1
|
Bayomy HM, Blackmore DPT, Alamri ES, Ozaybi NA, Almasoudi SE, Pearson S, Eyouni L, AlFaris NA, Alshammari GM, Muhammed M, Mohamady Hussein MA. Developing sustainable approach for controlling foodborne pathogens, based on chlorella vulgaris extract/alginate nanoemulsion, and enhanced via the dispersed zinc oxide nanoparticles. Int J Biol Macromol 2025; 305:141241. [PMID: 39986508 DOI: 10.1016/j.ijbiomac.2025.141241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
A promising antibacterial strategy was developed in this study to effectively eradicate foodborne pathogens via the synergism of Chlorella vulgaris extract (CVE) with zinc oxide nanoparticles (ZNPs) combined into a single nanoform. CVE-alginate nanoemulsion with enhanced antimicrobial and antioxidant properties via the dispersed ZNPs, were prepared and characterized using UV-Vis spectra, FE-SEM-EDX, TEM, DLS, FTIR. The CVE methanol extract was analyzed to record total phenolic and total flavonoid contents. Drug release pattern, encapsulation efficiency, antioxidant, antimicrobial, hemolysis and cytotoxicity were demonstrated. According to TEM and SEM imaging, produced NEs appeared spherical in nanoscale with the range of 17-23.6 nm. The results showed that when the active CVE-NE I dispersed with 1 % or 2 % ZNPs, was applied, exhibited more potent antibacterial properties against the tested foodborne pathogens, including S. aureus, E. coli, S. typhimurium, and B. subtilis, compared to CVE-NE I. CVE was released in slow and sustained manner by addition of ZNPs. All NE samples showed no obvious hemolysis or cytotoxicity when applied on fibroblast cells. These encouraging results offer a fresh approach to the efficient removal of foodborne pathogens, which may be used in food industry.
Collapse
Affiliation(s)
- Hala M Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia.
| | | | - Eman S Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Nawal A Ozaybi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Seham E Almasoudi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | | | | | - Nora A AlFaris
- Department of Sport Health, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mohamed A Mohamady Hussein
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
de Maria Aguiar Carvalho C, da Silva BB, Brianezi SFS, Sanfelice RC, Balogh DT, Assis L, Tim CR, Pavinatto A. Chitosan-based structures for skin repair: A literature review. Int J Biol Macromol 2025; 306:141426. [PMID: 40010450 DOI: 10.1016/j.ijbiomac.2025.141426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The use of chitosan in technological and biomedical applications has gained significant relevance due to its functional properties. Among its biological activities, its hemostatic, analgesic, antibacterial and anti-inflammatory activities make this natural biopolymer one of the most promising in the development of structures for skin repair. Its application and effects can be optimized by exploring efficient structuring techniques. In this context, this review is based on scientific evidence reported in the last decade regarding the development and use of chitosan-based structures in the skin repair process to show the most common structuring methods, the main mechanisms of action of chitosan, and its potential applications in skin repair processes. Additionally, this article brings a compilation of scientific and commercial works on the use of chitosan-based structures, in addition to vitro and/or in vivo results.
Collapse
Affiliation(s)
| | - Bruno Batista da Silva
- Institute of Energy and Nuclear Research, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | | - Debora Terezia Balogh
- São Carlos Institute of Physics, University of São Paulo, 13566-970 São Carlos, SP, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Carla Roberta Tim
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil; Luiz de Queiroz College of Agriculture, University of São Paulo, PO Box 9, Piracicaba, São Paulo 13418-970, Brazil.
| |
Collapse
|
3
|
Ali AA, Abo Dena AS, Fahmy T, El-Sherbiny IM, Sarhan A. Fabrication and preliminary characterization of conductive nanofillers-enhanced polymeric hydrogels for cardiac patch applications. Int J Biol Macromol 2025; 305:141177. [PMID: 39971078 DOI: 10.1016/j.ijbiomac.2025.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of conducting polymeric nanocomposites patches for cardiac tissue engineering has opened new possibilities for restoring the health of infarcted heart tissues. Herein, we report the fabrication of biocompatible and relatively cost-effective poly(vinyl alcohol)/alginate-based hydrogels patches modified with different conducting nanofillers such as silver nanoparticles, polyaniline nanofibers, copper oxide nanoleaves, and graphene oxide nanosheets. The impact of the different nanofiller materials on the molecular structure, charge transport mechanism and mechanical characteristics of the designed nanocomposites patches was investigated. In addition, some significant parameters of the nanocomposites were characterized such as swelling ability, antioxidant activity as well as hemocompatibility. Infrared spectroscopy results demonstrated the occurrence of different interactions between the included nanofillers and the polymer matrix depending on the type of the nanofiller. Moreover, conductivity measurements revealed that only the polyaniline nanofibers-modified nanocomposites hydrogels showed the highest conductivity compared to other counterparts. Mechanical characterization, antioxidant activity, swelling and hemocompatibility proved the suitability of the developed polyaniline nanofibers-modified nanocomposites hydrogels as potential candidates for successful application in cardiac tissue engineering.
Collapse
Affiliation(s)
- Asmaa A Ali
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tarek Fahmy
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt.
| | - Afaf Sarhan
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
4
|
Mariappan V, Kumararaja G, Subban R. Folate-chitosan nanoparticles loaded with an apolar acetogenin inhibiting the proliferation of cervical cancer cells. Int J Biol Macromol 2025; 302:140640. [PMID: 39904436 DOI: 10.1016/j.ijbiomac.2025.140640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
The folk medicine Annona muricata is used widely against cancer. Three acetogenins AMPE I, AMPE II and AMPE III were isolated from the leaves of A. muricata and were identified as epomuricenin-A, epomuricenin-B and epomusenin-B respectively. FACS NPs were prepared and characterised by FTIR, particle size, zeta potential (ZP), TGA, SEM and TEM analysis. The average particle size and ZP of the encapsulated chitosan NPs and folic acid conjugated chitosan NP were 52 nm and 71 nm, 32.75 mV and 42.85 mV respectively. Among the acetogenins epomuricenin-A, AMPE I was more active in MTT assay as it portrays an IC50 value of 14.8 and 16 μg/ml against C33A and ME180 cells. Subsequently, IC50 values of 62.7 and 125.6 μg/ml were observed for FACSNPs and 45.3 and 98.2 μg/ml for CSNPs against ME180 cells and C33A cells respectively. In TGA indicated a good stability analysis between 160 °C to 342 °C. Also, cellular internalization assay proved the targeted action toward folate receptors and in the wound healing assay treatment with 20 μg/ml FACS NPs within 24 h causes a reduction in migration of cells. The study found that FACS NPs showed a targeted delivery in cervical cancer.
Collapse
Affiliation(s)
- Valarpriya Mariappan
- Department of Chemistry, Faculty of Arts Science Commerce and Management, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Gayathri Kumararaja
- Department of Pharmaceutics, Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ravi Subban
- Department of Chemistry, Faculty of Arts Science Commerce and Management, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
5
|
Askari M, Keshavarz Zarjani A, Sayyahi A, Badpa R, Naghizadeh A. Chitosan Nanoparticles: A Promising Candidate in Wound Healing. INT J LOW EXTR WOUND 2025:15347346251325057. [PMID: 40096054 DOI: 10.1177/15347346251325057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The wound healing process is really interesting, dynamic, and complex, captivating researchers for a long time. With the growing worldwide concern regarding the prevalence of wounds and the associated healthcare challenges, efforts to expedite this natural process have intensified. Fortunately, with a particular focus on improving wound dressings, significant advancements have been made in wound care management including using of nanoparticle-based delivery systems. These nanoparticles, similar to molecular messengers, purchase vast promise for revolutionizing wound treatment. Among them, chitosan nanoparticles stand out as remarkable candidates. Their safety profile, biocompatibility, and bioactivity make them particularly appealing for wound care. In this article, we will delve into the intricacies of wound healing and then discuss the wound-healing properties of chitosan nanoparticles, supported by comprehensive study results. Current evidence highlights the wound-healing effects of chitosan nanoparticles, which can be considered independent agents for wound management. In conclusion, the utilization of chitosan nanoparticles for wound healing presents significant opportunities and potential.Graphical abstract [Formula: see text].
Collapse
Affiliation(s)
- Masoumeh Askari
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhesam Keshavarz Zarjani
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sayyahi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Raziye Badpa
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Naghizadeh
- Department of Environmental Health Engineering, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Ghasemi M, Govahi M, Litkohi HR. Green synthesis of silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) using Ferula gummosa Boiss. gum extract: A green nano drug for potential applications in medicine. Int J Biol Macromol 2025; 291:138619. [PMID: 39667473 DOI: 10.1016/j.ijbiomac.2024.138619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
In this study, silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) were synthesized in a green way using Ferula gummosa Boiss. gum extract. The as-prepared NPs were employed as efficient nanomaterials for developing antimicrobial, antioxidant, and anticancer agents. The AgNPs and the CS-AgNPs were characterized using TEM, EDX, FESEM, UV-Vis, XRD, DLS, and FTIR. The UV-Vis spectra showed the surface plasmon resonance for the AgNPs in the visible range around 420 nm. Also, the TEM images indicated particle sizes ranging from 2 to 20 nm and 5-50 nm for the AgNPs and the CS-AgNPs, respectively. Cytotoxicity of the AgNPs and the CS-AgNPs was assessed through MTT and hemolysis assays on normal and cancer cell lines. The AgNPs and the CS-AgNPs demonstrated significant antibacterial activity against Staphylococcus aureus and Bacillus subtilis. The antioxidant assays revealed substantial free radical scavenging activity, with CS-AgNPs exhibiting superior antioxidant properties. In addition, the hemolysis assay illustrated low hemolytic activity for the AgNPs and CS-AgNPs. Moreover, the MTT assay demonstrated a significant cytotoxic effect for the AgNPs and the CS-AgNPs on the MCF-7 breast cancer cell line. These results provide an effective strategy to prepare the biosynthesized AgNPs and the CS-AgNPs for future pharmaceutical applications.
