bone histomorphometry. We found that MT mice exhibited increased trabecular bone formation and decreased bone resorption after BMX accompanied with a remarkable increase in bone marrow stromal cell recruitment and proliferation, osteoblast proliferation and differentiation, and enhanced Wnt/β-catenin activity. Furthermore, pharmacologically inhibiting Wnt/β-catenin signaling can partially reverse the increased trabecular bone formation and decreased bone resorption in MT mice after BMX. Our data demonstrate that gain-of-function mutation in FGFR2 exerts a Wnt/β-catenin-dependent anabolic effect on trabecular bone by promoting bone formation and inhibiting bone resorption at the adult stage. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Siru Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xianding Sun
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wanling Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bo Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Shuai Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Gao
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
39
|
Dephosphorylation is the mechanism of fibroblast growth factor inhibition of guanylyl cyclase-B. Cell Signal 2017; 40:222-229. [PMID: 28964968 DOI: 10.1016/j.cellsig.2017.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022]
Abstract
Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations of guanylyl cyclase-B (GC-B, also called NPRB or NPR2) cause dwarfism. FGF exposure inhibits GC-B activity in a chondrocyte cell line, but the mechanism of the inactivation is not known. Here, we report that FGF exposure causes dephosphorylation of GC-B in rat chondrosarcoma cells, which correlates with a rapid, potent and reversible inhibition of C-type natriuretic peptide-dependent activation of GC-B. Cells expressing a phosphomimetic mutant of GC-B that cannot be inactivated by dephosphorylation because it contains glutamate substitutions for all known phosphorylation sites showed no decrease in GC-B activity in response to FGF. We conclude that FGF rapidly inactivates GC-B by a reversible dephosphorylation mechanism, which may contribute to the signaling network by which activated FGFR3 causes dwarfism.
Collapse
|
40
|
Statins do not inhibit the FGFR signaling in chondrocytes. Osteoarthritis Cartilage 2017; 25:1522-1530. [PMID: 28583899 DOI: 10.1016/j.joca.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Statins are widely used drugs for cholesterol lowering, which were recently found to counteract the effects of aberrant fibroblast growth factor receptor (FGFR3) signaling in cell and animal models of FGFR3-related chondrodysplasia. This opened an intriguing therapeutic possibility for human dwarfing conditions caused by gain-of-function mutations in FGFR3, although the mechanism of statin action on FGFR3 remains unclear. Here, we determine the effect of statins on FGFR signaling in chondrocytes. DESIGN Cultured chondrocyte cell lines, mouse embryonic tibia cultures and limb bud micromasses were treated with FGF2 to activate FGFR signaling. The effects of atorvastatin, fluvastatin, lovastatin and pravastatin on FGFR3 protein stability and on FGFR-mediated chondrocyte growth-arrest, loss of extracellular matrix (ECM), induction of premature senescence and hypertrophic differentiation were evaluated. RESULTS Statins did not alter the level of FGFR3 protein expression nor produce any effect on FGFR-mediated inhibition of chondrocyte proliferation and hypertrophic differentiation in cultured chondrocyte cell lines, mouse tibia cultures or limb bud micromasses. CONCLUSION We conclude that statins do not inhibit the FGFR signaling in chondrocytes. Therefore the statin-mediated rescue of FGFR3-related chondrodysplasia, described before, is likely not intrinsic to the growth plate cartilage.
Collapse
|
41
|
Bernatik O, Radaszkiewicz T, Behal M, Dave Z, Witte F, Mahl A, Cernohorsky NH, Krejci P, Stricker S, Bryja V. A Novel Role for the BMP Antagonist Noggin in Sensitizing Cells to Non-canonical Wnt-5a/Ror2/Disheveled Pathway Activation. Front Cell Dev Biol 2017; 5:47. [PMID: 28523267 PMCID: PMC5415574 DOI: 10.3389/fcell.2017.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022] Open
Abstract
Mammalian limb development is driven by the integrative input from several signaling pathways; a failure to receive or a misinterpretation of these signals results in skeletal defects. The brachydactylies, a group of overlapping inherited human hand malformation syndromes, are mainly caused by mutations in BMP signaling pathway components. Two closely related forms, Brachydactyly type B2 (BDB2) and BDB1 are caused by mutations in the BMP antagonist Noggin (NOG) and the atypical receptor tyrosine kinase ROR2 that acts as a receptor in the non-canonical Wnt pathway. Genetic analysis of Nog and Ror2 functional interaction via crossing Noggin and Ror2 mutant mice revealed a widening of skeletal elements in compound but not in any of the single mutants, thus indicating genetic interaction. Since ROR2 is a non-canonical Wnt co-receptor specific for Wnt-5a we speculated that this phenotype might be a result of deregulated Wnt-5a signaling activation, which is known to be essential for limb skeletal elements growth and patterning. We show that Noggin potentiates activation of the Wnt-5a-Ror2-Disheveled (Dvl) pathway in mouse embryonic fibroblast (MEF) cells in a Ror2-dependent fashion. Rat chondrosarcoma chondrocytes (RCS), however, are not able to respond to Noggin in this fashion unless growth arrest is induced by FGF2. In summary, our data demonstrate genetic interaction between Noggin and Ror2 and show that Noggin can sensitize cells to Wnt-5a/Ror2-mediated non-canonical Wnt signaling, a feature that in cartilage may depend on the presence of active FGF signaling. These findings indicate an unappreciated function of Noggin that will help to understand BMP and Wnt/PCP signaling pathway interactions.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Faculty of Sciences, Institute of Experimental Biology, Masaryk UniversityBrno, Czechia
