1
|
Zhang Y, Yang J, Fan S, Gao Y, Cai C, Li H, Li X, Yang X, Xing Y, Huang M, Bi H. The reversal of PXR or PPARα activation-induced hepatomegaly. Toxicol Lett 2024; 397:79-88. [PMID: 38734220 DOI: 10.1016/j.toxlet.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.
Collapse
Affiliation(s)
- Yifei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chenghui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huilin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518005, China
| | - Yunhui Xing
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518005, China.
| |
Collapse
|
2
|
Wang Q, Wang X. The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice. Int J Mol Sci 2023; 24:12117. [PMID: 37569494 PMCID: PMC10419107 DOI: 10.3390/ijms241512117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese patients remains elusive. In this investigation, 8-week-old C57BL/6J mice were randomly assigned to four groups: low-fat diet (LFD) as a control, high-fat diet (HFD), high-fat diet with a low LA/ALA ratio (HFD+H3L6), and high-fat diet with a high LA/ALA ratio (HFD+L3H6) for 16 weeks. Our results show that the HFD+H3L6 diet significantly decreased the liver index of HFD mice by 3.51%, as well as the levels of triacylglycerols (TGs) and low-density lipoprotein cholesterol (LDL-C) by 15.67% and 10.02%, respectively. Moreover, the HFD+H3L6 diet reduced the pro-inflammatory cytokines interleukin-6 (IL-6) level and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and elevated the level of superoxide dismutase (SOD) in the liver. The HFD+H3L6 diet also resulted in the downregulation of fatty acid synthetase (FAS) and sterol regulatory element binding proteins-1c (SREBP-1c) expression and the upregulation of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase 1 (ACOX1) gene expression in the liver. The low LA/ALA ratio diet led to a notable increase in the levels of ALA and its downstream derivative docosahexaenoic acid (DHA) in the erythrocyte, liver, perienteric fat, epididymal fat, perirenal fat, spleen, brain, heart, and gastrocnemius, with a strong positive correlation. Conversely, the accumulation of LA in abdominal fat was more prominent, and a high LA/ALA ratio diet exacerbated the deposition effect of LA. In conclusion, the low LA/ALA ratio not only regulated endogenous fatty acid levels but also upregulated PPAR-α and ACOX1 and downregulated SREBP-1c and FAS gene expression levels, thus maintaining lipid homeostasis. Optimizing dietary fat intake is important in studying lipid nutrition. These research findings emphasize the significance of understanding and optimizing dietary fat intake.
Collapse
Affiliation(s)
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
El-Ashmawy NE, Khedr NF, Sallam M, Nossier AI. Effect of activation of liver X receptor alpha on cardiac & hepatic ABCC10 and SLC17A5 drug transporters in hypercholesterolemic rat model. Biochem Biophys Res Commun 2022; 610:133-139. [DOI: 10.1016/j.bbrc.2022.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
|
4
|
Zhao P, Fan S, Gao Y, Huang M, Bi H. Nuclear Receptor-Mediated Hepatomegaly and Liver Regeneration: An Update. Drug Metab Dispos 2022; 50:636-645. [PMID: 35078806 DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2025] Open
Abstract
Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, are critical in cell growth, proliferation, differentiation, metabolism, and numerous biologic events. NRs have been reported to play important roles in hepatomegaly (liver enlargement) and liver regeneration by regulating target genes or interacting with other signals. In this review, the roles and involved molecular mechanisms of NRs in hepatomegaly and liver regeneration are summarized and the future perspectives of NRs in the treatment of liver diseases are discussed. SIGNIFICANCE STATEMENT: NRs play critical roles in hepatomegaly and liver regeneration, indicating the potential of NRs as targets to promote liver repair after liver injury. This paper reviews the characteristics and molecular mechanisms of NRs in regulating hepatomegaly and liver regeneration, providing more evidence for NRs in the treatment of related liver diseases.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| |
Collapse
|
5
|
Castellanos-Tapia L, Tejero-Barrera ME, Salas-Silva S, Simoni-Nieves A, Escobedo-Calvario A, Gomez-Quiroz LE. Mediterranean-like mix of fatty acids induces cellular protection on lipid-overloaded hepatocytes from western diet fed mice. Ann Hepatol 2021; 19:489-496. [PMID: 32663612 DOI: 10.1016/j.aohep.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVE Non-alcoholic fatty liver disease remains as one of the main liver disorders worldwide. It is widely accepted that is the kind of lipid, rather than the amount deposited in the cells that determines cell damage. Cholesterol and saturated free fatty acids are deleterious lipids when accumulated but, in contrast, there are some valuable lipids that could counteract those with harmful properties. Much of this knowledge arises from studies using a single fatty acid, but the effects of a combination of fatty acids, as obtained by diet has been poorly addressed. In the present work, we were focused to figure out the cellular effect of two different mixes of fatty acids, one with high proportion of saturated fatty acids, and another one with high proportion of unsaturated fatty acids (Mediterranean-like) in a cellular model of steatosis. MATERIAL AND METHODS Primary mouse hepatocytes from animals fed with a western diet (high fat and carbohydrates diet), were treated with both mixes of fatty acids for 24 h. RESULTS Our data clearly show that only the high unsaturated fatty acid mix induced a decrease in triglycerides (47.5%) and cholesterol (59%) content in steatotic hepatocytes mediating cellular protection associated to the decrement of ROS and oxidative damage. The mixture of high saturated fatty acids exhibited no effects, preserving high levels of cholesterol and triglycerides and oxidative damage. In conclusion, our results show that Mediterranean-like mix of fatty acids exerts cellular protection in steatosis by decreasing triglycerides, cholesterol, ROS content and oxidative damage.