Collapse
Affiliation(s)
- Mostafa Ghasemi
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| | - Mostafa Govahi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran.
| | - Hajar Rajaei Litkohi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| |
Collapse
|
7
|
Blachnio M, Zienkiewicz-Strzalka M, Kutkowska J, Derylo-Marczewska A. Nanosilver-Biopolymer-Silica Composites: Preparation, and Structural and Adsorption Analysis with Evaluation of Antimicrobial Properties. Int J Mol Sci 2024; 25:13548. [PMID: 39769310 PMCID: PMC11679571 DOI: 10.3390/ijms252413548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In this article, we report on the research on the synthesis of composites based on a porous, highly ordered silica material modified by a metallic nanophase and chitosan biofilm. Due to the ordered pore system of the SBA-15 silica, this material proved to be a good carrier for both the biologically active nanophase (highly dispersed silver nanoparticles, AgNPs) and the adsorption active phase (chitosan). The antimicrobial susceptibility was determined against Gram-positive Staphylococcus aureus ATCC 25923, Gram-negative bacterial strains (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, and Pseudomonas aeruginosa ATCC 27853), and yeast Candida albicans ATCC 90028. The zones of microbial growth inhibition correlated with the content of silver nanoparticles deposited in the composites and were the largest for C. albicans (14-21 mm) and S. aureus (12-17 mm). The suitability of the composites for the purification of water and wastewater from anionic pollutants was evaluated based on kinetic and equilibrium adsorption studies for the dye Acid Red 88. The composite with the highest amount of the chitosan component showed the greatest adsorption capacity (am) of 0.57 mmol/g and the most effective kinetics with a rate constant (log k) and half-time (t0.5) of -0.21 and 1.62 min, respectively. Due to their great practical importance, AgNP-chitosan-silica composites can aspire to be classified as functional materials combining the environmental problem with microbiological activity.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland; (M.Z.-S.); (A.D.-M.)
| | - Malgorzata Zienkiewicz-Strzalka
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland; (M.Z.-S.); (A.D.-M.)
| | - Jolanta Kutkowska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Anna Derylo-Marczewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland; (M.Z.-S.); (A.D.-M.)
| |
Collapse
|
8
|
P A, M RJ, Joy JM, Visnuvinayagam S, Remya S, Mathew S. Development of κ-carrageenan-based transparent and absorbent biodegradable films for wound dressing applications. Int J Biol Macromol 2024; 282:137084. [PMID: 39500428 DOI: 10.1016/j.ijbiomac.2024.137084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Wound healing remains a critical challenge in healthcare, requiring advanced wound dressings with superior properties like transparency, absorbency, and biocompatibility. However, gaps exist in the use of marine-derived biopolymers for sustainable dressings. This study addresses this gap by combining κ-carrageenan (KC) with polyvinyl pyrrolidone (PVP) to develop transparent and absorbent biodegradable films through solvent casting and lyophilization techniques. Lyophilized films exhibited superior absorbency (9.17 g/cm2) and moisture management, with a water vapour transmission rate of 3990.67 g/m2/24 h, while solvent-cast films showed 78 % transmittance, enabling wound visualization. Mechanical testing revealed high tensile strength (31.5 MPa) and folding endurance (410 folds), ensuring durability. In vitro bactericidal assays confirmed efficacy against MRSA and E. coli, and in vivo tests on Wistar rats showed complete wound healing within 16 days with 91.1 % closure, outperforming untreated controls (76.7 %). This is the first study to explore lyophilized KC-PVP films for wound dressing applications, demonstrating potential for drug release, absorbency, and biodegradability. The innovative combination of biopolymers and fabrication techniques offers a sustainable, high-performance solution for wound care.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Zoology, St. Teresa's College (Autonomous), Ernakulam 682011, Kerala, India
| | - S Visnuvinayagam
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - S Remya
- Fish Processing Technology, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
9
|
Ahmed Amin S, Dawood MEA, Mahmoud M, Bassiouny DM, Moustafa MMA, Abd El Ghany K. Innovative synthesis and molecular modeling of actinomycetes-derived silver nanoparticles for biomedical applications. Microb Pathog 2024; 196:106990. [PMID: 39362288 DOI: 10.1016/j.micpath.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The rising demand for innovative antimicrobial solutions has shifted focus towards silver nanoparticles (AgNPs), especially those produced through eco-friendly methods. This study introduces a novel approach utilizing actinomycetes strains-Streptomyces albus, Micromonospora maris, and Arthrobacter crystallopoietes-to biosynthesize AgNPs with remarkable antibacterial properties. Through molecular characterization, we identified unique features of these nanoparticles, and computational modeling suggested significant ion-ligand interactions with proteins 6REV and 3K07. Our research highlights the promise of these biogenically synthesized nanoparticles in advancing biomedical applications. Actinomycetes were sourced and screened for their ability to produce metallic nanoparticles, revealing that among 35 samples, only six showed this capability. Notably, Streptomyces albus strain smmdk14 (OR685674), Micromonospora maris strain smmdk13 (OR685672), and Arthrobacter crystallopoietes strain smmdk12 (OR685674) were identified as effective silver nanoparticle producers. The synthesized nanoparticles demonstrated potent antibacterial activity against common pathogens including E. coli, Pseudomonas aeruginosa, Klebsiella spp., Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter spp. The data obtained from color change observation, UV-visible spectrophotometry, Zeta potential, FTIR spectroscopy, and transmission electron microscopy (TEM) characterized AgNPs potentiality. The nanoparticles were spherical, with sizes ranging from 6.46 nm to 24.7 nm. Optimization of production conditions, comparison of antimicrobial effects with antibiotics, evaluation of potential toxicity, and assessment of wound-healing capabilities were also conducted. The biosynthesized AgNPs exhibited superior antibacterial properties compared to traditional antibiotics and significantly accelerated wound healing by approximately 66.4 % in fibroblast cell cultures. Additionally, computational analysis predicted interactions between various metal ions and specific amino acid residues in proteins 6REV and 3K07. Overall, this study demonstrates the successful creation of AgNPs with notable antibacterial and wound-healing properties, underscoring their potential for medical applications.
Collapse
Affiliation(s)
- Safia Ahmed Amin
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed E A Dawood
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed Mahmoud
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Dina M Bassiouny
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Moshtohor, Benha University, 13736, Egypt.
| | | |
Collapse
|
10
|
Mondal S, Hazra A, Paul P, Saha B, Roy S, Bhowmick P, Bhowmick M. Formulation and evaluation of n-acetyl cysteine loaded bi-polymeric physically crosslinked hydrogel with antibacterial and antioxidant activity for diabetic wound dressing. Int J Biol Macromol 2024; 279:135418. [PMID: 39245103 DOI: 10.1016/j.ijbiomac.2024.135418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Diabetic wounds have become a serious global health concern, with a growing number of patients each year. Diabetic altered wound healing physiology, as well as resulting complications, make therapy difficult. Hence, diabetic wound healing necessitates a multidisciplinary strategy. This study focused on the formulation, statistical optimization, ex vivo, and in vitro evaluation of a diabetic wound healing by n-acetyl cysteine (NAC) loaded hydrogel. The objective of the study is to formulate n-acetyl loaded hydrogel with different ratio (1:1, 1:2, 1:3, 2:1) of sodium alginate and guar gum. The antibacterial and antifungal assessment against the viability of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S.aureus) and Candida albicans (C. albicans) was conducted after determining the in vitro drug release profile. The results of the experiment demonstrated that the formulation F3 was an optimal formulation on triplicate measurement with a pH of 6.2 ± 0.168, and a density of 1.026 ± 0.21. In vitro cell line study exhibited F3 has potential role in cell adhesion and proliferation might be beneficial to tissue regeneration and wound healing. The results imply that F3 may be helpful for the quick healing of diabetic wounds by promoting angiogenesis and also by scavenging free oxygen radicals.
