1
|
Knop R, Keweloh S, Pukall J, Dittmann S, Zühlke D, Sievers S. A rubrerythrin locus of Clostridioides difficile encodes enzymes that efficiently detoxify reactive oxygen species. Anaerobe 2025; 92:102941. [PMID: 39894065 DOI: 10.1016/j.anaerobe.2025.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES The microaerophilic conditions in the large intestine and reactive oxygen species (ROS) produced by the immune system represent a challenge for the strictly anaerobic pathogen Clostridioides difficile, which protects itself by a variety of oxidative stress proteins. Four of these are encoded in an operon that has been implicated in the detoxification of H2O2 and O2●-. In this study, proteins of this operon, i. e. a rubrerythrin (Rbr), a superoxide reductase (Sor) and a putative glutamate dehydrogenase (CD630_08280) were investigated for their ROS detoxifying activity in vitro. METHODS Recombinant proteins were overexpressed in C. difficile and purified anaerobically by affinity chromatography. The H2O2-reductase activity was determined by measuring the NADH consumption after peroxide addition. Superoxide detoxification potential of Sor was detected colorimetrically using a xanthine/xanthine oxidase system with cytochrome c as analytical probe. RESULTS Proposed roles of the investigated proteins in the detoxification pathways of ROS could partially be demonstrated. Specifically, Rbr and glutamate dehydrogenase synergistically detoxify H2O2, although with a very low turnover. Furthermore, Sor was shown to scavenge O2●- by superoxide dismutase activity and its activity was compared to superoxide dismutase of Escherichia coli. CONCLUSIONS The investigated gene locus codes for an oxidative stress operon whose members have the potential to neutralize O2●- and H2O2 to water and thus complements the arsenal of ROS detoxifying mechanisms that are already known in C. difficile. However, full activity with adequate physiological electron transfer partners still needs to be demonstrated.
Collapse
Affiliation(s)
- Robert Knop
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Simon Keweloh
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Johanna Pukall
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia Dittmann
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
2
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Ma B, Chai Z, Liu Y, He Z, Chen X, Qian C, Chen Y, Wang W, Meng Z. New near-infrared fluorescent probe for imaging superoxide anion of cell membrane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125431. [PMID: 39549329 DOI: 10.1016/j.saa.2024.125431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Selective imaging of superoxide anion is important for understanding its role in cell membrane biology, but is often a challenging task because of the lack of an effective fluorescence probe. In this study, a new near-infrared fluorescent probe (SHX-O) that can target cell membrane was developed for imaging superoxide anion. SHX-O was designed by simultaneously incorporating a sulfonated bis-indole and a diphenylphosphinyl recognition group into the hemicyanine moiety. The probe itself showed a rather weak fluorescence due to the hemicyanine's hydroxyl substitution; however, its reaction with superoxide anion caused a large enhancement of near-infrared fluorescence at 790 nm. Moreover, SHX-O exhibited not only high selectivity for superoxide anion over other reactive oxygen species, but also specific cell membrane localization, which may be attributed to the probe's amphiphilic structure. Using the probe, fluorescence imaging of cell membrane superoxide anion produced in the presence of xanthine oxidase and xanthine has been achieved in living cells. We believe that SHX-O may serve as a potential tool for imaging and investigating superoxide anion of cell membrane.
Collapse
Affiliation(s)
- Bokai Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Ziyin Chai
- Sinopec Research Institute of Petroleum Processing CO., LTD, Beijing 100083, China; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ya Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zixu He
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinqi Chen
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Chong Qian
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Yongjia Chen
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China.
| | - Zihui Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
Kolobarić N, Kozina N, Mihaljević Z, Drenjančević I. Angiotensin II Exposure In Vitro Reduces High Salt-Induced Reactive Oxygen Species Production and Modulates Cell Adhesion Molecules' Expression in Human Aortic Endothelial Cell Line. Biomedicines 2024; 12:2741. [PMID: 39767646 PMCID: PMC11726729 DOI: 10.3390/biomedicines12122741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production. Methods: The fifth passage of human aortic endothelial cells (HAECs) was cultured for 24, 48, and 72 h with NaCl, namely, the control (270 mOsmol/kg), HS320 (320 mOsmol/kg), and HS350 (350 mOsmol/kg). AngII was administered at the half-time of the NaCl incubation (10-4-10-7 mol/L). Results: The cell viability was significantly reduced after 24 h in the HS350 group and in all groups after longer incubation. AngII partly preserved the viability in the HAECs with shorter exposure and lower concentrations of NaCl. Intracellular hydrogen peroxide (H2O2) and peroxynitrite (ONOO-) significantly increased in the HS320 group following AngII exposure compared to the control, while it decreased in the HS350 group compared to the HS control. A significant decrease in superoxide anion (O2.-) formation was observed following AngII exposure at 10-5, 10-6, and 10-7 mol/L for both HS groups. There was a significant decrease in intracellular adhesion molecule 1 (ICAM-1) and endoglin expression in both groups following treatment with 10-4 and 10-5 mol/L of AngII. Conclusions: The results demonstrated that AngII significantly reduced ROS production at HS350 concentrations and modulated the viability, proliferation, and activation states in ECs.
Collapse
Affiliation(s)
| | | | | | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (N.K.); (Z.M.)
| |
Collapse
|
5
|
Conner GE. NADPH Alters DUOX1 Calcium Responsiveness. Redox Biol 2024; 75:103251. [PMID: 38936256 PMCID: PMC11259916 DOI: 10.1016/j.redox.2024.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Hydrogen peroxide is a key element in redox signaling and in setting cellular redox tone. DUOX1 and DUOX2, that directly synthesize hydrogen peroxide, are the most abundant NADPH oxidase transcripts in most epithelia. DUOX1 and DUOX2 hydrogen peroxide synthesis is regulated by intracellular calcium transients and thus cells can respond to signals and initiate responses by increasing cellular hydrogen peroxide synthesis. Nevertheless, many details of their enzymatic regulation are still unexplored. DUOX1 and DUOXA1 were expressed in HEK293T cells and activity was studied in homogenates and membrane fractions. When DUOX1 homogenates or membranes were pre-incubated in NADPH and started with addition of Ca2+, to mimic intracellular activation, progress curves were distinctly different from those pre-incubated in Ca2+ and started with NADPH. The Ca2+ EC50 for DUOX1's initial rate when pre-incubated in Ca2+, was three orders of magnitude lower (EC50 ∼ 10-6 M) than with preincubation in NADPH (EC50 ∼ 10-3 M). In addition, activity was several fold lower with Ca2+ start. Identical results were obtained using homogenates and membrane fractions. The data suggested that DUOX1 Ca2+ binding in expected physiological signaling conditions only slowly leads to maximal hydrogen peroxide synthesis and that full hydrogen peroxide synthesis activity in vivo only can occur when encountering extremely high concentration Ca2+ signals. Thus, a complex interplay of intracellular NADPH and Ca2+ concentrations regulate DUOX1 over a wide extent and may limit DUOX1 activity to a restricted range and spatial distribution.
Collapse
Affiliation(s)
- Gregory E Conner
- Department of Cell Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami Fl, 33136, USA.
| |
Collapse
|
6
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
7
|
Clayborn AL, Rebstock JA, Camardella LJ, Comeau EP, Dabhi SK, Graber EG, Joyce TH, Maricar IN, Pinckney BN, Puri D, Shekleton TB, Tran QBT, Harbron EJ. Self-Reporting Conjugated Polymer Nanoparticles for Superoxide Generation and Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38478-38489. [PMID: 39007528 DOI: 10.1021/acsami.4c06749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Conjugated polymer nanoparticles (CPNs or Pdots) have become increasingly popular fluorophores for multimodal applications that combine imaging with phototherapeutic effects. Reports of CPNs in photodynamic therapy applications typically focus on their ability to generate singlet oxygen. Alternatively, CPN excited states can interact with oxygen to form superoxide radical anion and a CPN-based hole polaron, both of which can have deleterious effects on fluorescence properties. Here, we demonstrate that CPNs prepared from the common conjugated polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT, also known as F8BT) generate superoxide upon irradiation. We use the same CPNs to detect superoxide by doping them with a superoxide-responsive hydrocyanine dye developed by Murthy and co-workers. Superoxide induces off-to-on fluorescence switching by converting quenching hydrocyanine dyes to fluorescent cyanine dyes that act as fluorescence resonance energy transfer (FRET) acceptors for PFBT chromophores. Amplified FRET from the multichromophoric CPNs yields fluorescence signal intensities that are nearly 50 times greater than when the dye is excited directly or over 100 times greater when signal readout is from the CPN channel. The dye loading level governs the maximum amount of superoxide that induces a change in fluorescence properties and also influences the rate of superoxide generation by furnishing competitive excited state deactivation pathways. These results suggest that CPNs can be used to deliver superoxide in applications in which it is desirable and provide a caution for fluorescence-based CPN applications in which superoxide can damage fluorophores.
