1
|
Zhu L, Zhu Q, Chen Z, Tao Y, Hu J, Wang D, Lin Y, Yang H, Gao C, Zhang W. Estrogen mitigates ischemia-reperfusion injury by inhibiting cardiomyocyte ferroptosis through the downregulation of PHLDA3 expression. Free Radic Biol Med 2025; 232:1-14. [PMID: 39961475 DOI: 10.1016/j.freeradbiomed.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/08/2025]
Abstract
Ferroptosis represents a significant target for mitigating myocardial ischemia-reperfusion (I/R) injury. Existing literature indicates that estrogen (17β-estradiol, E2) can alleviate such injuries through various pathways. However, the specific mechanisms by which E2 may confer protection against myocardial I/R injury through the inhibition of ferroptosis remain to be fully elucidated. This study employed a mouse model of left anterior descending coronary artery ligation to investigate the protective effects of E2 on myocardial I/R injury, with a particular focus on its inhibitory effects on ferroptosis and PHLDA3 in both hypoxia-reoxygenation (H/R) and I/R models. A bioinformatics analysis was conducted to evaluate the impact of estrogen receptor GPER knockout on PHLDA3 expression and ferroptosis. Loss-of-function approaches were employed to elucidate the role of PHLDA3 in ferroptosis during myocardial I/R injury. Our findings demonstrate that E2 can ameliorate myocardial I/R injury, primarily by inhibiting ferroptosis. Notably, PHLDA3 expression levels were significantly elevated during ischemia-reperfusion events; however, E2 was observed to suppress this expression. Bioinformatics analysis indicated that PHLDA3 levels increased following GPER knockdown, and the inhibitory effect of E2 on PHLDA3 expression could be partially reversed by GPER inhibitors (G15) in animal models. Furthermore, the suppression of PHLDA3 reduced ferroptosis and mitigated the severity of myocardial I/R injury. Utilizing mass spectrometry and co-immunoprecipitation methodologies, we have elucidated a potential mechanism in which PHLDA3 directly binds to and interacts with proteins involved in the process of ferroptosis. Our findings demonstrate that E2 effectively suppresses ferroptosis and mitigates myocardial I/R injury by downregulating PHLDA3 expression through the activation of the GPER receptor.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Male
- Disease Models, Animal
- Estradiol/pharmacology
- Down-Regulation
- Mice, Knockout
- Mice, Inbred C57BL
- Estrogens/pharmacology
- Gene Expression Regulation/drug effects
Collapse
Affiliation(s)
- Lijie Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China; Department of Cardiology of Fuwai Central China Ccardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Zhengzhou, Henan, China
| | - Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yecheng Tao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiayi Hu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dan'an Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yutong Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Honghui Yang
- Department of Cardiology of Fuwai Central China Ccardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Zhengzhou, Henan, China
| | - Chuanyu Gao
- Department of Cardiology of Fuwai Central China Ccardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Zhengzhou, Henan, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Bushi A, Ma Y, Adu-Amankwaah J, Wang R, Cui F, Xiao R, Zhao J, Yuan J, Tan R. G protein-coupled estrogen receptor biased signaling in health and disease. Pharmacol Ther 2025; 269:108822. [PMID: 39978643 DOI: 10.1016/j.pharmthera.2025.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
G protein-coupled estrogen receptor (GPER) is now recognized for its pivotal role in cellular signaling, influencing diverse physiological processes and disease states. Unlike classical estrogen receptors, GPER exhibits biased signaling, wherein ligand binding triggers selective pathways over others, significantly impacting cellular responses. This review explores the nuanced mechanisms of biased signaling mediated by GPER, underscoring its relevance in cardiovascular health, neurological function, immune modulation, and oncogenic processes. Despite its critical implications, biased signaling through GPER remains underexplored compared to traditional signaling paradigms. We explore recent progress in understanding GPER signaling specificity and its potential therapeutic implications across various diseases. Future research directions aim to uncover the molecular basis of biased signaling, develop selective ligands, and translate these insights into personalized therapeutic approaches. Exploiting the therapeutic potential of GPER biased signaling represents a promising frontier in precision medicine, offering innovative strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Aisha Bushi
- School international education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yixuan Ma
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Rong Wang
- The second clinical college, China Medical University, Shenyang, Liaoning 110122, China
| | - Fen Cui
- Research Institution of Behavioral Medicine Education, Jining Medical University, Jining 272067, China
| | - Rui Xiao
- Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China; Department of Pathology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China.
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Brong A, Kontrogianni-Konstantopoulos A. Sex Chromosomes and Sex Hormones: Dissecting the Forces That Differentiate Female and Male Hearts. Circulation 2025; 151:474-489. [PMID: 39960989 PMCID: PMC11839176 DOI: 10.1161/circulationaha.124.069493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The heart is a highly sex-biased organ, as sex shapes innumerable aspects of heart health and disease. Sex chromosomes and sex hormones -testosterone, progesterone, and estrogen- establish and perpetuate the division between male and female myocardium. Of these differentiating factors, the insulating effects of estrogen have been rigorously interrogated and reviewed, whereas the influence of sex chromosomes, testosterone, and progesterone remains in dispute or ill-defined. Here, we synthesize growing evidence that sex chromosomes and sex hormones substantially bias heart form, function, and dysfunction in a context-dependent fashion. The discrete protective functions ascribed to each of the 3 estrogen receptors are also enumerated. Subsequently, we overview obstacles that have historically discouraged the inclusion of female subjects in basic science such as the impact of the female estrus cycle and reproductive senescence on data reliability and reproducibility. Furthermore, we weigh the utility of several common strategies to intercept and rescue sex-specific protection. Last, we warn of common compounds in animal chow and cell culture that interfere with estrogen signaling. In sum, we survey the controversies and challenges that stem from sex-inclusive cardiovascular research, comparing the possible causes of cardiac sex bias, elucidating sex chromosome or hormone-dependent processes in the heart, describing common lapses that imperil female and male cell and animal work, and illuminating facets of the female heart yet unexplored or still uncertain.
Collapse
Affiliation(s)
- Annie Brong
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
de Alencar AKN, Swan KF, Mahapatra S, Lindsey SH, Pridjian GC, Bayer CL. GPER Stimulation Attenuates Cardiac Dysfunction in a Rat Model of Preeclampsia. Hypertension 2024; 81:e161-e172. [PMID: 39224973 PMCID: PMC11483207 DOI: 10.1161/hypertensionaha.123.22303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Preeclampsia poses a substantial clinical challenge, characterized by maternal hypertension, cardiac dysfunction, and persistent cardiovascular risks for both the mother and offspring. Despite the known roles of the estrogen receptor (GPER [G protein-coupled estrogen receptor]) in placental development, its impact on cardiovascular aspects within a preeclampsia animal model remains unexplored. We propose that G-1, a GPER agonist, could have the potential to regulate not only hypertension but also cardiac dysfunction in rats with preeclampsia. METHODS To explore the influence of G-1 on preeclampsia, we used the reduced uterine perfusion pressure (RUPP) model. RUPP rats were administered either G-1 (100 µg/kg per day) or hydralazine (25 mg/kg per day). We conducted echocardiography to probe the intricate cardiac effects of G-1. RESULTS The RUPP rat model revealed signs of hypertension and cardiac dysfunction and alterations in gene and protein expression within placental and heart tissues. G-1 treatment reduced blood pressure and reversed cardiac dysfunction in rats with preeclampsia. In contrast, administration of the vasodilator hydralazine reduced blood pressure without an improvement in cardiac function. In addition, while G-1 treatment restored the levels of sFLT-1 (soluble fms-like tyrosine kinase-1) in RUPP rats, hydralazine did not normalize this antiangiogenic factor. CONCLUSIONS The therapeutic intervention of G-1 significantly mitigated the cardiovascular dysfunction observed in the RUPP rat model of preeclampsia. This discovery underscores the broader significance of understanding GPER's role in the context of preeclampsia-related cardiovascular complications.
