1
|
Ilyaskina D, Fernandes S, Berg MP, Lamoree MH, van Gestel CAM, Leonards PEG. Teflubenzuron effects on springtail life history traits explained from impairment of its lipid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179394. [PMID: 40252495 DOI: 10.1016/j.scitotenv.2025.179394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/10/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
This study investigated how the insecticide teflubenzuron disrupts lipid metabolism in the springtail Folsomia candida, revealing significant alterations in lipid profiles. F. candida was exposed to sub-lethal concentrations of teflubenzuron (0, 0.006, 0.014, 0.035 mg a.s. kg-1 soil dry weight). Untargeted lipidomics was used to study the dynamic changes in lipid profiles in the springtail over exposure intervals of 2, 7, and 14 days exposure intervals. Teflubenzuron induced shifts in lipid profiles, affecting lipid pathways crucial for energy storage, membrane integrity, and signaling, which are essential for survival, reproduction, and stress responses in this springtail. Diacylglycerols (DG) and Triacylglycerols (TG), which play crucial roles in energy storage and lipid-mediated signaling, were substantially affected by teflubenzuron. Decreased levels of DG and TG suggest a shift in priorities from reproduction to maintenance functions, implying disruptions in cholesterol homeostasis and vitellogenesis in response to teflubenzuron exposure. Furthermore, increased levels of fatty acids and N-acylethanolamines in response to teflubenzuron exposure indicated increased energy production and potential oxidative stress, highlighting the springtails' response to pesticide exposure. Certain lipid alterations (N-palmitoylethanolamine (NAE 16:0) and N-stearoylethanolamine (NAE 18:0)), known for their anti-inflammatory properties, point towards inflammation and mitochondrial membrane remodeling (alternations in cardiolipin lipids), indicating broader impacts on physiological functions. Ether glycerophospholipids, such as lysophosphatidylethanolamine and phosphatidylethanolamine, linked to peroxisomes and the endoplasmic reticulum, underscore their potential antioxidative role in response to oxidative stress. The study shows the significance of incorporating life cycle events into ecotoxicological assessments to comprehensively understand pesticide impacts on organisms. The integration of lipidomics into environmental risk assessments offers a more informed approach to pesticide regulation and environmental stewardship.
Collapse
Affiliation(s)
- Diana Ilyaskina
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Saúl Fernandes
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Matty P Berg
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; GELIFES, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Beyoğlu D, Hamberg P, IJzerman NS, Mathijssen RHJ, Idle JR. New metabolic insights into the mechanism of ifosfamide encephalopathy. Biomed Pharmacother 2025; 182:117773. [PMID: 39693904 DOI: 10.1016/j.biopha.2024.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024] Open
Abstract
Ifosfamide causes neurotoxicity, including sometimes fatal encephalopathy, in a small number of patients. Why and how this occurs is not fully understood. It is generally believed that N-dechloroethylation of ifosfamide to 2-chloroacetaldehyde is the cause. A total of 61 patients were investigated, 49 who received ifosfamide and pazopanib and 12 treated with ifosfamide and sunitinib. Plasmas were analyzed by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) and by gas chromatography-mass spectrometry (GC-MS). Neurotoxicity occurred in 25/61 patients, including four with encephalopathy. UPLC-QTOFMS revealed that N-dechloroethylation was unlikely to be the cause but did divulge in plasma that 2-chloroethylamine, 3-phosphoserine, uridine 3'-diphosphate 5'-diphosphate, Cer(d16:1/17:0), Cer(d16:0/16:0), and thyroxine were associated with encephalopathy. GC-MS analysis showed that palmitic, oleic and stearic acids increased significantly in plasma only in nonencephalopathic patients, suggesting impaired long-chain fatty acid oxidation but an alternative metabolic pathway in encephalopathic patients. Glycine, alanine, serine, glutamate and 5-oxoproline all decreased significantly only in encephalopathic plasmas, signifying increased de novo GSH synthesis. Taken together, these findings indicate three new putative mechanisms of ifosfamide encephalopathy: (i) failure to convert 3-phosphoserine to serine due to inhibition of O-phosphoserine phosphohydratase; (ii) failure to incorporate ceramides into cerebrosides and (iii) oxidative injury of the cerebral cortex requiring de novo GSH synthesis.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA.
| | - Paul Hamberg
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands.
| | | | | | - Jeffrey R Idle
- Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA.
| |
Collapse
|
3
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
5
|
Turner DGP, De Lange WJ, Zhu Y, Coe CL, Simcox J, Ge Y, Kamp TJ, Ralphe JC, Glukhov AV. Neutral sphingomyelinase regulates mechanotransduction in human engineered cardiac tissues and mouse hearts. J Physiol 2024; 602:4387-4407. [PMID: 37889115 PMCID: PMC11052922 DOI: 10.1113/jp284807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the USA and is known to be exacerbated by elevated mechanical stress from hypertension. Caveolae are plasma membrane structures that buffer mechanical stress but have been found to be reduced in pathological conditions associated with chronically stretched myocardium. To explore the physiological implications of the loss of caveolae, we used human engineered cardiac tissue (ECT) constructs, composed of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts, to develop a long-term cyclic stretch protocol that recapitulates the effects of hypertension on caveolae expression, membrane tension, and the β-adrenergic response. Leveraging this new stretch protocol, we identified neutral sphingomyelinases (nSMase) as mechanoregulated mediators of caveolae loss, ceramide production and the blunted β-adrenergic response in this human cardiac model. Specifically, in our ECT model, nSMase inhibition via GW4869 prevented stretch-induced loss of caveolae-like structures, mitigated nSMase-dependent ceramide production, and maintained the ECT contractile kinetic response to isoprenaline. These findings are correlated with a blood lipidomic analysis in middle-aged and older adults, which revealed an increase of the circulating levels of ceramides in adults with hypertension. Furthermore, we found that conduction slowing from increased pressure loading in mouse left ventricle was abolished in the context of nSMase inhibition. Collectively, these findings identify nSMase as a potent drug target for mitigating stretch-induced effects on cardiac function. KEY POINTS: We have developed a new stretch protocol for human engineered cardiac tissue that recapitulates changes in plasma membrane morphology observed in animal models of pressure/volume overload. Stretch of engineered cardiac tissue induces activation of neutral sphingomyelinase (nSMase), generation of ceramide, and disassembly of caveolae. Activation of nSMase blunts cardiac β-adrenergic contractile kinetics and mediates stretch-induced slowing of conduction and upstroke velocity. Circulating ceramides are increased in adults with hypertension, highlighting the clinical relevance of stretch-induced nSMase activity.
Collapse
Affiliation(s)
- Daniel G P Turner
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Willem J De Lange
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J Kamp
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Batliner M, Schumacher F, Wigger D, Vivas W, Prell A, Fohmann I, Köhler T, Schempp R, Riedel A, Vaeth M, Fekete A, Kleuser B, Kurzai O, Nieuwenhuizen NE. The Candida albicans quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells. mBio 2024; 15:e0073224. [PMID: 38953353 PMCID: PMC11323541 DOI: 10.1128/mbio.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.