Collapse
Affiliation(s)
- Anna L Clayborn
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Jaclyn A Rebstock
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Lauren J Camardella
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Elizabeth P Comeau
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Sonali K Dabhi
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Eleanor G Graber
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Thomas H Joyce
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Isabelle N Maricar
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Brianna N Pinckney
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Devika Puri
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Tayli B Shekleton
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Quyen Beatrice T Tran
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| | - Elizabeth J Harbron
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States
| |
Collapse
|
8
|
Li Z, Huang P, Wu G, Lin W. Activatable Fluorescent Probe for Studying Drug-Induced Senescence In Vitro and In Vivo. Anal Chem 2024; 96:12189-12196. [PMID: 38975803 DOI: 10.1021/acs.analchem.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Aging represents a significant risk factor for compromised tissue function and the development of chronic diseases in the human body. This process is intricately linked to oxidative stress, with HClO serving as a vital reactive oxygen species (ROS) within biological systems due to its strong oxidative properties. Hence, conducting a thorough examination of HClO in the context of aging is crucial for advancing the field of aging biology. In this work, we successfully developed a fluorescent probe, OPD, tailored specifically for detecting HClO in senescent cells and in vivo. Impressively, OPD exhibited a robust reaction with HClO, showcasing outstanding selectivity, sensitivity, and photostability. Notably, OPD effectively identified HClO in senescent cells for the first time, confirming that DOX- and ROS-induced senescent cells exhibited higher HClO levels compared to uninduced normal cells. Additionally, in vivo imaging of zebrafish demonstrated that d-galactose- and ROS-stimulated senescent zebrafish displayed elevated HClO levels compared to normal zebrafish. Furthermore, when applied to mouse tissues and organs, OPD revealed increased fluorescence in the organs of senescent mice compared to their nonsenescent counterparts. Our findings also illustrated the probe's potential for detecting changes in HClO content pre- and post-aging in living mice. Overall, this probe holds immense promise as a valuable tool for in vivo detection of HClO and for studying aging biology in live organisms.
Collapse
Affiliation(s)
- Zihong Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ping Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Guoliang Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
9
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
10
|
Asadi Y, Wang H. Regulation of mitochondrial function by FOXOs in ischemic stroke and Alzheimer's disease. ORGANELLE (TUCSON, ARIZ.) 2024; 1:2. [PMID: 40255585 PMCID: PMC12007694 DOI: 10.61747/0ifp.202403001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Transcriptional control is a pivotal mechanism governing various cellular processes. FOXO proteins, a subgroup of the forkhead family of transcription factors, play a key role in determining cell fate. The localization and function of FOXO proteins are regulated by post-translational modifications to control target gene expression, with a pronounced impact on various aspects of mitochondrial function, including mitochondrial dynamics, biogenesis, and quality control. Mitochondria stand out as the primary target of FOXO transcription factors, which recruit downstream signaling factors to govern mitochondrial processes. Essential signaling pathways are modulated by FOXOs, exemplified by their regulation of mitochondrial biogenesis through SIRT1-Pgc1α and NRF1-TFAM, as well as their influence on mitochondrial dynamics involving Mfn1, Mfn2, Drp1, and Fis1. Furthermore, FOXOs demonstrate the ability to upregulate and downregulate genes that serve as regulators in oxidative and apoptosis cascades. The functional role of FOXO proteins is highly context-dependent, varying with cell type, organ, and specific FOXO isoform. Notably, FOXOs emerge as prominent players in various pathological conditions, including ischemic conditions, neurodegenerative diseases, cancer, and metabolic disorders. Unraveling the intricate role of FOXOs in mammalian cell pathology positions them as promising therapeutic targets amenable to pharmacological intervention. This review aims to provide insights into the intricate roles of FOXOs in mitochondria, illuminating their potential as therapeutic targets amenable to pharmacological intervention in diverse pathological contexts, particularly in ischemic stroke and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Hongmin Wang
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Texas Tech University Health Science Center, School of Medicine, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Matsunaga S, Kohda A, Kamakura S, Hayase J, Miyano K, Shiose A, Sumimoto H. Hypoxia stabilizes the H 2 O 2 -producing oxidase Nox4 in cardiomyocytes via suppressing autophagy-related lysosomal degradation. Genes Cells 2024; 29:63-72. [PMID: 37985134 DOI: 10.1111/gtc.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The hydrogen peroxide (H2 O2 )-producing NADPH oxidase Nox4, forming a heterodimer with p22phox , is expressed in a variety of cells including those in the heart to mediate adaptive responses to cellular stresses such as hypoxia. Since Nox4 is constitutively active, H2 O2 production is controlled by its protein abundance. Hypoxia-induced Nox4 expression is observed in various types of cells and generally thought to be regulated at the transcriptional level. Here we show that hypoxia upregulates the Nox4 protein level and Nox4-catalyzed H2 O2 production without increasing the Nox4 mRNA in rat H9c2 cardiomyocytes. In these cells, the Nox4 protein is stabilized under hypoxic conditions in a manner dependent on the presence of p22phox . Cell treatment with the proteasome inhibitor MG132 results in a marked decrease of the Nox4 protein under both normoxic and hypoxic conditions, indicating that the proteasome pathway does not play a major role in Nox4 degradation. The decrease is partially restored by the autophagy inhibitor 3-methyladenine. Furthermore, the Nox4 protein level is upregulated by the lysosome inhibitors bafilomycin A1 and chloroquine. Thus, in cardiomyocytes, Nox4 appears to be degraded via an autophagy-related pathway, and its suppression by hypoxia likely stabilizes Nox4, leading to upregulation of Nox4-catalyzed H2 O2 production.
Collapse
Affiliation(s)
- Shogo Matsunaga
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Shiose
- Department of Cardiovascular Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
12
|
Wardman P. Factors Important in the Use of Fluorescent or Luminescent Probes and Other Chemical Reagents to Measure Oxidative and Radical Stress. Biomolecules 2023; 13:1041. [PMID: 37509077 PMCID: PMC10377120 DOI: 10.3390/biom13071041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Numerous chemical probes have been used to measure or image oxidative, nitrosative and related stress induced by free radicals in biology and biochemistry. In many instances, the chemical pathways involved are reasonably well understood. However, the rate constants for key reactions involved are often not yet characterized, and thus it is difficult to ensure the measurements reflect the flux of oxidant/radical species and are not influenced by competing factors. Key questions frequently unanswered are whether the reagents are used under 'saturating' conditions, how specific probes are for particular radicals or oxidants and the extent of the involvement of competing reactions (e.g., with thiols, ascorbate and other antioxidants). The commonest-used probe for 'reactive oxygen species' in biology actually generates superoxide radicals in producing the measured product in aerobic systems. This review emphasizes the need to understand reaction pathways and in particular to quantify the kinetic parameters of key reactions, as well as measure the intracellular levels and localization of probes, if such reagents are to be used with confidence.
Collapse
Affiliation(s)
- Peter Wardman
- Formerly of the Gray Cancer Institute, Mount Vernon Hospital/University of Oxford, UK
| |
Collapse
|
13
|
Ishihara T, Tanaka KI, Takafuji A, Miura K, Mizushima T. Attenuation of LPS-Induced Lung Injury by Benziodarone via Reactive Oxygen Species Reduction. Int J Mol Sci 2023; 24:10035. [PMID: 37373184 DOI: 10.3390/ijms241210035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
As overproduction of reactive oxygen species (ROS) causes various diseases, antioxidants that scavenge ROS, or inhibitors that suppress excessive ROS generation, can be used as therapeutic agents. From a library of approved drugs, we screened compounds that reduced superoxide anions produced by pyocyanin-stimulated leukemia cells and identified benzbromarone. Further investigation of several of its analogues showed that benziodarone possessed the highest activity in reducing superoxide anions without causing cytotoxicity. In contrast, in a cell-free assay, benziodarone induced only a minimal decrease in superoxide anion levels generated by xanthine oxidase. These results suggest that benziodarone is an inhibitor of NADPH oxidases in the plasma membrane but is not a superoxide anion scavenger. We investigated the preventive effect of benziodarone on lipopolysaccharide (LPS)-induced murine lung injury as a model of acute respiratory distress syndrome (ARDS). Intratracheal administration of benziodarone attenuated tissue damage and inflammation via its ROS-reducing activity. These results indicate the potential application of benziodarone as a therapeutic agent against diseases caused by ROS overproduction.