Collapse
Affiliation(s)
| | - Kenneth F. Swan
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Smruti Mahapatra
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, 70112, USA
| | - Gabriella C. Pridjian
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
5
|
Shorthill SK, Jones TLM, Woulfe KC, Cherrington BD, Bruns DR. The influence of estrogen on myocardial post-translational modifications and cardiac function in women. Can J Physiol Pharmacol 2024; 102:452-464. [PMID: 38266237 DOI: 10.1139/cjpp-2023-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The lifetime risk of heart failure (HF) is comparable in men and women; nevertheless, disparities exist in our understanding of how HF differs between sexes. Several differences in cardiac physiology exist between men and women including the propensity to develop specific HF phenotypes. Men are more likely to be diagnosed with HF failure with reduced ejection fraction, while women have a greater propensity to develop HF with preserved ejection fraction. The mechanisms responsible for these differences remain unclear. Post-translational modifications (PTMs) of myofilament proteins likely contribute to these sex-specific propensities. The role of PTMs in heart disease is an expanding field with immense potential therapeutic targets. However, numerous PTMs remain underexplored, particularly in the context of the female heart. Estrogen, a key gonadal hormone, cardioprotective in pre-menopausal women and its loss with menopause likely contributes to disease in aging women. However, how estrogen regulates PTMs to contribute to HF development is not fully clear. This review outlines key sex differences in HF along with characterizing the contributions of novel myocardial PTMs in cardiac physiology and their regulation by estrogen. Collectively, we highlight the necessity for further investigation into women's heart health and the distinctive mechanisms distinguishing women from men.
Collapse
Affiliation(s)
| | - Timothy L M Jones
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen C Woulfe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
6
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
7
|
Zhang Z, Hu Y, Cui X, Lu M, Zhang M, Li C. Menopausal age and cardiovascular disease risk in American women: evidence from the National Health and Nutrition Examination Survey. Climacteric 2024; 27:159-164. [PMID: 37921228 DOI: 10.1080/13697137.2023.2273526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Cardiovascular disease (CVD) is a significant contributor to the deaths of females, and premature menopause adds to the risk of CVD in females. Therefore, our study aimed to investigate the age of menopause and CVD incidence in American females using data from the National Health and Nutrition Examination Survey (NHANES). METHOD We analyzed data from 6347 females to investigate the association between menopausal age and the risk of CVD using multivariate logistic regression analysis. RESULTS The study found that a later menopausal age reduces the risk of developing CVD (odds ratio [OR] = 0.74, 95% confidence interval [CI] = 0.63 - 0.88, p < 0.001). Moreover, females with early-onset CVD had an increased risk of premature menopause before the age of 40 years (OR = 2.44, 95% CI = 1.60 - 3.72, p < 0.001). CONCLUSION Menopausal age is associated with the risk of developing CVD in American females. Specifically, if menopause occurs earlier, there is an increased risk of CVD. Additionally, early-onset CVD significantly raises the risk of premature menopause, which in turn has important implications for female reproductive health.
Collapse
Affiliation(s)
- Z Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Y Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - X Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - M Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - M Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - C Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Abstract
Heart failure (HF) is a significant public health problem worldwide. It has long been noted that premenopausal women, compared to postmenopausal women and men, have lower rates for developing this disease, as well as subsequent morbidity and mortality. This difference has been attributed to estrogen playing a cardioprotective role in these women, though exactly how it does so remains unclear. In this review, we examine the presence of estrogen receptors within the cardiovascular system, as well as the role they play behind the cardioprotective effect attributed to estrogen. Furthermore, we highlight the underlying mechanisms behind their alleviation of HF, as well as possible treatment approaches, such as hormone replacement therapy and exercise regimens, to manipulate these mechanisms in treating and preventing HF.
Collapse
Affiliation(s)
- Chenyue Qian
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Jingjin Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of GeriatricsThe Second Clinical Medical CollegeThe First Affiliated Hospital, Shenzhen People's HospitalJinan UniversitySouthern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Huadong Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of GeriatricsThe Second Clinical Medical CollegeThe First Affiliated Hospital, Shenzhen People's HospitalJinan UniversitySouthern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Fardoun M, Nasser SA, El-Yazbi AF, Eid AH. GPER Acts Through the cAMP/Epac/JNK/AP-1 Pathway to Induce Transcription of Alpha 2C Adrenoceptor in Human Microvascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2023; 82:470-479. [PMID: 37773889 DOI: 10.1097/fjc.0000000000001489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
ABSTRACT Raynaud's phenomenon, which results from exaggerated cold-induced vasoconstriction, is more prevalent in females than males. We previously showed that estrogen increases the expression of alpha 2C-adrenoceptors (α 2C -AR), the sole mediator of cold-induced vasoconstriction. This effect of estrogen is reproduced by the cell-impermeable form of the hormone (E 2 :bovine serum albumin [BSA]), suggesting a role of the membrane estrogen receptor, G-protein-coupled estrogen receptor [GPER], in E 2 -induced α 2C -AR expression. We also previously reported that E 2 upregulates α 2C -AR in microvascular smooth muscle cells (VSMCs) via the cAMP/Epac/Rap/JNK/AP-1 pathway, and that E 2 :BSA elevates cAMP levels. We, therefore, hypothesized that E 2 uses GPER to upregulate α 2C -AR through the cAMP/Epac/JNK/AP-1 pathway. Our results show that G15, a selective GPER antagonist, attenuates the E 2 -induced increase in α 2C -AR transcription. G-1, a selective GPER agonist, induced α 2C -AR transcription, which was concomitant with elevated cAMP levels and JNK activation. Pretreatment with ESI09, an Epac inhibitor, abolished G-1-induced α 2C -AR upregulation and JNK activation. Moreover, pretreatment with SP600125, a JNK-specific inhibitor, but not H89, a PKA-specific inhibitor, abolished G-1-induced α 2C -AR upregulation. In addition, transient transfection of an Epac dominant negative mutant (Epac-DN) attenuated G-1-induced activation of the α 2C -AR promoter. This inhibitory effect of Epac-DN on the α 2C -AR promoter was overridden by the cotransfection of constitutively active JNK mutant. Furthermore, mutation of AP-1 site in the α 2C -AR promoter abrogated G1-induced expression. Collectively, these results indicate that GPER upregulates α 2C -AR through the cAMP/EPAC/JNK/AP-1 pathway. These findings unravel GPER as a new mediator of cold-induced vasoconstriction, and present it as a potential target for treating Raynaud's phenomenon in estrogen-replete females.
Collapse
Affiliation(s)
- Manal Fardoun
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University, Alamein City, Egypt; and
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Eissa MA, Gohar EY. Aromatase enzyme: Paving the way for exploring aromatization for cardio-renal protection. Biomed Pharmacother 2023; 168:115832. [PMID: 37931519 PMCID: PMC10843764 DOI: 10.1016/j.biopha.2023.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Documented male-female differences in the risk of cardiovascular and chronic kidney diseases have been largely attributed to estrogens. The cardiovascular and renal protective effects of estrogens are mediated via the activation of estrogen receptors (ERα and ERβ) and G protein-coupled estrogen receptor, and involve interactions with the renin-angiotensin-aldosterone system. Aromatase, also called estrogen synthase, is a cytochrome P-450 enzyme that plays a pivotal role in the conversion of androgens into estrogens. Estrogens are biosynthesized in gonadal and extra-gonadal sites by the action of aromatase. Evidence suggests that aromatase inhibitors, which are used to treat high estrogen-related pathologies, are associated with the development of cardiovascular events. We review the potential role of aromatization in providing cardio-renal protection and highlight several meta-analysis studies on cardiovascular events associated with aromatase inhibitors. Overall, we present the potential of aromatase enzyme as a fundamental contributor to cardio-renal protection.
Collapse
Affiliation(s)
- Manar A Eissa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Merit University, New Sohag, Sohag, Egypt
| | - Eman Y Gohar
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
11
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
12
|
Medzikovic L, Azem T, Sun W, Rejali P, Esdin L, Rahman S, Dehghanitafti A, Aryan L, Eghbali M. Sex Differences in Therapies against Myocardial Ischemia-Reperfusion Injury: From Basic Science to Clinical Perspectives. Cells 2023; 12:2077. [PMID: 37626887 PMCID: PMC10453147 DOI: 10.3390/cells12162077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Mortality from myocardial infarction (MI) has declined over recent decades, which could be attributed in large part to improved treatment methods. Early reperfusion is the cornerstone of current MI treatment. However, reoxygenation via restored blood flow induces further damage to the myocardium, leading to ischemia-reperfusion injury (IRI). While experimental studies overwhelmingly demonstrate that females experience greater functional recovery from MI and decreased severity in the underlying pathophysiological mechanisms, the outcomes of MI with subsequent reperfusion therapy, which is the clinical correlate of myocardial IRI, are generally poorer for women compared with men. Distressingly, women are also reported to benefit less from current guideline-based therapies compared with men. These seemingly contradicting outcomes between experimental and clinical studies show a need for further investigation of sex-based differences in disease pathophysiology, treatment response, and a sex-specific approach in the development of novel therapeutic methods against myocardial IRI. In this literature review, we summarize the current knowledge on sex differences in the underlying pathophysiological mechanisms of myocardial IRI, including the roles of sex hormones and sex chromosomes. Furthermore, we address sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics of current drugs prescribed to limit myocardial IRI. Lastly, we highlight ongoing clinical trials assessing novel pharmacological treatments against myocardial IRI and sex differences that may underlie the efficacy of these new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mansoureh Eghbali
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, CHS BH-550 CHS, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
13
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
14
|
Tokiwa H, Ueda K, Takimoto E. The emerging role of estrogen's non-nuclear signaling in the cardiovascular disease. Front Cardiovasc Med 2023; 10:1127340. [PMID: 37123472 PMCID: PMC10130590 DOI: 10.3389/fcvm.2023.1127340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexual dimorphism exists in the epidemiology of cardiovascular disease (CVD), which indicates the involvement of sexual hormones in the pathophysiology of CVD. In particular, ample evidence has demonstrated estrogen's protective effect on the cardiovascular system. While estrogen receptors, bound to estrogen, act as a transcription factor which regulates gene expressions by binding to the specific DNA sequence, a subpopulation of estrogen receptors localized at the plasma membrane induces activation of intracellular signaling, called "non-nuclear signaling" or "membrane-initiated steroid signaling of estrogen". Although the precise molecular mechanism of non-nuclear signaling as well as its physiological impact was unclear for a long time, recent development of genetically modified animal models and pathway-selective estrogen receptor stimulant bring new insights into this pathway. We review the published experimental studies on non-nuclear signaling of estrogen, and summarize its role in cardiovascular system, especially focusing on: (1) the molecular mechanism of non-nuclear signaling; (2) the design of genetically modified animals and pathway-selective stimulant of estrogen receptor.