Collapse
Affiliation(s)
- Maria Batliner
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital–Friedrich Schiller University, Jena, Germany
- Associated Research Group Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute (HKI), Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital–Friedrich Schiller University, Jena, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Köhler
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
| | - Natalie E. Nieuwenhuizen
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Schengrund CL. Sphingolipids: Less Enigmatic but Still Many Questions about the Role(s) of Ceramide in the Synthesis/Function of the Ganglioside Class of Glycosphingolipids. Int J Mol Sci 2024; 25:6312. [PMID: 38928016 PMCID: PMC11203820 DOI: 10.3390/ijms25126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Dei Cas M, Montavoci L, Pasini C, Caretti A, Penati S, Martinelli C, Gianelli U, Casati S, Nardecchia F, Torella A, Brunetti-Pierri N, Trinchera M. Loss of function and reduced levels of sphingolipid desaturase DEGS1 variants are both relevant in disease mechanism. J Lipid Res 2024; 65:100517. [PMID: 38342436 PMCID: PMC10940770 DOI: 10.1016/j.jlr.2024.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024] Open
Abstract
The last step of ex novo ceramide biosynthesis consists of the conversion of dihydroceramide into ceramide catalyzed by sphingolipid Δ4-desaturase DEGS1. DEGS1 variants were found to be responsible for heterogeneous clinical pictures belonging to the family of hypomyelinating leukodystrophies. To investigate the mechanisms making such variants pathogenic, we designed a procedure for the efficient detection of desaturase activity in vitro using LC-MS/MS and prepared a suitable cell model knocking out DEGS1 in HEK-293T cells through CRISPR-Cas9 genome editing (KO-DES-HEK). Transfecting KO-DES-HEK cells with DEGS1 variants, we found that their transcripts were all overexpressed as much as the WT transcripts, while the levels of cognate protein were 40%-80% lower. In vitro desaturase activity was lost by many variants except L175Q and N255S, which maintain a catalytic efficiency close to 12% of the WT enzyme. Metabolic labeling of KO-DES-HEK with deuterated palmitate followed by LC-MS/MS analysis of the formed sphingolipids revealed that the ceramide/dihydroceramide and sphingomyelin/dihydrosphingomyelin ratios were low and could be reverted by the overexpression of WT DEGS1 as well as of L175Q and N255S variants, but not by the overexpression of all other variants. Similar analyses performed on fibroblasts from a patient heterozygous for the N255S variant showed very low variant DEGS1 levels and a low ratio between the same unsaturated and saturated sphingolipids formed upon metabolic labeling, notwithstanding the residual activity measured at high substrate and homogenate protein concentrations. We conclude that loss of function and reduced protein levels are both relevant in disease pathogenesis.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Linda Montavoci
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Claudia Pasini
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Caretti
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Penati
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Carla Martinelli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Umberto Gianelli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy; S.C. di Anatomia Patologica, ASST- Santi Paolo e Carlo, Milan, Italy
| | - Sara Casati
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Nardecchia
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Marco Trinchera
- Department of Medicine and Surgery (DMC), University of Insubria, Varese, Italy.
| |
Collapse
|
9
|
Wang L, Zhang X, Li L, Bao J, Lin F, Zhu X. A key sphingolipid pathway gene, MoDES1, regulates conidiation, virulence and plasma membrane tension in Magnaporthe oryzae. Microbiol Res 2024; 279:127554. [PMID: 38056173 DOI: 10.1016/j.micres.2023.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Rice blast, caused by the plant pathogenic fungus Magnaporthe oryzae, is a destructive disaster all over the earth that causes enormous losses in crop production. Sphingolipid, an important biological cell membrane lipid, is an essential structural component in the plasma membrane (PM) and has several biological functions, including cell mitosis, apoptosis, stress resistance, and signal transduction. Previous studies have suggested that sphingolipid and its derivatives play essential roles in the virulence of plant pathogenic fungi. However, the functions of sphingolipid biosynthesis-related proteins are not fully understood. In this article, we identified a key sphingolipid synthesis enzyme, MoDes1, and found that it is engaged in cell development and pathogenicity in M. oryzae. Deletion of MoDES1 gave rise to pleiotropic defects in vegetative growth, conidiation, plant penetration, and pathogenicity. MoDes1 is also required for lipid homeostasis and participates in the cell wall integrity (CWI) and Osm1-MAPK pathways. Notably, our results showed that there is negative feedback in the TORC2 signaling pathway to compensate for the decreased sphingolipid level due to the knockout of MoDES1 by regulating the phosphorylated Ypk1 level and PM tension. Furthermore, protein structure building has shown that MoDes1 is a potential drug target. These findings further refine the function of Des1 and deepen our understanding of the sphingolipid biosynthesis pathway in M. oryzae, laying a foundation for developing novel and specific drugs for rice blast control.
Collapse
Affiliation(s)
- Lei Wang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Xiaozhi Zhang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fucheng Lin
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou, 311231, China.
| | - Xueming Zhu
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
11
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
12
|
Sanahuja I, Ruiz A, Firmino JP, Reyes-López FE, Ortiz-Delgado JB, Vallejos-Vidal E, Tort L, Tovar-Ramírez D, Cerezo IM, Moriñigo MA, Sarasquete C, Gisbert E. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J Anim Sci Biotechnol 2023; 14:90. [PMID: 37422657 DOI: 10.1186/s40104-023-00895-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/11/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The development of a sustainable business model with social acceptance, makes necessary to develop new strategies to guarantee the growth, health, and well-being of farmed animals. Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i) promote cell proliferation and differentiation, ii) have immunostimulatory effects, iii) modulate gut microbiota, and/or iv) enhance the digestive function. To provide inside into the effects of D. hansenii on juveniles of gilthead seabream (Sparus aurata) condition, we integrated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition, through histological and microbiota state, and its transcriptomic profiling. RESULTS After 70 days of a nutritional trial in which a diet with low levels of fishmeal (7%) was supplemented with 1.1% of D. hansenii (17.2 × 105 CFU), an increase of ca. 12% in somatic growth was observed together with an improvement in feed conversion in fish fed a yeast-supplemented diet. In terms of intestinal condition, this probiotic modulated gut microbiota without affecting the intestine cell organization, whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells. Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria, especially those characterized as opportunistic groups. The microarrays-based transcriptomic analysis found 232 differential expressed genes in the anterior-mid intestine of S. aurata, that were mostly related to metabolic, antioxidant, immune, and symbiotic processes. CONCLUSIONS Dietary administration of D. hansenii enhanced somatic growth and improved feed efficiency parameters, results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated. This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis, which demonstrated its safety as a feed additive. At the transcriptomic level, D. hansenii promoted metabolic pathways, mainly protein-related, sphingolipid, and thymidylate pathways, in addition to enhance antioxidant-related intestinal mechanisms, and to regulate sentinel immune processes, potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Joana P Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Isabel M Cerezo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
- SCBI, Bioinformatic Unit, University of Malaga, 29590, Malaga, Spain
| | - Miguel A Moriñigo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain.
| |
Collapse
|
13
|
Mingo-Casas P, Sanchez-Céspedes J, Blázquez AB, Casas J, Balsera-Manzanero M, Herrero L, Vázquez A, Pachón J, Aguilar-Guisado M, Cisneros JM, Saiz JC, Martín-Acebes MA. Lipid signatures of West Nile virus infection unveil alterations of sphingolipid metabolism providing novel biomarkers. Emerg Microbes Infect 2023:2231556. [PMID: 37377355 DOI: 10.1080/22221751.2023.2231556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bites of infected mosquitoes. Severe forms of West Nile disease (WND) can curse with meningitis, encephalitis or acute flaccid paralysis. A better understanding of the physiopathology associated with disease progression is mandatory to find biomarkers and effective therapies. In this scenario, blood derivatives (plasma and serum) constitute the more commonly used biofluids due to its ease of collection and high value for diagnostic purposes. Therefore, the potential impact of this virus in the circulating lipidome was addressed combining the analysis of samples from experimentally infected mice and naturally WND patients. Our results unveil dynamic alterations in the lipidome that define specific metabolic fingerprints of different infection stages. Concomitant with neuroinvasion in mice, the lipid landscape was dominated by a metabolic reprograming that resulted in significant elevations of circulating sphingolipids (ceramides, dihydroceramides and dihydrosphingomyelins), phosphatidylethanolamines and triacylglycerols. Remarkably, patients suffering from WND also displayed an elevation of ceramides, dihydroceramides, lactosylceramides and monoacylglycerols in their sera. The dysregulation of sphingolipid metabolism by WNV may provide new therapeutic opportunities and supports the potential of certain lipids as novel peripheral biomarkers of WND progression.
