1
|
Gao Y, Chen S, Fu J, Wang C, Tang Y, Luo Y, Zhuo X, Chen X, Shen Y. Factors associated with risk analysis for asymptomatic left ventricular diastolic dysfunction in nondialysis patients with chronic kidney disease. Ren Fail 2024; 46:2353334. [PMID: 38785296 PMCID: PMC11133225 DOI: 10.1080/0886022x.2024.2353334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure (HF) constitutes a major determinant of outcome in chronic kidney disease (CKD) patients. The main pattern of HF in CKD patients is preserved ejection fraction (HFpEF), and left ventricular diastolic dysfunction (LVDD) is a frequent pathophysiological mechanism and specific preclinical manifestation of HFpEF. Therefore, exploring and intervention of the factors associated with risk for LVDD is of great importance in reducing the morbidity and mortality of cardiovascular disease (CVD) complications in CKD patients. We designed this retrospective cross-sectional study to collect clinical and echocardiographic data from 339 nondialysis CKD patients without obvious symptoms of HF to analyze the proportion of asymptomatic left ventricular diastolic dysfunction (ALVDD) and its related factors associated with risk by multivariate logistic regression analysis. Among the 339 nondialysis CKD patients, 92.04% had ALVDD. With the progression of CKD stage, the proportion of ALVDD gradually increased. The multivariate logistic regression analysis revealed that increased age (OR 1.237; 95% confidence interval (CI) 1.108-1.381, per year), diabetic nephropathy (DN) and hypertensive nephropathy (HTN) (OR 25.000; 95% CI 1.355-48.645, DN and HTN vs chronic interstitial nephritis), progression of CKD stage (OR 2.785; 95% CI 1.228-6.315, per stage), increased mean arterial pressure (OR 1.154; 95% CI 1.051-1.268, per mmHg), increased urinary protein (OR 2.825; 95% CI 1.484-5.405, per g/24 h), and low blood calcium (OR 0.072; 95% CI 0.006-0.859, per mmol/L) were factors associated with risk for ALVDD in nondialysis CKD patients after adjusting for other confounding factors. Therefore, dynamic monitoring of these factors associated with risk, timely diagnosis and treatment of ALVDD can delay the progression to symptomatic HF, which is of great importance for reducing CVD mortality, and improving the prognosis and quality of life in CKD patients.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shengnan Chen
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiani Fu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cui Wang
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yali Tang
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yongbai Luo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaozhen Zhuo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xueying Chen
- Department of Nephrology, Shan Yang County People’s Hospital, Shangluo City, China
| | - Yan Shen
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Snelders M, Yildirim M, Danser AHJ, van der Pluijm I, Essers J. The Extracellular Matrix and Cardiac Pressure Overload: Focus on Novel Treatment Targets. Cells 2024; 13:1685. [PMID: 39451203 PMCID: PMC11505996 DOI: 10.3390/cells13201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Heart failure is a significant health issue in developed countries, often stemming from conditions like hypertension, which imposes a pressure overload on the heart. Despite various treatment strategies for heart failure, many lack long-term effectiveness. A critical aspect of cardiac disease is the remodeling of the heart, where compensatory changes in the extracellular matrix exacerbate disease progression. This review explores the processes and changes occurring in the pressure-overloaded heart with respect to the extracellular matrix. It further summarizes current treatment strategies, and then focuses on novel treatment targets for maladaptive cardiac remodeling, derived from transverse aortic constriction-induced pressure overload animal models.