Collapse
Affiliation(s)
- Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
The Effect of Aldosterone on Cardiorenal and Metabolic Systems. Int J Mol Sci 2023; 24:ijms24065370. [PMID: 36982445 PMCID: PMC10049192 DOI: 10.3390/ijms24065370] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Aldosterone, a vital hormone of the human body, has various pathophysiological roles. The excess of aldosterone, also known as primary aldosteronism, is the most common secondary cause of hypertension. Primary aldosteronism is associated with an increased risk of cardiovascular disease and kidney dysfunction compared to essential hypertension. Excess aldosterone can lead to harmful metabolic and other pathophysiological alterations, as well as cause inflammatory, oxidative, and fibrotic effects in the heart, kidney, and blood vessels. These alterations can result in coronary artery disease, including ischemia and myocardial infarction, left ventricular hypertrophy, heart failure, arterial fibrillation, intracarotid intima thickening, cerebrovascular disease, and chronic kidney disease. Thus, aldosterone affects several tissues, especially in the cardiovascular system, and the metabolic and pathophysiological alterations are related to severe diseases. Therefore, understanding the effects of aldosterone on the body is important for health maintenance in hypertensive patients. In this review, we focus on currently available evidence regarding the role of aldosterone in alterations of the cardiovascular and renal systems. We also describe the risk of cardiovascular events and renal dysfunction in hyperaldosteronism.
Collapse
|
16
|
Sousa AS, Passos MP, Ruberti OM, Jarrete AP, Delbin MA. Evaluation of coronary function in female rats with severe type 1 diabetes: Effects of combined treatment with insulin and pyridoxamine. Microvasc Res 2023; 146:104474. [PMID: 36592817 DOI: 10.1016/j.mvr.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND This study aimed to evaluate the coronary function, myocardium, and epicardial adipose tissue (EAT) in female rats with severe type 1 diabetes and the effects of combined treatment with insulin and pyridoxamine (AGEs inhibitor). METHODS Female Wistar rats were divided into groups: control (CTR, n = 13), type 1 diabetes (DM1, n = 12), type 1 diabetes treated with insulin (DM1 + INS, n = 11), and type 1 diabetes treated with insulin and pyridoxamine (DM1 + INS + PDX, n = 14). The vascular responsiveness was performed in the septal coronary artery and the protein expressions of AGE, RAGE, GPER, NF-kB was evaluated in the left ventricle (LV), as well as the reactive oxygen species (ROS) was measured in LV and in EAT. We analyzed plasma levels of glucose, estradiol, Nε-carboxymethylisine (CML), thiobarbituric acid reactive substances (TBARS), catalase (CAT), and superoxide dismutase (SOD). RESULTS The maximal responses to ACh were reduced in the DM1 compared with the CTR group, accompanied by an increase in circulating glucose, CML, and TBARS. Additionally, the expression of NF-kB in LV and generation of ROS in the presence of MnTMPyP (SOD mimetic) were increased in the DM1 group compared with CTR. Only the combined treatment was effective for fully re-establish ACh relaxation response, NF-kB protein expression, ROS generation, and increased SOD activity in the DM1 + INS + PDX group. CONCLUSION The reduction of the endothelium-dependent relaxation response in the septal coronary artery of female rats with severe type 1 diabetes was normalized with the combined treatment with insulin and pyridoxamine, associated with reduced inflammation and oxidative stress in the myocardium and increased circulating antioxidant activity.
Collapse
Affiliation(s)
- Andressa S Sousa
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Matheus P Passos
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Olivia M Ruberti
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline P Jarrete
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
17
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
18
|
Fardoun M, Mondello S, Kobeissy F, Eid AH. G protein estrogen receptor as a potential therapeutic target in Raynaud’s phenomenon. Front Pharmacol 2022; 13:1061374. [DOI: 10.3389/fphar.2022.1061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Exaggerated cold-induced vasoconstriction can precipitate a pathogenesis called Raynaud’s phenomenon (RP). Interestingly, RP is significantly more prevalent in females than age-matched men, highlighting the potential implication of 17β-estradiol (E2) in the etio-pathogenesis of this disease. Indeed, we have previously reported that E2 stimulates the expression of vascular alpha 2C-adrenoceptors (α2C-AR), the sole mediator of cold-induced constriction of cutaneous arterioles. This induced expression occurs through the cyclic adenosine monophosphate → exchange protein activated by cAMP→ Ras-related protein 1→ c-Jun N-terminal kinase→ activator protein-1 (cAMP/Epac/Rap/JNK/AP-1 pathway). On the basis that estrogen-induced rapid cAMP accumulation and JNK activation occurs so rapidly we hypothesized that a non-classic, plasma membrane estrogen receptor was the mediator. We then showed that an impermeable form of E2, namely E2:BSA, mimics E2 effects suggesting a role for the membranous G-protein coupled estrogen receptor (GPER) in E2-induced α2C-AR expression. Our current working hypothesis and unpublished observations further cement this finding, as G1, a GPER agonist, mimics while G15, a GPER antagonist, abrogates estrogen’s effect on the expression of vascular α2C-AR. These, and other observations, highlight the potential of GPER as a tractable target in the management of RP, particularly in pre-menopausal women.
Collapse
|
19
|
Francis AJ, Firth JM, Sanchez-Alonso JL, Gorelik J, MacLeod KT. GPER limits adverse changes to Ca 2+ signalling and arrhythmogenic activity in ovariectomised guinea pig cardiomyocytes. Front Physiol 2022; 13:1023755. [PMID: 36439245 PMCID: PMC9686394 DOI: 10.3389/fphys.2022.1023755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background: The increased risk of post-menopausal women developing abnormalities of heart function emphasises the requirement to understand the effect of declining oestrogen levels on cardiac electrophysiology and structure, and investigate possible therapeutic targets, namely the G protein-coupled oestrogen receptor 1 (GPER). Methods: Female guinea pigs underwent sham or ovariectomy (OVx) surgeries. Cardiomyocytes were isolated 150-days post-operatively. Membrane structure was assessed using di-8-ANEPPs staining and scanning ion conductance microscopy. Imunnohistochemistry (IHC) determined the localisation of oestrogen receptors. The effect of GPER activation on excitation-contraction coupling mechanisms were assessed using electrophysiological and fluorescence techniques. Downstream signalling proteins were investigated by western blot. Results: IHC staining confirmed the presence of nuclear oestrogen receptors and GPER, the latter prominently localised to the peri-nuclear region and having a clear striated pattern elsewhere in the cells. Following OVx, GPER expression increased and its activation reduced Ca2+ transient amplitude (by 40%) and sarcomere shortening (by 32%). In these cells, GPER activation reduced abnormal spontaneous Ca2+ activity, shortened action potential duration and limited drug-induced early after-depolarisation formation. Conclusion: In an animal species with comparable steroidogenesis and cardiac physiology to humans, we show the expression and localisation of all three oestrogen receptors in cardiac myocytes. We found that following oestrogen withdrawal, GPER expression increased and its activation limited arrhythmogenic behaviours in this low oestrogen state, indicating a potential cardioprotective role of this receptor in post-menopausal women.