Collapse
Affiliation(s)
- Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Sanchez-Céspedes
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Josefina Casas
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Balsera-Manzanero
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Lura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Manuela Aguilar-Guisado
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel Cisneros
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
14
|
Thompson D, Mahmood S, Morrice N, Kamli-Salino S, Dekeryte R, Hoffmann PA, Doherty MK, Whitfield PD, Delibegović M, Mody N. Fenretinide inhibits obesity and fatty liver disease but induces Smpd3 to increase serum ceramides and worsen atherosclerosis in LDLR -/- mice. Sci Rep 2023; 13:3937. [PMID: 36894641 PMCID: PMC9998859 DOI: 10.1038/s41598-023-30759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Fenretinide is a synthetic retinoid that can prevent obesity and improve insulin sensitivity in mice by directly altering retinol/retinoic acid homeostasis and inhibiting excess ceramide biosynthesis. We determined the effects of Fenretinide on LDLR-/- mice fed high-fat/high-cholesterol diet ± Fenretinide, a model of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Fenretinide prevented obesity, improved insulin sensitivity and completely inhibited hepatic triglyceride accumulation, ballooning and steatosis. Moreover, Fenretinide decreased the expression of hepatic genes driving NAFLD, inflammation and fibrosis e.g. Hsd17b13, Cd68 and Col1a1. The mechanisms of Fenretinide's beneficial effects in association with decreased adiposity were mediated by inhibition of ceramide synthesis, via hepatic DES1 protein, leading to increased dihydroceramide precursors. However, Fenretinide treatment in LDLR-/- mice enhanced circulating triglycerides and worsened aortic plaque formation. Interestingly, Fenretinide led to a fourfold increase in hepatic sphingomyelinase Smpd3 expression, via a retinoic acid-mediated mechanism and a further increase in circulating ceramide levels, linking induction of ceramide generation via sphingomyelin hydrolysis to a novel mechanism of increased atherosclerosis. Thus, despite beneficial metabolic effects, Fenretinide treatment may under certain circumstances enhance the development of atherosclerosis. However, targeting both DES1 and Smpd3 may be a novel, more potent therapeutic approach for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Dawn Thompson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Shehroz Mahmood
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Nicola Morrice
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Ruta Dekeryte
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Philip A Hoffmann
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mary K Doherty
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Philip D Whitfield
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Mirela Delibegović
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Nimesh Mody
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
15
|
Rafikov R, Rischard F, Vasilyev M, Varghese MV, Yuan JXJ, Desai AA, Garcia JGN, Rafikova O. Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex. Transl Res 2022; 247:1-18. [PMID: 35405322 PMCID: PMC10062382 DOI: 10.1016/j.trsl.2022.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mikhail Vasilyev
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mathews V Varghese
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Joe G N Garcia
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Olga Rafikova
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona.
| |
Collapse
|
16
|
Varre JV, Holland WL, Summers SA. You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159125. [PMID: 35218934 PMCID: PMC9050903 DOI: 10.1016/j.bbalip.2022.159125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Obesity leads to persistent increases in immune responses that contribute to cardiometabolic pathologies such as diabetes and cardiovascular disease. Pro-inflammatory macrophages infiltrate the expanding fat mass, which leads to increased production of cytokines such as tumor necrosis factor-alpha. Moreover, saturated fatty acids enhance signaling through the toll-like receptors involved in innate immunity. Herein we discuss the evidence that ceramides-which are intermediates in the biosynthetic pathway that produces sphingolipids-are essential intermediates that link these inflammatory signals to impaired tissue function. We discuss the mechanisms linking these immune insults to ceramide production and review the numerous ceramide actions that alter cellular metabolism, induce oxidative stress, and stimulate apoptosis. Lastly, we evaluate the correlation of ceramides in humans with inflammation-linked cardiometabolic disease and discuss preclinical studies which suggest that ceramide-lowering interventions may be an effective strategy to treat or prevent such maladies.
Collapse
Affiliation(s)
- Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America.
| |
Collapse
|
17
|
Westhölter D, Schumacher F, Wülfinghoff N, Sutharsan S, Strassburg S, Kleuser B, Horn PA, Reuter S, Gulbins E, Taube C, Welsner M. CFTR modulator therapy alters plasma sphingolipid profiles in people with cystic fibrosis. J Cyst Fibros 2022; 21:713-720. [DOI: 10.1016/j.jcf.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
|
18
|
Mehendale N, Mallik R, Kamat SS. Mapping Sphingolipid Metabolism Pathways during Phagosomal Maturation. ACS Chem Biol 2021; 16:2757-2765. [PMID: 34647453 DOI: 10.1021/acschembio.1c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phagocytosis is an important physiological process, which, in higher organisms, is a means of fighting infections and clearing cellular debris. During phagocytosis, detrimental foreign particles (e.g. pathogens and apoptotic cells) are engulfed by phagocytes (e.g. macrophages), enclosed in membrane-bound vesicles called phagosomes, and transported to the lysosome for eventual detoxification. During this well-choreographed process, the nascent phagosome (also called early phagosome, EP) undergoes a series of spatiotemporally regulated changes in its protein and lipid composition and matures into a late phagosome (LP), which subsequently fuses with the lysosomal membrane to form the phagolysosome. While several elegant proteomic studies have identified the role of unique proteins during phagosomal maturation, the corresponding lipidomic studies are sparse. Recently, we reported a comparative lipidomic analysis between EPs and LPs and showed that ceramides are enriched on the LPs. Further, we found that this ceramide accumulation on LPs was orchestrated by ceramide synthase 2, inhibition of which hampers phagosomal maturation. Following up on this study, here, using biochemical assays, we first show that the increased ceramidase activity on EPs also significantly contributes to the accumulation of ceramides on LPs. Next, leveraging lipidomics, we show that de novo ceramide synthesis does not significantly contribute to the ceramide accumulation on LPs, while concomitant to increased ceramides, glucosylceramides are substantially elevated on LPs. We validate this interesting finding using biochemical assays and show that LPs indeed have heightened glucosylceramide synthase activity. Taken together, our studies provide interesting insights and possible new roles of sphingolipid metabolism during phagosomal maturation.
Collapse
Affiliation(s)
- Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Powai, Mumbai 400076, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
19
|
TM6SF2/PNPLA3/MBOAT7 Loss-of-Function Genetic Variants Impact on NAFLD Development and Progression Both in Patients and in In Vitro Models. Cell Mol Gastroenterol Hepatol 2021; 13:759-788. [PMID: 34823063 PMCID: PMC8783129 DOI: 10.1016/j.jcmgh.2021.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The I148M Patatin-like Phospholipase Domain-containing 3 (PNPLA3), the rs641738 in the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) locus, and the E167K Transmembrane 6 Superfamily Member 2 (TM6SF2) polymorphisms represent the main predisposing factors to nonalcoholic fatty liver disease (NAFLD) development and progression. We previously generated a full knockout of MBOAT7 in HepG2 cells (MBOAT7-/-), homozygous for I148M PNPLA3. Therefore, we aimed to investigate the synergic impact of the 3 at-risk variants on liver injury and hepatocellular carcinoma (HCC) in a large cohort of NAFLD patients, and create in vitro models of genetic NAFLD by silencing TM6SF2 in both HepG2 and MBOAT7-/- cells. METHODS NAFLD patients (n = 1380), of whom 121 had HCC, were stratified with a semiquantitative score ranging from 0 to 3 according to the number of PNPLA3, TM6SF2, and MBOAT7 at-risk variants. TM6SF2 was silenced in HepG2 (TM6SF2-/-) and MBOAT7-/- (MBOAT7-/-TM6SF2-/-) through Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). RESULTS In NAFLD patients, the additive weight of these mutations was associated with liver disease severity and an increased risk of developing HCC. In HepG2 cells, TM6SF2 silencing altered lipid composition and induced the accumulation of microvesicular lipid droplets (LDs), whereas the MBOAT7-/-TM6SF2-/- cells showed a mixed microvesicular/macrovesicular pattern of LDs. TM6SF2 deletion strongly affected endoplasmic reticulum and mitochondria ultrastructures, thus increasing endoplasmic reticulum/oxidative stress. The mitochondrial number was increased in both TM6SF2-/- and MBOAT7-/-TM6SF2-/- models, suggesting an unbalancing in mitochondrial dynamics, and the silencing of both MBOAT7 and TM6SF2 impaired mitochondrial activity with a shift toward anaerobic glycolysis. MBOAT7-/-TM6SF2-/- cells also showed the highest proliferation rate. Finally, the re-overexpression of MBOAT7 and/or TM6SF2 reversed the metabolic and tumorigenic features observed in the compound knockout model. CONCLUSIONS The co-presence of the 3 at-risk variants impacts the NAFLD course in both patients and experimental models, affecting LD accumulation, mitochondrial functionality, and metabolic reprogramming toward HCC.