| | - Tomasz Radaszkiewicz
- Faculty of Sciences, Institute of Experimental Biology, Masaryk UniversityBrno, Czechia
| | - Martin Behal
- Faculty of Sciences, Institute of Experimental Biology, Masaryk UniversityBrno, Czechia
| | - Zankruti Dave
- Faculty of Sciences, Institute of Experimental Biology, Masaryk UniversityBrno, Czechia
| | - Florian Witte
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Annika Mahl
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | | | - Pavel Krejci
- Faculty of Sciences, Institute of Experimental Biology, Masaryk UniversityBrno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk UniversityBrno, Czechia
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Vitezslav Bryja
- Faculty of Sciences, Institute of Experimental Biology, Masaryk UniversityBrno, Czechia.,Department of Cytokinetics, Institute of Biophysics AS CR, v.v.i.Brno, Czechia
| |
Collapse
|
42
|
Gudernova I, Foldynova-Trantirkova S, Ghannamova BE, Fafilek B, Varecha M, Balek L, Hruba E, Jonatova L, Jelinkova I, Kunova Bosakova M, Trantirek L, Mayer J, Krejci P. One reporter for in-cell activity profiling of majority of protein kinase oncogenes. eLife 2017; 6. [PMID: 28199182 PMCID: PMC5310841 DOI: 10.7554/elife.21536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/31/2017] [Indexed: 12/05/2022] Open
Abstract
In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies. DOI:http://dx.doi.org/10.7554/eLife.21536.001
Collapse
Affiliation(s)
- Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukas Balek
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Eva Hruba
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucie Jonatova
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Iva Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
43
|
Yu M, Yi SQ, Wu YR, Sun HL, Song FF, Wang JW. Ddit3 suppresses the differentiation of mouse chondroprogenitor cells. Int J Biochem Cell Biol 2016; 81:156-163. [DOI: 10.1016/j.biocel.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
|
44
|
Boucherat O, Landry-Truchon K, Aoidi R, Houde N, Nadeau V, Charron J, Jeannotte L. Lung development requires an active ERK/MAPK pathway in the lung mesenchyme. Dev Dyn 2016; 246:72-82. [PMID: 27748998 DOI: 10.1002/dvdy.24464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reciprocal epithelial-mesenchymal communications are critical throughout lung development, dictating branching morphogenesis and cell specification. Numerous signaling molecules are involved in these interactions, but the way epithelial-mesenchymal crosstalk is coordinated remains unclear. The ERK/MAPK pathway transduces several important signals in lung formation. Epithelial inactivation of both Mek genes, encoding ERK/MAPK kinases, causes lung agenesis and death. Conversely, Mek mutation in mesenchyme results in lung hypoplasia, trachea cartilage malformations, kyphosis, omphalocele, and death. Considering the negative impact of kyphosis and omphalocele on intrathoracic space and, consequently, on lung growth, the exact role of ERK/MAPK pathway in lung mesenchyme remains unresolved. RESULTS To address the role of the ERK/MAPK pathway in lung mesenchyme in absence of kyphosis and omphalocele, we used the Tbx4Cre deleter mouse line, which acts specifically in lung mesenchyme. These Mek mutants did not develop kyphosis and omphalocele but they presented lung hypoplasia, tracheal defects, and neonatal death. Tracheal cartilage anomalies suggested a role for the ERK/MAPK pathway in the control of chondrocyte hypertrophy. Moreover, expression data indicated potential interactions between the ERK/MAPK and canonical Wnt pathways during lung formation. CONCLUSIONS Lung development necessitates a functional ERK/MAPK pathway in the lung mesenchymal layer in order to coordinate efficient epithelial-mesenchymal interactions. Developmental Dynamics 246:72-82, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Kim Landry-Truchon
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Rifdat Aoidi
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Valérie Nadeau
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada, G1V 0A6
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada, G1V 0A6
| |
Collapse
|
45
|
Ge Z, Li B, Zhou X, Yang Y, Zhang J. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats. Mol Cell Biochem 2016; 423:165-174. [DOI: 10.1007/s11010-016-2834-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022]
|
46
|
Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro. Sci Rep 2016; 6:34510. [PMID: 27687983 PMCID: PMC5062643 DOI: 10.1038/srep34510] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Here, we investigated the role of the Wnt/β-catenin signaling pathway in chicken primordial germ cells (PGCs) in vitro. We confirmed the expression of Wnt signaling pathway-related genes and the localization of β-catenin in the nucleus, revealing that this pathway is potentially activated in chicken PGCs. Then, using the single-cell pick-up assay, we examined the proliferative capacity of cultured PGCs in response to Wnt ligands, a β-catenin-mediated Wnt signaling activator (6-bromoindirubin-3′-oxime [BIO]) or inhibitor (JW74), in the presence or absence of basic fibroblast growth factor (bFGF). WNT1, WNT3A, and BIO promoted the proliferation of chicken PGCs similarly to bFGF, whereas JW74 inhibited this proliferation. Meanwhile, such treatments in combination with bFGF did not show a synergistic effect. bFGF treatment could not rescue PGC proliferation in the presence of JW74. In addition, we confirmed the translocation of β-catenin into the nucleus by the addition of bFGF after JW74 treatment. These results indicate that there is signaling crosstalk between FGF and Wnt, and that β-catenin acts on PGC proliferation downstream of bFGF. In conclusion, our study suggests that Wnt signaling enhances the proliferation of chicken PGCs via the stabilization of β-catenin and activation of its downstream genes.