Collapse
|
20
|
Turino Miranda K, Kalenga CZ, Saad N, Dumanski SM, Collister D, Rytz CL, Lorenzetti DL, Chang DH, McClurg C, Sola DY, Ahmed SB. Gender-affirming estrogen therapy route of administration and cardiovascular risk: a systematic review and narrative synthesis. Am J Physiol Heart Circ Physiol 2022; 323:H861-H868. [PMID: 36053748 DOI: 10.1152/ajpheart.00299.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Transgender women (individuals assigned male sex at birth who identify as women) and nonbinary and gender-diverse individuals receiving gender-affirming estrogen therapy (GAET) are at increased cardiovascular risk. Nonoral (i.e., patch, injectable) compared with oral estrogen exposure in cisgender women (individuals assigned female sex at birth who identify as women) may be associated with lower cardiovascular risk, though whether this applies to transgender women and/or gender-diverse individuals is unknown. We sought to determine the association between the route of estrogen exposure (nonoral compared with oral) and cardiovascular risk in transgender women and gender diverse individuals. Bibliographic databases (MEDLINE, Embase, PsycINFO) and supporting relevant literature were searched from inception to January 2022. Randomized controlled trials and observational studies reporting cardiovascular outcomes, such as all-cause and cardiovascular mortality, adverse cardiovascular events, and cardiovascular risk factors in individuals using nonoral compared with oral gender-affirming estrogen therapy were included. The search strategy identified 3,113 studies, 5 of which met inclusion criteria (3 prospective cohort studies, 1 retrospective cohort study, and 1 cross-sectional study; n = 259 participants, range of duration of exposure of 2 to 60 mo). One out of five studies reported on all-cause and cardiovascular mortality or adverse cardiovascular events. All five studies reported lipid levels [low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), and total cholesterol (TC)], whereas only two studies reported systolic blood pressure (SBP) and diastolic blood pressure (DBP). Limited studies have examined the effect of the route of GAET on all-cause cardiovascular mortality, morbidity, and risk factors. In addition, there is significant heterogeneity in studies examining the cardiovascular effects of GAET.NEW & NOTEWORTHY This study is the first to summarize the potential effect of nonoral versus oral gender-affirming estrogen therapy use on cardiovascular risk factors in transgender women or nonbinary or gender-diverse individuals. Heterogeneity of studies in reporting gender-affirming estrogen therapy formulation, dose, and duration of exposure limits quantification of the effect of gender-affirming estrogen therapy on all-cause and cardiovascular mortality, adverse cardiovascular events, and cardiovascular risk factors. This systematic review highlights the needs for large prospective cohort studies with appropriate stratification of gender-affirming estrogen therapy by dose, formulation, administration route, and sufficient follow-up and analyses to limit selection bias to optimize the cardiovascular care of transgender, nonbinary, and gender-diverse individuals.
Collapse
Affiliation(s)
- Keila Turino Miranda
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cindy Z Kalenga
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nathalie Saad
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sandra M Dumanski
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Kidney Disease Network, Calgary, Alberta, Canada
| | - David Collister
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Chantal L Rytz
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Diane L Lorenzetti
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Health Sciences Library, University of Calgary, Calgary, Alberta, Canada
| | - Danica H Chang
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Caitlin McClurg
- Health Sciences Library, University of Calgary, Calgary, Alberta, Canada
| | - Darlene Y Sola
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sofia B Ahmed
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Kidney Disease Network, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Calmodulin-dependent protein kinase II activation promotes kidney mesangial expansion in streptozotocin-induced diabetic mice. Heliyon 2022; 8:e11653. [DOI: 10.1016/j.heliyon.2022.e11653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
|
22
|
Putotto C, Unolt M, Lambiase C, Marchetti F, Anaclerio S, Favoriti A, Tancredi G, Mastromoro G, Pugnaloni F, Liberati N, De Luca E, Tarani L, De Canditiis D, Caputo V, Bernardini L, Digilio MC, Marino B, Versacci P. Cardiac function in adolescents and young adults with 22q11.2 deletion syndrome without congenital heart disease. Eur J Med Genet 2022; 66:104651. [PMID: 36404488 DOI: 10.1016/j.ejmg.2022.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diagnosis and treatment of 22q11.2 deletion syndrome (22q11.2DS) have led to improved life expectancy and achievement of adulthood. Limited data on long-term outcomes reported an increased risk of premature death for cardiovascular causes, even without congenital heart disease (CHD). The aim of this study was to assess the cardiac function in adolescents and young adults with 22q11.2DS without CHDs. METHODS A total of 32 patients (20M, 12F; mean age 26.00 ± 8.08 years) and a healthy control group underwent transthoracic echocardiography, including Tissue Doppler Imaging (TDI) and 2-dimensional Speckle Tracking Echocardiography (2D-STE). RESULTS Compared to controls, 22q11.2DS patients showed a significant increase of the left ventricle (LV) diastolic and systolic diameters (p = 0.029 and p = 0.035 respectively), interventricular septum thickness (p = 0.005), LV mass index (p < 0.001) and aortic root size (p < 0.001). 2D-STE analysis revealed a significant reduction of LV global longitudinal strain (p < 0.001) in 22q11.2DS than controls. Moreover, several LV diastolic parameters were significantly different between groups. CONCLUSIONS Our results suggest that an echocardiographic follow-up in 22q11.2DS patients without CHDs can help to identify subclinical impairment of the LV and evaluate a potential progression of aortic root dilation over time, improving outcomes, reducing long-term complications and allowing for a better prognosis.
Collapse
Affiliation(s)
- Carolina Putotto
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Marta Unolt
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy; Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital and Research Institute, Rome, Italy
| | - Caterina Lambiase
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Flaminia Marchetti
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Silvia Anaclerio
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Alessandra Favoriti
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Giancarlo Tancredi
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Flaminia Pugnaloni
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Natascia Liberati
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Enrica De Luca
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | | | - Viviana Caputo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, Foggia, Italy
| | - Maria Cristina Digilio
- Rare Diseases and Medical Genetics, Department of Pediatrics, Bambino Gesù Pediatric Hospital and Research Institute, Rome, Italy
| | - Bruno Marino
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy
| | - Paolo Versacci
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Italy.
| |
Collapse
|
23
|
Rodrigues J, Wang YF, Singh A, Hendriks M, Dharmalingam G, Cohen-Solal M, Kusumbe AP, Ramasamy SK. Oestrogen enforces the integrity of blood vessels in the bone during pregnancy and menopause. NATURE CARDIOVASCULAR RESEARCH 2022; 1:918-932. [PMID: 36531334 PMCID: PMC7613952 DOI: 10.1038/s44161-022-00139-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/02/2022] [Indexed: 04/27/2025]
Abstract
The mammalian skeletal system shows sex differences in structure, functions, ageing and disease incidences. The role of blood vessels in physiological, regenerative and pathological bone functions indicates the requisite to understanding their sex specificity. Here, we find oestrogen regulates blood vessel physiology during pregnancy and menopause through oestrogen receptor alpha (ERα) and G-protein coupled oestrogen receptor-1 (Gper1) but not ERβ-dependent signalling in mice. Oestrogen regulates BECs' lipid use and promotes lipolysis of adipocytes and FA uptake from the microenvironment. Low oestrogen conditions skew endothelial FA metabolism to accumulate lipid peroxides (LPO), leading to vascular ageing. High ferrous ion levels in female BECs intensify LPO accumulation and accelerate the ageing process. Importantly, inhibiting LPO generation using liproxstatin-1 in aged mice significantly improved bone heath. Thus, our findings illustrate oestrogen's effects on BECs and suggest LPO targeting could be an efficient strategy to manage blood and bone health in females.
Collapse
Affiliation(s)
- Julia Rodrigues
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Yi-Fang Wang
- Bioinformatics and Computing Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Amit Singh
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Gopuraja Dharmalingam
- Bioinformatics and Computing Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Martine Cohen-Solal
- Bioscar Inserm U1132 and Université de Paris, Hospital Lariboisiere, Paris, France
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
24
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Bubb M, Beyer ASL, Dasgupta P, Kaemmerer D, Sänger J, Evert K, Wirtz RM, Schulz S, Lupp A. Assessment of G Protein-Coupled Oestrogen Receptor Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. Int J Mol Sci 2022; 23:ijms23095191. [PMID: 35563581 PMCID: PMC9099907 DOI: 10.3390/ijms23095191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
In addition to the classical oestrogen receptors, ERα and ERβ, a G protein-coupled oestrogen receptor (GPER) has been identified that primarily mediates the rapid, non-genomic signalling of oestrogens. Data on GPER expression at the protein level are contradictory; therefore, the present study was conducted to re-evaluate GPER expression by immunohistochemistry to obtain broad GPER expression profiles in human non-neoplastic and neoplastic tissues, especially those not investigated in this respect so far. We developed and thoroughly characterised a novel rabbit monoclonal anti-human GPER antibody, 20H15L21, using Western blot analyses and immunocytochemistry. The antibody was then applied to a large series of formalin-fixed, paraffin-embedded human tissue samples. In normal tissue, GPER was identified in distinct cell populations of the cortex and the anterior pituitary; islets and pancreatic ducts; fundic glands of the stomach; the epithelium of the duodenum and gallbladder; hepatocytes; proximal tubules of the kidney; the adrenal medulla; and syncytiotrophoblasts and decidua cells of the placenta. GPER was also expressed in hepatocellular, pancreatic, renal, and endometrial cancers, pancreatic neuroendocrine tumours, and pheochromocytomas. The novel antibody 20H15L21 will serve as a valuable tool for basic research and the identification of GPER-expressing tumours during histopathological examinations.