Collapse
Affiliation(s)
- Lyssia Castellanos-Tapia
- Nutrigenomics Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico; Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico
| | | | - Soraya Salas-Silva
- Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
6
|
Pfohl M, Marques E, Auclair A, Barlock B, Jamwal R, Goedken M, Akhlaghi F, Slitt AL. An 'Omics Approach to Unraveling the Paradoxical Effect of Diet on Perfluorooctanesulfonic Acid (PFOS) and Perfluorononanoic Acid (PFNA)-Induced Hepatic Steatosis. Toxicol Sci 2021; 180:277-294. [PMID: 33483757 DOI: 10.1093/toxsci/kfaa172] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perfluoroalkyl substances (PFAS) are a family of toxicants universally detected in human serum and known to cause dyslipidemia in animals and humans. Hepatic steatosis, which is defined as lipid deposition in the liver, is known to be a consequence of poor diet. Similarly, PFAS are known to induce hepatic steatosis in animals on a low-fat chow. This study explored diet-PFAS interactions in the liver and their potential to modulate hepatic steatosis. Male C57BL/6J mice were fed with either a low-fat diet (10% kcal from fat, LFD) or a moderately high-fat diet (45% kcal from fat, HFD) with or without perfluorooctanesulfonic acid (3 ppm, PFOS) or perfluorononanoic acid (3 ppm, PFNA) in feed for 12 weeks. Livers were excised for histology and quantification of PFAS and lipids. The PFOS and PFNA coadministration with HFD reduced the hepatic accumulation of lipid and PFAS relative to the LFD treatment groups. Furthermore, transcriptomic analysis revealed that PFAS administration in the presence of an HFD significantly reduces expression of known hepatic PFAS uptake transporters, organic anion transporter proteins. Transcriptomics and proteomics further revealed several pathways related to lipid metabolism, synthesis, transport, and storage that were modulated by PFAS exposure and further impacted by the presence of dietary fat. Both dietary fat content and the chemical functional head group exerted significant influence on hepatic PFAS accumulation and the resulting biochemical signature, suggesting that diet and structure should be considered in the design and interpretation of research on PFAS induced hepatic steatosis.
Collapse
Affiliation(s)
- Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Adam Auclair
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Benjamin Barlock
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Rohitash Jamwal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey 08901
| | - Fatemeh Akhlaghi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| |
Collapse
|
7
|
Acharya P, Uppin V, Zarei M, Talahalli RR. Role of n-3 Fatty Acids on Bile Acid Metabolism and Transport in Dyslipidemia: A Review. Lipids 2020; 56:125-139. [PMID: 33074554 DOI: 10.1002/lipd.12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 11/06/2022]
Abstract
Dietary n-3 fatty acids, especially of marine origin, eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), have always been lauded for their profound effects on regulating the risk factors for major metabolic disorders. Yet, their consumption rate is poor compared to n-6 fatty acids [linoleic acid (18:2n-6)], which are predominantly consumed. Hence, the skewed n-6 to n-3 fatty acid ratio may have a bearing on the risk factors of various diseases, including dyslipidemia. Dyslipidemia and other lifestyle diseases associated with it, such as diabetes, obesity, hypertension, are a growing concern in both developed and developing countries. A common strategy for addressing dyslipidemia involves bile acid (BA) sequestration, to interrupt the enterohepatic circulation of BA, resulting in the modulation of lipid absorption in the intestine, thereby normalizing the levels of circulating lipids. The BA homeostasis is under the tight control of hepatic and enteric BA transporters. Many investigations have reported the effects of dietary constituents, including certain fatty acids on the reabsorption and transport of BA. However, a critical review of the effects of n-3 fatty acids on BA metabolism and transport is not available. The present review attempts to explore certain unmapped facets of the n-3 fatty acids on BA metabolism and transport in dyslipidemia, and their interplay with biological processes involving lipid rafts and gut microbiome.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinayak Uppin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India
| | - Ramaprasad R Talahalli
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, KRS Road, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
8
|
Nergiz-Unal R, Ulug E, Kisioglu B, Tamer F, Bodur M, Yalcimin H, Yuruk AA. Hepatic cholesterol synthesis and lipoprotein levels impaired by dietary fructose and saturated fatty acids in mice: Insight on PCSK9 and CD36. Nutrition 2020; 79-80:110954. [PMID: 32862122 DOI: 10.1016/j.nut.2020.110954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the uncertain effects of high saturated fatty acids (SFAs) or fructose intake on cholesterol and lipoproteins with an insight of proprotein convertase subtilisin/kexin type 9 (PCSK9)- and cluster of differentiation 36 (CD36)-induced mechanisms. METHODS Forty male C57 BL/6 mice (8 wks of age) were divided into four groups and fed ad libitum with standard chow or three isocaloric diets containing high SFAs (SFA group), monounsaturated fatty acids (MUFA group, vehicle), or fructose for 15 wks. Subsequently, mice were sacrificed and blood, liver, and heart were collected