Collapse
|
20
|
Xiong K, la Cour Karottki KJ, Hefzi H, Li S, Grav LM, Li S, Spahn P, Lee JS, Ventina I, Lee GM, Lewis NE, Kildegaard HF, Pedersen LE. An optimized genome-wide, virus-free CRISPR screen for mammalian cells. CELL REPORTS METHODS 2021; 1:100062. [PMID: 34935002 PMCID: PMC8687118 DOI: 10.1016/j.crmeth.2021.100062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Pooled CRISPR screens have been widely applied to mammalian and other organisms to elucidate the interplay between genes and phenotypes of interest. The most popular method for delivering the CRISPR components into mammalian cells is lentivirus based. However, because lentivirus is not always an option, virus-free protocols are starting to emerge. Here, we demonstrate an improved virus-free, genome-wide CRISPR screening platform for Chinese hamster ovary cells with 75,488 gRNAs targeting 15,028 genes. Each gRNA expression cassette in the library is precisely integrated into a genomic landing pad, resulting in a very high percentage of single gRNA insertions and minimal clonal variation. Using this platform, we perform a negative selection screen on cell proliferation that identifies 1,980 genes that affect proliferation and a positive selection screen on the toxic endoplasmic reticulum stress inducer, tunicamycin, that identifies 77 gene knockouts that improve survivability.
Collapse
Affiliation(s)
- Kai Xiong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Hooman Hefzi
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - Songyuan Li
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Shangzhong Li
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Philipp Spahn
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ildze Ventina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Nathan E. Lewis
- The Novo Nordisk Foundation Center for Biosustainability, University of California at San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer. Cell Signal 2021; 87:110119. [PMID: 34418535 DOI: 10.1016/j.cellsig.2021.110119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Sphingomyelin synthase (SMS), which comprises of two isozymes, SMS1 and SMS2, is the only enzyme that generates sphingomyelin (SM) by transferring phosphocholine of phosphatidylcholine to ceramide in mammals. Conversely, ceramide is generated from SM hydrolysis via sphingomyelinases (SMases), ceramide de novo synthesis, and the salvage pathway. The biosynthetic pathway for SM and ceramide content by SMS and SMase, respectively, is called "SM cycle." SM forms a SM-rich microdomain on the cell membrane to regulate signal transduction, such as proliferation/survival, migration, and inflammation. On the other hand, ceramide acts as a lipid mediator by forming a ceramide-rich platform on the membrane, and ceramide exhibits physiological actions such as cell death, cell cycle arrest, and autophagy induction. Therefore, the regulation of ceramide/SM balance by SMS and SMase is responsible for diverse cell functions not only in physiological cells but also in cancer cells. This review outlines the implications of ceramide/SM balance through "SM cycle" in cancer progression and prevention. In addition, the possible involvement of "SM cycle" is introduced in anti-cancer tumor immunity, which has become a hot topic to innovate a more effective and safer way to conquer cancer in recent years.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan; Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
22
|
Jiang C, Ge J, He B, Zeng B. Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Front Microbiol 2021; 12:690211. [PMID: 34367090 PMCID: PMC8341767 DOI: 10.3389/fmicb.2021.690211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are a group of economically important fungi used in the production of fermented foods, industrial enzymes, and secondary metabolites. Glycosphingolipids (GSLs) as constituents of lipid rafts are involved in growth, differentiation, and response to environment stress in filamentous fungi. In addition to these key roles, GSLs are also important in the barrier function of skin to retain moisture as a moisturizing ingredient in cosmetics or health products for their strong biological activity as a functional component. GSLs found in filamentous fungi are divided in two major classes: neutral GSLs (glycosylceramides), glucosylceramides (GlcCers), and/or galactosylceramides (GalCers) and acidic GSLs, mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C]. Glycosylceramides are one of the abundant GSLs in Aspergillus and known to improve skin-barrier function and prevent intestinal impairment as a prebiotic. Some filamentous fungi of Aspergillus spp., synthesizing both GlcCer and GalCer, would be an amenable source to exploit glycosylceramides that wildly adding in cosmetics as moisturizing ingredients or health food as dietary supplements. In this minireview, the types, structures, and biosynthetic pathways of GSLs in filamentous fungi, and the relevance of GSLs in fungal growth, spore formation, and environmental stress response are explained. Furthermore, the advantage, potential development, and application of GlcCer and GalCer from filamentous fungi Aspergillus spp. are also investigate based on the use of plant GlcCer in health foods and cosmetics.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jinxin Ge
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
23
|
Savira F, Magaye R, Scullino CV, Flynn BL, Pitson SM, Anderson D, Creek DJ, Hua Y, Xiong X, Huang L, Liew D, Reid C, Kaye D, Kompa AR, Wang BH. Sphingolipid imbalance and inflammatory effects induced by uremic toxins in heart and kidney cells are reversed by dihydroceramide desaturase 1 inhibition. Toxicol Lett 2021; 350:133-142. [PMID: 34303789 DOI: 10.1016/j.toxlet.2021.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Non-dialysable protein-bound uremic toxins (PBUTs) contribute to the development of cardiovascular disease (CVD) in chronic kidney disease (CKD) and vice versa. PBUTs have been shown to alter sphingolipid imbalance. Dihydroceramide desaturase 1 (Des1) is an important gatekeeper enzyme which controls the non-reversible conversion of sphingolipids, dihydroceramide, into ceramide. The present study assessed the effect of Des1 inhibition on PBUT-induced cardiac and renal effects in vitro, using a selective Des1 inhibitor (CIN038). Des1 inhibition attenuated hypertrophy in neonatal rat cardiac myocytes and collagen synthesis in neonatal rat cardiac fibroblasts and renal mesangial cells induced by the PBUTs, indoxyl sulfate and p-cresol sulfate. This is at least attributable to modulation of NF-κB signalling and reductions in β-MHC, Collagen I and TNF-α gene expression. Lipidomic analyses revealed Des1 inhibition restored C16-dihydroceramide levels reduced by indoxyl sulfate. In conclusion, PBUTs play a critical role in mediating sphingolipid imbalance and inflammatory responses in heart and kidney cells, and these effects were attenuated by Des1 inhibition. Therefore, sphingolipid modifying agents may have therapeutic potential for the treatment of CVD and CKD and warrant further investigation.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Ruth Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Carmen V Scullino
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Yue Hua
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew R Kompa
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Bing Hui Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
24
|
Nilsson AK, Andersson MX, Sjöbom U, Hellgren G, Lundgren P, Pivodic A, Smith LEH, Hellström A. Sphingolipidomics of serum in extremely preterm infants: Association between low sphingosine-1-phosphate levels and severe retinopathy of prematurity. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158939. [PMID: 33862236 PMCID: PMC8633973 DOI: 10.1016/j.bbalip.2021.158939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Extremely preterm infants are at risk of developing retinopathy of prematurity (ROP) that can cause impaired vision or blindness. Changes in blood lipids have been associated with ROP. This study aimed to monitor longitudinal changes in the serum sphingolipidome of extremely preterm infants and investigate the relationship to development of severe ROP. METHODS This is a prospective study that included 47 infants born <28 gestational weeks. Serum samples were collected from cord blood and at postnatal days 1, 7, 14, and 28, and at postmenstrual weeks (PMW) 32, 36, and 40. Serum sphingolipids and phosphatidylcholines were extracted and analyzed by LC-MS/MS. Associations between sphingolipid species and ROP were assessed using mixed models for repeated measures. RESULTS The serum concentration of all investigated lipid classes, including ceramide, mono- di- and trihexosylceramide, sphingomyelin, and phosphatidylcholine displayed distinct temporal patterns between birth and PMW40. There were also substantial changes in the lipid species composition within each class. Among the analyzed sphingolipid species, sphingosine-1-phosphate showed the strongest association with severe ROP, and this association was independent of gestational age at birth and weight standard deviation score change. CONCLUSIONS The serum phospho- and sphingolipidome undergoes significant remodeling during the first weeks of the preterm infant's life. Low postnatal levels of the signaling lipid sphingosine-1-phosphate are associated with the development of severe ROP.