Collapse
Affiliation(s)
- Sourav Mondal
- Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ahana Hazra
- Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Pankaj Paul
- Eminent College of Pharmaceutical Technology Barbaria, Moshpukur, Paschim Khilkapur, Barasat, Jagannathpur, West Bengal 700126, India
| | - Bishnu Saha
- Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sanjita Roy
- Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Pratibha Bhowmick
- Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Mithun Bhowmick
- Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur 713212, West Bengal, India.
| |
Collapse
|
11
|
Mondal S, Hazra A, Paul P, Saha B, Roy S, Bhowmick P, Bhowmick M. Formulation and evaluation of n-acetyl cysteine loaded bi-polymeric physically crosslinked hydrogel with antibacterial and antioxidant activity for diabetic wound dressing. Int J Biol Macromol 2024; 279:135418. [DOI: https:/doi.org/10.1016/j.ijbiomac.2024.135418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
12
|
Thai Tran BL, Van Vo T, Chu TP, Bach DT, Nguyen TQ, Bao Luu PH, Thuy Tran VT, Duong HH, Nguyen NH, Le GT, Tran TT, Tuong Tran KN, Cam Tuyen LT, Dinh TN, Uyen NN, Thu Nguyen TT, Thi Nguyen NV, Nguyen KT, Nhu Tran LT, Le PH. Antibacterial efficacy of low-dosage silver nanoparticle-sodium alginate-chitosan nanocomposite films against pure and clinical acne strains. RSC Adv 2024; 14:33267-33280. [PMID: 39434988 PMCID: PMC11492429 DOI: 10.1039/d4ra05180g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The silver nanoparticles-sodium alginate-chitosan (AgNPs-Alg-Chi) nanocomposite film is a compelling material with demonstrated antibacterial efficacy against various pure bacterial strains. However, its potential cytotoxicity at elevated Ag doses warrants investigation. There is a notable dearth of studies assessing its antibacterial effectiveness against clinically relevant bacterial strains, notably Cutibacterium acnes. This study aims to assess the antibacterial efficacy of the low-dose AgNPs-Alg-Chi nanocomposite films on both pure bacterial strains and strains isolated from clinical samples obtained from 65 acne patients. The films were synthesized using green methods, incorporating kumquat (Citrus japonica) extract as a silver ion-reducing agent. The material characterization methods include UV-Vis and FTIR spectroscopies, SEM-EDS, XPS, cell culture, and MTT assay. We successfully fabricated the AgNPs-Alg-Chi nanocomposite films with a low-loading dose of Ag NPs (≤11 μg mL-1, and 37.8 ± 11.5 nm in size). The AgNPs-Alg-Chi nanocomposite film demonstrated comparable antibacterial efficacy to the AgNPs-Chi solution, with MIC values ranging from 3.67 to 5.50 μg mL-1 (p > 0.05) across all strains. Importantly, the AgNPs-Alg-Chi films demonstrated excellent biocompatibility with human keratinocytes (HaCaT cells), maintaining cell viability above 70%. The present AgNPs-Alg-Chi nanocomposite films synthesized by a green approach demonstrated potent antibacterial activity, making them promising for further development into suitable products for human use.
Collapse
Affiliation(s)
- Bao Lam Thai Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thanh Van Vo
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Teng-Ping Chu
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 243303 Taiwan
- International PhD Program in Plasma and Thin Film Technology, Ming Chi University of Technology New Taipei City 243303 Taiwan
| | - Duong Thai Bach
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thai Quang Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Phuong Hong Bao Luu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 41-43 Dinh Tien Hoang Street Ho Chi Minh City Vietnam
| | - Vy Thi Thuy Tran
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Hieu Hoang Duong
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Nhi Hoang Nguyen
- Faculty of Public Health, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Gai Thi Le
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thu Thi Tran
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | | | - Le Thi Cam Tuyen
- Faculty of Chemical Engineering, Can Tho University 3/2 Street Can Tho City Vietnam
| | - Truong Ngoc Dinh
- Department of Physics and Biophysics, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Ngo Ngoc Uyen
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Tram Thi Thu Nguyen
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
- Department of Chemistry, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Ngoc-Van Thi Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Kien Trung Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Le Thi Nhu Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Phuoc Huu Le
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 243303 Taiwan
- International PhD Program in Plasma and Thin Film Technology, Ming Chi University of Technology New Taipei City 243303 Taiwan
| |
Collapse
|
13
|
Vanti G, Poondla N, Manogaran P, Teradal N, S V, Kaulgud R, Kurjogi M. Synthesis and Characterization of Multifunctional Chitosan-Silver Nanoparticles: An In-Vitro Approach for Biomedical Applications. Pharmaceuticals (Basel) 2024; 17:1229. [PMID: 39338391 PMCID: PMC11434662 DOI: 10.3390/ph17091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Antibiotics are successful in promoting health quality by preventing various infectious diseases and minimizing mortality and morbidity all over the world. However, the indiscriminate use of antibiotics has led to the emergence of multi-drug-resistant bacteria, which pose a serious threat to health care sector. Therefore, it is necessary to develop novel antimicrobial agents with versatile characteristics, such as antibacterial activity, low toxicity, wound healing potency, and antioxidant property. In this context, silver chitosan nanoparticles were synthesized in the present study, and their physical characterization revealed that the size of synthesized chitosan-silver nanoparticles was 14-25 nm, with positive surface charge. The functional groups and crystalline nature of the nanoparticles were confirmed by FT-IR and XRD analysis. Further, the silver chitosan nanoparticles showed antibacterial activity against two important clinical pathogens, S. aureus and E. coli. The MTT assay carried out in the present study showed that the synthesized nanoparticles are non-toxic to host cells. A scratch assay on fibroblast cells (L292) demonstrated that the silver chitosan nanoparticles showed promising wound healing activity. A fluorescent DCFH-DA staining assay revealed anantioxidant property of the synthesized nanoparticles. Overall, the study emphasizes the versatile nature of synthesized chitosan-silver nanoparticles, suggesting their great compatibility for biomedical applications.
Collapse
Affiliation(s)
- Gulamnabi Vanti
- Multidisciplinary Research Unit, Karnataka Medical College and Research Institute, Hubli 580021, India
| | - Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Global Health Research, Saveetha Medical College& Hospital, Chennai 602105, India
- Department of Applied Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai 602105, India
| | - Prasath Manogaran
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Nagappa Teradal
- Department of Chemistry, J. S. S. Arts, Science and Commerce College, Gokak 591307, India
| | - Veeresh S
- Multidisciplinary Research Unit, Karnataka Medical College and Research Institute, Hubli 580021, India
| | - Ram Kaulgud
- Multidisciplinary Research Unit, Karnataka Medical College and Research Institute, Hubli 580021, India
| | - Mahantesh Kurjogi
- Multidisciplinary Research Unit, Karnataka Medical College and Research Institute, Hubli 580021, India
| |
Collapse
|
14
|
Hassan SM, Morsy JM, Hassanin HM, Othman ES, Mostafa MA. New synthetic chitosan Schiff bases bearing pyranoquinolinone or benzonaphthyridine and their silver nanoparticles derivatives with potential activity as antioxidant and molecular docking study for EGFR inhibitors. RSC Adv 2024; 14:29919-29933. [PMID: 39309650 PMCID: PMC11413560 DOI: 10.1039/d4ra05117c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, two new carboxaldehydes 3, and 4 were synthesized by Vilsmeier-Haack formylation of 6-butyl-benzo[h][1,6]naphthyridine-2,5-dione 2 and 6-butyl-pyrano[3,2-c]quinolinone 1, respectively. Structures of newly synthesized compounds were achieved by IR, 1H NMR, 13C NMR, mass techniques, and elemental analyses. The two synthesized carboxaldehydes 3 and 4 were used as precursors for the synthesis of two new chitosan-based Schiff bases, CS1 and CS2. The new chitosan Schiff bases were grafted on silver nanoparticles, providing CS1/Ag and CS2/Ag structures. However, CS1 and CS2 and their silver nanoparticles were characterized by FT-IR, XRD, SEM-EDX, XRF, TEM, TGA, and DSC. The target compounds CS1, CS2, CS1/Ag, and CS2/Ag were assessed as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH%). The results showed that CS1 and CS2 had a better ability to scavenge DPPH radical than its unmodified chitosan. CS1/Ag and CS2/Ag, combining the unique properties of silver and Schiff bases, displayed excellent antioxidant activity (IC50, 59.13, and 32.54 μg mL-1, respectively). In addition, the previous compounds were tested in vitro for inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase using the EGFR kinase assay kit (Cat. #40321). In particular, compound CS1/Ag displayed potent inhibitory activity towards EGFR with IC50 20.45 μg mL-1 compared to reference drug sorafenib (IC50 = 0.76 μg mL-1). The bioactivity of new chitosan Schiff bases was studied by molecular docking to see how they bind with the EGFR receptor. The results implied that CS1 has a higher binding energy than CS2 and CS regarding EGFR kinase, which agreed with the results obtained from the experimental EGFR inhibition assay.