for further analysis. RESULTS Consequently, fructose or SFA intake resulted in higher plasma and liver total cholesterol (TC) levels, plasma low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo)-B levels, TC/HDL-C, and LDL-C/HDL-C ratios, and lower plasma levels of HDL-C and Apo-A1 (P < 0.05). Levels of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA acetyltransferase 1 enzymes in liver and CD36 levels in plasma were elevated by high SFAs and fructose intake (P < 0.05), whereas plasma PCSK9 levels were not significantly changed. Fructose and SFA intake increased PCSK9 and CD36 levels in the heart, along with increased CD36 levels in the liver (P < 0.05). Furthermore, plasma LDL-C was found to be positively correlated with liver PCSK9 (r = 0.85, P = 0.02), and CD36 (r = 0.70, P = 0.02) in the SFA and fructose groups. CONCLUSION High intakes of dietary SFAs and fructose might induce dysregulations in the cholesterol synthesis and blood lipoprotein levels via proposed nutrient-sensitive biomarkers PCSK9 and CD36 in liver and extrahepatic tissues involved in cholesterol homeostasis.
Collapse
Affiliation(s)
- Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Elif Ulug
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Betul Kisioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Funda Tamer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mahmut Bodur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Hacer Yalcimin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Armagan Aytug Yuruk
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Abstract
Currently, the prevention and treatment of CVD have been a global focus since CVD is the number one cause of mortality and morbidity. In the pathogenesis of CVD, it was generally thought that impaired cholesterol homeostasis might be a risk factor. Cholesterol homeostasis is affected by exogenous factors (i.e. diet) and endogenous factors (i.e. certain receptors, enzymes and transcription factors). In this context, the number of studies investigating the potential mechanisms of dietary fatty acids on cholesterol homeostasis have increased in recent years. As well, the cluster of differentiation 36 (CD36) receptor is a multifunctional membrane receptor involved in fatty acid uptake, lipid metabolism, atherothrombosis and inflammation. CD36 is proposed to be a crucial molecule for cholesterol homeostasis in various mechanisms including absorption/reabsorption, synthesis, and transport of cholesterol and bile acids. Moreover, it has been reported that the amount of fatty acids and fatty acid pattern of the diet influence the CD36 level and CD36-mediated cholesterol metabolism principally in the liver, intestine and macrophages. In these processes, CD36-mediated cholesterol and lipoprotein homeostasis might be impaired by dietary SFA and trans-fatty acids, whereas ameliorated by MUFA in the diet. The effects of PUFA on CD36-mediated cholesterol homeostasis are controversial depending on the amount of n-3 PUFA and n-6 PUFA, and the n-3:n-6 PUFA ratio. Thus, since the CD36 receptor is suggested to be a novel nutrient-sensitive biomarker, the role of CD36 and dietary fatty acids in cholesterol metabolism might be considered in medical nutrition therapy in the near future. Therefore, the novel nutritional target of CD36 and interventions that focus on dietary fatty acids and potential mechanisms underlying cholesterol homeostasis are discussed in this review.
Collapse
|
10
|
Jalil A, Bourgeois T, Ménégaut L, Lagrost L, Thomas C, Masson D. Revisiting the Role of LXRs in PUFA Metabolism and Phospholipid Homeostasis. Int J Mol Sci 2019; 20:ijms20153787. [PMID: 31382500 PMCID: PMC6696407 DOI: 10.3390/ijms20153787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/19/2023] Open
Abstract
Liver X receptors (LXRs) play a pivotal role in fatty acid (FA) metabolism. So far, the lipogenic consequences of in vivo LXR activation, as characterized by a major hepatic steatosis, has constituted a limitation to the clinical development of pharmacological LXR agonists. However, recent studies provided a different perspective. Beyond the quantitative accumulation of FA, it appears that LXRs induce qualitative changes in the FA profile and in the distribution of FAs among cellular lipid species. Thus, LXRs activate the production of polyunsaturated fatty acids (PUFAs) and their distribution into phospholipids via the control of FA desaturases, FA elongases, lysophosphatidylcholine acyltransferase (LPCAT3), and phospholipid transfer protein (PLTP). Therefore, LXRs control, in a dynamic manner, the PUFA composition and the physicochemical properties of cell membranes as well as the release of PUFA-derived lipid mediators. Recent studies suggest that modulation of PUFA and phospholipid metabolism by LXRs are involved in the control of lipogenesis and lipoprotein secretion by the liver. In myeloid cells, the interplay between LXR and PUFA metabolism affects the inflammatory response. Revisiting the complex role of LXRs in FA metabolism may open new opportunities for the development of LXR modulators in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Antoine Jalil
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Thibaut Bourgeois
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Louise Ménégaut
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Laurent Lagrost
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Charles Thomas
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - David Masson
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France.