Collapse
Affiliation(s)
- Matthijs Snelders
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Meltem Yildirim
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Wang J, Xue H, He J, Deng L, Tian J, Jiang Y, Feng J. Therapeutic potential of finerenone for diabetic cardiomyopathy: focus on the mechanisms. Diabetol Metab Syndr 2024; 16:232. [PMID: 39289758 PMCID: PMC11409712 DOI: 10.1186/s13098-024-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a kind of myocardial disease that occurs in diabetes patients and cannot be explained by hypertensive heart disease, coronary atherosclerotic heart disease and other heart diseases. Its pathogenesis may be closely related to programmed cell death, oxidative stress, intestinal microbes and micro-RNAs. The excessive activation of mineralocorticoid receptors (MR) in DCM can cause damage to the heart and kidneys. The third-generation non-steroidal mineralocorticoid receptor antagonist (MRA), finerenone, can effectively block MR, thus playing a role in protecting the heart and kidneys. This review mainly introduces the classification of MRA, and the mechanism of action, applications and limitations of finerenone in DCM, in order to provide reference for the study of treatment plans for DCM patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Haojie Xue
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Jinyu He
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Julong Tian
- Department of Cardiology, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Yang Jiang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Lima Posada I, Soulié M, Stephan Y, Palacios Ramirez R, Bonnard B, Nicol L, Pitt B, Kolkhof P, Mulder P, Jaisser F. Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Improves Diastolic Dysfunction in Preclinical Nondiabetic Chronic Kidney Disease. J Am Heart Assoc 2024; 13:e032971. [PMID: 38842271 PMCID: PMC11255738 DOI: 10.1161/jaha.123.032971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The mineralocorticoid receptor plays a significant role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Classic steroidal mineralocorticoid receptor antagonists are a therapeutic option, but their use in the clinic is limited due to the associated risk of hyperkalemia in patients with CKD. Finerenone is a nonsteroidal mineralocorticoid receptor antagonist that has been recently investigated in 2 large phase III clinical trials (FIDELIO-DKD [Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease] and FIGARO-DKD [Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease]), showing reductions in kidney and cardiovascular outcomes. METHODS AND RESULTS We tested whether finerenone improves renal and cardiac function in a preclinical nondiabetic CKD model. Twelve weeks after 5/6 nephrectomy, the rats showed classic signs of CKD characterized by a reduced glomerular filtration rate and increased kidney weight, associated with left ventricular (LV) diastolic dysfunction and decreased LV perfusion. These changes were associated with increased cardiac fibrosis and reduced endothelial nitric oxide synthase activating phosphorylation (ser 1177). Treatment with finerenone prevented LV diastolic dysfunction and increased LV tissue perfusion associated with a reduction in cardiac fibrosis and increased endothelial nitric oxide synthase phosphorylation. Curative treatment with finerenone improves nondiabetic CKD-related LV diastolic function associated with a reduction in cardiac fibrosis and increased cardiac phosphorylated endothelial nitric oxide synthase independently from changes in kidney function. Short-term finerenone treatment decreased LV end-diastolic pressure volume relationship and increased phosphorylated endothelial nitric oxide synthase and nitric oxide synthase activity. CONCLUSIONS We showed that the nonsteroidal mineralocorticoid receptor antagonist finerenone reduces renal hypertrophy and albuminuria, attenuates cardiac diastolic dysfunction and cardiac fibrosis, and improves cardiac perfusion in a preclinical nondiabetic CKD model.
Collapse
MESH Headings
- Animals
- Mineralocorticoid Receptor Antagonists/pharmacology
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Naphthyridines/pharmacology
- Naphthyridines/therapeutic use
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Male
- Disease Models, Animal
- Fibrosis
- Nitric Oxide Synthase Type III/metabolism
- Glomerular Filtration Rate/drug effects
- Ventricular Function, Left/drug effects
- Diastole/drug effects
- Kidney/drug effects
- Kidney/physiopathology
- Kidney/metabolism
- Phosphorylation
- Myocardium/metabolism
- Myocardium/pathology
- Rats, Sprague-Dawley
- Rats
- Nephrectomy
Collapse
Affiliation(s)
- Ixchel Lima Posada
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Matthieu Soulié
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Yohan Stephan
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Roberto Palacios Ramirez
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
| | - Lionel Nicol
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Bertram Pitt
- Department of MedicineUniversity of Michigan MedicineAnn ArborMI
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Research and Early Development, Pharmaceuticals, Bayer AGWuppertalGermany
| | - Paul Mulder
- Univ Rouen Normandie, INSERM EnVI UMR 1096RouenFrance
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris CitéParisFrance
- Université de Lorraine, INSERM Centre d’Investigations Cliniques‐Plurithématique 1433, UMR 1116, CHRU de Nancy, French‐Clinical Research Infrastructure Network (F‐CRIN) INI‐CRCTNancyFrance
| |
Collapse
|
5
|
Patel RN, Sharma A, Prasad A, Bansal S. Heart Failure With Preserved Ejection Fraction With CKD: A Narrative Review of a Multispecialty Disorder. Kidney Med 2023; 5:100705. [PMID: 38046909 PMCID: PMC10692714 DOI: 10.1016/j.xkme.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogenous syndrome with varying phenotypic expression. The phenotype chronic kidney disease (CKD) associated HFpEF is increasing in prevalence globally and is associated with increased morbidity and mortality compared to other HFpEF variants. These 2 conditions share common risk factors, including obesity, diabetes, and metabolic syndrome, as well as similar pathophysiology, including systemic inflammation, oxidative stress, elevated neurohormones, mineralocorticoid-receptor activation, and venous congestion. Given the coexistence of CKD and HFpEF, the diagnosis of HFpEF can be difficult. Moreover, treatment options for HFpEF have remained limited despite the success seen in its counterpart, heart failure with reduced ejection fraction. HFpEF encompasses complex multisystem pathophysiological perturbations beyond neurohormones, it is unlikely that a single agent can have significant benefit in this population. Recent data on sodium-glucose cotransporter 2 (SGLT2) inhibitors in HFpEF and CKD, and on glucagon-like peptide-1 (GLP-1) agonists and mineralocorticoid-receptor antagonists in metabolic syndrome, which target multiple pathways simultaneously, have led to promising therapeutics for HFpEF and CKD. In this perspective, our goal is to increase awareness of HFpEF as a multisystem disorder that shares the same disease processes seen in CKD and to emphasize that its management in individuals with CKD warrants a collective and multidisciplinary approach.