Collapse
Affiliation(s)
- Tsutomu Ishihara
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Fukushima 9638642, Japan
| | - Ken-Ichiro Tanaka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo 2028585, Japan
| | - Ayaka Takafuji
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo 2028585, Japan
| | - Keita Miura
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Fukushima 9638642, Japan
| | | |
Collapse
|
14
|
Morales AE, Soto N, Delgado C, Hernández Y, Carrillo L, Ferrero C, Enríquez GA. Expression of Mn-sod, PAL1, aos1 and HPL genes in soybean plants overexpressing the NmDef02 defensin. Transgenic Res 2023; 32:223-233. [PMID: 37131050 DOI: 10.1007/s11248-023-00350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Plant defensins are a potential tool in crop improvement programs through biotechnology. Their antifungal action makes them attractive molecules for the production of transgenic plants. Information is currently lacking on what happens to the expression of defense genes in transgenic plants that overexpress a defensin. Here we show the relative expression of four defense-related genes: Mn-sod, PAL1, aos1 and HPL evaluated in two transgenic soybean events (Def1 and Def17) constitutively expressing the NmDef02 defensin gene from Nicotiana megalosiphon. The expression of these defense genes showed a differential profile in the transgenic events, with the increased expression of the aos1 gene and the repression of the Mn-sod gene in both events, when compared to the non-transgenic control. Furthermore, the expression of the PAL1 gene only increased in the Def17 event. The results indicate that although there were some changes in the expression of defense genes in transgenic plants overexpressing the defensin NmDef02; the morphoagronomic parameters evaluated were similar to the non-transgenic control. Understanding the molecular changes that occur in these transgenic plants could be of interest in the short, medium and long term.
Collapse
Affiliation(s)
- Alejandro E Morales
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Natacha Soto
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Celia Delgado
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Yuniet Hernández
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Leonardo Carrillo
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Camilo Ferrero
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Gil A Enríquez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| |
Collapse
|
15
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
16
|
Li W, Cui Z, Jiang Y, Aisikaer A, Wu Q, Zhang F, Wang W, Bo Y, Yang H. Dietary Guanidine Acetic Acid Improves Ruminal Antioxidant Capacity and Alters Rumen Fermentation and Microflora in Rapid-Growing Lambs. Antioxidants (Basel) 2023; 12:antiox12030772. [PMID: 36979020 PMCID: PMC10044800 DOI: 10.3390/antiox12030772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Guanidine acetic acid (GAA) has been reported to improve growth performance, nutrient utilization, and meat quality in livestock. This study aimed to investigate whether coated GAA (CGAA) in comparison with uncoated GAA (UGAA) could have different effects on rumen fermentation, antioxidant capacity, and microflora composition in the rumen. Seventy-two lambs were randomly arranged in a 2 × 3 factorial experiment design with two diets of different forage type (OH: oaten hay; OHWS: oaten hay plus wheat silage) and three GAA treatments within each diet (control, diet without GAA addition; UGAA, uncoated GAA; CGAA, coated GAA). The whole feeding trial lasted for 120 days. The lambs in the OH group presented lower total volatile fatty acid (VFA), alpha diversity, Firmicutes, NK4A214_group, and Lachnospiraceae_NK3A20_group than those on the OHWS diet in the last 60 days of the feeding stage (p < 0.05). Regardless of what GAA form was added, dietary GAA supplementation increased the total VFA, microbial crude protein (MCP), adenosine triphosphate (ATP), and antioxidant capacity in rumen during lamb feedlotting (p < 0.05). However, molar propionate proportion, acetate:propionate ratio (A:P), and relative Succiniclasticum abundance decreased with GAA addition in the first 60 days of the growing stage, while the molar butyrate proportion and NK4A214_group (p < 0.05) in response to GAA addition increased in the last 60 days of feeding. These findings indicated that dietary GAA enhanced antioxidant capacity and fermentation characteristics in the rumen, but the addition of uncoated GAA in diets might cause some dysbacteriosis of the rumen microbiota.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaowen Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ailiyasi Aisikaer
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qichao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weikang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yukun Bo
- Zhangjiakou Animal Husbandry Technology Promotion Institution, Zhangjiakou 075000, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
18
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity. Int J Mol Sci 2023; 24:1841. [PMID: 36768162 PMCID: PMC9916283 DOI: 10.3390/ijms24031841] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC—Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC—Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
19
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
20
|
Pavliuchenko N, Duric I, Kralova J, Fabisik M, Spoutil F, Prochazka J, Kasparek P, Pokorna J, Skopcova T, Sedlacek R, Brdicka T. Molecular interactions of adaptor protein PSTPIP2 control neutrophil-mediated responses leading to autoinflammation. Front Immunol 2022; 13:1035226. [PMID: 36605205 PMCID: PMC9807597 DOI: 10.3389/fimmu.2022.1035226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Autoinflammatory diseases are characterized by dysregulation of innate immune system leading to spontaneous sterile inflammation. One of the well-established animal models of this group of disorders is the mouse strain Pstpip2cmo . In this strain, the loss of adaptor protein PSTPIP2 leads to the autoinflammatory disease chronic multifocal osteomyelitis. It is manifested by sterile inflammation of the bones and surrounding soft tissues of the hind limbs and tail. The disease development is propelled by elevated production of IL-1β and reactive oxygen species by neutrophil granulocytes. However, the molecular mechanisms linking PSTPIP2 and these pathways have not been established. Candidate proteins potentially involved in these mechanisms include PSTPIP2 binding partners, PEST family phosphatases (PEST-PTPs) and phosphoinositide phosphatase SHIP1. Methods To address the role of these proteins in PSTPIP2-mediated control of inflammation, we have generated mouse strains in which PEST-PTP or SHIP1 binding sites in PSTPIP2 have been disrupted. In these mouse strains, we followed disease symptoms and various inflammation markers. Results Our data show that mutation of the PEST-PTP binding site causes symptomatic disease, whereas mice lacking the SHIP1 interaction site remain asymptomatic. Importantly, both binding partners of PSTPIP2 contribute equally to the control of IL-1β production, while PEST-PTPs have a dominant role in the regulation of reactive oxygen species. In addition, the interaction of PEST-PTPs with PSTPIP2 regulates the production of the chemokine CXCL2 by neutrophils. Its secretion likely creates a positive feedback loop that drives neutrophil recruitment to the affected tissues. Conclusions We demonstrate that PSTPIP2-bound PEST-PTPs and SHIP1 together control the IL-1β pathway. In addition, PEST-PTPs have unique roles in the control of reactive oxygen species and chemokine production, which in the absence of PEST-PTP binding to PSTPIP2 shift the balance towards symptomatic disease.
Collapse
Affiliation(s)
- Nataliia Pavliuchenko
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czechia
| | - Iris Duric
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czechia
| | - Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia,Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia,Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Tomas Brdicka,
| |
Collapse
|
21
|
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role? Int J Mol Sci 2022; 23:ijms232315272. [PMID: 36499596 PMCID: PMC9739588 DOI: 10.3390/ijms232315272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Prieux-Klotz C, Chédotal H, Zoumpoulaki M, Chouzenoux S, Chêne C, Lopez-Sanchez A, Thomas M, Ranjan Sahoo P, Policar C, Batteux F, Bertrand HC, Nicco C, Coriat R. A New Manganese Superoxide Dismutase Mimetic Improves Oxaliplatin-Induced Neuropathy and Global Tolerance in Mice. Int J Mol Sci 2022; 23:12938. [PMID: 36361753 PMCID: PMC9658974 DOI: 10.3390/ijms232112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Reactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O2•-) to hydrogen peroxide (H2O2) and dioxygen. Using the differential in the level of oxidative stress between normal and cancer cells, SOD mimetics can show an antitumoral effect and prevent oxaliplatin-induced peripheral neuropathy. New Pt(IV) conjugate prodrugs (OxPt-x-Mn1C1A (x = 1, 1-OH, 2)), combining oxaliplatin and a Mn SOD mimic (MnSODm Mn1C1A) with a covalent link, were designed. Their stability in buffer and in the presence of sodium ascorbate was studied. In vitro, their antitumoral activity was assessed by the viability and ROS production of tumor cell lines (CT16, HCT 116, KC) and fibroblasts (primary culture and NIH 3T3). In vivo, a murine model of colorectal cancer was created with subcutaneous injection of CT26 cells in Balb/c mice. Tumor size and volume were measured weekly in four groups: vehicle, oxaliplatin, and oxaliplatin associated with MnSODm Mn1C1A and the bis-conjugate OxPt-2-Mn1C1A. Oxaliplatin-induced peripheral neuropathy (OIPN) was assessed using a Von Frey test reflecting chronic hypoalgesia. Tolerance to treatment was assessed with a clinical score including four items: weight loss, weariness, alopecia, and diarrhea. In vitro, Mn1C1A associated with oxaliplatin and Pt(IV) conjugates treatment induced significantly higher production of H2O2 in all cell lines and showed a significant improvement of the antitumoral efficacy compared to oxaliplatin alone. In vivo, the association of Mn1C1A to oxaliplatin did not decrease its antitumoral activity, while OxPt-2-Mn1C1A had lower antitumoral activity than oxaliplatin alone. Mn1C1A associated with oxaliplatin significantly decreased OIPN and also improved global clinical tolerance of oxaliplatin. A neuroprotective effect was observed, associated with a significantly improved tolerance to oxaliplatin without impairing its antitumoral activity.