Collapse
Affiliation(s)
- Maria Bubb
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Anna-Sophia Lieselott Beyer
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, 99438 Bad Berka, Germany;
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, 99438 Bad Berka, Germany;
| | - Katja Evert
- Department of Pathology, University of Regensburg, 93053 Regensburg, Germany;
- Institute of Pathology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Ralph M. Wirtz
- STRATIFYER Molecular Pathology GmbH, 50935 Cologne, Germany;
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
- Correspondence: ; Tel.: +49-3641-9325678; Fax: +49-3641-9325652
| |
Collapse
|
26
|
Isoflavones from Semen Sojae Preparatum Improve Atherosclerosis and Oxidative Stress by Modulating Nrf2 Signaling Pathway through Estrogen-Like Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4242099. [PMID: 35432565 PMCID: PMC9010186 DOI: 10.1155/2022/4242099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Atherosclerosis (AS) often occurs in cardiovascular disease, which is a chronic vascular disease and is harmful to human health. Oxidative stress is involved in its etiology. This study aimed to determine the effectiveness of Isoflavones from semen sojae preparatum (ISSP) in inhibiting oxidative stress and its important molecular mechanisms through in vivo and in vitro experiments. ApoE−/− mice were used to establish atherosclerosis models through a high-fat diet, and endothelial cells were used to establish oxidative stress injury models through ox-LDL induction. The degree of oxidative stress damage was assessed by detecting changes in ET-1, LDH, SOD, and MDA indicators. It was observed that after ISSP treatment, the oxidative stress damage of mice and endothelial cells was improved. The Nrf2/AER signaling pathway is an important antioxidant pathway that has attracted our attention. Western blotting and qRT-PCR were used to detect the expression of Nrf2, HO-1, and NQO1 in mice aortae and endothelial cells. The results showed that the Nrf2 signaling pathway was activated after ISSP intervention. In addition, in this study, after preantagonizing the estrogen receptors GPR30 and ERβ, it was observed that the effects of ISSP in treating endothelial cell oxidative damage and activating the Nrf2 signaling pathway were weakened. After silencing Nrf2 by Nrf2-siRNA transfection, the effect of ISSP in treating endothelial cell oxidative damage was inhibited. This study shows that ISSP may reduce oxidative stress damage and atherosclerosis through the Nrf2 signaling pathway, and this effect may involve the GPR30 and ERβ estrogen receptors.
Collapse
|
27
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
28
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
29
|
Crescioli C. The Role of Estrogens and Vitamin D in Cardiomyocyte Protection: A Female Perspective. Biomolecules 2021; 11:1815. [PMID: 34944459 PMCID: PMC8699224 DOI: 10.3390/biom11121815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Women experience a dramatical raise in cardiovascular events after menopause. The decline in estrogens is pointed to as the major responsible trigger for the increased risk of cardiovascular disease (CVD). Indeed, the menopausal transition associates with heart macro-remodeling, which results from a fine-tuned cell micro-remodeling. The remodeling of cardiomyocytes is a biomolecular response to several physiologic and pathologic stimuli, allowing healthy adaptation in normal conditions or maladaptation in an unfavorable environment, ending in organ architecture disarray. Estrogens largely impinge on cardiomyocyte remodeling, but they cannot fully explain the sex-dimorphism of CVD risk. Albeit cell remodeling and adaptation are under multifactorial regulation, vitamin D emerges to exert significant protective effects, controlling some intracellular paths, often shared with estrogen signaling. In post-menopause, the unfavorable association of hypoestrogenism-D hypovitaminosis may converge towards maladaptive remodeling and contribute to increased CVD risk. The aim of this review is to overview the role of estrogens and vitamin D in female cardiac health, speculating on their potential synergistic effect in cardiomyocyte remodeling, an issue that is not yet fully explored. Further learning the crosstalk between these two steroids in the biomolecular orchestration of cardiac cell fate during adaptation may help the translational approach to future cardioprotective strategies for women health.
Collapse
Affiliation(s)
- Clara Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
30
|
Zhang X, Li T, Cheng HJ, Wang H, Ferrario CM, Groban L, Cheng CP. Chronic GPR30 agonist therapy causes restoration of normal cardiac functional performance in a male mouse model of progressive heart failure: Insights into cellular mechanisms. Life Sci 2021; 285:119955. [PMID: 34520767 DOI: 10.1016/j.lfs.2021.119955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/21/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023]
Abstract
AIMS G protein-coupled estrogen receptor 30 (GPR30) activation by its agonist, G1, exhibits beneficial actions in female with heart failure (HF). Recent evidence indicates its cardiovascular benefits may also include male as well. However, whether and how GPR30 activation may limit HF progression and have a salutary role in males is unknown. We hypothesized that chronic G1 treatment improves LV and cardiomyocyte function, [Ca2+]i regulation and β-adrenergic reserve, thus limiting HF progression in male. MAIN METHODS We compared left ventricle (LV) and myocyte function, [Ca2+]i transient ([Ca2+]iT) and β-AR modulation in control male mice (12/group) and isoproterenol-induced HF (150 mg/kg s.c. for 2 days). Two weeks after isoproterenol injection, HF mice received placebo, or G1 (150 μg/kg/day s.c. mini-pump) for 2 weeks. KEY FINDINGS Isoproterenol-treated mice exhibited HF with preserved ejection fraction (HFpEF) at 2-weeks and progressed to HF with reduced EF (HFrEF) at 4-weeks, manifested by significantly increased LV time constant of relaxation (τ), decreased EF and mitral flow (dV/dtmax), which were accompanied by reduced myocyte contraction (dL/dtmax), relaxation (dR/dtmax) and [Ca2+]iT. Acute isoproterenol-superfusion caused significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. G1 treatment in HF increased basal and isoproterenol-stimulated increases in EF and LV contractility of EES. Importantly, G1 improved basal and isoproterenol-stimulated dL/dtmax, dR/dtmax and [Ca2+]iT to control levels and restored normal cardiac β-AR subtypes modulation. SIGNIFICANCE Chronic G1 treatment restores normal myocyte basal and β-AR-stimulated contraction, relaxation, and [Ca2+]iT, thereby reversing LV dysfunction and playing a rescue role in a male mouse model of HF.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Tiankai Li
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heng-Jie Cheng
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Che Ping Cheng
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| |
Collapse
|
31
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
32
|
Maric D, Paterek A, Delaunay M, López IP, Arambasic M, Diviani D. A-Kinase Anchoring Protein 2 Promotes Protection against Myocardial Infarction. Cells 2021; 10:2861. [PMID: 34831084 PMCID: PMC8616452 DOI: 10.3390/cells10112861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of maladaptive cardiac remodeling and heart failure. In the damaged heart, loss of function is mainly due to cardiomyocyte death and remodeling of the cardiac tissue. The current study shows that A-kinase anchoring protein 2 (AKAP2) orchestrates cellular processes favoring cardioprotection in infarcted hearts. Induction of AKAP2 knockout (KO) in cardiomyocytes of adult mice increases infarct size and exacerbates cardiac dysfunction after MI, as visualized by increased left ventricular dilation and reduced fractional shortening and ejection fraction. In cardiomyocytes, AKAP2 forms a signaling complex with PKA and the steroid receptor co-activator 3 (Src3). Upon activation of cAMP signaling, the AKAP2/PKA/Src3 complex favors PKA-mediated phosphorylation and activation of estrogen receptor α (ERα). This results in the upregulation of ER-dependent genes involved in protection against apoptosis and angiogenesis, including Bcl2 and the vascular endothelial growth factor a (VEGFa). In line with these findings, cardiomyocyte-specific AKAP2 KO reduces Bcl2 and VEGFa expression, increases myocardial apoptosis and impairs the formation of new blood vessels in infarcted hearts. Collectively, our findings suggest that AKAP2 organizes a transcriptional complex that mediates pro-angiogenic and anti-apoptotic responses that protect infarcted hearts.