Collapse
Affiliation(s)
- Shrouk M Hassan
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Jehan M Morsy
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Hany M Hassanin
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Elham S Othman
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Mai A Mostafa
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| |
Collapse
|
15
|
Alka, Singh P, Pal RR, Mishra N, Singh N, Verma A, Saraf SA. Development of pH-Sensitive hydrogel for advanced wound Healing: Graft copolymerization of locust bean gum with acrylamide and acrylic acid. Int J Pharm 2024; 661:124450. [PMID: 38986968 DOI: 10.1016/j.ijpharm.2024.124450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ± 2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1β, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; School of Pharmacy, GITAM (Deemed-to-be) University, Rudraram, Patancheru Mandal, Hyderabad, 502329 Telangana, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002 Uttar Pradesh, India.
| |
Collapse
|
16
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
17
|
Shamseldean MSM, Attia MM, Korany RMS, Othman NA, Allam SFM. Comparative biotoxicity study for identifying better alternative insecticide especially green nano-emulsion which used as mosquitocides. BMC Vet Res 2024; 20:149. [PMID: 38643105 PMCID: PMC11031904 DOI: 10.1186/s12917-024-03992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/22/2024] Open
Abstract
This research work was planned to test biosafety of different nanomaterials on the different animals models. These nanoparticles were previously used as potential insecticides of mosquito larvae. The biosafety of these nanoproducts were evaluated on certain organs of non target animals that associated with mosquito breeding sites in Egypt. Animal organs such as the kidneys of rats, toads, and the fish's spleen were used as models to study the biological toxicity of these nanomaterials. After 30 days of the animals receiving the nanomaterials in their water supply, different cell mediated immune cells were assessed in these tissues. Both TNF-α and BAX immuno-expression were also used as immunohistochemical markers. Histopathology was conducted to detect the effect of the tested nanoproducts at the tissue level of the liver and kidneys of both the rats and toads. Green nanoemulsion of the lavender essential oil was relatively more effective, safe, and biodegradable to be used as insecticides against mosquito larvae than the metal-based nanomaterials.
Collapse
Affiliation(s)
- Muhammad S M Shamseldean
- Applied Center for Entomonematodes, Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Nehal A Othman
- Applied Center for Entomonematodes, Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Sally F M Allam
- Applied Center for Entomonematodes, Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
18
|
Mekky AE, Abdelaziz AEM, Youssef FS, Elaskary SA, Shoun AA, Alwaleed EA, Gaber MA, Al-Askar AA, Alsamman AM, Yousef A, AbdElgayed G, Suef RA, Selim MA, Saied E, Khedr M. Unravelling the Antimicrobial, Antibiofilm, Suppressing Fibronectin Binding Protein A ( fnba) and cna Virulence Genes, Anti-Inflammatory and Antioxidant Potential of Biosynthesized Solanum lycopersicum Silver Nanoparticles. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:515. [PMID: 38541241 PMCID: PMC10972527 DOI: 10.3390/medicina60030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 01/06/2025]
Abstract
Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 μg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.
Collapse
Affiliation(s)
- Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, P.O. Box 42522, Port-Said 42522, Egypt;
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shymaa A. Elaskary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El-Kom 32511, Egypt
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Eman A. Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Alhadary M. Alsamman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat 32897, Egypt;
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Reda A. Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed Khedr
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| |
Collapse
|
19
|
Li X, Liu J, Dou J, Li C, Jiang Y, Dawood A, Wei J, Wei Y, Xiong Y, Luo W, Algharib S. Enhanced Cellular Delivery of Tildipirosin by Xanthan Gum-Gelatin Composite Nanogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4860-4870. [PMID: 38394629 DOI: 10.1021/acs.langmuir.3c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Tildipirosin has no significant inhibitory effect on intracellular bacteria because of its poor membrane permeability. To this end, tildipirosin-loaded xanthan gum-gelatin composite nanogels were innovatively prepared to improve the cellular uptake efficiency. The formation of the nanogels via interactions between the positively charged gelatin and the negatively charged xanthan gum was confirmed by powder X-ray diffraction and Fourier transform infrared. The results indicate that the optimal tildipirosin composite nanogels possessed a 3D network structure and were shaped like a uniformly dispersed ellipse, and the particle size, PDI, and ζ potential were 229.4 ± 1.5 nm, 0.26 ± 0.04, and -33.2 ± 2.2 mV, respectively. Interestingly, the nanogels exhibited gelatinase-responsive characteristics, robust cellular uptake via clathrin-mediated endocytosis, and excellent sustained release. With those pharmaceutical properties provided by xanthan gum-gelatin composite nanogels, the anti-Staphylococcus aureus activity of tildipirosin was remarkably amplified. Further, tildipirosin composite nanogels demonstrated good biocompatibility and low in vivo and in vitro toxicities. Therefore, we concluded that tildipirosin-loaded xanthan gum-gelatin composite nanogels might be employed as a potentially effective gelatinase-responsive drug delivery for intracellular bacterial infection.
Collapse
Affiliation(s)
- Xianqiang Li
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui 233100, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jinfeng Dou
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui 233100, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongtao Jiang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Ali Dawood
- Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Jie Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang 830000, China
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang 830000, China
| | - Youyi Xiong
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui 233100, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Samah Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| |
Collapse
|
20
|
Vijayakumar S, Chen J, González-Sánchez ZI, Tungare K, Bhori M, Shakila H, Sruthi KS, Divya M, Durán-Lara EF, Thandapani G, Anbu P. Biomedical and ecosafety assessment of marine fish collagen capped silver nanoparticles. Int J Biol Macromol 2024; 260:129324. [PMID: 38228210 DOI: 10.1016/j.ijbiomac.2024.129324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024]
Abstract
In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm. These NPs showed potent antibacterial activity, notably against S. aureus (gram-positive), surpassing their efficacy against S. typhi (gram-negative). Additionally, ClAg NPs effectively hindered the growth of MRSA biofilms at 500 μg/mL. Impressively, they demonstrated substantial antioxidant capabilities, out performing standard gallic acid. Although higher concentrations of ClAg NPs induced hemolysis (41.804 %), lower concentrations remained non hemolytic. Further evaluations delved into the safety and potential applications of ClAg NPs. In vitro cytotoxicity studies on HEK 293 and HeLa cells revealed dose-dependent toxicity, with IC50 of 75.28 μg/mL and 79.13 μg/mL, respectively. Furthermore, ClAg NPs affected seed germination, root, and shoot lengths in Mung plants, underscoring their relevance in agriculture. Lastly, zebrafish embryo toxicity assays revealed notable effects, particularly at 500 μg/mL, on embryo morphology and survival rates at 96 hpf. In conclusion, our study pioneers the synthesis and multifaceted evaluation of ClAg NPs, offering promise for their use as versatile nano therapeutics in the medical field and as high-value collagen-based nanobiomaterial with minimal environmental impact.
Collapse
Affiliation(s)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, PR China.
| | - Zaira I González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai 400614, India; Anatek Services PVT Ltd, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra 400055, India.
| | - Mustansir Bhori
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai 400614, India; Invenio life Technology PVT Ltd, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Harshavardhan Shakila
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - K S Sruthi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Gomathi Thandapani
- PG and Research Department of Chemistry, D.K.M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Periasamy Anbu
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| |
Collapse
|
21
|
Manthalkar L, Bhattacharya S, Hatware K, Sreelaya P, Shah D, Jain A, Phatak N. Fabrication of D-α-tocopheryl polyethylene glycol 1000 succinates and human serum albumin conjugated chitosan nanoparticles of bosutinib for colon targeting application; in vitro-in vivo investigation. Int J Biol Macromol 2023; 253:127531. [PMID: 37858658 DOI: 10.1016/j.ijbiomac.2023.127531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
For more effective chemotherapy and targeted treatment of colorectal cancer, this study seeks to develop chitosan (CH)-human serum albumin (HAS)-D-α-tocopheryl polyethylene glycol 1000 (TPGS) nanoparticles (BOS-CH-HSA-TPGS-NPs) coated with Bosutinib (BOS). Nuclear magnetic resonance (NMR) indicated that chitosan's structure was modified by carbodiimide coupling with HSA. We used a Box-Behnken design to find the ideal region for particle size, zeta potential, and entrapment efficiency, eventually emerging at a formulation with these values: 187.14 ± 3.2 nm, 76.2 ± 0.96 %, and 21.1 ± 2.3 mV. Differential scanning calorimetry (DSC), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), High-performance liquid chromatography (HPLC) were all used to characterize the sample in detail. At a phosphate buffer pH of 7.4, in vitro drug release tests showed both Higuchi model release (0.954) and Fickian diffusion (n = 0.5). Compared to free BOS, HCT116 cell lines showed considerably higher cytotoxicity in in vitro cytotoxicity assays. In male albino Wistar rats, the BOS-CH-HSA-TPGS-NPs also showed enhanced pharmacokinetics, targeting efficiency, and biocompatibility. When used to the treatment of colorectal cancer, the BOS-CH-HSA-TPGS NPs show promise as a sustained-release therapy with improved therapeutic effects by addressing the challenges of poor solubility, poor permeability, and toxic side effects.