- INSERM, LNC UMR 1231, F-21000 Dijon, France.
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France.
| |
Collapse
|
11
|
Lacasse MC, Tang A, Dubois J, Alvarez F, Spahis S, Chagnon M, Deschênes S, Levy E. Monitoring the efficacy of omega-3 supplementation on liver steatosis and carotid intima-media thickness: a pilot study. Obes Sci Pract 2017; 3:201-211. [PMID: 28702213 PMCID: PMC5478813 DOI: 10.1002/osp4.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose To determine the effects of omega‐3 supplementation on liver fat and carotid intima–media thickness (IMT) and to assess accuracy of ultrasound (US) for grading liver steatosis. Materials and Methods In this one‐way crossover pilot study, we assigned children with obesity and liver steatosis to receive 1.2 g daily of omega‐3 supplementation vs. inactive sunflower oil for 24 or 12 weeks. Liver fat content was assessed by magnetic resonance spectroscopy (MRS), magnetic resonance imaging (MRI) and US, and common carotid IMT by US. Statistical analysis included Chi‐square, Student's t‐tests, ANOVA tests and receiver operating characteristic (ROC) curves. Results Omega‐3 supplementation was associated with a trend towards decrease in MRS‐determined liver fat fraction (0.7% and 2.1% decrease in the 24‐week and 12‐week omega‐3 group, respectively) compared with the sunflower oil group (1.0% increase). These changes were not significant, whether assessed by MRS (P = 0.508), MRI (P = 0.508) or US (P = 0.678). Using US, the area under the ROC curves were 0.964, 0.817 and 0.783 for distinguishing inferred steatosis grades 0 vs. 1–2–3, 0–1 vs. 2–3 and 0–1–2 vs. 3, respectively, indicating good accuracy of US‐based fat grading. Omega‐3 supplementation was associated with a decrease in US‐determined IMT (0.05‐mm decrease in the 24‐week omega‐3 group. A 0.015‐mm increase was found in the 12‐week omega‐3 group, and a 0.007‐mm decrease in the sunflower oil group (P = 0.003). Conclusion Omega‐3 supplementation had no significant effect on liver fat fraction, but led to carotid IMT decrease in children with obesity and liver steatosis.
Collapse
Affiliation(s)
- M-C Lacasse
- Department of Radiology Centre Hospitalier de l'Université de Montréal (CHUM) Montréa Québec Canada
| | - A Tang
- Department of Radiology Centre Hospitalier de l'Université de Montréal (CHUM) Montréa Québec Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) Montréal Québec Canada
| | - J Dubois
- Department of Radiology Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| | - F Alvarez
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Gastroenterology, Hepatology and NutritionCentre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| | - S Spahis
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Gastroenterology, Hepatology and NutritionCentre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Nutrition Université de Montréal Québec Canada
| | - M Chagnon
- Department of Mathematics and Statistics, Pavillon André-Aisenstadt Université de Montréal Montréal Québec Canada
| | - S Deschênes
- Department of Radiology Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| | - E Levy
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Gastroenterology, Hepatology and NutritionCentre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| |
Collapse
|
12
|
Eicosapentaenoic Acid-Enriched Phosphatidylcholine Attenuated Hepatic Steatosis Through Regulation of Cholesterol Metabolism in Rats with Nonalcoholic Fatty Liver Disease. Lipids 2016; 52:119-127. [DOI: 10.1007/s11745-016-4222-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 12/09/2016] [Indexed: 01/26/2023]
|
13
|
Hamilton JP, Koganti L, Muchenditsi A, Pendyala VS, Huso D, Hankin J, Murphy RC, Huster D, Merle U, Mangels C, Yang N, Potter JJ, Mezey E, Lutsenko S. Activation of liver X receptor/retinoid X receptor pathway ameliorates liver disease in Atp7B(-/-) (Wilson disease) mice. Hepatology 2016; 63:1828-41. [PMID: 26679751 PMCID: PMC4874878 DOI: 10.1002/hep.28406] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/30/2015] [Accepted: 12/15/2015] [Indexed: 01/07/2023]
Abstract
UNLABELLED Wilson disease (WD) is a hepatoneurological disorder caused by mutations in the copper-transporter, ATP7B. Copper accumulation in the liver is a hallmark of WD. Current therapy is based on copper chelation, which decreases the manifestations of liver disease, but often worsens neurological symptoms. We demonstrate that in Atp7b(-/-) mice, an animal model of WD, liver function can be significantly improved without copper chelation. Analysis of transcriptional and metabolic changes in samples from WD patients and Atp7b(-/-) mice identified dysregulation of nuclear receptors (NRs), especially the liver X receptor (LXR)/retinoid X receptor heterodimer, as an important event in WD pathogenesis. Treating Atp7b(-/-) mice with the LXR agonist, T0901317, ameliorated disease manifestations despite significant copper overload. Genetic markers of liver fibrosis and inflammatory cytokines were significantly decreased, lipid profiles normalized, and liver function and histology were improved. CONCLUSIONS The results demonstrate the major role of an altered NR function in the pathogenesis of WD and suggest that modulation of NR activity should be explored as a supplementary approach to improving liver function in WD. (Hepatology 2016;63:1828-1841).