Collapse
Affiliation(s)
- Darko Maric
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aleksandra Paterek
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Marion Delaunay
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Irene Pérez López
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Miroslav Arambasic
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| |
Collapse
|
33
|
Querio G, Antoniotti S, Geddo F, Tullio F, Penna C, Pagliaro P, Gallo MP. Ischemic heart disease and cardioprotection: Focus on estrogenic hormonal setting and microvascular health. Vascul Pharmacol 2021; 141:106921. [PMID: 34592428 DOI: 10.1016/j.vph.2021.106921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Ischemic Heart Disease (IHD) is a clinical condition characterized by insufficient blood flow to the cardiac tissue, and the consequent inappropriate oxygen and nutrients supply and metabolic waste removal in the heart. In the last decade a broad scientific literature has underlined the distinct mechanism of onset and the peculiar progress of IHD between female and male patients, highlighting the estrogenic hormonal setting as a key factor of these sex-dependent divergences. In particular, estrogen-activated cardioprotective pathways exert a pivotal role for the microvascular health, and their impairment, both physiologically and pathologically driven, predispose to vascular dysfunctions. Aim of this review is to summarize the current knowledge on the estrogen receptors localization and function in the cardiovascular system, particularly focusing on sex-dependent differences in microvascular vs macrovascular dysfunction and on the experimental models that allowed the researchers to reach the current findings and sketching the leading estrogen-mediated cardioprotective mechanisms.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
34
|
Ogola BO, Clark GL, Abshire CM, Harris NR, Gentry KL, Gunda SS, Kilanowski-Doroh I, Wong TJ, Visniauskas B, Lawrence DJ, Zimmerman MA, Bayer CL, Groban L, Miller KS, Lindsey SH. Sex and the G Protein-Coupled Estrogen Receptor Impact Vascular Stiffness. Hypertension 2021; 78:e1-e14. [PMID: 34024124 PMCID: PMC8192475 DOI: 10.1161/hypertensionaha.120.16915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Benard O. Ogola
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | - Gabrielle L. Clark
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Caleb M. Abshire
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Kaylee L. Gentry
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | - Shreya S. Gunda
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Tristen J. Wong
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Dylan J. Lawrence
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | | | - Carolyn L. Bayer
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kristin S. Miller
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Sarah H. Lindsey
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| |
Collapse
|
35
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
36
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
37
|
MiR-155-Mediated Deregulation of GPER1 Plays an Important Role in the Gender Differences Related to Inflammatory Bowel Disease. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:8811477. [PMID: 33014211 PMCID: PMC7516711 DOI: 10.1155/2020/8811477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/08/2023]
Abstract
Aim The incidence and clinical manifestations of inflammatory bowel disease (IBD) are thought to have gender differences, which suggests that the estrogen signaling pathway and intestinal flora may play key roles in the pathogenesis of IBD. In IBD, microRNA-155 (miR-155) is upregulated and regulates G protein coupled estrogen receptor (GPER1), which affects the intestinal flora. The objective of this study was to investigate the role of the estrogen receptors and miR-155 in the pathogenesis of IBD. Methods From July 2018 to July 2019, in the Department of Gastroenterology at Daping Hospital, Army Military Medical University, a total of 50 patients with IBD were included in this study, and 24 healthy examinees were randomly selected as the control group. Colonoscopies were performed, and clinical characteristics and blood samples were collected from all of the subjects. The serum cytokine levels in the patients with IBD and the health donors were detected by ELISA, and the estrogen receptor level measurements for all of the participants were assessed by immunohistochemistry (IHC) and quantitative real-time PCR (qPCR). The miR-155 levels were detected by qPCR in all of the participants, and miR-155−/− mice were used to investigate the mechanism of miR-155 in the pathogenesis of IBD. Results The clinical characteristics and medications were different for the IBD patients when gender was considered. The male patients produced more proinflammatory cytokines, and while GPER1 expression was downregulated, miR-155 was upregulated in the patients with IBD. MiR-155 showed proinflammatory activity, while GPER1 showed an anti-inflammatory response during the pathogenesis of IBD. The miR-155−/− mice showed improvements in weight loss, survival, rectal bleeding, colon length, and histopathological changes compared with the wild-type mice. Furthermore, the male miR-155−/− mice showed increased inflammation compared to the female miR-155−/− mice in the above aspects. Conclusion This study presents evidence indicating that miR-155 plays a key role in the pathogenesis of IBD for the different genders. MiR-155 was upregulated and showed proinflammatory activity, whereas GPER1 showed an anti-inflammatory response during the pathogenesis of IBD. The results demonstrated that more proinflammatory cytokines and reduced GPER1 levels were observed in the male IBD patients. Thus, miR-155 was involved in the regulation of GPER1 and induced gender differences in IBD patients. MiR-155 may be a potential marker for IBD-targeted therapy.
Collapse
|
38
|
Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol 2020; 319:F612-F617. [PMID: 32893662 DOI: 10.1152/ajprenal.00045.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying hypertension are multifaceted and incompletely understood. New evidence suggests that G protein-coupled estrogen receptor 1 (GPER1) mediates protective actions within the cardiovascular and renal systems. This mini-review focuses on recent advancements in our understanding of the vascular, renal, and cardiac GPER1-mediated mechanisms that influence blood pressure regulation. We emphasize clinical and basic evidence that suggests GPER1 as a novel target to aid therapeutic strategies for hypertension. Furthermore, we discuss current controversies and challenges facing GPER1-related research.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Garate-Carrillo A, Gonzalez J, Ceballos G, Ramirez-Sanchez I, Villarreal F. Sex related differences in the pathogenesis of organ fibrosis. Transl Res 2020; 222:41-55. [PMID: 32289256 PMCID: PMC7721117 DOI: 10.1016/j.trsl.2020.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The development of organ fibrosis has garnered rising attention as multiple diseases of increasing and/or high prevalence appear to progress to the chronic stage. Such is the case for heart, kidney, liver, and lung where diseases such as diabetes, idiopathic/autoimmune disorders, and nonalcoholic liver disease appear to notably drive the development of fibrosis. Noteworthy is that the severity of these pathologies is characteristically compounded by aging. For these reasons, research groups and drug companies have identified fibrosis as a therapeutic target for which currently, there are essentially no effective options. Although a limited body of published studies are available, most literature indicates that in multiple organs, premenopausal women are protected from developing severe forms of fibrosis suggesting an important role for sex hormones in mitigating this process. Investigators have implemented relevant animal models of organ disease linked to fibrosis supporting in general, these observations. In vitro studies and transgenic animals models have also been used in an attempt to understand the role that sex hormones and related receptors play in the development of fibrosis. However, in the setting of chronic disease in some organs such as the heart older (postmenopausal) women within a few years can quickly approach men in disease severity and develop significant degrees of fibrosis. This review summarizes the current body of relevant literature and highlights the imperative need for a major focus to be placed on understanding the manner in which sex and the presence or absence of related hormones modulates cell phenotypes so as to allow for fibrosis to develop.
Collapse
Affiliation(s)
- Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Julisa Gonzalez
- Department of Medicine, School of Medicine, University of California, San Diego, California
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, California; VA San Diego Health Care, San Diego, California.
| |
Collapse
|
40
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
41
|
Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21124314. [PMID: 32560398 PMCID: PMC7352426 DOI: 10.3390/ijms21124314] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Collapse
|
42
|
Rasdi Z, Kamaludin R, Ab Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, Mohd Nor NS, Abdul Hamid Hasani N, Sheikh Abdul Kadir SH. The impacts of intrauterine Bisphenol A exposure on pregnancy and expression of miRNAs related to heart development and diseases in animal model. Sci Rep 2020; 10:5882. [PMID: 32246001 PMCID: PMC7125099 DOI: 10.1038/s41598-020-62420-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine the impact of BPA exposure on pregnancy and foetuses on cardiac tissues and the expression of cardiac microRNAs (miRNAs) related to heart development and diseases. Pregnancy is known to be the "critical windows" in determining the offspring physical and cells development in their life after birth. The increment of the risk of cardiovascular disease (CVD) in a later stage of life has been reported by few studies demonstrated from prenatal exposure of BPA. BPA has been shown to alter miRNAs expression profiles for organ development, regeneration and metabolic functions. These alterations have been associated with the risk of CVDs. However, the associations between pregnancy outcomes and miRNAs expression in cardiac of mother- and foetuses-exposed to BPA are still not entirely explored. In BPA-exposed pregnant rat groups, a significant weight gained was observed in comparison to control (p < 0.05). Interestingly, significant changes in systolic and diastolic blood pressure between the first and third trimester of BPA-exposed pregnant rats were also observed (p < 0.05). In BPA-exposed pregnant rats, miR-499-5p was significantly altered in the heart (p < 0.01). Meanwhile, altered miR-17-5p, -208-3p, and -210-3p expressions were observed in all heart of the foetuses from BPA-exposed pregnant rats (p < 0.05). In H&E staining, BPA-exposed foetal hearts showed a sign of fibrosis while BPA-exposed pregnant rats showed muscle remnant. Masson trichrome staining further confirmed the presence of fibrosis observed in BPA-exposed foetal heart and reduced expression of cardiac troponin I (cTnI) was also observed in BPA-exposed foetal heart. In summary, altered cardiac miRNAs with histological changes were observed in both mother- and foetus-exposed BPA These findings put forward the importance of future work to further understand how prenatal BPA exposure affect foetuses in their later stage of life.