Collapse
Affiliation(s)
- Caroline Prieux-Klotz
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Percy Military Hospital, Gastroenterology, 101 Avenue Henri Barbusse, 92140 Clamart, France
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Henri Chédotal
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Martha Zoumpoulaki
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sandrine Chouzenoux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Charlotte Chêne
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Alvaro Lopez-Sanchez
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marine Thomas
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Priya Ranjan Sahoo
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Hélène C. Bertrand
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Carole Nicco
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Romain Coriat
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Gastroenterology, Cochin Hospital AP-HP, Université de Paris, 75014 Paris, France
| |
Collapse
|
23
|
Murthy S, Baruah S, Bowen JL, Keck K, Wagner BA, Buettner GR, Sykes DB, Klesney-Tait J. TREM-1 is required for enhanced OpZ-induced superoxide generation following priming. J Leukoc Biol 2022; 112:457-473. [PMID: 35075692 PMCID: PMC9308838 DOI: 10.1002/jlb.3a0421-212r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/21/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammatory agents, microbial products, or stromal factors pre-activate or prime neutrophils to respond to activating stimuli in a rapid and aggressive manner. Primed neutrophils exhibit enhanced chemotaxis, phagocytosis, and respiratory burst when stimulated by secondary activating stimuli. We previously reported that Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) mediates neutrophil effector functions such as increased superoxide generation, transepithelial migration, and chemotaxis. However, it is unclear whether TREM-1 is required for the process of priming itself or for primed responses to subsequent stimulation. To investigate this, we utilized in vitro and in vivo differentiated neutrophils that were primed with TNF-α and then stimulated with the particulate agonist, opsonized zymosan (OpZ). Bone marrow progenitors isolated from WT and Trem-1-/- mice were transduced with estrogen regulated Homeobox8 (ER-Hoxb8) fusion transcription factor and differentiated in vitro into neutrophils following estrogen depletion. The resulting neutrophils expressed high levels of TREM-1 and resembled mature in vivo differentiated neutrophils. The effects of priming on phagocytosis and oxidative burst were determined. Phagocytosis did not require TREM-1 and was not altered by priming. In contrast, priming significantly enhanced OpZ-induced oxygen consumption and superoxide production in WT but not Trem-1-/- neutrophils indicating that TREM-1 is required for primed oxidative burst. TREM-1-dependent effects were not mediated during the process of priming itself as priming enhanced degranulation, ICAM-1 shedding, and IL-1ß release to the same extent in WT and Trem-1-/- neutrophils. Thus, TREM-1 plays a critical role in primed phagocytic respiratory burst and mediates its effects following priming.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sankar Baruah
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jayden L. Bowen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Interdisciplinary Graduate Program in Immunology, Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kathy Keck
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Brett A. Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston and Harvard Stem Cell Institute, Cambridge, MA
| | - Julia Klesney-Tait
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
24
|
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 23:499-515. [PMID: 35190722 DOI: 10.1038/s41580-022-00456-z] [Citation(s) in RCA: 723] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Navdeep S Chandel
- Division of Pulmonary & Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christine Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
25
|
Wawi MJ, Mahler C, Inguimbert N, Marder TB, Ribou AC. A new mitochondrial probe combining pyrene and a triphenylphosphonium salt for cellular oxygen and free radical detection via fluorescence lifetime measurements. Free Radic Res 2022; 56:258-272. [PMID: 35772434 DOI: 10.1080/10715762.2022.2077202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To improve and diversify the quantification of reactive oxygen species (ROS) in mitochondria of single cells, we connected pyrene derivatives (PB) to a triphenylphosphonium salt (TPP+) as a mitochondrial vector forming PB-TPP+ probes. Two pyrene isomers with the n-butyltriphenylphosphonium moieties attached at their 1- or 2- positions were synthesized and characterized. Using the long fluorescence lifetime of pyrene, it was possible to monitor the variation of cellular free radicals and oxygen and to follow the reversibility of both quenchers in real-time. We compared the behavior of these new probes to the previously published pyrene-probes, functionalized by a mitochondrial-penetrating peptide, allowing their transfer to the mitochondria (Mito-PB) or to the cytosolic membrane for pyrene butyric acid (PBA). The high cellular uptake of the new probes allows cells to be loaded with an initial concentration 40 times lower than that for Mito-PB probes, without inducing perturbations in cell growth. The variation in free radicals and oxygen levels was monitored within cells under different stress conditions through the fluorescence lifetime of the new TPP+-based probes giving comparable results to those obtained for MPP-based probes. However, at a loading concentration as low as 25 nM, our technique allows the detection of increased production of free radicals in the mitochondria in the presence of the TPP+ vector, a warning to the user of this well-known vector.
Collapse
Affiliation(s)
- Mohamad Jamal Wawi
- Espace-Dev, Univ Montpellier, IRD, Univ Guyane, Univ la Réunion, Univ Antilles, Montpellier, France.,Laboratoire IMAGES-ESPACE-DEV, Univ. Perpignan Via Domitia, Perpignan, France
| | - Christoph Mahler
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, Perpignan, France
| | - Todd B Marder
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Anne-Cécile Ribou
- Espace-Dev, Univ Montpellier, IRD, Univ Guyane, Univ la Réunion, Univ Antilles, Montpellier, France.,Laboratoire IMAGES-ESPACE-DEV, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
26
|
Abdulla JM, Al-Okaily BN. Histomorphometric and Histopathological Alterations of Rat Testis Following Exposure to Hydrogen Peroxide: Protective Role of Resveratrol Supplement. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.30539/ijvm.v46i1.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Resveratrol (RS) is widely used in medical fields as an antioxidant. Current research investigated the protective role of RS supplement on histomorphometric and histopathological alterations in testes were caused by hydrogen peroxide (H2O2) of rats as an animal model. Thirty-two adult rats were utilized in this study, divided randomly into 4 equal groups as follows. The group C was given tap water only and served as control, the 2nd group (G1) was given 0.5% of H2O2 of tap water, the 3rd group (G2) was given tap water containing 0.5% of H2O2 and intubated RS supplement at 87 mg/kg BW, and 4th group intubated RS supplement 87 mg/kg BW. after 56 days of treatment, rats were euthanized, dissected then, specimens of testes tissue were collected for histomorphometric and histopathological evaluation. Our results showed that administration of H2O2 caused a significant histomorphometric with histopathological changes in the form of a thickness of fibrous tunica albuginea, disarrangement of germ cells, necrosis of spermatogonia, edema, and loss of sperms as compared to other groups. Meanwhile, these histological alterations were partially attenuated in the G2 group that intubated resveratrol. Thus, the current study concluded that resveratrol may have therapeutic value in the treatment of induced testicular injury by H2O2 due to its antioxidant activity and attenuation of harmful effects of oxidative stress through a mechanism that should be elucidated in future studies.