Collapse
Affiliation(s)
- Laxmi Manthalkar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Ketan Hatware
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Putrevu Sreelaya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Disha Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Arinjay Jain
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Niraj Phatak
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
22
|
Jiang M, Althomali RH, Ansari SA, Saleh EAM, Gupta J, Kambarov KD, Alsaab HO, Alwaily ER, Hussien BM, Mustafa YF, Narmani A, Farhood B. Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. Int J Biol Macromol 2023; 251:126390. [PMID: 37595701 DOI: 10.1016/j.ijbiomac.2023.126390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | | | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
23
|
Wang X, Song R, Johnson M, A S, Shen P, Zhang N, Lara-Sáez I, Xu Q, Wang W. Chitosan-Based Hydrogels for Infected Wound Treatment. Macromol Biosci 2023; 23:e2300094. [PMID: 37158294 DOI: 10.1002/mabi.202300094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Wound infections slow down the healing process and lead to complications such as septicemia, osteomyelitis, and even death. Although traditional methods relying on antibiotics are effective in controlling infection, they have led to the emergence of antibiotic-resistant bacteria. Hydrogels with antimicrobial function become a viable option for reducing bacterial colonization and infection while also accelerating healing processes. Chitosan is extensively developed as antibacterial wound dressings due to its unique biochemical properties and inherent antibacterial activity. In this review, the recent research progress of chitosan-based hydrogels for infected wound treatment, including the fabrication methods, antibacterial mechanisms, antibacterial performance, wound healing efficacy, etc., is summarized. A concise assessment of current limitations and future trends is presented.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 KW52, Ireland
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
24
|
Saghafi Y, Baharifar H, Najmoddin N, Asefnejad A, Maleki H, Sajjadi-Jazi SM, Bonkdar A, Shams F, Khoshnevisan K. Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels 2023; 9:672. [PMID: 37623127 PMCID: PMC10454236 DOI: 10.3390/gels9080672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
A cutaneous wound is caused by various injuries in the skin, which can be wrapped with an efficient dressing. Electrospinning is a straightforward adjustable technique that quickly and continuously generates nanofibrous wound dressings containing antibacterial and anti-inflammatory agents to promote wound healing. The present study investigated the physicochemical and biological properties of bromelain (BRO)- and silver nanoparticle (Ag NPs)-loaded gel-based electrospun polycaprolactone/chitosan (PCL/CS) nanofibrous dressings for wound-healing applications. Electron microscopy results showed that the obtained nanofibers (NFs) had a uniform and homogeneous morphology without beads with an average diameter of 176 ± 63 nm. The FTIR (Fourier transform infrared) analysis exhibited the loading of the components. Moreover, adding BRO and Ag NPs increased the tensile strength of the NFs up to 4.59 MPa. BRO and Ag NPs did not significantly affect the hydrophilicity and toxicity of the obtained wound dressing; however, the antibacterial activity against E. coli and S. aureus bacteria was significantly improved. The in vivo study showed that the wound dressing containing BRO and Ag NPs improved the wound-healing process within one week compared to other groups. Therefore, gel-based PCL/CS nanofibrous dressings containing BRO and Ag NPs could be a promising solution for healing skin wounds.
Collapse
Affiliation(s)
- Yasaman Saghafi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Hassan Maleki
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1411713137, Iran
| | - Alireza Bonkdar
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Forough Shams
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Kamyar Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| |
Collapse
|
25
|
Aslam J, Zehra S, Mobin M, Quraishi MA, Verma C, Aslam R. Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: Current advancements and future directions. Carbohydr Polym 2023; 314:120936. [PMID: 37173012 DOI: 10.1016/j.carbpol.2023.120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia.
| | - Saman Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M A Quraishi
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates.
| | - Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
26
|
Algarni A, Fayomi A, Al Garalleh H, Afandi A, Brindhadevi K, Pugazhendhi A. Nanofabrication synthesis and its role in antibacterial, anti-inflammatory, and anticoagulant activities of AgNPs synthesized by Mangifera indica bark extract. ENVIRONMENTAL RESEARCH 2023; 231:115983. [PMID: 37137456 DOI: 10.1016/j.envres.2023.115983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
The bio-based nanoparticles synthesis and assessment of their potential biomedical applications related research is rapidly emerging. The ability of an aqueous ethanolic bark extract of Mangifera indica to synthesize silver nanoparticles (AgNPs) as well as its antibacterial, anti-inflammatory, and anticancer activities were investigated in this study. Interestingly, the bark extract effectively synthesized the AgNPs, including an absorbance peak at 412 nm and sizes ranging from 56 to 89 nm. The Fourier Transform Infrared spectroscopy (FTIR) analysis confirmed that the presence of most essential functional groups belongs to the most bioactive compounds. Synthesized AgNPs showed fine antibacterial activity against the Urinary Tract Infection (UTI) causing bacterial pathogens such as Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus saprophyticus at 50 μg mL-1 concentrations. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs against these pathogens were found as 12.5 ± 0.8 & 13 ± 0.6, 13.6 ± 0.5 & 14 ± 0.7, 11.5 ± 0.3 & 11.5 ± 0.4, 13 ± 0.8 & 13 ± 0.7, and 11.8 ± 0.4 & 12 ± 0.8 μg mL-1 respectively. Interestingly, this AgNPs also possesses outstanding anti-inflammatory and anticancer activities as studied against the egg albumin denaturation (85%) inhibition and MCF 7 (Michigan Cancer Foundation-7: breast cancer cells) cell line (cytotoxicity: 80.1%) at 50 μg mL-1 concentration. Similarly at 50 μg mL-1 concentration showed 75% of DPPH radical scavenging potential. These activities were dose dependent, and the findings suggest that the M. indica bark aqueous ethanolic extract synthesized AgNPs can be used as antibacterial, anti-inflammatory, and anticancer agents after in-vivo testing.
Collapse
Affiliation(s)
- Ali Algarni
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Aisha Fayomi
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Abdulkareem Afandi
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
27
|
Mandal S, Hwang S, Marpu SB, Omary MA, Prybutok V, Shi SQ. Bioinspired Synthesis of Silver Nanoparticles for the Remediation of Toxic Pollutants and Enhanced Antibacterial Activity. Biomolecules 2023; 13:1054. [PMID: 37509090 PMCID: PMC10377291 DOI: 10.3390/biom13071054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver nanoparticles (AgNPs) within a chitosan (CS)-modified, high-surface-area activated carbon derived from kenaf (KAC), using a unique self-activation method. The even distribution of AgNPs was visible in the scanning electron microscopy images and a Fourier transform infra red study demonstrated major absorption peaks. The experimental results revealed that KA-CS-AgNPs exhibited exceptional adsorption efficiency for copper (Cu2+), lead (Pb2+), and Congo Red dye (CR), and showed potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The maximum adsorption capacity (mg g-1) of KAC-CS-AgNPs was 71.5 for Cu2+, 72.3 for Pb2+, and 75.9 for CR, and the adsorption phenomena followed on the Freundlich and Langmuir isotherm models and the second-order kinetic model (R2 > 0.99). KAC-CS-AgNPs also exhibited excellent reusability of up to four consecutive cycles with minor losses in adsorption ability. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic in nature. The bacterial inactivation tests demonstrated that KAC-CS-AgNPs had a strong bactericidal effect on both E. coli and S. aureus, with MIC calculated for E. coli and S. aureus as 32 µg mL-1 and 44 µg mL-1, respectively. The synthesized bioinspired nanocomposite KAC-CS-AgNPs could be an innovative solution for effective and sustainable wastewater treatment and has great potential for commercial applications.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sangchul Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sreekar B Marpu
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | - Victor Prybutok
- G. Brint Ryan College of Business, University of North Texas, Denton, TX 76207, USA
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
28
|
Lakkim V, Reddy MC, Lekkala VVV, Lebaka VR, Korivi M, Lomada D. Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice. Pharmaceutics 2023; 15:1517. [PMID: 37242759 PMCID: PMC10222969 DOI: 10.3390/pharmaceutics15051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Developing an efficient and cost-effective wound-healing substance to treat wounds and regenerate skin is desperately needed in the current world. Antioxidant substances are gaining interest in wound healing, and green-synthesized silver nanoparticles have drawn considerable attention in biomedical applications due to their efficient, cost-effective, and non-toxic nature. The present study evaluated in vivo wound healing and antioxidant activities of silver nanoparticles from Azadirachta indica (AAgNPs) and Catharanthus roseus (CAgNPs) leaf extracts in BALB/c mice. We found rapid wound healing, higher collagen deposition, and increased DNA and protein content in AAgNPs- and CAgNPs (1% w/w)-treated wounds than in control and vehicle control wounds. Skin antioxidant enzyme activities (SOD, catalase, GPx, GR) were significantly (p < 0.05) increased after 11 days CAgNPs and AAgNPs treatment. Furthermore, the topical application of CAgNPs and AAgNPs tends to suppress lipid peroxidation in wounded skin samples. Histopathological images evidenced decreased scar width, epithelium restoration, fine collagen deposition, and fewer inflammatory cells in CAgNPs and AAgNPs applied wounds. In vitro, the free radical scavenging activity of CAgNPs and AAgNPs was demonstrated by DPPH and ABTS radical scavenging assays. Our findings suggest that silver nanoparticles prepared from C. roseus and A. indica leaf extracts increased antioxidant status and improved the wound-healing process in mice. Therefore, these silver nanoparticles could be potential natural antioxidants to treat wounds.