Collapse
Affiliation(s)
- Rahul N. Patel
- Transplant Renal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Akash Sharma
- The University of Texas Health Science Center at San Antonio Joe R and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
| | - Anand Prasad
- Division of Cardiology, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Shweta Bansal
- Division of Nephrology, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
6
|
El-Hefny NEAM, Mohammed HSED, El-Mahdy RI, Haridi SHM, Mohamed AS. Serum aldosterone in right ventricular failure versus left ventricular failure before and after mineralocorticoid receptor antagonists: case-control clinical trial. Acta Cardiol 2023; 78:1110-1119. [PMID: 37811606 DOI: 10.1080/00015385.2023.2266648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Heart failure (HF) is a global growing health threat. This case-control clinical trial aimed to detect the predictive value and difference in aldosterone level between right side heart failure, heart failure with decreased ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF) and compare the efficacy and safety of adding mineralocorticoid receptor antagonist (MRA) for treatment. PATIENTS AND METHODS We recruited 151 participants, 135 HF patients divided equally into 45 patients in each group:(1) right side HF (2) HFrEF and (3) HFpEF and 16 healthy controls. Serum aldosterone, troponin and echocardiography were evaluated at the beginning of the study, three and six months after administration of MRA. RESULTS Aldosterone level was significantly greater in HF patients relative to controls. Aldosterone level can detect HF with excellent accuracy. There were significantly lower levels of aldosterone in right side HF compared to left side HF. There was a significant decrease in right ventricle dimensions, pulmonary artery systolic pressure and pulmonary artery size and significant increase in tricuspid annular plane systolic excursion after treatment in patients with right side HF. In the HFrEF group, there was a significant decrease in left ventricular end diastolic dimension and a significant increase in left ventricular EF after treatment. In the HFpEF group, there was a significant decrease in E/A and E/e' after treatment. CONCLUSIONS Aldosterone may have pathogenic role in HF. Measuring and follow-up of aldosterone levels should be considered in HF patients. MRA treatment gives a significant improvement in right side HF group.
Collapse
Affiliation(s)
| | - Hanan Sharaf El-Deen Mohammed
- Department of Internal medicine and critical care unit, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Reham I El-Mahdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Science, Badre University, Badr City, Egypt
| | - Salma Hamdy M Haridi
- Department of Internal Medicine, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Abir S Mohamed
- Faculty of Public Health and Tropical Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
7
|
Chilton RJ, Silva-Cardoso J. Mineralocorticoid receptor antagonists in cardiovascular translational biology. Cardiovasc Endocrinol Metab 2023; 12:e0289. [PMID: 37614245 PMCID: PMC10443768 DOI: 10.1097/xce.0000000000000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 08/25/2023]
Abstract
This review examines the role of mineralocorticoid receptor antagonists (MRAs) in cardiovascular biology and the molecular mechanisms involved in mineralocorticoid receptor antagonism. The data discussed suggest that MRAs can play an important role in decreasing the impact of inflammation and fibrosis on cardiorenal outcomes. Evidence derived from major randomized clinical trials demonstrates that steroidal MRAs reduce mortality in patients with heart failure and reduced ejection fraction. Initial positive findings observed in patients with chronic kidney disease and type 2 diabetes (T2D) indicate the possible mechanisms of action of nonsteroidal MRAs, and the clinical benefits for patients with cardiorenal disease and T2D. This article supports the application of basic science concepts to expand our understanding of the molecular mechanisms of action involved in pathophysiology. This approach encourages the development of treatment options before diseases clinically manifest. Video Abstract: http://links.lww.com/CAEN/A42.