Collapse
|
27
|
Yang Y, Nourian Z, Li M, Sun Z, Zhang L, Davis MJ, Meininger GA, Wu J, Braun AP, Hill MA. Modification of Fibronectin by Non-Enzymatic Glycation Impairs K + Channel Function in Rat Cerebral Artery Smooth Muscle Cells. Front Physiol 2022; 13:871968. [PMID: 35832482 PMCID: PMC9272009 DOI: 10.3389/fphys.2022.871968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Fibronectin (FN) enhances K+ channel activity by integrin-mediated mechanisms. As vascular smooth muscle (VSM) K+ channels mediate vasodilation, we hypothesized that modification of fibronectin, via advanced non-enzymatic glycation, would alter signaling of this extracellular matrix protein through these channels. Bovine FN (1 mg/ml) was glycated (gFN) for 5 days using methylglyoxal (50 mM), and albumin was similarly glycated as a non-matrix protein control. VSM cells were isolated from rat cerebral arteries for measurement of macroscopic K+ channel activity using whole cell patch clamp methodology. Pharmacological inhibitors, iberiotoxin (0.1 μM) and 4-aminopyridine (0.1 mM), were used to identify contributions of large-conductance, Ca2+-activated, K+ channels and voltage-gated K+ channels, respectively. Compared with baseline, native FN enhanced whole cell K+ current in a concentration-dependent manner, whereas gFN inhibited basal current. Furthermore, native albumin did not enhance basal K+ current, but the glycated form (gAlb) caused inhibition. gFN was shown to impair both the Kv and BKCa components of total macroscopic K+ current. Anti-integrin α5 and β1 antibodies attenuated the effects of both FN and gFN on macroscopic K+ current at +70 mV. Consistent with an action on BKCa activity, FN increased, whereas gFN decreased the frequency of spontaneous transient outward current (STOCs). In contrast, gAlb inhibited whole cell K+ current predominantly through Kv, showing little effect on STOCs. A function-blocking, anti-RAGE antibody partially reversed the inhibitory effects of gFN, suggesting involvement of this receptor. Further, gFN caused production of reactive oxygen species (ROS) by isolated VSMCs as revealed by the fluorescent indicator, DHE. Evoked ROS production was attenuated by the RAGE blocking antibody. Collectively, these studies identify ion channel-related mechanisms (integrin and ROS-mediated) by which protein glycation may modify VSMC function.
Collapse
Affiliation(s)
- Yan Yang
- Dalton Cardiovascular Research Center, Columbia, MO, United States
| | - Zahra Nourian
- Dalton Cardiovascular Research Center, Columbia, MO, United States
| | - Min Li
- Dalton Cardiovascular Research Center, Columbia, MO, United States
| | - Zhe Sun
- Dalton Cardiovascular Research Center, Columbia, MO, United States
| | | | - Michael J. Davis
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Jianbo Wu
- Southwest Medical University, Luzhou, China
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
28
|
Effects of Fermented Herbal Tea Residue on Serum Indices and Fecal Microorganisms of Chuanzhong Black Goats. Microorganisms 2022; 10:microorganisms10061228. [PMID: 35744746 PMCID: PMC9228005 DOI: 10.3390/microorganisms10061228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Herbal tea residues (HTRs) are a by−product of herbal tea processing that contains many nutrients and active substances but are often discarded as waste. The main aim of the present study was to determine the food safety of HTRs and lay the foundation for its use as a novel feed resource for goats. In this study, discarded HTRs were fermented and then fed to 33 female Chuanzhong black goats (121 ± 4.00 days) with similar weight (9.33 ± 0.95 kg) and genetic background, which were divided into three groups (fermented herbal tea residue (FHTR) replacement of 0%, 15% and 30% of the forage component of the diet). The feeding experiment lasted for 35 days. On day 35, our findings indicated that the concentrations of hydroxyl radicals and urea increased linearly, and the concentrations of glutathione peroxidase increased quadratically with the increase in FHTR. In addition, we investigated the fecal microbiota composition of eight Chuanzhong black goats in the control, 15% and 30% FHTR replacement groups and found that FHTR had no remarkable effect on the fecal microbiota composition. Results indicated that goat physiological functions remained stable after FHTR was added to the diet.
Collapse
|
29
|
Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, Gems D, Kagan VE, Kalyanaraman B, Larsson NG, Milne GL, Nyström T, Poulsen HE, Radi R, Van Remmen H, Schumacker PT, Thornalley PJ, Toyokuni S, Winterbourn CC, Yin H, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 2022; 4:651-662. [PMID: 35760871 PMCID: PMC9711940 DOI: 10.1038/s42255-022-00591-z] [Citation(s) in RCA: 596] [Impact Index Per Article: 198.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/19/2022] [Indexed: 01/14/2023]
Abstract
Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Hülya Bayir
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vsevolod Belousov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russian Federation
| | | | - Kelvin J A Davies
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tobias P Dick
- German Cancer Research Center, DKFZ-ZMBH Alliance and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Henry J Forman
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Yvonne Janssen-Heininger
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - David Gems
- University of Vermont, Burlington, VT, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Rafael Radi
- Universidad de la República, Montevideo, Uruguay
| | | | | | - Paul J Thornalley
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Shinya Toyokuni
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Huiyong Yin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Barry Halliwell
- Department of Biochemistry and Life Sciences Institute Neurobiogy Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
30
|
Santamaria-Juarez C, Atonal-Flores F, Diaz A, Sarmiento-Ortega VE, Garcia-Gonzalez M, Aguilar-Alonso P, Lopez-Lopez G, Brambila E, Treviño S. Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 2022; 128:748-756. [PMID: 32067514 DOI: 10.1080/13813455.2020.1726403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress. OBJECTIVE In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress. METHODS Male Wistar rats were exposed to Cd (32.5-ppm) for 2-months. The zoometry and blood pressure were evaluated, also glucose and lipids profiles in serum and vascular reactivity evaluated in isolated aorta rings. RESULTS Rats exposed to Cd showed an increase of blood pressure and biochemical parameters similar to metabolic syndrome. Additionally, rats exposed to Cd showed a reduced relaxation in aortic rings, which was reversed after the addition of SOD and apocynin an inhibitor of NADPH. CONCLUSION The Cd-exposition induced hypertension and endothelial injury by that modifying the vascular relaxation and develop oxidative stress via NADPH oxidase, superoxide and loss nitric oxide bioavailability.
Collapse
Affiliation(s)
- Celeste Santamaria-Juarez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Fausto Atonal-Flores
- Department of Physiology, Faculty of Medicine, University Autonomous of Puebla, The Volcano, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Victor E Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Miguel Garcia-Gonzalez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| |
Collapse
|
31
|
Suzen S, Tucci P, Profumo E, Buttari B, Saso L. A Pivotal Role of Nrf2 in Neurodegenerative Disorders: A New Way for Therapeutic Strategies. Pharmaceuticals (Basel) 2022; 15:ph15060692. [PMID: 35745610 PMCID: PMC9227112 DOI: 10.3390/ph15060692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Clinical and preclinical research indicates that neurodegenerative diseases are characterized by excess levels of oxidative stress (OS) biomarkers and by lower levels of antioxidant protection in the brain and peripheral tissues. Dysregulations in the oxidant/antioxidant balance are known to be a major factor in the pathogenesis of neurodegenerative diseases and involve mitochondrial dysfunction, protein misfolding, and neuroinflammation, all events that lead to the proteostatic collapse of neuronal cells and their loss. Nuclear factor-E2-related factor 2 (Nrf2) is a short-lived protein that works as a transcription factor and is related to the expression of many cytoprotective genes involved in xenobiotic metabolism and antioxidant responses. A major emerging function of Nrf2 from studies over the past decade is its role in resistance to OS. Nrf2 is a key regulator of OS defense and research supports a protective and defending role of Nrf2 against neurodegenerative conditions. This review describes the influence of Nrf2 on OS and in what way Nrf2 regulates antioxidant defense for neurodegenerative conditions. Furthermore, we evaluate recent research and evidence for a beneficial and potential role of specific Nrf2 activator compounds as therapeutic agents.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, 06100 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-391-5844
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
32
|
Yang J, Fang L, Lu H, Liu C, Wang J, Wu D, Min W. Walnut-Derived Peptide Enhances Mitophagy via JNK-Mediated PINK1 Activation to Reduce Oxidative Stress in HT-22 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2630-2642. [PMID: 35187930 DOI: 10.1021/acs.jafc.2c00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitophagy has a neuroprotective effect on reactive oxygen species (ROS)-induced neurodegenerative diseases. The walnut-derived polypeptide (TW-7) has antioxidant activity and protects nerves by promoting autophagy. However, its action mechanism against oxidative stress through mitophagy remains obscure. Therefore, we aimed to assess the effects of TW-7 on HT-22 cells under oxidative stress. Mitochondrial ultrastructure and cristae number were observed by transmission electron microscopy. The results showed that TW-7 (100 μM) restored the fluorescence intensity of the mitochondrial membrane potential to 0.99 ± 0.04 (P < 0.05), decreased H2O2-induced opening of mitochondrial permeability transition pores, and inhibited mitochondrial bioenergetic deficits. Moreover, it significantly increased activities of antioxidant enzymes to 186.88 ± 5.40 U/mgprot, 40.08 ± 0.87 mU/mgprot, and 23.57 ± 0.77 U/mgprot (P < 0.05), based on superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) assay results, respectively. Consistently, it decreased cellular and mitochondrial ROS levels by 51.71 ± 0.81 and 49.75 ± 0.69% (P < 0.05). TW-7 also downregulated C-Jun N-terminal kinase (JNK) phosphorylation and activated PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy in H2O2-induced HT-22 cells treated with JNK activator (anisomycin) and inhibitor (SP600125). Furthermore, TW-7 inhibited the mitochondrial apoptosis pathway by downregulation of the cytoplasmic cytochrome C, caspase-9, and cleaved-caspase-3 expression. Additionally, BDNF and SNAP-25 levels significantly increased to protect the synaptic function. Collectively, TW-7 improved oxidative stress-mediated nerve cell injury via JNK-regulated PINK1-mediated mitophagy.