Collapse
Affiliation(s)
- Vajravathi Lakkim
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India; (V.L.); (V.V.V.L.)
| | - Madhava C. Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, AP, India;
| | | | | | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dakshayani Lomada
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India; (V.L.); (V.V.V.L.)
| |
Collapse
|
29
|
Ghazzy A, Naik RR, Shakya AK. Metal-Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers (Basel) 2023; 15:polym15092167. [PMID: 37177313 PMCID: PMC10180664 DOI: 10.3390/polym15092167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
There has been a new approach in the development of antibacterials in order to enhance the antibacterial potential. The nanoparticles are tagged on to the surface of other metals or metal oxides and polymers to achieve nanocomposites. These have shown significant antibacterial properties when compared to nanoparticles. In this article we explore the antibacterial potentials of metal-based and metal-polymer-based nanocomposites, various techniques which are involved in the synthesis of the metal-polymer, nanocomposites, mechanisms of action, and their advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Asma Ghazzy
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
30
|
Moreira VM, Leite JMDS, Medeiros KDA, Assis KMAD, Borges JC, Santana LMB, Moreira LMCDC, Alves LP, Oliveira TKBD, Silveira JWDSD, Silva DTCD, Damasceno BPGDL. Pentoxifylline/Chitosan Films on Wound Healing: In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15041122. [PMID: 37111607 PMCID: PMC10143649 DOI: 10.3390/pharmaceutics15041122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to develop films of chitosan (CSF) associated with pentoxifylline (PTX) for healing cutaneous wounds. These films were prepared at two concentrations, F1 (2.0 mg/mL) and F2 (4.0 mg/mL), and the interactions between the materials, structural characteristics, in vitro release, and morphometric aspects of skin wounds in vivo were evaluated. The formation of the CSF film with acetic acid modifies the polymeric structure, and the PTX demonstrates interaction with the CSF, in a semi-crystalline structure, for all concentrations. The release for all films was proportional to the concentration, with two phases: a fast one of ≤2 h and a slow one of >2 h, releasing 82.72 and 88.46% of the drug after 72 h, being governed by the Fickian diffusion mechanism. The wounds of the mice demonstrate a reduction of up to 60% in the area on day 2 for F2 when compared to CSF, F1, and positive control, and this characteristic of faster healing speed for F2 continues until the ninth day with wound reduction of 85%, 82%, and 90% for CSF, F1, and F2, respectively. Therefore, the combination of CSF and PTX is effective in their formation and incorporation, demonstrating that a higher concentration of PTX accelerates skin-wound reduction.
Collapse
Affiliation(s)
- Vandiara Martins Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joandra Maísa da Silva Leite
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Kaline de Araújo Medeiros
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Karoll Moangella Andrade de Assis
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joyce Cordeiro Borges
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lucas Matheus Barreto Santana
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Larissa Pereira Alves
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | | | - João Walter de Souza da Silveira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
31
|
Alves D, Grainha T, Pereira MO, Lopes SP. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater 2023; 158:32-55. [PMID: 36632877 DOI: 10.1016/j.actbio.2023.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ventilator-associated pneumonia (VAP) is an unresolved problem in nosocomial settings, remaining consistently associated with a lack of treatment, high mortality, and prolonged hospital stay. The endotracheal tube (ETT) is the major culprit for VAP development owing to its early surface microbial colonization and biofilm formation by multiple pathogens, both critical events for VAP pathogenesis and relapses. To combat this matter, gradual research on antimicrobial ETT surface coating/modification approaches has been made. This review provides an overview of the relevance and implications of the ETT bioburden for VAP pathogenesis and how technological research on antimicrobial materials for ETTs has evolved. Firstly, certain main VAP attributes (definition/categorization; outcomes; economic impact) were outlined, highlighting the issues in defining/diagnosing VAP that often difficult VAP early- and late-onset differentiation, and that generate misinterpretations in VAP surveillance and discrepant outcomes. The central role of the ETT microbial colonization and subsequent biofilm formation as fundamental contributors to VAP pathogenesis was then underscored, in parallel with the uncovering of the polymicrobial ecosystem of VAP-related infections. Secondly, the latest technological developments (reported since 2002) on materials able to endow the ETT surface with active antimicrobial and/or passive antifouling properties were annotated, being further subject to critical scrutiny concerning their potentialities and/or constraints in reducing ETT bioburden and the risk of VAP while retaining/improving the safety of use. Taking those gaps/challenges into consideration, we discussed potential avenues that may assist upcoming advances in the field to tackle VAP rampant rates and improve patient care. STATEMENT OF SIGNIFICANCE: The use of the endotracheal tube (ETT) in patients requiring mechanical ventilation is associated with the development of ventilator-associated pneumonia (VAP). Its rapid surface colonization and biofilm formation are critical events for VAP pathogenesis and relapses. This review provides a comprehensive overview on the relevance/implications of the ETT biofilm in VAP, and on how research on antimicrobial ETT surface coating/modification technology has evolved over the last two decades. Despite significant technological advances, the limited number of gathered reports (46), highlights difficulty in overcoming certain hurdles associated with VAP (e.g., persistent colonization/biofilm formation; mechanical ventilation duration; hospital length of stay; VAP occurrence), which makes this an evolving, complex, and challenging matter. Challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
32
|
Chahardoli A, Mavaei M, Shokoohinia Y, Fattahi A. Galbanic acid, a sesquiterpene coumarin as a novel candidate for the biosynthesis of silver nanoparticles: In vitro hemocompatibility, antiproliferative, antibacterial, antioxidant, and anti-inflammatory properties. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Suman S, Loveleen L, Bhandari M, Syed A, Bahkali AH, Manchanda R, Nimesh S. Antibacterial, antioxidant, and haemolytic potential of silver nanoparticles biosynthesized using roots extract of Cannabis sativa plant. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:343-351. [DOI: 10.1080/21691401.2022.2149543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Suman Suman
- Department of Chemistry, School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram, India
| | - Lacy Loveleen
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Meena Bhandari
- Department of Chemistry, School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Romila Manchanda
- Department of Chemistry, School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram, India
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
34
|
Singh SS, Behera SK, Rai S, Tripathy SK, Chakrabortty S, Mishra A. A critical review on nanomaterial based therapeutics for diabetic wound healing. Biotechnol Genet Eng Rev 2022:1-35. [PMID: 36576250 DOI: 10.1080/02648725.2022.2161732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus is a chronic endocrine disease that occurs mostly in the state of hyperglycemia (elevated blood glucose level). In the recent times, diabetes is listed under world's utmost critical health issues. Wound treatment procedures are complicated in diabetic individuals all over the world. Diabetic wound care not only involves high-cost, but also the primary cause of hospitalization, which can lead to amputation thereby reducing diabetic patient life expectancy. To lower the risk of amputation, wound healing requires the development of effective treatments. Traditional management systems for Diabetes are frequently chastised due to their high costs, difficulties in maintaining a sustainable supply chain and limited disposal alternatives. The worrisome rise in diabetes prevalence has sparked a surge of interest in the discovery of viable remedies to supplement existing treatments. Nanomaterials wound healing has a lot of potential for treating and preventing wound infections and it has recently gained popularity owing to its ability to transport drugs to the wound area in a regulated fashion, potentially overpowering the limits of traditional approaches. This research assessed several nanosystems, such as nanocarriers and nanotherapeutics, to explore how they can benefit in diabetic wound healing, with a focus on current obstacles and future prospects.
Collapse
Affiliation(s)
- Swati Sucharita Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- Department of cell biology, IMGENEX India Pvt. Ltd, Bhubaneswar, India
| | - Suchita Rai
- Bauxite -Alumina Division, Jawaharlal Nehru Aluminium Research Development and Design Centre, Nagpur, India
| | - Suraj K Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sankha Chakrabortty
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
35
|
Preparation and Synergistic Effect of Biomimetic Poly(lactic acid)/Graphene Oxide Composite Scaffolds Loaded with Dual Drugs. Polymers (Basel) 2022; 14:polym14245348. [PMID: 36559717 PMCID: PMC9784114 DOI: 10.3390/polym14245348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
To promote the bone repair ability of drug-loaded scaffolds, poly(lactic acid) (PLA)/graphene oxide (GO)/Salvianolic acid B (Sal-B)/aspirin (ASA) dual drug-loaded biomimetic composite scaffolds were prepared. The results showed that the addition of these two drugs delayed the gel formation of the composite system, but a biomimetic nanofiber structure could still be obtained by extending the gel time. The addition of Sal-B increased the hydrophilicity of the scaffold, while an increase in ASA reduced the porosity. Dual drug-loaded scaffolds had good haemocompatibility and synergically promoted the proliferation of MC3T3-E1 cells and enhanced alkaline phosphatase activity. Sustained-release experiments of the two drugs showed that the presence of ASA slowed the cumulative release of Sal-B, while Sal-B promoted the release of ASA. Kinetic modeling showed that the release of both drugs conforms to the Korsmeyer-Peppas model, but Sal-B conforms to the Fick diffusion mechanism and ASA follows Fick diffusion and carrier swelling/dissolution.