Collapse
Affiliation(s)
- Robert J. Chilton
- Department of Medicine, Janey & Dolph Briscoe Division of Cardiology, Long School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - José Silva-Cardoso
- Heart Failure and Transplant Clinic, Cardiology Service, São João University Hospital Centre, Porto, Portugal
| |
Collapse
|
8
|
Jerome JR, Deliyanti D, Suphapimol V, Kolkhof P, Wilkinson-Berka JL. Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy. Int J Mol Sci 2023; 24:ijms24032334. [PMID: 36768656 PMCID: PMC9917037 DOI: 10.3390/ijms24032334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Vision loss in diabetic retinopathy features damage to the blood-retinal barrier and neovascularization, with hypertension and the renin-angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy.
Collapse
Affiliation(s)
- Jack R. Jerome
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Varaporn Suphapimol
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Jennifer L. Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
9
|
Ivy JR, Gray GA, Holmes MC, Denvir MA, Chapman KE. Corticosteroid Receptors in Cardiac Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:109-122. [PMID: 36107315 DOI: 10.1007/978-3-031-11836-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nuclear receptors play a central role in both energy metabolism and cardiomyocyte death and survival in the heart. Recent evidence suggests they may also influence cardiomyocyte endowment. Although several members of the nuclear receptor family play key roles in heart maturation (including thyroid hormone receptors) and cardiac metabolism, here, the focus will be on the corticosteroid receptors, the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). The heart is an important target for the actions of corticosteroids, yet the homeostatic role of GR and MR in the healthy heart has been elusive. However, MR antagonists are important in the treatment of heart failure, a condition associated with mitochondrial dysfunction and energy failure in cardiomyocytes leading to mitochondria-initiated cardiomyocyte death (Ingwall and Weiss, Circ Res 95:135-145, 2014; Ingwall , Cardiovasc Res 81:412-419, 2009; Zhou and Tian , J Clin Invest 128:3716-3726, 2018). In contrast, animal studies suggest GR activation in cardiomyocytes has a cardioprotective role, including in heart failure.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Gillian A Gray
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Megan C Holmes
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Martin A Denvir
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Jia G, Lockette W, Sowers JR. Mineralocorticoid receptors in the pathogenesis of insulin resistance and related disorders: from basic studies to clinical disease. Am J Physiol Regul Integr Comp Physiol 2021; 320:R276-R286. [PMID: 33438511 DOI: 10.1152/ajpregu.00280.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldosterone is a steroid hormone that regulates blood pressure and cardiovascular function by acting on renal and vascular mineralocorticoid receptors (MRs) to promote sodium retention and modulate endothelial function. Indeed, MRs are expressed in endothelial cells, vascular smooth muscle cells, adipocytes, immune cells, skeletal muscle cells, and cardiomyocytes. Excessive aldosterone and associated MR activation impair insulin secretion, insulin metabolic signaling to promote development of diabetes, and the related cardiometabolic syndrome. These adverse effects of aldosterone are mediated, in part, via increased inflammation, oxidative stress, dyslipidemia, and ectopic fat deposition. Therefore, inhibition of MR activation may have a beneficial effect in prevention of impaired insulin metabolic signaling, type 2 diabetes, and cardiometabolic disorders. This review highlights findings from the recent surge in research regarding MR-related cardiometabolic disorders as well as our contemporary understanding of the detrimental effects of excess MR activation on insulin metabolic signaling.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Service, Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Warren Lockette
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medicine and Physiology, Wayne State University, Detroit, Michigan
| | - James R Sowers