Collapse
Affiliation(s)
- JP Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - L Koganti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - A Muchenditsi
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - VS Pendyala
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - D Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - J Hankin
- University of Colorado, Denver, CO
| | | | - D Huster
- Deakoness Hospital, Leipzig, Germany
| | - U Merle
- University of Heidelberg, Germany
| | - C Mangels
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - N Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - JJ Potter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - E Mezey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - S. Lutsenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Eicosapentaenoic acid-containing phosphatidylcholine alleviated lipid accumulation in orotic acid-induced non-alcoholic fatty liver. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Li M, Meng X, Xu J, Huang X, Li H, Li G, Wang S, Man Y, Tang W, Li J. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway. Sci Rep 2016; 6:25237. [PMID: 27121981 PMCID: PMC4848522 DOI: 10.1038/srep25237] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/11/2016] [Indexed: 01/13/2023] Open
Abstract
Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Meng Li
- Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Xiangyu Meng
- Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Jie Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Shu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| | - Jian Li
- Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics &Beijing Hospital, Ministry of Health, Beijing, China
| |
Collapse
|
16
|
Wagner A, Cohen N, Kelder T, Amit U, Liebman E, Steinberg DM, Radonjic M, Ruppin E. Drugs that reverse disease transcriptomic signatures are more effective in a mouse model of dyslipidemia. Mol Syst Biol 2016; 11:791. [PMID: 26148350 PMCID: PMC4380926 DOI: 10.15252/msb.20145486] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High-throughput omics have proven invaluable in studying human disease, and yet day-to-day clinical practice still relies on physiological, non-omic markers. The metabolic syndrome, for example, is diagnosed and monitored by blood and urine indices such as blood cholesterol levels. Nevertheless, the association between the molecular and the physiological manifestations of the disease, especially in response to treatment, has not been investigated in a systematic manner. To this end, we studied a mouse model of diet-induced dyslipidemia and atherosclerosis that was subject to various drug treatments relevant to the disease in question. Both physiological data and gene expression data (from the liver and white adipose) were analyzed and compared. We find that treatments that restore gene expression patterns to their norm are associated with the successful restoration of physiological markers to their baselines. This holds in a tissue-specific manner—treatments that reverse the transcriptomic signatures of the disease in a particular tissue are associated with positive physiological effects in that tissue. Further, treatments that introduce large non-restorative gene expression alterations are associated with unfavorable physiological outcomes. These results provide a sound basis to in silico methods that rely on omic metrics for drug repurposing and drug discovery by searching for compounds that reverse a disease's omic signatures. Moreover, they highlight the need to develop drugs that restore the global cellular state to its healthy norm rather than rectify particular disease phenotypes.
Collapse
Affiliation(s)
- Allon Wagner
- The Blavatnik School of Computer Science, Tel Aviv UniversityTel Aviv, Israel
- Department of Electrical Engineering and Computer Science, University of CaliforniaBerkeley, CA, USA
- * Corresponding author. Tel. +972 3 640 5378; E-mail:
| | - Noa Cohen
- The Blavatnik School of Computer Science, Tel Aviv UniversityTel Aviv, Israel
| | - Thomas Kelder
- Microbiology and Systems Biology, TNOZeist, the Netherlands
| | - Uri Amit
- Neufeld Cardiac Research Institute, Tel Aviv UniversityTel Aviv, Israel
- Regenerative Medicine Stem Cells and Tissue Engineering Center, Sheba Medical CenterTel Hashomer, Israel
| | - Elad Liebman
- Department of Computer Science, University of Texas at AustinAustin, TX, USA
| | - David M Steinberg
- Department of Statistics and Operations Research, Tel Aviv UniversityTel Aviv, Israel
| | | | - Eytan Ruppin
- The Blavatnik School of Computer Science, Tel Aviv UniversityTel Aviv, Israel
- The Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
- Department of Computer Science, Institute of Advanced Computer Sciences (UMIACS) & the Center for Bioinformatics and Computational Biology, University of MarylandCollege Park, MD, USA
- ** Corresponding author. Tel. +972 3 640 6528; E-mail:
| |
Collapse
|
17
|
Mellor CL, Steinmetz FP, Cronin MTD. The identification of nuclear receptors associated with hepatic steatosis to develop and extend adverse outcome pathways. Crit Rev Toxicol 2015; 46:138-52. [PMID: 26451809 DOI: 10.3109/10408444.2015.1089471] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of adverse outcome pathways (AOPs) is becoming a key component of twenty-first century toxicology. AOPs provide a conceptual framework that links the molecular initiating event to an adverse outcome through organized toxicological knowledge, bridging the gap from chemistry to toxicological effect. As nuclear receptors (NRs) play essential roles for many physiological processes within the body, they are used regularly as drug targets for therapies to treat many diseases including diabetes, cancer and neurodegenerative diseases. Due to the heightened development of NR ligands, there is increased need for the identification of related AOPs to facilitate their risk assessment. Many NR ligands have been linked specifically to steatosis. This article reviews and summarizes the role of NR and their importance with links between NR examined to identify plausible putative AOPs. The following NRs are shown to induce hepatic steatosis upon ligand binding: aryl hydrocarbon receptor, constitutive androstane receptor, oestrogen receptor, glucocorticoid receptor, farnesoid X receptor, liver X receptor, peroxisome proliferator-activated receptor, pregnane X receptor and the retinoic acid receptor. A preliminary, putative AOP was formed for NR binding linked to hepatic steatosis as the adverse outcome.