Collapse
|
47
|
Sarabipour S, Hristova K. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1436-42. [PMID: 27040652 PMCID: PMC4870120 DOI: 10.1016/j.bbamem.2016.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022]
Abstract
The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Fӧster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
48
|
Al-Qattan MM, Abou Al-Shaar H, Alkattan WM. The pathogenesis of congenital radial head dislocation/subluxation. Gene 2016; 586:69-76. [PMID: 27050104 DOI: 10.1016/j.gene.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/02/2023]
Abstract
The pathogenesis of congenital radial head dislocation/subluxation is unknown and has not been previously investigated. In this review, we explore the pathogenesis and define five different primary insults: collagen abnormalities, abnormal endochondral ossification of the developing growth plate, abnormalities of forearm ossification outside the growth plate, disproportionate growth of the radius and ulna, and altered HOX D expression/activity. Finally, the clinical relevance of our review is discussed.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Division of Plastic and Hand Surgery at King Saud University, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Hussam Abou Al-Shaar
- Division of Plastic and Hand Surgery at King Saud University, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Wael M Alkattan
- Division of Plastic and Hand Surgery at King Saud University, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Gudernova I, Vesela I, Balek L, Buchtova M, Dosedelova H, Kunova M, Pivnicka J, Jelinkova I, Roubalova L, Kozubik A, Krejci P. Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes. Hum Mol Genet 2015; 25:9-23. [PMID: 26494904 DOI: 10.1093/hmg/ddv441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2015] [Indexed: 01/07/2023] Open
Abstract
Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) cause the most common genetic form of human dwarfism, achondroplasia (ACH). Small chemical inhibitors of FGFR tyrosine kinase activity are considered to be viable option for treating ACH, but little experimental evidence supports this claim. We evaluated five FGFR tyrosine kinase inhibitors (TKIs) (SU5402, PD173074, AZD1480, AZD4547 and BGJ398) for their activity against FGFR signaling in chondrocytes. All five TKIs strongly inhibited FGFR activation in cultured chondrocytes and limb rudiment cultures, completely relieving FGFR-mediated inhibition of chondrocyte proliferation and maturation. In contrast, TKI treatment of newborn mice did not improve skeletal growth and had lethal toxic effects on the liver, lungs and kidneys. In cell-free kinase assays as well as in vitro and in vivo cell assays, none of the tested TKIs demonstrated selectivity for FGFR3 over three other FGFR tyrosine kinases. In addition, the TKIs exhibited significant off-target activity when screened against a panel of 14 unrelated tyrosine kinases. This was most extensive in SU5402 and AZD1480, which inhibited DDR2, IGF1R, FLT3, TRKA, FLT4, ABL and JAK3 with efficiencies similar to or greater than those for FGFR. Low target specificity and toxicity of FGFR TKIs thus compromise their use for treatment of ACH. Conceptually, different avenues of therapeutic FGFR3 targeting should be investigated.
Collapse
Affiliation(s)
- Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Vesela
- Institute of Animal Physiology and Genetics AS CR, Brno, Czech Republic, Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Lukas Balek
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics AS CR, Brno, Czech Republic, Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Hana Dosedelova
- Institute of Animal Physiology and Genetics AS CR, Brno, Czech Republic, Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Michaela Kunova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Pivnicka
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Iva Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Lucie Roubalova
- Department of Clinical Biochemistry, University Hospital, Olomouc, Czech Republic
| | - Alois Kozubik
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic, Department of Cytokinetics, Institute of Biophysics AS CR, Brno, Czech Republic and
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
50
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|