Collapse
Affiliation(s)
- Jingqi Yang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Hongyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| |
Collapse
|
33
|
Sahlender B, Windolf J, Suschek CV. Superoxide dismutase and catalase significantly improve the osteogenic differentiation potential of osteogenetically compromised human adipose tissue-derived stromal cells in vitro. Stem Cell Res 2022; 60:102708. [DOI: 10.1016/j.scr.2022.102708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 01/28/2023] Open
|
34
|
Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, Deglasse JP, Tiburcy M, Chow PH, Jonas JC, Gilon P, Steinhorn B, Michel T, Beauloye C, Bertrand L, Farah C, Dei Zotti F, Debaix H, Bouzin C, Brusa D, Horman S, Vanoverschelde JL, Bergmann O, Gilis D, Rooman M, Ghigo A, Geninatti-Crich S, Yool A, Zimmermann WH, Roderick HL, Devuyst O, Balligand JL. Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 2021; 12:12/564/eaay2176. [PMID: 33028705 DOI: 10.1126/scitranslmed.aay2176] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/24/2019] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but strategies using systemic antioxidants have generally failed to prevent it. We sought to identify key regulators of oxidant-mediated cardiac hypertrophy amenable to targeted pharmacological therapy. Specific isoforms of the aquaporin water channels have been implicated in oxidant sensing, but their role in heart muscle is unknown. RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalized with NADPH oxidase-2 and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2 Deletion of Aqp1 or selective blockade of the AQP1 intrasubunit pore inhibited H2O2 transport in mouse and human cells and rescued the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. Treatment of mice with a clinically approved AQP1 inhibitor, Bacopaside, attenuated cardiac hypertrophy. We conclude that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 by the water channel AQP1 and that inhibitors of AQP1 represent new possibilities for treating hypertrophic cardiomyopathies.
Collapse
Affiliation(s)
- Virginie Montiel
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Ramona Bella
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Hrag Esfahani
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Delphine De Mulder
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Emma L Robinson
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KULeuven, 3000 Leuven, Belgium
| | - Jean-Philippe Deglasse
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jean-Christophe Jonas
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Patrick Gilon
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Benjamin Steinhorn
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 2115, USA
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 2115, USA
| | - Christophe Beauloye
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Luc Bertrand
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Charlotte Farah
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Flavia Dei Zotti
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Huguette Debaix
- Institute of Experimental and Clinical Research (IREC), Nephrology (NEFR), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.,Institute of Physiology, University of Zürich, CH 8057 Zürich, Switzerland
| | - Caroline Bouzin
- 2IP-IREC Imaging Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Sandrine Horman
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dimitri Gilis
- Computational Biology and Bioinformatics (3BIO-BioInfo), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics (3BIO-BioInfo), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Università di Torino, 10124 Torino, Italy
| | | | - Andrea Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KULeuven, 3000 Leuven, Belgium
| | - Olivier Devuyst
- Institute of Experimental and Clinical Research (IREC), Nephrology (NEFR), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.,Institute of Physiology, University of Zürich, CH 8057 Zürich, Switzerland
| | - Jean-Luc Balligand
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| |
Collapse
|
35
|
Maraldi T, Angeloni C, Prata C, Hrelia S. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function. Antioxidants (Basel) 2021; 10:973. [PMID: 34204425 PMCID: PMC8234808 DOI: 10.3390/antiox10060973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
One of the major sources of reactive oxygen species (ROS) generated within stem cells is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (NOXs), which are critical determinants of the redox state beside antioxidant defense mechanisms. This balance is involved in another one that regulates stem cell fate: indeed, self-renewal, proliferation, and differentiation are decisive steps for stem cells during embryo development, adult tissue renovation, and cell therapy application. Ex vivo culture-expanded stem cells are being investigated for tissue repair and immune modulation, but events such as aging, senescence, and oxidative stress reduce their ex vivo proliferation, which is crucial for their clinical applications. Here, we review the role of NOX-derived ROS in stem cell biology and functions, focusing on positive and negative effects triggered by the activity of different NOX isoforms. We report recent findings on downstream molecular targets of NOX-ROS signaling that can modulate stem cell homeostasis and lineage commitment and discuss the implications in ex vivo expansion and in vivo engraftment, function, and longevity. This review highlights the role of NOX as a pivotal regulator of several stem cell populations, and we conclude that these aspects have important implications in the clinical utility of stem cells, but further studies on the effects of pharmacological modulation of NOX in human stem cells are imperative.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
36
|
Matute A, Tabart J, Cheramy-Bien JP, Kevers C, Dommes J, Defraigne JO, Pincemail J. Ex Vivo Antioxidant Capacities of Fruit and Vegetable Juices. Potential In Vivo Extrapolation. Antioxidants (Basel) 2021; 10:770. [PMID: 34066070 PMCID: PMC8151340 DOI: 10.3390/antiox10050770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In support of claims that their products have antioxidant properties, the food industry and dietary supplement manufacturers rely solely on the in vitro determination of the ORAC (oxygen radical antioxidant capacity) value, despite its acknowledged lack of any in vivo relevance. It thus appears necessary to use tests exploiting biological materials (blood, white blood cells) capable of producing physiological free radicals, in order to evaluate more adequately the antioxidant capacities of foods such as fruit and vegetable juices. MATERIALS Two approaches to assessing the antioxidant capacities of 21 commercial fruit and vegetable juices were compared: the ORAC assay and the "PMA-whole blood assay," which uses whole blood stimulated by phorbol myristate acetate to produce the superoxide anion. We described in another paper the total polyphenol contents (TPCs) and individual phenolic compound contents of all the juices were investigated. RESULTS Ranking of the juices from highest to lowest antioxidant capacity differed considerably according to the test used, so there was no correlation (r = 0.33, p = 0.13) between the two assays when considering all juices. Although the results of the ORAC assay correlated positively with TPC (r = 0.50, p = 0.02), a much stronger correlation (r = 0.70, p = 0.004) emerged between TPC and % superoxide anion inhibition. In the PMA-whole blood assay, peonidin-3-O-glucoside, epigallocatechin gallate, catechin, and quercetin present in juices were found to inhibit superoxide anion production at concentrations below 1 µM, with a strong positive correlation. CONCLUSIONS Associated with the determination of total and individual phenolic compounds contained in fruit and vegetable juices, the PMA-whole blood assay appears better than the ORAC assay for evaluating juice antioxidant capacity.
Collapse
Affiliation(s)
- Alexis Matute
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jessica Tabart
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jean-Paul Cheramy-Bien
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (J.-O.D.)
| | - Claire Kevers
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jacques Dommes
- Laboratory of Plant Molecular Biology and Biotechnology, UR InBios-Phytosystems, University of Liège, Sart Tilman, 4000 Liège, Belgium; (A.M.); (J.T.); (C.K.); (J.D.)
| | - Jean-Olivier Defraigne
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (J.-O.D.)
| | - Joël Pincemail
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (J.-O.D.)
| |
Collapse
|
37
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
38
|
Wawi MJ, Bijoux A, Inguimbert N, Mahler C, Wagner S, Marder TB, Ribou AC. Peptide Vectors Carry Pyrene to Cell Organelles Allowing Real-Time Quantification of Free Radicals in Mitochondria by Time-Resolved Fluorescence Microscopy. Chembiochem 2021; 22:1676-1685. [PMID: 33368947 DOI: 10.1002/cbic.202000845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Indexed: 11/09/2022]
Abstract
Real-time quantification of reactive nitrogen and oxygen species (ROS) in cells is of paramount importance as they are essential for cellular functions. Their excessive formation contributes to the dysfunction of cells and organisms, ultimately leading to cell death. As ROS are mostly produced in the mitochondria, we have synthesized a fluorescent probe able to reach this organelle to detect and quantify, in real time, the variation of ROS by time-resolved microfluorimetry. The new probes are based on the long fluorescence lifetime of pyrene butyric acid (PBA). Two PBA isomers, attached at their 1- or 2-positions to a peptide vector to target mitochondria, were compared and were shown to allow the measurement of free radical species and oxygen, but not non-radical species such as H2 O2 .