Collapse
Affiliation(s)
- Claire L Mellor
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , England
| | - Fabian P Steinmetz
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , England
| | - Mark T D Cronin
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , England
| |
Collapse
|
18
|
Omega-3 Fatty Acids Augment the Actions of Nuclear Receptor Agonists in a Mouse Model of Alzheimer's Disease. J Neurosci 2015; 35:9173-81. [PMID: 26085639 DOI: 10.1523/jneurosci.1000-15.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a highly prevalent disorder for which there are no effective therapies. Accumulation of amyloid β (Aβ) peptides in the brain is associated with impaired cognition and memory, pronounced inflammatory dysregulation, and subsequent amyloid plaque deposition. Thus, drugs that promote the clearance of Aβ peptides and resolution of inflammation may represent viable therapeutic approaches. Agonists of nuclear receptors LXR:RXR and PPAR:RXR act to ameliorate AD-related cognitive impairment and amyloid accumulation in murine models of AD. The use of an agonist to the nuclear receptor RXR, bexarotene, as monotherapy against AD, presents potential challenges due to the metabolic perturbations it induces in the periphery, most prominently hypertriglyceridemia. We report that the ω-3 fatty acid docosahexaenoic acid (DHA), in combination with bexarotene, enhances LXR:RXR target gene expression of Abca1 and ApoE, reduces soluble forms of Aβ, and abrogates release of pro-inflammatory cytokines and mediators both in vitro and in a mouse model of AD. Moreover, DHA abrogates bexarotene-induced hypertriglyceridemia in vivo. Importantly, dual therapy promotes reductions in AD pathology and resultant amelioration of cognitive deficits. While monotherapy with either bexarotene or DHA resulted in modest effects in vitro and in vivo, combined treatment with both agents produced a significant additive benefit on associated AD-related phenotypes, suggesting that targeted combinatorial agents may be beneficial over single agents alone in treating AD.
Collapse
|
19
|
Ahmed El-Shazly S, Ahmed MM, Ibrahim ZS, Refat MS. Synthesis, characterization, and efficacy evaluation of a new anti-diabetic vanadyl(II) thiamine hydrochloride complex in streptozotocin-induced diabetic rats. Int J Immunopathol Pharmacol 2015; 28:227-39. [PMID: 25816395 DOI: 10.1177/0394632015576036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/13/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia due to abnormalities in either insulin secretion or action. A range of vanadium complexes have been synthesized and demonstrated to be effective in lowering hyperglycemia. Thiamine administration was also reported to prevent deterioration in fasting glucose and insulin levels, and to improve glucose tolerance in hyperglycemic patients. This study has been conducted to evaluate the ionic vanadyl(II) thiamine hydrochloride complex (VC) as a new anti-diabetic candidate. The new complex was characterized by infrared spectroscopy (FT-IR), electronic spectra, magnetic susceptibility, electron spin resonance (ESR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The anti-diabetic effect of VC was investigated in comparison to vanadium sulfate in streptozotocin (STZ)-induced diabetic rats. Treatment of diabetic rats with VC versus vanadyl sulfate showed a more potent effect on reducing serum glucose and cholesterol close to normal levels. VC suppressed the diabetes-induced upregulation of hepatic glucose transporter (GLUT)-2, Phosphoenol pyruvate carboxykinase (PEPCK), and hormone-sensitive lipase (HSL) more significantly than vanadyl sulfate. Either vanadyl sulfate or VC restored hepatic sterol regulatory element-binding protein transcription factor-1c (SREBP-1c) and muscle hexokinase (HK) mRNA expression that was downregulated in diabetic group. Pyruvate kinase (PK) mRNA expression was restored more significantly in VC-treated than vanadyl sulfate-treated diabetic rats. These results indicate that the newly synthesized VC could be an effective anti-diabetic candidate as the anti-diabetic activity of the ionic vanadium was enhanced after being modified with the organic ligand, thiamin. The results also suggest that VC achieves its effect most likely through modulating the transcription of energy metabolizing enzymes.