Collapse
Affiliation(s)
- Zatilfarihiah Rasdi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
- Centre of Preclinical Sciences Studies, Faculty of Dentistry, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Roziana Kamaludin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | | | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Rosfaiizah Siran
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Shafina Mohd Nor
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Narimah Abdul Hamid Hasani
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
43
|
Luo J, Liu D. Does GPER Really Function as a G Protein-Coupled Estrogen Receptor in vivo? Front Endocrinol (Lausanne) 2020; 11:148. [PMID: 32296387 PMCID: PMC7137379 DOI: 10.3389/fendo.2020.00148] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Estrogen can elicit pleiotropic cellular responses via a diversity of estrogen receptors (ERs)-mediated genomic and rapid non-genomic mechanisms. Unlike the genomic responses, where the classical nuclear ERα and ERβ act as transcriptional factors following estrogen binding to regulate gene transcription in estrogen target tissues, the non-genomic cellular responses to estrogen are believed to start at the plasma membrane, leading to rapid activation of second messengers-triggered cytoplasmic signal transduction cascades. The recently acknowledged ER, GPR30 or GPER, was discovered in human breast cancer cells two decades ago and subsequently in many other cells. Since its discovery, it has been claimed that estrogen, ER antagonist fulvestrant, as well as some estrogenic compounds can directly bind to GPER, and therefore initiate the non-genomic cellular responses. Various recently developed genetic tools as well as chemical ligands greatly facilitated research aimed at determining the physiological roles of GPER in different tissues. However, there is still lack of evidence that GPER plays a significant role in mediating endogenous estrogen action in vivo. This review summarizes current knowledge about GPER, including its tissue expression and cellular localization, with emphasis on the research findings elucidating its role in health and disease. Understanding the role of GPER in estrogen signaling will provide opportunities for the development of new therapeutic strategies to strengthen the benefits of estrogen while limiting the potential side effects.
Collapse
Affiliation(s)
- Jing Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Dongmin Liu
| |
Collapse
|
44
|
Imam Aliagan A, Madungwe NB, Tombo N, Feng Y, Bopassa JC. Chronic GPER1 Activation Protects Against Oxidative Stress-Induced Cardiomyoblast Death via Preservation of Mitochondrial Integrity and Deactivation of Mammalian Sterile-20-Like Kinase/Yes-Associated Protein Pathway. Front Endocrinol (Lausanne) 2020; 11:579161. [PMID: 33193095 PMCID: PMC7604496 DOI: 10.3389/fendo.2020.579161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Estrogen (17β-estradiol, E2) is well-known to induce cardioprotective effects against ischemia/reperfusion (I/R) injury. We recently reported that acute application of E2 at the onset of reperfusion in vivo induces cardioprotective effects against I/R injury via activation of its non-steroidal receptor, G protein-coupled estrogen receptor 1 (GPER1). Here, we investigated the impact and mechanism underlying chronic GPER1 activation in cultured H9c2 rat cardiomyoblasts. Methods: H9c2 rat cardiomyoblasts were cultured and pretreated with the cytotoxic agent H2O2 for 24 h and incubated in the presence of vehicle (control), GPER1 agonists E2 and G1, or GPER1 agonists supplemented with G15 (GPER1 antagonist) for 48 or 96 h. After treatment, cells were collected to measure the rate of cell death and viability using flow cytometry and Calcein AM assay or MTT assay, respectively. The resistance to opening of the mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential, and ATP production was assessed using fluorescence microscopy, and the mitochondrial structural integrity was observed with electron microscopy. The levels of the phosphorylation of mammalian sterile-20-like kinase (MST1) and yes-associated protein (YAP) were assessed by Western blot analysis in whole-cell lysate, while the expression levels of mitochondrial biogenesis genes, YAP target genes, and proapoptotic genes were measured by qRT-PCR. Results: We found that after H2O2 treatment, chronic E2/G1 treatment decreased cell death effect was associated with the prevention of the S phase of the cell cycle arrest compared to control. In the mitochondria, chronic E2/G1 activation treatment preserved the cristae morphology, and increased resistance to opening of mPTP, but with little change to mitochondrial fusion/fission. Additionally, chronic E2/G1 treatment predominantly reduced phosphorylation of MST1 and YAP, as well as increased MST1 and YAP protein levels. E2 treatment also upregulated the expression levels of TGF-β and PGC-1α mRNAs and downregulated PUMA and Bim mRNAs. Except for ATP production, all the E2 or G1 effects were prevented by the cotreatment with the GPER1 antagonist, G15. Conclusion: Together, these results indicate that chronic GPER1 activation with its agonists E2 or G1 treatment protects H9c2 cardiomyoblasts against oxidative stress-induced cell death and increases cell viability by preserving mitochondrial structure and function as well as delaying the opening of mPTP. These chronic GPER1 effects are associated with the deactivation of the non-canonical MST1/YAP mechanism that leads to genetic upregulation of cell growth genes (CTGF, CYR61, PGC-1α, and ANKRD1), and downregulation of proapoptotic genes (PUMA and Bim).
Collapse
Affiliation(s)
- Abdulhafiz Imam Aliagan
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ngonidzashe B. Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jean C. Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Jean C. Bopassa
| |
Collapse
|
45
|
Whitcomb V, Wauson E, Christian D, Clayton S, Giles J, Tran QK. Regulation of beta adrenoceptor-mediated myocardial contraction and calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem Pharmacol 2019; 171:113727. [PMID: 31759979 DOI: 10.1016/j.bcp.2019.113727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
The G protein-coupled estrogen receptor 1 (GPER) produces cardioprotective effects. However, the underlying mechanisms are not well understood. We aimed to investigate the role of GPER in β adrenoceptor-mediated cardiac contraction and myocardial signaling. In anesthetized animals, intrajugular administration of isoproterenol produces a rapid and sustained rise in left ventricular pressure (LVP) and increases ectopic contractions. Administration of the GPER agonist G-1 during the plateau phase of isoproterenol-induced LVP increase rapidly restores LVP to baseline levels and reduces the frequency of ectopic contractions. In freshly isolated cardiomyocytes, isoproterenol potentiates electrically induced peak currents of L-type Ca2+ channels (LTCC) and increases the potential sensitivity of their inactivation. Coadministration of G-1 prevents isoproterenol-induced potentiation of peak LTCC currents and makes channels more sensitive to being inactivated compared to isoproterenol alone. Isoproterenol treatment of cardiomyocytes without electrical stimulation triggers slow-rising Ca2+ signals that are inhibited by the β1AR antagonist metoprolol but not by β2AR antagonist ICI-118551. G-1 pretreatment dose-dependently suppresses isoproterenol-induced total Ca2+ signals and the amplitude and frequency of the intrinsic Ca2+ oscillatory deflections. Pretreatment with the GPER antagonist G-36 produces opposite effects, dose-dependently increasing these signals. ISO promotes robust phosphorylation of Cav1.2 channels at Ser1928. G-1 pretreatment inhibits isoproterenol-stimulated phosphorylation of Cav1.2 at Ser1928, while G-36 pretreatment enhances this signal. Our data indicate that GPER functions as an intrinsic component of β1AR signaling to moderate myocardial Ca2+ dynamics and contraction.