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Hill MA, Jaisser F, Sowers JR. Role of the vascular endothelial sodium channel activation in the genesis of pathologically increased cardiovascular stiffness. Cardiovasc Res 2020; 118:130-140. [PMID: 33188592 DOI: 10.1093/cvr/cvaa326] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular (CV) stiffening represents a complex series of events evolving from pathological changes in individual cells of the vasculature and heart which leads to overt tissue fibrosis. While vascular stiffening occurs naturally with ageing it is accelerated in states of insulin (INS) resistance, such as obesity and type 2 diabetes. CV stiffening is clinically manifested as increased arterial pulse wave velocity and myocardial fibrosis-induced diastolic dysfunction. A key question that remains is how are these events mechanistically linked. In this regard, heightened activation of vascular mineralocorticoid receptors (MR) and hyperinsulinaemia occur in obesity and INS resistance states. Further, a downstream mediator of MR and INS receptor activation, the endothelial cell Na+ channel (EnNaC), has recently been identified as a key molecular determinant of endothelial dysfunction and CV fibrosis and stiffening. Increased activity of the EnNaC results in a number of negative consequences including stiffening of the cortical actin cytoskeleton in endothelial cells, impaired endothelial NO release, increased oxidative stress-meditated NO destruction, increased vascular permeability, and stimulation of an inflammatory environment. Such endothelial alterations impact vascular function and stiffening through regulation of vascular tone and stimulation of tissue remodelling including fibrosis. In the case of the heart, obesity and INS resistance are associated with coronary vascular endothelial stiffening and associated reductions in bioavailable NO leading to heart failure with preserved systolic function (HFpEF). After a brief discussion on mechanisms leading to vascular stiffness per se, this review then focuses on recent findings regarding the role of INS and aldosterone to enhance EnNaC activity and associated CV stiffness in obesity/INS resistance states. Finally, we discuss how coronary artery-mediated EnNaC activation may lead to cardiac fibrosis and HFpEF, a condition that is especially pronounced in obese and diabetic females.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 134 Research Park Drive, Columbia, MO 65212, USA
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, F-75006 Paris, France
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 134 Research Park Drive, Columbia, MO 65212, USA.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
12
|
Pazos F. Range of adiposity and cardiorenal syndrome. World J Diabetes 2020; 11:322-350. [PMID: 32864046 PMCID: PMC7438185 DOI: 10.4239/wjd.v11.i8.322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 02/05/2023] Open
Abstract
Obesity and obesity-related co-morbidities, diabetes mellitus, and hypertension are among the fastest-growing risk factors of heart failure and kidney disease worldwide. Obesity, which is not a unitary concept, or a static process, ranges from alterations in distribution to the amount of adiposity. Visceral adiposity, which includes intraabdominal visceral fat mass and ectopic fat deposition such as hepatic, cardiac, or renal, was robustly associated with a greater risk for cardiorenal morbidity than subcutaneous adiposity. In addition, morbid obesity has also demonstrated a negative effect on cardiac and renal functioning. The mechanisms by which adipose tissue is linked with the cardiorenal syndrome (CRS) are hemodynamic and mechanical changes, as well neurohumoral pathways such as insulin resistance, endothelial dysfunction, nitric oxide bioavailability, renin-angiotensin-aldosterone, oxidative stress, sympathetic nervous systems, natriuretic peptides, adipokines and inflammation. Adiposity and other associated co-morbidities induce adverse cardiac remodeling and interstitial fibrosis. Heart failure with preserved ejection fraction has been associated with obesity-related functional and structural abnormalities. Obesity might also impair kidney function through hyperfiltration, increased glomerular capillary wall tension, and podocyte dysfunction, which leads to tubulointerstitial fibrosis and loss of nephrons and, finally, chronic kidney disease. The development of new treatments with renal and cardiac effects in the context of type 2 diabetes, which improves mortality outcome, has highlighted the importance of CRS and its prevalence. Increased body fat triggers cellular, neuro-humoral and metabolic pathways, which create a phenotype of the CRS with specific cellular and biochemical biomarkers. Obesity has become a single cardiorenal umbrella or type of cardiorenal metabolic syndrome. This review article provides a clinical overview of the available data on the relationship between a range of adiposity and CRS, the support for obesity as a single cardiorenal umbrella, and the most relevant studies on the recent therapeutic approaches.