Collapse
|
36
|
Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering (Basel) 2022; 9:bioengineering9110712. [PMID: 36421113 PMCID: PMC9687874 DOI: 10.3390/bioengineering9110712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic wounds are a silent epidemic threatening the lives of many people worldwide. They are associated with social, health care and economic burdens and can lead to death if left untreated. The treatment of chronic wounds is very challenging as it may not be fully effective and may be associated with various adverse effects. New wound healing agents that are potentially more effective are being discovered continuously to combat these chronic wounds. These agents include silver nanoformulations which can contain nanoparticles or nanocomposites. To be effective, the discovered agents need to have good wound healing properties which will enhance their effectiveness in the different stages of wound healing. This review will focus on the process of wound healing and describe the properties of silver nanoformulations that contribute to wound healing.
Collapse
|
37
|
A Polysaccharide Isolated from the Herb Bletilla striata Combined with Methylcellulose to Form a Hydrogel via Self-Assembly as a Wound Dressing. Int J Mol Sci 2022; 23:ijms231912019. [PMID: 36233321 PMCID: PMC9569984 DOI: 10.3390/ijms231912019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022] Open
Abstract
The Bletilla striata Polysaccharide (BSP), a natural polysaccharide derived from the east Asian terrestrial orchid Bletilla striata, is an anti-inflammatory, antiviral, and antioxidant polysaccharide. Traditionally, it has been used to treat hemostasis and for wound healing. In this study, BSP was blended with methylcellulose (MC) and methylparaben (MP) to create a hydrogel through a self-assembly route as a wound dressing. The developed hydrogels were designed as M2Bx, M5Bx, and M8Bx. M stands for MC, and the number represents a percentage. Whereas the second letter of B stands for BSP, and x refers to the percentage variation of BSP: x = 0.5%, 1%, and 2%. All the developed MB hydrogels contained β-glucopyranosyl and α-mannopyranosyl, and rheology test had a tan δ value ≥ 0.5. The pore sizes of the hydrogels decreased by increasing the MC and BSP content, and they had better properties with respect to water loss and their swelling ratio. Evaluations in vitro and in vivo showed that all of the developed MB hydrogels have good cell viability and wound-healing properties. The M8B2 hydrogel group was found to be superior to the others from within the developed MB hydrogels. Therefore, we believe that the M8B2 hydrogel formulation has a high potential for development as a wound dressing.
Collapse
|
38
|
Shahabadi N, Zendehcheshm S, Khademi F. Green Synthesis, in vitro Cytotoxicity, Antioxidant Activity and Interaction Studies of CuO Nanoparticles with DNA, Serum Albumin, Hemoglobin and Lysozyme. ChemistrySelect 2022. [DOI: 10.1002/slct.202202916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department Faculty of Chemistry Razi University Kermanshah Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department Faculty of Chemistry Razi University Kermanshah Iran
| | - Fatemeh Khademi
- Medical Biology Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
39
|
Antiulcerogenic and Antibacterial Effects of Chitosan Derivatives on Experimental Gastric Ulcers in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4743041. [PMID: 36159581 PMCID: PMC9507741 DOI: 10.1155/2022/4743041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022]
Abstract
Gastric ulcer is an injury that develops on the lining of the stomach due to an imbalance between aggressive and defensive agents. Chitosan derivatives demonstrate promising biological activities in accelerating the healing activity of gastric lesions. Thus, this study aimed at investigating the healing activity of gastric lesion, induced by acetic acid (80%), of the chitosan derivative with acetylacetone (Cac) modified with ethylenediamine (Cacen) or diethylenetriamine (Cacdien). The biological activity was determined based on cytotoxicity, antibacterial activity, and gastroprotective activities. The results showed no significant difference in the cytotoxicity, a better antibacterial activity against S. aureus and E. coli, and a positive result on the healing of gastric lesions of the materials (Cac 18.4%, Cacen 55.2%, and Cacdien 68.1%) compared to pure chitosan (50.7%). Therefore, the results indicate that derivatives of chitosan are promising biomaterials for application in the control of lesions on the gastric mucosa.
Collapse
|
40
|
Pedro AC, Paniz OG, Fernandes IDAA, Bortolini DG, Rubio FTV, Haminiuk CWI, Maciel GM, Magalhães WLE. The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants (Basel) 2022; 11:1644. [PMID: 36139717 PMCID: PMC9495759 DOI: 10.3390/antiox11091644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Biomaterials come from natural sources such as animals, plants, fungi, algae, and bacteria, composed mainly of protein, lipid, and carbohydrate molecules. The great diversity of biomaterials makes these compounds promising for developing new products for technological applications. In this sense, antioxidant biomaterials have been developed to exert biological and active functions in the human body and industrial formulations. Furthermore, antioxidant biomaterials come from natural sources, whose components can inhibit reactive oxygen species (ROS). Thus, these materials incorporated with antioxidants, mainly from plant sources, have important effects, such as anti-inflammatory, wound healing, antitumor, and anti-aging, in addition to increasing the shelf-life of products. Aiming at the importance of antioxidant biomaterials in different technological segments as biodegradable, economic, and promising sources, this review presents the main available biomaterials, antioxidant sources, and assigned biological activities. In addition, potential applications in the biomedical and industrial fields are described with a focus on innovative publications found in the literature in the last five years.
Collapse
Affiliation(s)
| | | | | | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Fernanda Thaís Vieira Rubio
- Departamento de Engenharia Química, Universidade de São Paulo, Escola Politécnica, Sao Paulo 05508-080, Sao Paulo, Brazil
| | | | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 81280-340, Paraná, Brazil
| | - Washington Luiz Esteves Magalhães
- Embrapa Florestas, Colombo 83411-000, Paraná, Brazil
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Curitiba 81531-990, Paraná, Brazil
| |
Collapse
|
41
|
Samanta S, Banerjee J, Das B, Mandal J, Chatterjee S, Ali KM, Sinha S, Giri B, Ghosh T, Dash SK. Antibacterial potency of cytocompatible chitosan-decorated biogenic silver nanoparticles and molecular insights towards cell-particle interaction. Int J Biol Macromol 2022; 219:919-939. [PMID: 35961557 DOI: 10.1016/j.ijbiomac.2022.08.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023]
Abstract
In the study, leaf extract of Carica papaya was utilized for the biogenic fabrication process of chitosan functionalized silver nanoparticles (Ag-Chito NPs). HRTEM analysis revealed that the fabricated Ag-Chito NPs was spherical in shape, with an average particle size of 13.31 (±0.07) nm. FTIR, UV-Vis, DLS, and other characterizations were also performed to analyze the diverse physicochemical properties of the particles. The antibacterial potency of the synthesized Ag-Chito NPs was tested against the two clinically isolated multidrug resistant uropathogenic bacterial strains, i.e. MLD 2 (Escherichia coli) and MLD 4 (Staphylococcus aureus) through MIC, MBC, time and concentration dependent killing kinetic assay, inhibition of biofilm formation assay, fluorescence and SEM imaging. Significantly, Ag-Chito NPs showed the highest sensitivity against the MLD 2 (MIC value of 12.5 μg/mL) strain, as compared to the MLD 4 (MIC value of 15 μg/mL) strain. From the hemolysis assay, it was revealed that Ag-Chito NPs exerted no significant toxicity up to 50 μg/mL against healthy human blood cells. Additionally, in silico analysis of chitosan (functionalized on the surface of AgNPs) and bacterial cell membrane protein also evidently suggested a strong interaction between Ag-Chito NPs and bacterial cells, which might be responsible for bacterial cell death.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Balaram Das
- Department of Physiology, Belda College, Paschim Medinipur 721424, West Bengal, India
| | - Jayanta Mandal
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | | | - Kazi Monjur Ali
- Department of Nutrition, M.U.C Women's College, Purba Bardhaman 713104, West Bengal, India
| | - Sangram Sinha
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Totan Ghosh
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, 741249, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
42
|
Lukhey MS, Shende P. Advancement in wound healing treatment using functional nanocarriers. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2099393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mihir S. Lukhey
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| |
Collapse
|
43
|
Insecticidal efficacy of nanomaterials used to control mosquito, Culex quinquefasciatus Say, 1823 with special reference to their hepatotoxicity in rats. Biosci Rep 2022; 42:231561. [PMID: 35822445 PMCID: PMC9334753 DOI: 10.1042/bsr20220630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to develop a novel methodology for controlling the mosquito larvae using different nanoparticles, with special reference to their effect on rats (a non-target mammalian model). The mosquito species of Culex quinquefasciatus was reared in the laboratory. Chitosan, silver nanoparticles and their combination as well as lavender (Lavandula officinalis) nanoemulsion with different concentrations were tested as biological insecticides against the mosquito larvae. Mammalian toxicity of the used nanoparticles were evaluated using 27 adult male rats, experimental rats were divided into 9 equal groups (n=3). The nanoparticles were added to the drinking water for 30 days. At the end of the study, blood and tissue samples were collected to assess the levels of the serum alanine aminotransferase and aspartate aminotransferase, different genes expression as interleukin 6 (IL-6) and IL-1β activity. Histopathological and immunohistochemical studies using two markers (TNF-α and BAX expression) were also applied. The LC50 and LC90 were recorded for each tested nanoparticles, and also the changes of the treated mosquito larvae cuticle were assessed using the scanning electron microscopy. Green nanoemulsion (Lavandula officinalis) was more effective than metal (silver) or even biodegradable (chitosan) nanoparticles in controlling of Culex quiquefasciatus mosquito larvae, and also it proved its safety by evaluation of the mammalian hepatotoxicity of the tested nanoparticles.