Collapse
Affiliation(s)
- Anders K Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Mats X Andersson
- Department of Biology and Environmental Sciences, The Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Sjöbom
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Hellgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pia Lundgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Aldina Pivodic
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- The Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Shabbir MA, Mehak F, Khan ZM, Ahmad W, Khan MR, Zia S, Rahaman A, Aadil RM. Interplay between ceramides and phytonutrients: New insights in metabolic syndrome. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Song JH, Kim GT, Park KH, Park WJ, Park TS. Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease. Biomol Ther (Seoul) 2021; 29:373-383. [PMID: 33903284 PMCID: PMC8255146 DOI: 10.4062/biomolther.2020.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Jae-Hwi Song
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Kyung-Ho Park
- Department of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| |
Collapse
|
27
|
Tzou FY, Su TY, Lin WS, Kuo HC, Yu YL, Yeh YH, Liu CC, Kuo CH, Huang SY, Chan CC. Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress. Cell Rep 2021; 35:108972. [PMID: 33852856 DOI: 10.1016/j.celrep.2021.108972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wan-Syuan Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Lian Yu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Yeh
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-Chih Liu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
28
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, Flynn BL, Kaye D, Liew D, Wang BH. Attenuating PI3K/Akt- mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells. Int J Biochem Cell Biol 2021; 134:105952. [PMID: 33609744 DOI: 10.1016/j.biocel.2021.105952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis and myocyte hypertrophy play contributory roles in the progression of diseases such as heart Failure (HF) through what is collectively termed cardiac remodelling. The phosphoinositide 3- kinase (PI3K), protein kinase B (Akt) and mammalian target for rapamycin (mTOR) signalling pathway (PI3K/Akt- mTOR) is an important pathway in protein synthesis, cell growth, cell proliferation, and lipid metabolism. The sphingolipid, dihydrosphingosine 1 phosphate (dhS1P) has been shown to bind to high density lipids in plasma. Unlike its analog, spingosine 1 phosphate (S1P), the role of dhS1P in cardiac fibrosis is still being deciphered. This study was conducted to investigate the effect of dhS1P on PI3K/Akt signalling in primary cardiac fibroblasts and myocytes. Our findings demonstrate that inhibiting PI3K reduced collagen synthesis in neonatal cardiac fibroblasts (NCFs), and hypertrophy in neonatal cardiac myocytes (NCMs) induced by dhS1P, in vitro. Reduced activation of the PI3K/Akt- mTOR signalling pathway led to impaired translation of fibrotic proteins such as collagen 1 (Coll1) and transforming growth factor β (TGFβ) and inhibited the transcription and translation of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). PI3K inhibition also affected the gene expression of S1P receptors and enzymes such as the dihydroceramide delta 4 desaturase (DEGS1) and sphingosine kinase 1 (SK1) in the de novo sphingolipid pathway. While in myocytes, PI3K inhibition reduced myocyte hypertrophy induced by dhS1P by reducing skeletal muscle α- actin (αSKA) mRNA expression, and protein translation due to increased glycogen synthase kinase 3β (GSK3β) mRNA expression. Our findings show a relationship between the PI3K/Akt- mTOR signalling cascade and exogenous dhS1P induced collagen synthesis and myocyte hypertrophy in primary neonatal cardiac cells.
Collapse
Affiliation(s)
- Ruth R Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; School of Public Health School, Curtin University, Perth, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia.
| |
Collapse
|
29
|
Skácel J, Slusher BS, Tsukamoto T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J Med Chem 2021; 64:279-297. [PMID: 33395289 PMCID: PMC8023021 DOI: 10.1021/acs.jmedchem.0c01664] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramides are composed of a sphingosine and a single fatty acid connected by an amide linkage. As one of the major classes of biologically active lipids, ceramides and their upstream and downstream metabolites have been implicated in several pathological conditions including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity, and inflammation. Consequently, tremendous efforts have been devoted to deciphering the dynamics of metabolic pathways involved in ceramide biosynthesis. Given that several distinct enzymes can produce ceramide, different enzyme targets have been pursued depending on the underlying disease mechanism. The main objective of this review is to provide a comprehensive overview of small molecule inhibitors reported to date for each of these ceramide-producing enzymes from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Jan Skácel
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
30
|
Apostolopoulou M, Gordillo R, Gancheva S, Strassburger K, Herder C, Esposito I, Schlensak M, Scherer PE, Roden M. Role of ceramide-to-dihydroceramide ratios for insulin resistance and non-alcoholic fatty liver disease in humans. BMJ Open Diabetes Res Care 2020; 8:8/2/e001860. [PMID: 33219119 PMCID: PMC7682191 DOI: 10.1136/bmjdrc-2020-001860] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Sphingolipid accumulation has been linked to obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). A recent study showed that depletion of dihydroceramide desaturase-1 (DES-1) in adipose and/or liver tissue decreases ceramide-to-dihydroceramide ratios (ceramide/dihydroceramide) in several tissues and improves the metabolic profile in mice. We tested the hypothesis that ceramide/dihydroceramide would also be elevated and relate positively to liver fat content and insulin resistance in humans. RESEARCH DESIGN AND METHODS Thus, we assessed total and specific ceramide/dihydroceramide in various biosamples of 7 lean and 21 obese volunteers without or with different NAFLD stages, who were eligible for abdominal or bariatric surgery, respectively. Biosamples were obtained from serum, liver, rectus abdominis muscle as well as subcutaneous abdominal and visceral adipose tissue during surgery. RESULTS Surprisingly, certain serum and liver ceramide/dihydroceramide ratios were reduced in both obesity and non-alcoholic steatohepatitis (NASH) and related inversely to liver fat content. Specifically, hepatic ceramide/dihydroceramide (species 16:0) related negatively to hepatic mitochondrial capacity and lipid peroxidation. In visceral adipose tissue, ceramide/dihydroceramide (species 16:0) associated positively with markers of inflammation. CONCLUSION These results failed to confirm the relationships of ceramide/dihydroceramide in humans with different degree of insulin resistance. However, the low hepatic ceramide/dihydroceramide favor a role for dihydroceramide accumulation in NASH, while a specific ceramide/dihydroceramide ratio in visceral adipose tissue suggests a role of ceramides in obesity-associated low-grade inflammation.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Ruth Gordillo
- UT Southwestern Medical Center Touchstone Diabetes Center, Dallas, Texas, USA
| | - Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Christian Herder
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Philipp E Scherer
- UT Southwestern Medical Center Touchstone Diabetes Center, Dallas, Texas, USA
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
31
|