Collapse
Affiliation(s)
- Fernando Pazos
- Department of Medicine, Medicine Faculty, Cantabria University, Valdecilla Hospital, Santander 39080, Cantabria, Spain
| |
Collapse
|
13
|
Wang B, Lunetta KL, Dupuis J, Lubitz SA, Trinquart L, Yao L, Ellinor PT, Benjamin EJ, Lin H. Integrative Omics Approach to Identifying Genes Associated With Atrial Fibrillation. Circ Res 2020; 126:350-360. [PMID: 31801406 PMCID: PMC7004281 DOI: 10.1161/circresaha.119.315179] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Rationale: GWAS (Genome-Wide Association Studies) have identified hundreds of genetic loci associated with atrial fibrillation (AF). However, these loci explain only a small proportion of AF heritability. Objective: To develop an approach to identify additional AF-related genes by integrating multiple omics data. Methods and Results: Three types of omics data were integrated: (1) summary statistics from the AFGen 2017 GWAS; (2) a whole blood EWAS (Epigenome-Wide Association Study) of AF; and (3) a whole blood TWAS (Transcriptome-Wide Association Study) of AF. The variant-level GWAS results were collapsed into gene-level associations using fast set-based association analysis. The CpG-level EWAS results were also collapsed into gene-level associations by an adapted SNP-set Kernel Association Test approach. Both GWAS and EWAS gene-based associations were then meta-analyzed with TWAS using a fixed-effects model weighted by the sample size of each data set. A tissue-specific network was subsequently constructed using the NetWAS (Network-Wide Association Study). The identified genes were then compared with the AFGen 2018 GWAS that contained more than triple the number of AF cases compared with AFGen 2017 GWAS. We observed that the multiomics approach identified many more relevant AF-related genes than using AFGen 2018 GWAS alone (1931 versus 206 genes). Many of these genes are involved in the development and regulation of heart- and muscle-related biological processes. Moreover, the gene set identified by multiomics approach explained much more AF variance than those identified by GWAS alone (10.4% versus 3.5%). Conclusions: We developed a strategy to integrate multiple omics data to identify AF-related genes. Our integrative approach may be useful to improve the power of traditional GWAS, which might be particularly useful for rare traits and diseases with limited sample size.
Collapse
Affiliation(s)
- Biqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Steven A. Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ludovic Trinquart
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emelia J. Benjamin
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Sections of Preventive Medicine and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Honghuang Lin
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Jahanbakhsh M, Ehteshami A, Afkhami S. Developing "Aryan:" Diabetes Self-care Mobile Application. Int J Prev Med 2019; 10:59. [PMID: 31143433 PMCID: PMC6528430 DOI: 10.4103/ijpvm.ijpvm_344_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Diabetes as a chronic and progressive disease leads to multiple complications. Therefore, it is important to control and treat it. More effective control of this condition and the provision of therapeutic approaches require awareness and active participation of patients in self-care. In this regard, a smartphone that is accessible to most people at anytime and anywhere and is easily applicable can be useful in self-care diabetes, with the ability to install various applications. This study aimed to develop a diabetes self-care mobile application as a suitable solution for self-managing diabetes for Iranians. Methods: We conducted a mixed methods study in three Phases: (1) comparative study of existing mobile applications; (2) developed its object-oriented conceptual model; and (3) developed the initial version of “Aryan” that was approved for production. Results: This application was designed for the appropriate diabetes self-care, with following functionalities: The user ID and his/her personal page setting; generating self-care reports such as blood glucose, nutrition, physiological indicators, physical activities, and patient history reports; care setting; providing patient training materials; nutrition control; insulin and other medications control; blood glucose and key tests control; and other paraclinical tests. Conclusions: “Aryan” has been designed in compliance with Iranian experts’ opinions. It is expected “Aryan” plays an effective role in self-care of patients with diabetes.
Collapse
Affiliation(s)
- Maryam Jahanbakhsh
- Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Ehteshami
- Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shekoufeh Afkhami
- Department of Health Information Technology and Management, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Kosmas CE, Silverio D, Sourlas A, Montan PD, Guzman E. Role of spironolactone in the treatment of heart failure with preserved ejection fraction. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:461. [PMID: 30603649 DOI: 10.21037/atm.2018.11.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is the leading cause of morbidity and mortality globally. Heart failure with preserved ejection fraction (HFpEF) is currently responsible for about half of the patients affected with HF and is associated with impaired functional capacity, as well as significant morbidity due to frequent hospitalizations. Unfortunately, despite its poor prognosis, the management of HFpEF is very controversial and no therapy has been so far shown to reduce mortality in HFpEF. Spironolactone antagonizes the effect of aldosterone and can lead to a reduction in fibrosis and an improvement in left ventricular (LV) function. Furthermore, spironolactone decreases extracellular matrix turnover and myocardial collagen content and improves endothelial vasomotor dysfunction, mechanisms known to influence the progression of HF. Thus, given the aforementioned beneficial actions of spironolactone, extensive research has been conducted to explore the effects of spironolactone on HFpEF. Our review aims to present and discuss the clinical and scientific data pertaining to the role of spironolactone in the treatment of patients with HFpEF.