Collapse
Affiliation(s)
- Mohamad Jamal Wawi
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| | - Amandine Bijoux
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Christoph Mahler
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stephan Wagner
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| |
Collapse
|
39
|
Kwon N, Kim D, Swamy K, Yoon J. Metal-coordinated fluorescent and luminescent probes for reactive oxygen species (ROS) and reactive nitrogen species (RNS). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213581] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Miralda I, Uriarte SM. Periodontal Pathogens' strategies disarm neutrophils to promote dysregulated inflammation. Mol Oral Microbiol 2020; 36:103-120. [PMID: 33128827 PMCID: PMC8048607 DOI: 10.1111/omi.12321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Periodontitis is an irreversible, chronic inflammatory disease where inflammophilic pathogenic microbial communities accumulate in the gingival crevice. Neutrophils are a major component of the innate host response against bacterial challenge, and under homeostatic conditions, their microbicidal functions typically protect the host against periodontitis. However, a number of periodontal pathogens developed survival strategies to evade neutrophil microbicidal functions while promoting inflammation, which provides a source of nutrients for bacterial growth. Research on periodontal pathogens has largely focused on a few established species: Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. However, advances in culture-independent techniques have facilitated the identification of new bacterial species in periodontal lesions, such as the two Gram-positive anaerobes, Filifactor alocis and Peptoanaerobacter stomatis, whose characterization of pathogenic potential has not been fully described. Additionally, there is not a full understanding of the pathogenic mechanisms used against neutrophils by organisms that are abundant in periodontal lesions. This presents a substantial barrier to the development of new approaches to prevent or ameliorate the disease. In this review, we first summarize the neutrophil functions affected by the established periodontal pathogens listed above, denoting unknown areas that still merit a closer look. Then, we review the literature on neutrophil functions and the emerging periodontal pathogens, F. alocis and P. stomatis, comparing the effects of the emerging microbes to that of established pathogens, and speculate on the contribution of these putative pathogens to the progression of periodontal disease.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
41
|
Ishola IO, Olubodun-Obadun TG, Ojulari MA, Adeyemi OO. Rutin ameliorates scopolamine-induced learning and memory impairments through enhancement of antioxidant defense system and cholinergic signaling. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0118/dmdi-2020-0118.xml. [PMID: 32990646 DOI: 10.1515/dmdi-2020-0118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
Abstract
Objectives The brain's cholinergic system occupies a central role in normal cognition and age-related cognitive decline, including Alzheimer's disease (AD). This study sought to investigate the role of antioxidant defense and cholinergic systems on rutin-induced antiamnesia in mice. Methods Rutin (1, 5, or 50 mg/kg, p.o.) or vehicle (10 ml/kg, p.o.) was administered for three consecutive days. One hour post-treatment on day 3, scopolamine (3 mg/kg, i.p) was given, 5 min post-scopolamine injection, open field, Y-maze, or Morris water maze (MWM) (five days consecutive training sessions) tasks was carried out. The mice were sacrificed on day 7 to assays for biomarkers of oxidative stress and cholinergic system. Results Scopolamine significantly reduced spontaneous alternation behavior in Y-maze and prolonged escape latency in MWM tasks when compared to vehicle-treated control indicative of working memory and spatial learning deficits. However, the pretreatment of mice with rutin (1, 5, or 50 mg/kg) prevented scopolamine-induced working memory and spatial learning impairments without affecting spontaneous locomotor activity. Scopolamine-induced nitrosative/oxidative stress and increased acetylcholinesterase activity in the prefrontal cortex and hippocampus were significantly attenuated by the pretreatment of mice with rutin. Conclusions rutin restored cognitive function in scopolamine-induced amnesia through enhancement of antioxidant defense and cholinergic systems.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Mariam A Ojulari
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
42
|
Luong NC, Abiko Y, Shibata T, Uchida K, Warabi E, Suzuki M, Noguchi T, Matsuzawa A, Kumagai Y. Redox cycling of 9,10-phenanthrenequinone activates epidermal growth factor receptor signaling through S-oxidation of protein tyrosine phosphatase 1B. J Toxicol Sci 2020; 45:349-363. [PMID: 32493877 DOI: 10.2131/jts.45.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
9,10-Phenanthrenequinone (9,10-PQ) is a polycyclic aromatic hydrocarbon quinone contaminated in diesel exhaust particles and particulate matter 2.5. It is an efficient electron acceptor that induces redox cycling with electron donors, resulting in excessive reactive oxygen species and oxidized protein production in cells. The current study examined whether 9,10-PQ could activate epidermal growth factor receptor (EGFR) signaling in A431 cells through S-oxidation of its negative regulators such as protein tyrosine phosphatase (PTP) 1B. 9,10-PQ oxidized recombinant human PTP1B at Cys215 and inhibited its catalytic activity, an effect that was blocked by catalase (CAT), whereas cis-9,10-dihydroxy-9,10-dihydrophenanthrene (DDP), which lacks redox cycling activity, had no effect on PTP1B activity. Exposure of A431 cells to 9,10-PQ, but not DDP, activated signaling through EGFR and its downstream extracellular signal-regulated kinase 1/2 (ERK1/2), coupled with a decrease of cellular PTP activity. Immunoprecipitation and UPLC-MSE revealed that PTP1B easily undergoes oxidation during exposure of A431 cells to 9,10-PQ. Pretreatment with polyethylene glycol conjugated with CAT (PEG-CAT) abolished 9,10-PQ-generated H2O2 production and significantly blocked the activation of EGFR-ERK1/2 signaling by 9,10-PQ, indicating the involvement of H2O2 in the activation because scavenging agents for hydroxyl radicals had no effect on the redox signal activation. These results suggest that such an air pollutant producing H2O2, activates EGFR-ERK1/2 signaling, presumably through the S-oxidation of PTPs such as PTP1B, and activation of the signal cascade may contribute, at least in part, to cellular responses in A431 cells.
Collapse
Affiliation(s)
- Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Yumi Abiko
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | | | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University.,Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Eiji Warabi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | - Midori Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| |
Collapse
|
43
|
Mishin V, Heck DE, Laskin DL, Laskin JD. The amplex red/horseradish peroxidase assay requires superoxide dismutase to measure hydrogen peroxide in the presence of NAD(P)H. Free Radic Res 2020; 54:620-628. [PMID: 32912004 PMCID: PMC7874521 DOI: 10.1080/10715762.2020.1821883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
A sensitive fluorescence assay based on Amplex Red (AR) oxidation by horseradish peroxidase (AR/HRP) is described which continuously monitor rates of H2O2 production by microsomal enzymes in the presence of relatively high concentrations of NADPH. NADPH and NADH are known to interact with HRP and generate significant quantities of superoxide anion, a radical that spontaneously dismutates to form H2O2 which interferes with the AR/HRP assay. Microsomal enzymes generate H2O2 as a consequence of electron transfer from NADPH to cytochrome P450 hemoproteins with subsequent oxygen activation. We found that superoxide anion formation via the interaction of NADPH with HRP was inhibited by superoxide dismutase (SOD) without affecting H2O2 generation by microsomal enzymes. Using SOD in enzyme assays, we consistently detected rates of H2O2 production using microgram quantities of microsomal proteins (2.62 ± 0.20 picomol/min/µg protein for liver microsomes from naïve female rats, 12.27 ± 1.29 for liver microsomes from dexamethasone induced male rats, and 2.17 ± 0.25 picomol/min/µg protein for human liver microsomes). This method can also be applied to quantify rates of H2O2 production by oxidases where superoxide anion generation by NADH or NADPH and HRP can interfere with enzyme assays.