Collapse
Affiliation(s)
- Samir Ahmed El-Shazly
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia Department of Biochemistry, Faculty of Veterinary Medicine, Kaferelsheikh University, Egypt
| | - Mohamed Mohamed Ahmed
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia Department of Biochemistry, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Zein Shaban Ibrahim
- Department of Physiology, Faculty of Veterinary Medicine, Kaferelsheikh University, Egypt Department of Physiology, Faculty of Medicine, Taif University, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, Saudi Arabia Department of Chemistry, Faculty of Science, Port Said University, Egypt
| |
Collapse
|
20
|
Kim H, Ye J. Cellular responses to excess fatty acids: focus on ubiquitin regulatory X domain-containing protein 8. Curr Opin Lipidol 2014; 25:118-24. [PMID: 24378746 DOI: 10.1097/mol.0000000000000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Although fatty acids are crucial for cell survival, their overaccumulation triggers lipotoxicity that leads to metabolic syndrome. Thus, cells maintain their homeostasis by multiple feedback regulatory systems. This review focuses on how cells regulate the level of fatty acids by these systems. RECENT FINDINGS Ubiquitin regulatory X domain-containing protein 8 has been identified as a specific sensor for unsaturated fatty acids that regulates lipogenic activity. SUMMARY Together with the previously identified peroxisome proliferator-activated receptors and liver X receptor, these proteins sense the presence of unsaturated fatty acids and initiate reactions preventing their overaccumulation. Understanding the mechanism of the signal transduction pathways mediated by these proteins may offer new strategies to treat metabolic syndrome.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
21
|
Chamulitrat W, Liebisch G, Xu W, Gan-Schreier H, Pathil A, Schmitz G, Stremmel W. Ursodeoxycholyl lysophosphatidylethanolamide inhibits lipoapoptosis by shifting fatty acid pools toward monosaturated and polyunsaturated fatty acids in mouse hepatocytes. Mol Pharmacol 2013; 84:696-709. [PMID: 23974795 DOI: 10.1124/mol.113.088039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) is a hepatoprotectant in inhibiting apoptosis, inflammation, and hyperlipidemia in mouse models of nonalcoholic steatohepatitis (NASH). We studied the ability of UDCA-LPE to inhibit palmitate (Pal)-induced apoptosis in primary hepatocytes and delineate cytoprotective mechanisms. We showed that lipoprotection by UDCA-LPE was mediated by cAMP and was associated with increases in triglycerides (TGs) and phospholipids (PLs). An inhibitor of cAMP-effector protein kinase A partially reversed the protective effects of UDCA-LPE. Lipidomic analyses of fatty acids and PL composition revealed a shift of lipid metabolism from saturated Pal to monounsaturated and polyunsaturated fatty acids, mainly, oleate, docosapentaenoate, and docosahexaenoate. The latter two ω-3 fatty acids were particularly found in phosphatidylcholine and phosphatidylserine pools. The catalysis of Pal by stearoyl-CoA desaturase-1 (SCD-1) is a known mechanism for the channeling of Pal away from apoptosis. SCD-1 protein was upregulated during UDCA-LPE lipoprotection. SCD-1 knockdown of Pal-treated cells showed further increased apoptosis, and the extent of UDCA-LPE protection was reduced. Thus, the major mechanism of UDCA-LPE lipoprotection involved a metabolic shift from toxic saturated toward cytoprotective unsaturated fatty acids in part via SCD-1. UDCA-LPE may thus be a therapeutic agent for treatment of NASH by altering distinct pools of fatty acids for storage into TGs and PLs, and the latter may protect lipotoxicity at the membrane levels.
Collapse
Affiliation(s)
- Walee Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, Im Neuenheimer Feld, Heidelberg, Germany (W.C., H.G.-S., A.P., W.S.); Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany (G.L., G.S.); and Department of Gastroenterology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, People's Republic of China (W.X.)
| | | | | | | | | | | | | |
Collapse
|
22
|
Mustonen AM, Kärjä V, Kilpiö M, Tammi R, Tammi M, Rouvinen-Watt K, Halonen T, Nieminen P. Manifestations of fasting-induced fatty liver and rapid recovery from steatosis in voles fed lard or flaxseed oil lipids. Nutrients 2013; 5:4211-30. [PMID: 24152753 PMCID: PMC3820070 DOI: 10.3390/nu5104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 01/21/2023] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (PUFA) can have beneficial effects against fat deposition, cardiovascular diseases, and liver steatosis. We investigated how diets based on lard (predominantly saturated and monounsaturated fatty acids) or flaxseed oil (rich in 18:3n-3) affect liver fat-% and fatty acid profiles of tundra voles (Microtus oeconomus). We also studied potential participation of hyaluronan (HA) in the pathology of fatty liver and whether the development and recovery of fasting-induced steatosis are influenced by n-3 PUFA. The dietary fatty acid composition was manifested in the liver fatty acid signatures. Fasting for 18 h induced macrovesicular steatosis and the liver fat-% increased to 22% independent of the preceding diet. Fasting-induced steatosis did not involve inflammation or connective tissue activation indicated by the absence of both leukocyte accumulation and increased HA. Food deprivation modified the liver fatty acid signatures to resemble more closely the diets. Fasting reduced the proportions of long-chain n-3 PUFA in both dietary regimes and n-3/n-6 PUFA ratios in the lard-fed voles. Decreases in long-chain n-3 PUFA may promote lipid accumulation by modulating the expression of lipid-metabolizing genes. Dietary 18:3n-3 did not prevent the development or attenuate the manifestation of steatosis in the fasted voles or promote the recovery.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; E-Mails: (M.K.); (R.T.); (M.T.); (P.N.)