Collapse
Affiliation(s)
| | - Delia Silverio
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | | | - Peter D Montan
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Eliscer Guzman
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
16
|
Li S, Zhang X, Dong M, Gong S, Shang Z, Jia X, Chen W, Yang J, Li J. Effects of spironolactone in heart failure with preserved ejection fraction: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018; 97:e11942. [PMID: 30170387 PMCID: PMC6392615 DOI: 10.1097/md.0000000000011942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a common syndrome, accounting for more than one half of all heart failure patients, which is associated with high morbidity and mortality. But there is little evidence-based therapeutic strategies for the management of HFpEF. Previous studies reported the effects of spironolactone on HFpEF; however, the results were inconsistent. In this meta-analysis, we evaluated the effects of spironolactone on HFpEF. METHODS Articles were searched on PubMed, EMBASE, and COCHRANE databases before May, 2017, and were supplemented by hand searches of reference lists of included studies and review articles. Eligible articles were restricted to randomized controlled trials (RCTs). The odds ratios (ORs) of the dichotomous data, mean difference (MD) of continuous data, and 95% confidence intervals (CIs) were calculated to assess the effects of spironolactone in patients with HFpEF. RESULTS A total of 7 studies including 4147 participants were analyzed. There were significant improvements on the E/e' index (MD -1.38; 95% CI, -2.03 to -0.73; P < .0001) and E/A velocity ratio (MD -0.05; 95% CI, -0.10 to -0.00; P = .03) under spironolactone treatment compared with placebo, while there was no effect on the deceleration time (MD 1.04; 95% CI, -8.27 to 10.35; P = .83). Subgroup analyses on the E/A velocity ratio showed that there was obvious benefit from spironolactone therapy in patients with follow-up periods >6 months but not in those with follow-up periods ≤6 months. There was no reduction in all-cause mortality and hospitalization compared with placebo. And no improvement in 6-minute walk distance was seen compared with placebo. CONCLUSION This meta-analysis demonstrates that the use of spironolactone improves left ventricular diastolic function in patients with HFpEF, whereas it has no effect on all-cause mortality and hospitalization, and the 6-minute walk distance. Further larger size, multicenter, RCTs are required to confirm the effects of spironolactone on patients with HFpEF.
Collapse
Affiliation(s)
- Shuai Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| | - Xinling Zhang
- The Heart Center, Jining First People's Hospital, Jining, Shandong, China
| | - Mei Dong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| | - Shu Gong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| | - Zhi Shang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| | - Xu Jia
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| | - Wenqiang Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| | - Jianmin Yang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| | - Jifu Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University
| |
Collapse
|
17
|
Tao H, Song ZY, Ding XS, Yang JJ, Shi KH, Li J. Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification. Heart Fail Rev 2018; 23:789-799. [DOI: 10.1007/s10741-018-9694-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Shinde AV, Su Y, Palanski BA, Fujikura K, Garcia MJ, Frangogiannis NG. Pharmacologic inhibition of the enzymatic effects of tissue transglutaminase reduces cardiac fibrosis and attenuates cardiomyocyte hypertrophy following pressure overload. J Mol Cell Cardiol 2018; 117:36-48. [PMID: 29481819 PMCID: PMC5892840 DOI: 10.1016/j.yjmcc.2018.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
Tissue transglutaminase (tTG) is a multifunctional protein with a wide range of enzymatic and non-enzymatic functions. We have recently demonstrated that tTG expression is upregulated in the pressure-overloaded myocardium and exerts fibrogenic actions promoting diastolic dysfunction, while preventing chamber dilation. Our current investigation dissects the in vivo and in vitro roles of the enzymatic effects of tTG on fibrotic remodeling in pressure-overloaded myocardium. Using a mouse model of transverse aortic constriction, we demonstrated perivascular and interstitial tTG activation in the remodeling pressure-overloaded heart. tTG inhibition through administration of the selective small molecule tTG inhibitor ERW1041E attenuated left ventricular diastolic dysfunction and reduced cardiomyocyte hypertrophy and interstitial fibrosis in the pressure-overloaded heart, without affecting chamber dimensions and ejection fraction. In vivo, tTG inhibition markedly reduced myocardial collagen mRNA and protein levels and attenuated transcription of fibrosis-associated genes. In contrast, addition of exogenous recombinant tTG to fibroblast-populated collagen pads had no significant effects on collagen transcription, and instead increased synthesis of matrix metalloproteinase (MMP)3 and tissue inhibitor of metalloproteinases (TIMP)1 through transamidase-independent actions. However, enzymatic effects of matrix-bound tTG increased the thickness of pericellular collagen in fibroblast-populated pads. tTG exerts distinct enzymatic and non-enzymatic functions in the remodeling pressure-overloaded heart. The enzymatic effects of tTG are fibrogenic and promote diastolic dysfunction, but do not directly modulate the pro-fibrotic transcriptional program of fibroblasts. Targeting transamidase-dependent actions of tTG may be a promising therapeutic strategy in patients with heart failure and fibrosis-associated diastolic dysfunction.