Collapse
Affiliation(s)
- Victoria Whitcomb
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Eric Wauson
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Daniel Christian
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Sarah Clayton
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Jennifer Giles
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States.
| |
Collapse
|
46
|
G-Protein–Coupled Estrogen Receptor Agonist G1 Improves Diastolic Function and Attenuates Cardiac Renin–Angiotensin System Activation in Estrogen-Deficient Hypertensive Rats. J Cardiovasc Pharmacol 2019; 74:443-452. [DOI: 10.1097/fjc.0000000000000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Alencar AKN, Montes GC, Costa DG, Mendes LVP, Silva AMS, Martinez ST, Trachez MM, Cunha VDMN, Montagnoli TL, Fraga AGM, Wang H, Groban L, Fraga CAM, Sudo RT, Zapata-Sudo G. Cardioprotection Induced by Activation of GPER in Ovariectomized Rats With Pulmonary Hypertension. J Gerontol A Biol Sci Med Sci 2019; 73:1158-1166. [PMID: 29790948 DOI: 10.1093/gerona/gly068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease of women (female-to-male ratio 4:1), and is associated with cardiac and skeletal muscle dysfunction. Herein, the activation of a new estrogen receptor (GPER) by the agonist G1 was evaluated in oophorectomized rats with monocrotaline (MCT)-induced PH. Depletion of estrogen was induced by bilateral oophorectomy (OVX) in Wistar rats. Experimental groups included SHAM or OVX rats that received a single intraperitoneal injection of MCT (60 mg/kg) for PH induction. Animals received s.c. injection of either vehicle or G1, a GPER agonist, (400 µg/kg/day) for 14 days after the onset of disease. Rats with PH exhibited exercise intolerance and cardiopulmonary alterations, including reduced pulmonary artery flow, biventricular remodeling, and left ventricular systolic and diastolic dysfunction. The magnitude of these PH-induced changes was significantly greater in OVX versus SHAM rats. G1 treatment reversed both cardiac and skeletal muscle functional aberrations caused by PH in OVX rats. G1 reversed PH-related cardiopulmonary dysfunction and exercise intolerance in female rats, a finding that may have important implications for the ongoing clinical evaluation of new drugs for the treatment of the disease in females after the loss of endogenous estrogens.
Collapse
Affiliation(s)
- Allan K N Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Guilherme C Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Daniele G Costa
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Luiza V P Mendes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.,Departamento de Farmacologia, Universidade Estácio de Sá, Rio de Janeiro, Brazil
| | - Ananssa M S Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Sabrina T Martinez
- Departamento de Química, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói - RJ, Brazil
| | - Margarete M Trachez
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Valéria do M N Cunha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Tadeu L Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Aline G M Fraga
- Faculdade de Farmácia da Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundão Cidade Universitária, Brazil
| | - Hao Wang
- Departments of Anesthesiology and Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Departments of Anesthesiology and Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carlos A M Fraga
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Wang H, Sun X, Hodge HS, Ferrario CM, Groban L. NLRP3 inhibition improves heart function in GPER knockout mice. Biochem Biophys Res Commun 2019; 514:998-1003. [PMID: 31092335 DOI: 10.1016/j.bbrc.2019.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
The molecular mechanisms of postmenopausal heart diseases in women may involve the loss of estrogen-deactivation of its membrane receptor, G-protein coupled estrogen receptor (GPER), and subsequent activation of the cardiac NLRP3 inflammasome, a component of the innate immune system. To study the potential effects of cardiac GPER on NLRP3-mediated inflammatory pathways, we characterized changes in innate immunity gene transcripts in hearts from 6-month-old cardiomyocyte-specific GPER knockout (KO) mice and their GPER-intact wild type (WT) littermates using RT2 Profiler™ real-time PCR array. GPER deletion in cardiomyocytes decreased %fractional shortening (%FS) and myocardial relaxation (e'), and increased the early mitral inflow filling velocity-to-early mitral annular descent velocity ratio (E/e'), determined by echocardiography, and increased the mRNA levels of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP), determined by real-time PCR. Of the 84 inflammasome-related genes tested, 9 genes were upregulated, including NLRP3 and IL-18, while 1 gene, IL-12a, was downregulated in GPER KO when compared to WT. The importance of NLRP3 upregulation in GPER KO-induced heart failure was further confirmed by an in vivo study showing that, compared to vehicle-treated KO mice, 8 weeks of treatment with a NLRP3 inhibitor, MCC950 (10 mg/kg, i.p., 3 times per week), significantly limited hypertrophic remodeling, defined by reductions in heart weight/body weight, and improved systolic and diastolic functional indices, including increases in %FS and e', and decreases E/e' (P < 0.05). Both ANF and BNP mRNA levels were also significantly reduced by chronic MCC950 treatment. The findings from this study point toward a new understanding for the increased occurrence of heart diseases in women following loss or absence of estrogenic protection and GPER activation that involves cardiac NLRP3 inflammatory pathways.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157-1009, USA; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157, USA.
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157-1009, USA.
| | - Hunter S Hodge
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157-1009, USA.
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157, USA; Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157-1009, USA; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC, 27157, USA.
| |
Collapse
|
49
|
Hutson DD, Gurrala R, Ogola BO, Zimmerman MA, Mostany R, Satou R, Lindsey SH. Estrogen receptor profiles across tissues from male and female Rattus norvegicus. Biol Sex Differ 2019; 10:4. [PMID: 30635056 PMCID: PMC6329134 DOI: 10.1186/s13293-019-0219-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/01/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Estrogen is formed by the enzyme aromatase (CYP19A1) and signals via three identified receptors ERα (ESR1), ERß (ESR2), and the G protein-coupled estrogen receptor (GPER). Understanding the relative contribution of each receptor to estrogenic signaling may elucidate the disparate effects of this sex hormone across tissues, and recent developments in PCR technology allow absolute quantification and direct comparison of multiple targets. We hypothesized that this approach would reveal tissue- and sex-specific differences in estrogen receptor mRNA. METHODS ESR1, ESR2, GPER, and CYP19A1 were measured in four cardiovascular tissues (heart, aorta, kidney, and adrenal gland), three brain areas (somatosensory cortex, hippocampus, and prefrontal cortex), and reproductive tissues (ovaries, mammary gland, uterus, testes) from six male and six female adult Sprague-Dawley rats. RESULTS GPER mRNA expression was relatively stable across all tissues in both sexes, ranging from 5.49 to 113 copies/ng RNA, a 21-fold difference. In contrast, ESR1/ESR2 were variable across tissues although similar within an organ system. ESR1 ranged from 4.46 to 614 copies/ng RNA (138-fold difference) while ESR2 ranged from 0.154 to 83.1 copies/ng RNA (540-fold). Significant sex differences were broadly absent except for renal ESR1 (female 206 vs. male 614 copies/ng RNA, P < 0.0001) and GPER (62.0 vs. 30.2 copies/ng RNA, P < 0.05) as well as gonadal GPER (5.49 vs. 47.5 copies/ng RNA, P < 0.01), ESR2 (83.1 vs. 0.299 copies/ng RNA, P < 0.01), and CYP19A1 (322 vs. 7.18 copies/ng RNA, P < 0.01). Cardiovascular tissues showed a predominance of ESR1, followed by GPER. In contrast, GPER was the predominant transcript in the brain with similarly low levels of ESR1 and ESR2. CYP19A1 was detected at very low levels except for reproductive tissues and the hippocampus. CONCLUSION While the data indicates a lack of sex differences in most tissues, significant differences were found in the range of receptor gene expression across tissues as well as in the receptor profile between organ systems. The data provide a guide for future studies by establishing estrogen receptor expression across multiple tissues using absolute PCR quantification. This knowledge on tissue-specific estrogen receptor profiles will aid the development of hormonal therapies that elicit beneficial effects in specific tissues.
Collapse
Affiliation(s)
- Dillion D. Hutson
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Rakesh Gurrala
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Benard O. Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Margaret A. Zimmerman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Ryousuke Satou
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112 USA
| |
Collapse
|
50
|
Mahmoodzadeh S, Dworatzek E. The Role of 17β-Estradiol and Estrogen Receptors in Regulation of Ca 2+ Channels and Mitochondrial Function in Cardiomyocytes. Front Endocrinol (Lausanne) 2019; 10:310. [PMID: 31156557 PMCID: PMC6529529 DOI: 10.3389/fendo.2019.00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Numerous epidemiological, clinical, and animal studies showed that cardiac function and manifestation of cardiovascular diseases (CVDs) are different between males and females. The underlying reasons for these sex differences are definitely multifactorial, but major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling are of utmost importance for adequate heart function and crucial to maintaining the cardiovascular health. Due to the highly sensitive nature of these processes in the heart, this review article highlights the current knowledge regarding sex dimorphisms in the heart implicating the importance of E2 and ERs in the regulation of cardiac mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER deficiency or selective ER activation, which suggest that E2 and ERs are strongly involved in these processes. In this context, this review also discusses the divergent E2-responses resulting from the activation of different ER subtypes in these processes. Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms in the heart under physiological and pathological conditions may help to design more specifically targeted drugs for the management of CVDs in men and women.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Shokoufeh Mahmoodzadeh
| | - Elke Dworatzek
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Gender in Medicine, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|