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +358-294-45-1111; Fax: +358-13-318-039
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, Kuopio FI-70211, Finland; E-Mail:
| | - Michael Kilpiö
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; E-Mails: (M.K.); (R.T.); (M.T.); (P.N.)
| | - Raija Tammi
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; E-Mails: (M.K.); (R.T.); (M.T.); (P.N.)
| | - Markku Tammi
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; E-Mails: (M.K.); (R.T.); (M.T.); (P.N.)
| | - Kirsti Rouvinen-Watt
- Faculty of Agriculture, Department of Plant and Animal Sciences, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada; E-Mail:
| | - Toivo Halonen
- Eastern Finland Laboratory Centre (ISLAB), P.O. Box 1700, Kuopio FI-70211, Finland; E-Mail:
| | - Petteri Nieminen
- Faculty of Health Sciences, Institute of Biomedicine/Anatomy, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; E-Mails: (M.K.); (R.T.); (M.T.); (P.N.)
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Fatty acids influence human health and diseases in various ways. In recent years, much work has been carried out to elucidate the mechanisms by which dietary fatty acids control short-term and long-term cellular functions. We have reviewed herein the most recent studies on modulation of gene expression by fatty acids. A number of genes respond to transcription factors and present a transcription factor response element in their promoter regions. Fatty acids may exert their effects on metabolism by regulating gene transcription via transcription factors. Understanding how fatty acids control expression of metabolic genes is a promising strategy to be investigated by aiming to treat metabolic diseases such as insulin resistance, obesity, and type 2 diabetes mellitus. RECENT FINDINGS Fatty acids exert many of their biological effects through the modulation of the activity of transcription factors, such as sterol regulatory element-binding proteins, peroxisome proliferator-activated receptors, and liver X receptors. SUMMARY Fatty acid action through transcription factors controls the expression of several inflammatory and metabolic genes.
Collapse
Affiliation(s)
- Laureane N Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
24
|
Watanabe S, Tsuneyama K. Eicosapentaenoic acid attenuates hepatic accumulation of cholesterol esters but aggravates liver injury and inflammation in mice fed a cholate-supplemented high-fat diet. J Toxicol Sci 2013; 38:379-90. [PMID: 23665937 DOI: 10.2131/jts.38.379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The administration of a sodium cholate-supplemented high-fat (CAHF) diet in mice induced the predominant accumulation of cholesterol esters (CE) in the liver and biochemical and histological features of liver injury. Cholesteryl oleate was the most abundant CE found in the liver of the mice fed the CAHF diet. We examined the effect of ethyl eicosapentaenoate (EPA) on hepatic CE accumulation and liver injury in the mice fed the CAHF diet. The EPA supplementation suppressed the elevation in the level of cholesteryl oleate in the liver. The expression levels of sterol O-acyltransferase-2 and stearoyl-CoA desaturase-1 mRNA in the liver were elevated in the mice fed the CAHF diet, but they were normalized by the EPA supplementation. However, the elevation in serum transaminase activity, the sign of inflammatory cell exudation and inflammatory gene responses in the liver of the mice fed the EPA-supplemented diet were enhanced compared with those of the mice fed the CAHF diet. We demonstrated that EPA supplementation attenuated CE accumulation but aggravated liver injury and liver inflammation in the mice fed the CAHF diet.
Collapse
Affiliation(s)
- Shiro Watanabe
- Division of Nutritional Biochemistry, Institute of Natural Medicine, University of Toyama, Japan.
| | | |
Collapse
|
25
|
Rahman SM, Choudhury M, Janssen RC, Baquero KC, Miyazaki M, Friedman JE. CCAAT/enhancer binding protein β deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis. Biochem Biophys Res Commun 2012; 430:336-9. [PMID: 23159614 DOI: 10.1016/j.bbrc.2012.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/13/2022]
Abstract
Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBPβ expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBPβ deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBPβ(-/-) mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBPβ(-/-) mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBPβ in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBPβ might therefore be an important therapeutic strategy to prevent LXR activation-mediated adverse effects on liver TG metabolism without disrupting its beneficial effects on cholesterol metabolism.
Collapse
Affiliation(s)
- Shaikh M Rahman
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|