Rollin-Pinheiro R, Xisto MIDDS, Rochetti VP, Barreto-Bergter E. Scedosporium Cell Wall: From Carbohydrate-Containing Structures to Host-Pathogen Interactions. Mycopathologia 2020; 185:931-946. [PMID: 32990888 DOI: 10.1007/s11046-020-00480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Scedosporium species are filamentous fungi usually found in sewage and soil from human-impacted areas. They cause a wide range of diseases in humans, from superficial infections, such as mycetoma, to invasive and disseminated cases, especially associated in immunocompromised patients. Scedosporium species are also related to lung colonization in individuals presenting cystic fibrosis and are considered one of the most frequent fungal pathogens associated to this pathology. Scedosporium cell wall contains glycosylated molecules involved in important biological events related to virulence and pathogenicity and represents a significant source of antigens. Polysaccharides, peptidopolysaccharides, O-linked oligosaccharides and glycosphingolipids have been identified on the Scedosporium surface. Their primary structures were determined based on a combination of techniques including gas chromatography, ESI-MS, and 1H and 13C nuclear magnetic resonance. Peptidorhamnnomannans are common cell wall components among Scedosporium species. Comparing different species, minor structural differences in the carbohydrate portions were detected which could be useful to understand variations in virulence observed among the species. N- and O-linked peptidorhamnomannans are major pathogen-associated molecular patterns and, along with α-glucans, play important roles in triggering host innate immunity. Glycosphingolipids, such as glucosylceramides, have highly conserved structures in Scedosporium species and are crucial for fungal growth and virulence. The present review presents current knowledge on structural and functional aspects of Scedosporium glycoconjugates that are relevant for understanding pathogenicity mechanisms and could contribute to the design of new agents capable of inhibiting growth and differentiation of Scedosporium species. Other cell components such as melanin and ectophosphatases will be also included.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
32
|
Abstract
Background Previously, dihydroceramide (d18:0/24:0) (dhCer (d18:0/24:0)) was reported to be a potential biomarker for acute-on-chronic liver failure (ACLF) prognosis. In this study, we further explored the role of dhCer (d18:0/24:0) in the progression of ACLF to validate the biomarker using ACLF rat model. Methods ACLF rats were sacrificed at 4 and 8 h post-D-galactosamine (D-gal)/lipopolysaccharide (LPS) administration to investigate the liver biochemical markers, prothrombin time and liver histopathology. Change in dhCer and other sphingolipids levels were investigated by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Rats were treated with N-(4-hydroxyphenyl) retinamide (4-HPR) to examine the mortality rate and its role in improving ACLF. Results LPS/D-gal administration resulted in significant elevation in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Prothrombin time was prolonged and histopathological examination showed abnormality. HPLC-MS/MS results showed total dhCer levels in ACLF group (64.10 ± 8.90 pmol/100 μL, 64.22 ± 6.78 pmol/100 μL for 4 and 8 h, respectively) were decreased significantly compared with control group (121.61 ± 23.09 pmol/100 μL) (P < 0.05). In particular, dhCer (d18:0/24:0), dhCer (d18:0/20:0), and dhCer (d18:0/22:0) levels were decreased. Treatment with 4-HPR significantly increased the levels of dhCers, including dhCer (d18:0/24:0) compared with ACLF group, for the level of dhCer (d18:0/24:0) in 4-HPR group was 20.10 ± 8.60 pmol/100 μL and the level of dhCer (d18:0/24:0) in ACLF group was 9.74 ± 2.99 pmol/100 μL (P < 0.05). This was associated with reduced mortality rate and prolonged survival time. The ALT and AST in 4-HPR group were significantly decreased compared with ACLF group. The prothrombin time of 4-HPR group (41.49 s) was significantly lower than the prothrombin time of ACLF group (57.96 s) (P < 0.05). 4-HPR also decreased plasma ammonia levels slightly, as the plasma ammonia levels in 4-HPR group and ACLF group were 207.37 ± 60.43, 209.15 ± 60.43 μmol/L, respectively. Further, 4-HPR treatment improved histopathological parameters. Conclusions DhCer, especially dhCer (d18:0/24:0), is involved in the progression of ACLF. Increasing the levels of dhCer can reduce the mortality rate of ACLF rats and alleviate liver injury.
Collapse
|
33
|
Poss AM, Summers SA. Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides in NAFLD. Front Endocrinol (Lausanne) 2020; 11:505. [PMID: 32849291 PMCID: PMC7411076 DOI: 10.3389/fendo.2020.00505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which ranges from the relatively benign and reversible fatty liver (NAFL) to the more advanced and deadly steatohepatitis (NASH), affects a remarkably high percentage of adults in the population. Depending upon severity, NAFLD can increase one's risk for diabetes, cardiovascular disease, and hepatocellular carcinoma. Though the dominant histological feature of all forms of the disease is the accumulation of liver triglycerides, these molecules are likely not pathogenic, but rather serve to protect the liver from the damaging consequences of overnutrition. We propose herein that the less abundant ceramides, through evolutionarily-conserved actions intended to help organisms adapt to nutrient excess, drive the cellular events that define NAFL/NASH. In early stages of the disease process, they promote lipid uptake and storage, whilst inhibiting utilization of glucose. In later stages, they stimulate hepatocyte apoptosis and fibrosis. In rodents, blocking ceramide synthesis ameliorates all stages of NAFLD. In humans, serum and liver ceramides correlate with the severity of NAFLD and its comorbidities diabetes and heart disease. These studies identify key roles for ceramides in these hepatic manifestations of the metabolic syndrome.
Collapse
Affiliation(s)
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Use of preclinical models to identify markers of type 2 diabetes susceptibility and novel regulators of insulin secretion - A step towards precision medicine. Mol Metab 2020; 27S:S147-S154. [PMID: 31500826 PMCID: PMC6768503 DOI: 10.1016/j.molmet.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Progression from pre-diabetes to type 2 diabetes (T2D) and from T2D to insulin requirement proceeds at very heterogenous rates among patient populations, and the risk of developing different types of secondary complications is also different between patients. The diagnosis of pre-diabetes and T2D solely based on blood glucose measurements cannot capture this heterogeneity, thereby preventing proposition of therapeutic strategies adapted to individual needs and pathogenetic mechanisms. There is, thus, a need to identify novel means to stratify patient populations based on a molecular knowledge of the diverse underlying causes of the disease. Such knowledge would form the basis for a precision medicine approach to preventing and treating T2D according to the need of identified patient subgroups as well as allowing better follow up of pharmacological treatment. SCOPE OF REVIEW Here, we review a systems biology approach that aims at identifying novel biomarkers for T2D susceptibility and identifying novel beta-cell and insulin target tissue genes that link the selected plasma biomarkers with insulin secretion and insulin action. This work was performed as part of two Innovative Medicine Initiative projects. The focus of the review will be on the use of preclinical models to find biomarker candidates for T2D prediction and novel regulators of beta-cell function. We will demonstrate that the study of mice with different genetic architecture and widely different adaptation to metabolic stress can be a powerful approach to identify biomarkers of T2D susceptibility in humans or for the identification of so far unrecognized genes controlling beta-cell function. MAJOR CONCLUSIONS The examples developed in this review will highlight the power of the systems biology approach, in particular as it allowed the discovery of dihydroceramide as a T2D biomarker candidate in mice and humans and the identification and characterization of novel regulators of beta-cell function.
Collapse
|
35
|
Kriegel FL, Krause BC, Reichardt P, Singh AV, Tentschert J, Laux P, Jungnickel H, Luch A. The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and its Agglomeration Behavior: A Chemo-Analytic Investigation. Int J Mol Sci 2020; 21:E1278. [PMID: 32074956 PMCID: PMC7072912 DOI: 10.3390/ijms21041278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023] Open
Abstract
Aluminum (Al) is extensively used for the production of different consumer products, agents, as well as pharmaceuticals. Studies that demonstrate neurotoxicity and a possible link to Alzheimer's disease trigger concern about potential health risks due to high Al intake. Al in cosmetic products raises the question whether a possible interaction between Al and retinol (vitamin A) and cholecalciferol (vitamin D3) metabolism might exist. Understanding the uptake mechanisms of ionic or elemental Al and Al nanomaterials (Al NMs) in combination with bioactive substances are important for the assessment of possible health risk associated. Therefore, we studied the uptake and distribution of Al oxide (Al2O3) and metallic Al0 NMs in the human keratinocyte cell line HaCaT. Possible alterations of the metabolic pattern upon application of the two Al species together with vitamin A or D3 were investigated. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify the cellular uptake of Al NMs.