Collapse
Affiliation(s)
- Vladimir Mishin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Diane E Heck
- Department of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York 10595
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| |
Collapse
|
44
|
Miyano K, Okamoto S, Yamauchi A, Kawai C, Kajikawa M, Kiyohara T, Tamura M, Taura M, Kuribayashi F. The NADPH oxidase NOX4 promotes the directed migration of endothelial cells by stabilizing vascular endothelial growth factor receptor 2 protein. J Biol Chem 2020; 295:11877-11890. [PMID: 32616654 DOI: 10.1074/jbc.ra120.014723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Directed migration of endothelial cells (ECs) is an important process during both physiological and pathological angiogenesis. The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the EC surface is necessary for directed migration of these cells. Here, we used TAXIScan, an optically accessible real-time horizontal cell dynamics assay approach, and demonstrate that reactive oxygen species (ROS)-producing NADPH oxidase 4 (NOX4), which is abundantly expressed in ECs, mediates VEGF/VEGFR-2-dependent directed migration. We noted that a continuous supply of endoplasmic reticulum (ER)-retained VEGFR-2 to the plasma membrane is required to maintain VEGFR-2 at the cell surface. siRNA-mediated NOX4 silencing decreased the ER-retained form of VEGFR-2, resulting in decreased cell surface expression levels of the receptor. We also found that ER-localized NOX4 interacts with ER-retained VEGFR-2 and thereby stabilizes this ER-retained form at the protein level in the ER. We conclude that NOX4 contributes to the directed migration of ECs by maintaining VEGFR-2 levels at their surface.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, Tokyo, Japan
| | - Takuya Kiyohara
- Department of Cerebrovascular Disease and Neurology, Hakujyuji Hospital, Fukuoka, Japan
| | - Minoru Tamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Ehime, Japan
| | - Masahiko Taura
- Department of Otorhinolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | |
Collapse
|
45
|
Xu X, Xia C, Huang Y. Different roles of intracellular and extracellular reactive oxygen species of neutrophils in type 2 diabetic mice with invasive aspergillosis. Immunobiology 2020; 225:151996. [PMID: 32962816 DOI: 10.1016/j.imbio.2020.151996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Diabetic patients have an increased risk of invasive aspergillosis (IA), but the mechanism is still unclear. Reactive oxygen species (ROS) produced by neutrophils play a key role in defense against Aspergillus infection. Since diabetes mellitus affects the production of ROS from neutrophils, the purpose of this study is to investigate whether this effect is related to the susceptibility of diabetic mice to IA. C57BL/6 mice were used to establish type 2 diabetes mellitus (T2DM) model, and IA was induced by airway infection with Aspergillus fumigatus. After infection, the fungal load, neutrophil count and ROS content in the lung tissues of T2DM mice were higher than those in the control mice, and the inflammation of the lung tissue was more serious. After being exposed to hyphae in vitro, compared with the control group, neutrophils in T2DM mice had higher apoptosis rate and intracellular ROS content, as well as lower viability, extracellular ROS content and fungicidal ability. In summary, after T2DM mice are infected with A. fumigatus, the reduction of extracellular ROS produced by neutrophils may lead to a decrease in fungicidal ability, while the increase of intracellular ROS is related to neutrophil and lung tissue damage.
Collapse
Affiliation(s)
- Xianghua Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Changhai Road 168, Yangpu, Shanghai 200433, China.
| | - Chu Xia
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Changhai Road 168, Yangpu, Shanghai 200433, China.
| | - Yi Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Changhai Road 168, Yangpu, Shanghai 200433, China.
| |
Collapse
|
46
|
Calabria D, Guardigli M, Mirasoli M, Punzo A, Porru E, Zangheri M, Simoni P, Pagnotta E, Ugolini L, Lazzeri L, Caliceti C, Roda A. Selective chemiluminescent TURN-ON quantitative bioassay and imaging of intracellular hydrogen peroxide in human living cells. Anal Biochem 2020; 600:113760. [PMID: 32353372 DOI: 10.1016/j.ab.2020.113760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Hydrogen peroxide is an unavoidable by-product of cell metabolism, but when it is not properly managed by the body it can lead to several pathologies (e.g., premature aging, cardiovascular and neurodegenerative diseases, cancer). Several methods have been proposed for the measurement of intracellular H2O2 but none of them has proven to be selective. We developed a rapid all-in-one chemiluminescent bioassay for the quantification of H2O2 in living cells with a low limit of detection (0.15 μM). The method relies on an adamantylidene-1,2-dioxetane lipophilic probe containing an arylboronate moiety; upon reaction with H2O2 the arylboronate moiety is converted to the correspondent phenol and the molecule decomposes leading to an excited-state fragment that emits light. The probe has been successfully employed for quantifying intracellular H2O2 in living human endothelial, colon and keratinocyte cells exposed to different pro-oxidant stimuli (i.e., menadione, phorbol myristate acetate and lipopolysaccharide). Imaging experiments clearly localize the chemiluminescence emission inside the cells. Treatment of cells with antioxidant molecules leads to a dose-dependent decrease of intracellular H2O2 levels. As a proof of concept, the bioassay has been used to measure the antioxidant activity of extracts from Brassica juncea wastes, which contain glucosinolates, isothiocyanates and other antioxidant molecules.
Collapse
Affiliation(s)
- D Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - M Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126, Bologna, Italy; Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy; Biostructures and Biosystems National Institute (INBB), Viale Delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - M Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126, Bologna, Italy; Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy; Biostructures and Biosystems National Institute (INBB), Viale Delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - A Punzo
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - E Porru
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - M Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - P Simoni
- Biostructures and Biosystems National Institute (INBB), Viale Delle Medaglie D'Oro 305, 00136, Rome, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - E Pagnotta
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40238, Bologna, Italy
| | - L Ugolini
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40238, Bologna, Italy
| | - L Lazzeri
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40238, Bologna, Italy
| | - C Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy; Biostructures and Biosystems National Institute (INBB), Viale Delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - A Roda
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126, Bologna, Italy; Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy; Biostructures and Biosystems National Institute (INBB), Viale Delle Medaglie D'Oro 305, 00136, Rome, Italy; Interdepartmental Centre of Industrial Agrifood Research (CIRI Agrifood), Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521, Cesena, FC, Italy
| |
Collapse
|
47
|
Nasimian A, Farzaneh P, Tamanoi F, Bathaie SZ. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: The role of FOXO3a, PTEN and AKT signaling. Biochem Pharmacol 2020; 177:113999. [PMID: 32353423 DOI: 10.1016/j.bcp.2020.113999] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
Different groups have reported the Crocin anticancer activity. We previously showed Crocin-induced apoptosis in rat model of breast and gastric cancers, through the increased Bax/Bcl-2 ratio and caspases activity, as well as the cell cycle arrest in a p53-dependent manner. Since Crocin antioxidant activity has been shown under different conditions, it is interesting to elucidate its apoptotic mechanism. Here, we treated two breast cancer cell lines, MCF-7 and MDA-MB-231, with Crocin. MTT and ROS assays, cell cycle arrest, Bax/Bcl-2 ratio and caspase3 activity were determined. PARP cleavage and expression of some proteins were studied using Western blotting and immunofluorescence. The results indicated stepwise ROS generation in cytosol and mitochondria after Crocin treatment. Attenuating the early ROS level, using diphenyleneiodonium, diminished the sequent mitochondrial damage (decreasing Δψ) and downstream apoptotic signaling. Crocin induced ROS production, FOXO3a expression and nuclear translocation, and then, elevation of the expression of FOXO3a target genes (Bim and PTEN) and caspase-3 activation. Application of N-acetylcysteine blocked AKT/FOXO3a/Bim signaling. FOXO3a knockdown resulted in a decrease of Bim, PTEN and caspase 3, after Crocin treatment. PTEN knockdown caused a decrease in FOXO3a, Bim and caspase 3, in addition to an increase in p-AKT and p-FOXO3a, after Crocin treatment. In conclusion, Crocin induced apoptosis in MCF-7 and MDA-MB-231 human breast cancer cells. The ROS-activated FOXO3a cascade plays a central role in this process. FOXO3a-mediated upregulation of PTEN exerted a further inhibition of the AKT survival pathway. These data provide a new insight into applications of Crocin for cancer therapy.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14155-331, Tehran, Iran
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology & Molecular Genetics (MIMG), UCLA, LA, CA, USA
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14155-331, Tehran, Iran.
| |
Collapse
|
48
|
|
49
|
Wang LJ, Chiou JT, Lee YC, Huang CH, Shi YJ, Chang LS. SIRT3, PP2A and TTP protein stability in the presence of TNF-α on vincristine-induced apoptosis of leukaemia cells. J Cell Mol Med 2020; 24:2552-2565. [PMID: 31930676 PMCID: PMC7028858 DOI: 10.1111/jcmm.14949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023] Open
Abstract
The contribution of vincristine (VCR)-induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL-60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up-regulation of TNF-α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down-regulated SIRT3, and such down-regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1-modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3-ROS-p38 MAPK-PP2A axis inhibited tristetraprolin (TTP)-controlled TNF-α mRNA degradation, consequently, up-regulating TNF-α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS-p38 MAPK axis increased the survival of VCR-treated cells and repressed TNF-α up-regulation. In contrast to suppression of the ROS-p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL-60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3-ROS-p38 MAPK-PP2A-TTP axis modulates TNF-α expression, which triggers apoptosis of VCR-treated U937 and HL-60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR-elicited microtubule destabilization.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|