Collapse
|
44
|
Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J Fungi (Basel) 2022; 8:jof8060612. [PMID: 35736095 PMCID: PMC9225580 DOI: 10.3390/jof8060612] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to create chitosan-stabilized silver nanoparticles (Chi/Ag-NPs) and determine whether they were cytotoxic and also to determine their characteristic antibacterial, antibiofilm, and wound healing activities. Recently, the development of an efficient and environmentally friendly method for synthesizing metal nanoparticles based on polysaccharides has attracted a lot of interest in the field of nanotechnology. Colloidal Chi/Ag-NPs are prepared by chemical reduction of silver ions in the presence of Chi, giving Chi/Ag-NPs. Physiochemical properties are determined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analyses. TEM pictures indicate that the generated Chi/Ag-NPs are nearly spherical in shape with a thin chitosan covering around the Ag core and had sizes in the range of 9–65 nm. In vitro antibacterial activity was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa by a resazurin-mediated microtiter plate assay. The highest activity was observed with the lowest concentration of Chi/Ag-NPs, which was 12.5 µg/mL for both bacterial strains. Additionally, Chi/Ag-NPs showed promising antifungal features against Candida albicans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger, where inhibition zones were 22, 29, 20, and 17 mm, respectively. Likewise, Chi/Ag-NPs revealed potential antioxidant activity is 92, 90, and 75% at concentrations of 4000, 2000, and 1000 µg/mL, where the IC50 of Chi/Ag-NPs was 261 µg/mL. Wound healing results illustrated that fibroblasts advanced toward the opening to close the scratch wound by roughly 50.5% after a 24-h exposure to Chi/Ag-NPs, greatly accelerating the wound healing process. In conclusion, a nanocomposite based on AgNPs and chitosan was successfully prepared and exhibited antibacterial, antibiofilm, antifungal, antioxidant, and wound healing activities that can be used in the medical field.
Collapse
|
45
|
Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Shaheen TI, Abdelhameed MF, Zaghloul S, Montaser AS. In vivo assessment of the durable, green and in situ bio-functional cotton fabrics based carboxymethyl chitosan nanohybrid for wound healing application. Int J Biol Macromol 2022; 209:485-497. [PMID: 35398385 DOI: 10.1016/j.ijbiomac.2022.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
Herein, a newly developed approach for durable antibacterial cotton fabrics coated carboxymethyl chitosan (CMCs) via ionic crosslinking driven by cationization of cotton surface (CC) with 3-chloro-2-hydroxyl propyl-trimethyl ammonium chloride (CHTAC). In this regard, the novelty was extended to impart a highly antibacterial activity through harnessing of the as-functionalized CMCs/CC in situ preparation of AgNPs, without using of hazardous reductants. The antibacterial activity of the in situ prepared AgNPs onto CMCs/CC as well as the in vivo study on the rat lab were investigated to evaluate their healing efficiency, pathological tissues and biomarkers. Results affirmed that the treatment of CC with 10% of CMCs was adequate to achieve the highest swelling ratio which, in turns, is able to in situ deposition of AgNPs with a size range of 2-10 nm onto CC/CMCs rendering them a highly durable antibacterial activity against both Gram +Ve and Gram -Ve bacteria, which had a bacterial reduction of 98% to 86% after 20 washing cycles. Furthermore, the in vivo study revealed effectively the advantageous uses of the cotton functionalized with AgNPs compared to CC/CMCs in wound healing via alleviating the oxidative stress and promoting hyaluronic acid in wounded skin as well as increasing RUNX2 in healed skin tissues.
Collapse
Affiliation(s)
- Tharwat I Shaheen
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Mohamed F Abdelhameed
- Department of Pharmacology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Saad Zaghloul
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - A S Montaser
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
47
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
48
|
Abootorabi S, Akbari J, Saeedi M, Seyedabadi M, Ranaee M, Asare-Addo K, Nokhodchi A. Atorvastatin Entrapped Noisome (Atrosome): Green Preparation Approach for Wound Healing. AAPS PharmSciTech 2022; 23:81. [PMID: 35266075 DOI: 10.1208/s12249-022-02231-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to formulate atorvastatin niosome (Atrosome) through an ultrasonic technique and to determine its contribution to the extent of wound healing in an animal model. The optimized Atrosome formulation (Atrosome-2) was stable at 4 °C for 3 months. Differential scanning calorimetry (DSC), ATR-Fourier transform infrared spectroscopy (ATR-FTIR), and powder X-ray diffraction (PXRD) analysis revealed that atorvastatin (ATR) was well encapsulated within the niosomes either in a stabilized amorphous form or a molecularly dispersed state. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscope (AFM) confirmed the spherical nature of the Atrosomes. The optimized formulation showed polydispersity index, particle size, drug encapsulation efficiency (EE%), and zeta potential of 0.457 ± 0.05, 196.33 ± 6.45 nm, 86.15 ± 0.58 %, and - 20.73 ± 0.98 mV, respectively. ATR release from the Atrosome gel followed the first-order kinetic model and showed no cytotoxicity in the in vitro cytotoxicity test. Cell viability (human foreskin fibroblast cell line) was nearly 99%. An excision wound model was also applied in male Wistar rats to examine the in vivo efficacy of the optimized formulation, followed by investigating malondialdehyde (MDA, an end-product of lipid peroxidation), superoxide dismutase (SOD, an endogenous antioxidant), hydroxyproline levels, and glutathione peroxidase (GPx) in skin tissue samples. MDA significantly decreased in the Atrosome gel group after 21 days, while GPx, SOD, and hydroxyproline levels demonstrated an increase. According to histological results, rats receiving Atrosomes were treated effectively faster when compared to the other formulation used.
Collapse
|
49
|
Rahman MA, Harshita, Harwansh RK, Deshmukh R. Carbon-Based Nanomaterials: Carbon Nanotubes, Graphene and Fullerenes in Control of Burns Infections and Wound Healing. Curr Pharm Biotechnol 2022; 23:1483-1496. [PMID: 35264085 DOI: 10.2174/1389201023666220309152340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Burn injuries are extremely debilitating, resulting in high morbidity and mortality rates around the world. The risk of infection escalates in correlation with impairment of skin integrity, creating a barrier to healing and possibly leading to sepsis. With its numerous advantages over traditional treatment methods, nanomaterial-based wound healing has immense capability for treating and preventing wound infections. Carbon-based nanomaterials (CNMs) owing to their distinctive physicochemical and biological properties have emerged as promising platform for biomedical applications. Carbon nanotubes, graphene, fullerenes, and their nanocomposites have demonstrated broad antimicrobial activity against invasive bacteria, fungi, and viruses causing burn wound infection. The specific mechanisms that govern the antimicrobial activity of CNMs must be understood in order to ensure the safe and effective incorporation of these structures into biomaterials. However, it is challenging to decouple individual and synergistic contributions of physical, chemical, and electrical effects of CNMs on cells. This review reported on significant advances in the application of CNMs in burn wound infection and wound healing, with brief discussion on the interaction between different families of CNMs and microorganisms to assess antimicrobial performance.
Collapse
Affiliation(s)
| | - Harshita
- Dept. of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
50
|
Wang Y, Cai B, Ni D, Sun Y, Wang G, Jiang H. A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. J Nanobiotechnology 2022; 20:112. [PMID: 35248076 PMCID: PMC8897767 DOI: 10.1186/s12951-022-01323-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The endotracheal tube (ETT) is an essential medical device to secure the airway patency in patients undergoing mechanical ventilation or general anesthesia. However, long-term intubation eventually leads to complete occlusion, ETTs potentiate biofilm-related infections, such as ventilator-associated pneumonia. ETTs are mainly composed of medical polyvinyl chloride (PVC), which adheres to microorganisms to form biofilms. Thus, a simple and efficient method was developed to fabricate CS-AgNPs@PAAm-Gelatin nanocomposite coating to achieve dual antibacterial and antifouling effects.
Results
The PAAm-Gelatin (PAAm = polyacrylamide) molecular chain gel has an interpenetrating network with a good hydrophilicity and formed strong covalent bonds with PVC-ETTs, wherein silver nanoparticles were used as antibacterial agents. The CS-AgNPs@PAAm-Gelatin coating showed great resistance and antibacterial effects against Staphylococcus aureus and Pseudomonas aeruginosa. Its antifouling ability was tested using cell, protein, and platelet adhesion assays. Additionally, both properties were comprehensively evaluated using an artificial broncho-lung model in vitro and a porcine mechanical ventilation model in vivo. These remarkable results were further confirmed that the CS-AgNPs@PAAm-Gelatin coating exhibited an excellent antibacterial capacity, an excellent stain resistance, and a good biocompatibility.
Conclusions
The CS-AgNPs@PAAm-Gelatin nanocomposite coating effectively prevents the occlusion and biofilm-related infection of PVC-ETTs by enhancing the antibacterial and antifouling properties, and so has great potential for future clinical applications.
Graphical Abstract
Collapse
|