Collapse
Affiliation(s)
- Fabian L. Kriegel
- German Federal Institute for Risk Assessment, Department of Chemical & Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (B.-C.K.); (P.R.); (A.V.S.); (J.T.); (P.L.); (H.J.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tao H, Yang X, Wang W, Yue S, Pu Z, Huang Y, Shi X, Chen J, Zhou G, Chen Y, Zhao M, Tang Y, Duan JA. Regulation of serum lipidomics and amino acid profiles of rats with acute myocardial ischemia by Salvia miltiorrhiza and Panax notoginseng herb pair. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153162. [PMID: 31955134 DOI: 10.1016/j.phymed.2019.153162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Salvia miltiorrhiza and Panax notoginseng herb pair (DQ) has been widely used in traditional Chinese medicine for a long history to prevent and treat the coronary heart disease. However, its protective mechanisms against myocardial ischemia during coronary heart disease remain not well-understood. PURPOSE In this study, we aimed to explore the protective mechanisms of DQ on myocardial ischemia from the perspective of serum lipidomics and amino acids (AAs). METHODS Rats were orally administrated with low-dose DQ (L-DQ, 0.24 g/kg) and high-dose DQ (H-DQ, 0.96 g/kg) for two weeks and subcutaneously injected with isoproterenol (ISO, 65 mg/kg) for two consecutive days (13th and 14th days) to induce acute myocardial ischemia (AMI). Heart histopathology and serum biochemical indices were examined. The specifically altered serum lipid metabolites were profiled via lipidomics approach, while serum AA profiles were analyzed using UHPLC-TQ-MS/MS. RESULTS Cardiac marker enzymes (CK, CK-MB, LDH and cTn-I) were significantly upregulated in AMI rats with some of which significantly dropped to normal level in L- and H-DQ groups. Serum TC, TG, HDL, LDL, VLDL and FFA were improved in AMI rats treatment with L- and H-DQ. Further, the PCA based on lipidomics showed serum lipid metabolites in L- and H-DQ groups were closer to control group than that in model group. Compared with model group, H-DQ pretreatment significantly reduced SM (d34:1) and CE (20:4), and increased FA (20:5), PC (26:1), TG (56:9), TG (54:7), MG (17:0), Cer (d32:0) and Cer (d34:0), whereas L-DQ significantly alleviated the perturbed levels of CE (20:4), FA (20:5), MG (17:0), and SM (d34:1). Moreover, there was a significant increment for leucine, isoleucine, valine, phenylalanine, lysine and glutamate but a significant reduction for tryptophan in the serum of rats in model group as compared to control group. Intriguingly, H-DQ could significantly decrease the levels of glutamate, lysine, isoleucine, and BCAAs (the sum of leucine, isoleucine and valine) after AMI, while L-DQ had no significant effects on the above altered AAs. The Western blotting results implied that H-DQ could promote the myocardial BCAA catabolism in AMI rats by activation of BCKDHA, whereas by inhibition of BCKDHK. CONCLUSION This study presents evidence for the therapeutic effects of DQ on AMI injury, in part, via co-regulating lipid and AA metabolisms.
Collapse
Affiliation(s)
- Huijuan Tao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyu Yang
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Zongjin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xuqin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaqian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guisheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
37
|
Yaribeygi H, Bo S, Ruscica M, Sahebkar A. Ceramides and diabetes mellitus: an update on the potential molecular relationships. Diabet Med 2020; 37:11-19. [PMID: 30803019 DOI: 10.1111/dme.13943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that ceramides can play an important pathophysiological role in the development of diabetes. Ceramides are primarily recognized as lipid bilayer building blocks, but recent work has shown that these endogenous molecules are important intracellular signalling mediators and may exert some diabetogenic effects via molecular pathways involved in insulin resistance, β-cell apoptosis and inflammation. In the present review, we consider the available evidence on the possible roles of ceramides in diabetes mellitus and introduce eight different molecular mechanisms mediating the diabetogenic action of ceramides, categorized into those predominantly related to insulin resistance vs those mainly implicated in β-cell dysfunction. Specifically, the mechanistic evidence involves β-cell apoptosis, pancreatic inflammation, mitochondrial stress, endoplasmic reticulum stress, adipokine release, insulin receptor substrate 1 phosphorylation, oxidative stress and insulin synthesis. Collectively, the evidence suggests that therapeutic agents aimed at reducing ceramide synthesis and lowering circulating levels may be beneficial in the prevention and/or treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- H Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A Sahebkar
- Neurogenic Inflammation Research Center, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Torretta E, Barbacini P, Al-Daghri NM, Gelfi C. Sphingolipids in Obesity and Correlated Co-Morbidities: The Contribution of Gender, Age and Environment. Int J Mol Sci 2019; 20:ijms20235901. [PMID: 31771303 PMCID: PMC6929069 DOI: 10.3390/ijms20235901] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
This paper reviews our present knowledge on the contribution of ceramide (Cer), sphingomyelin (SM), dihydroceramide (DhCer) and sphingosine-1-phosphate (S1P) in obesity and related co-morbidities. Specifically, in this paper, we address the role of acyl chain composition in bodily fluids for monitoring obesity in males and females, in aging persons and in situations of environmental hypoxia adaptation. After a brief introduction on sphingolipid synthesis and compartmentalization, the node of detection methods has been critically revised as the node of the use of animal models. The latter do not recapitulate the human condition, making it difficult to compare levels of sphingolipids found in animal tissues and human bodily fluids, and thus, to find definitive conclusions. In human subjects, the search for putative biomarkers has to be performed on easily accessible material, such as serum. The serum “sphingolipidome” profile indicates that attention should be focused on specific acyl chains associated with obesity, per se, since total Cer and SM levels coupled with dyslipidemia and vitamin D deficiency can be confounding factors. Furthermore, exposure to hypoxia indicates a relationship between dyslipidemia, obesity, oxygen level and aerobic/anaerobic metabolism, thus, opening new research avenues in the role of sphingolipids.
Collapse
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- Ph.D. school in Molecular and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department,College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- I.R.C.C.S Orthopedic Institute Galeazzi, R. Galeazzi 4, 20161 Milan, Italy
- Correspondence: ; Tel.: +39-025-033-0475
| |
Collapse
|
39
|
Abstract
Long chain base (LCB) is a unique building block found in sphingolipids. The initial step of LCB biosynthesis stems from serine:palmitoyl-CoA transferase enzyme, producing 3-ketodihydrosphingosine with multiple regulatory proteins including small subunit SPT a/b and orosomucoid-like protein1-3. 3-Ketodihydrosphingosine reductase and sphingolipid Δ4-desaturase, both of them poorly characterized mammalian enzymes, play key roles for neurological homeostasis based on their pathogenic mutation in humans. Ceramide synthase in mammals has six isoforms with distinct phenotype in each knockout mouse. In plants and fungi, sphingolipids also contain phytosphingosine due to sphingolipid C4-hydroxylase. In contrast to previous notion that dietary intake might be its major route in animals, emerging evidences suggested that phytosphingosine biosynthesis does occur in some tissues such as the skin by mammalian C4-hydroxylase activity of the DEGS2 gene. This short review summarizes LCB biosynthesis with their associating metabolic pathways in animals, plants and fungi. Sphingolipid is a group of lipids that contains a unique building block known as long chain base (LCB). LCB is susceptible to various biosynthetic reactions such as unsaturation, hydroxylation and methylation. A failure of these enzymatic reactions leads to the pathogenesis in humans with an elevation of LCB-derived specific biomarkers. Herein, we summarized emerging evidences in mammalian LCB biosynthesis in sphingolipids. Some unique metabolic pathways in plants and fungi were also discussed.
Collapse
|
40
|
Le Barz M, Boulet MM, Calzada C, Cheillan D, Michalski MC. Alterations of endogenous sphingolipid metabolism in cardiometabolic diseases: Towards novel therapeutic approaches. Biochimie 2019; 169:133-143. [PMID: 31614170 DOI: 10.1016/j.biochi.2019.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
The increasing prevalence of obesity and metabolic diseases is a worldwide public health concern, and the advent of new analytical technologies has made it possible to highlight the involvement of some molecules, such as sphingolipids (SL), in their pathophysiology. SL are constituents of cell membranes, lipoproteins and lipid droplets (LD), and are now considered as bioactive molecules. Indeed, growing evidence suggests that SL, characterized by diverse families and species, could represent one of the main regulators of lipid metabolism. There is an increasing amount of data reporting that plasma SL profile is altered in metabolic diseases. However, less is known about SL metabolism dysfunction in cells and tissues and how it may impact the lipoprotein metabolism, its functionality and composition. In cardiometabolic pathologies, the link between serum SL concentrations and alterations of their metabolism in various organs and LD is still unclear. Pharmacological approaches have been developed in order to activate or inhibit specific key enzymes of the SL metabolism, and to positively modulate SL profile or related metabolic pathways. Nevertheless, little is known about the long-term impact of such approaches in humans and the current literature still focuses on the decomposition of the different parts of this complex system rather than performing an integrated analysis of the whole SL metabolism. In addition, since SL can be provided from exogenous sources, it is also of interest to evaluate their impact on the homeostasis of endogenous SL metabolism, which could be beneficial in prevention or treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Mélanie Le Barz
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - Marie Michèle Boulet
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - Catherine Calzada
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - David Cheillan
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France; Service Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie Est, Hospices Civils de Lyon, 69677, Bron, France.