Collapse
Affiliation(s)
- Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ya Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Brad A Palanski
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Kana Fujikura
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mario J Garcia
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
19
|
Bamberg K, Johansson U, Edman K, William-Olsson L, Myhre S, Gunnarsson A, Geschwindner S, Aagaard A, Björnson Granqvist A, Jaisser F, Huang Y, Granberg KL, Jansson-Löfmark R, Hartleib-Geschwindner J. Preclinical pharmacology of AZD9977: A novel mineralocorticoid receptor modulator separating organ protection from effects on electrolyte excretion. PLoS One 2018; 13:e0193380. [PMID: 29474466 PMCID: PMC5825103 DOI: 10.1371/journal.pone.0193380] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/11/2018] [Indexed: 11/23/2022] Open
Abstract
Excess mineralocorticoid receptor (MR) activation promotes target organ dysfunction, vascular injury and fibrosis. MR antagonists like eplerenone are used for treating heart failure, but their use is limited due to the compound class-inherent hyperkalemia risk. Here we present evidence that AZD9977, a first-in-class MR modulator shows cardio-renal protection despite a mechanism-based reduced liability to cause hyperkalemia. AZD9977 in vitro potency and binding mode to MR were characterized using reporter gene, binding, cofactor recruitment assays and X-ray crystallopgraphy. Organ protection was studied in uni-nephrectomised db/db mice and uni-nephrectomised rats administered aldosterone and high salt. Acute effects of single compound doses on urinary electrolyte excretion were tested in rats on a low salt diet. AZD9977 and eplerenone showed similar human MR in vitro potencies. Unlike eplerenone, AZD9977 is a partial MR antagonist due to its unique interaction pattern with MR, which results in a distinct recruitment of co-factor peptides when compared to eplerenone. AZD9977 dose dependently reduced albuminuria and improved kidney histopathology similar to eplerenone in db/db uni-nephrectomised mice and uni-nephrectomised rats. In acute testing, AZD9977 did not affect urinary Na+/K+ ratio, while eplerenone increased the Na+/K+ ratio dose dependently. AZD9977 is a selective MR modulator, retaining organ protection without acute effect on urinary electrolyte excretion. This predicts a reduced hyperkalemia risk and AZD9977 therefore has the potential to deliver a safe, efficacious treatment to patients prone to hyperkalemia.
Collapse
MESH Headings
- Administration, Oral
- Aldosterone
- Animals
- Benzoates/chemistry
- Benzoates/pharmacokinetics
- Benzoates/pharmacology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Eplerenone
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Male
- Mice, Mutant Strains
- Mineralocorticoid Receptor Antagonists/chemistry
- Mineralocorticoid Receptor Antagonists/pharmacokinetics
- Mineralocorticoid Receptor Antagonists/pharmacology
- Molecular Structure
- Oxazines/chemistry
- Oxazines/pharmacokinetics
- Oxazines/pharmacology
- Potassium/urine
- Rats, Sprague-Dawley
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Sodium/urine
- Sodium, Dietary
- Spironolactone/analogs & derivatives
- Spironolactone/chemistry
- Spironolactone/pharmacokinetics
- Spironolactone/pharmacology
Collapse
Affiliation(s)
- Krister Bamberg
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ulrika Johansson
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Karl Edman
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lena William-Olsson
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Myhre
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Geschwindner
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Aagaard
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Björnson Granqvist
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, INSERM U1138 Team 1, Paris, France
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kenneth L. Granberg
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Judith Hartleib-Geschwindner
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|