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| |
Collapse
|
41
|
Wigger D, Gulbins E, Kleuser B, Schumacher F. Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Front Cell Dev Biol 2019; 7:210. [PMID: 31632963 PMCID: PMC6779703 DOI: 10.3389/fcell.2019.00210] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C16 fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d3 and L-serine-d3. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B1). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.
Collapse
Affiliation(s)
- Dominik Wigger
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond) 2019; 133:763-776. [PMID: 30890654 PMCID: PMC6422862 DOI: 10.1042/cs20180911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and sphingosine-1-phosphates (S1P) are a large group of structurally and functionally diverse molecules. Some specific species are found associated with atherogenesis and provide novel therapeutic targets. Herein, we briefly review how sphingolipids are implicated in the progression of atherosclerosis and related diseases, and then we discuss the potential therapy options by targetting several key enzymes in sphingolipid metabolism.
Collapse
|
43
|
van Echten-Deckert G, Alam S. Sphingolipid metabolism - an ambiguous regulator of autophagy in the brain. Biol Chem 2019; 399:837-850. [PMID: 29908127 DOI: 10.1515/hsz-2018-0237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023]
Abstract
In mammals, the brain exhibits the highest lipid content in the body next to adipose tissue. Complex sphingolipids are characteristic compounds of neuronal membranes. Vital neural functions including information flux and transduction occur along these membranes. It is therefore not surprising that neuronal function and survival is dependent on the metabolism of these lipids. Autophagy is a critical factor for the survival of post-mitotic neurons. On the one hand, it fulfils homeostatic and waste-recycling functions and on the other hand, it constitutes an effective strategy to eliminate harmful proteins that cause neuronal death. A growing number of experimental data indicate that several sphingolipids as well as enzymes catalyzing their metabolic transformations efficiently but very differently affect neuronal autophagy and hence survival. This review attempts to elucidate the roles and mechanisms of sphingolipid metabolism with regard to the regulation of autophagy and its consequences for brain physiology and pathology.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Shah Alam
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
44
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
45
|
Pant DC, Dorboz I, Schluter A, Fourcade S, Launay N, Joya J, Aguilera-Albesa S, Yoldi ME, Casasnovas C, Willis MJ, Ruiz M, Ville D, Lesca G, Siquier-Pernet K, Desguerre I, Yan H, Wang J, Burmeister M, Brady L, Tarnopolsky M, Cornet C, Rubbini D, Terriente J, James KN, Musaev D, Zaki MS, Patterson MC, Lanpher BC, Klee EW, Pinto E Vairo F, Wohler E, Sobreira NLDM, Cohen JS, Maroofian R, Galehdari H, Mazaheri N, Shariati G, Colleaux L, Rodriguez D, Gleeson JG, Pujades C, Fatemi A, Boespflug-Tanguy O, Pujol A. Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J Clin Invest 2019; 129:1240-1256. [PMID: 30620337 DOI: 10.1172/jci123959] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.
Collapse
Affiliation(s)
- Devesh C Pant
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Imen Dorboz
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Agatha Schluter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Javier Joya
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service, Navarrabiomed, Pamplona, Spain
| | - Maria Eugenia Yoldi
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service, Navarrabiomed, Pamplona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, c/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mary J Willis
- Department of Pediatrics, Naval Medical Center San Diego, San Diego, California, USA
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Dorothée Ville
- Department of Neuropediatrics, Lyon University Hospital, Lyon, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital and GENDEV team CNRS UMR 5292, INSERM U1028, CRNL, and University Claude Bernard Lyon 1, Lyon, France
| | - Karine Siquier-Pernet
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
| | - Isabelle Desguerre
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Molecular & Behavioral Neuroscience Institute, and
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, and.,Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren Brady
- Department of Pediatrics (Neuromuscular and Neurometabolics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics (Neuromuscular and Neurometabolics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | | | | | | | - Kiely N James
- Laboratory for Pediatric Brain Disease, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, California, USA
| | - Damir Musaev
- Laboratory for Pediatric Brain Disease, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, California, USA
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Marc C Patterson
- Departments of Neurology and Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Eric W Klee
- Department of Clinical Genomics and.,Center for Individualized Medicine, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto E Vairo
- Department of Clinical Genomics and.,Center for Individualized Medicine, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth Wohler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara Lygia de M Sobreira
- McKusick-Nathans Institute of Genetic Medicine, and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie S Cohen
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laurence Colleaux
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
| | - Diana Rodriguez
- APHP, Department of Neuropediatrics, National Reference Center for Neurogenetic Disorders, Hôpital Armand-Trousseau, GHUEP, Paris, France.,GRC ConCer-LD, Sorbonne Universités, UPMC Université, Paris, France
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, California, USA
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ali Fatemi
- Moser Center for Leukodystrophies at the Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Odile Boespflug-Tanguy
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hopitaux de Paris (APHP), Reference Center for Leukodystrophies and Rare Leukoencephalopathies (LEUKOFRANCE), Hôpital Robert Debré, Paris, France
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
46
|
Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K, Jayawardana KS, Meikle PJ, Meex RCR. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 2018; 59:1977-1986. [PMID: 30042157 DOI: 10.1194/jlr.m085613] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises fat-accumulating conditions within hepatocytes that can cause severe liver damage and metabolic comorbidities. Studies suggest that mitochondrial dysfunction contributes to its development and progression and that the hepatic lipidome changes extensively in obesity and in NAFLD. To gain insight into the relationship between lipid metabolism and disease progression through different stages of NAFLD, we performed lipidomic analysis of plasma and liver biopsy samples from obese patients with nonalcoholic fatty liver (NAFL) or nonalcoholic steatohepatitis (NASH) and from those without NAFLD. Congruent with earlier studies, hepatic lipid levels overall increased with NAFLD. Lipid species that differed with NAFLD severity were related to mitochondrial dysfunction; specifically, hepatic cardiolipin and ubiquinone accumulated in NAFL, and levels of acylcarnitine increased with NASH. We propose that increased levels of cardiolipin and ubiquinone may help to preserve mitochondrial function in early NAFLD, but that mitochondrial function eventually fails with progression to NASH, leading to increased acylcarnitine. We also found a negative association between hepatic odd-chain phosphatidylcholine and NAFLD, which may result from mitochondrial dysfunction-related impairment of branched-chain amino acid catabolism. Overall, these data suggest a close link between accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD.
Collapse
Affiliation(s)
- Kang-Yu Peng
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Sander Rensen
- Departments of Surgery Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Greve
- Department of Surgery, Zuyderland Medical Center Heerlen, Heerlen, The Netherlands
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia .,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ruth C R Meex
- Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
47
|
Voelkel-Johnson C, Norris JS, White-Gilbertson S. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer. Adv Cancer Res 2018; 140:265-293. [PMID: 30060812 PMCID: PMC6460930 DOI: 10.1016/bs.acr.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipid metabolism is known to play a role in cell death, survival, and therapy resistance in cancer. Sphingolipids, particularly dihydroceramide and ceramide, are associated with antiproliferative or cell death responses, respectively, and are central to effective cancer therapy. Within the last decade, strides have been made in elucidating many intricacies of sphingolipid metabolism. New information has emerged on the mechanisms by which sphingolipid metabolism is dysregulated during malignancy and how cancer cells survive and/or escape therapeutic interventions. This chapter focuses on three main themes: (1) sphingolipid enzymes that are dysregulated in cancer, particularly in prostate cancer; (2) inhibitors of sphingolipid metabolism that antagonize prosurvival responses; and (3) sphingolipid-driven escape mechanisms that allow cancer cells to evade therapies. We explore clinical and preclinical approaches to interdict sphingolipid metabolism and provide a rationale for combining strategies to drive the generation of antiproliferative ceramides with prevention of ceramide clearance.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - James S. Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
48
|
Luger S, Schwebler A, Vutukuri R, Bouzas NF, Labocha S, Schreiber Y, Brunkhorst R, Steinmetz H, Pfeilschifter J, Pfeilschifter W. Beta adrenoceptor blockade ameliorates impaired glucose tolerance and alterations of the cerebral ceramide metabolism in an experimental model of ischemic stroke. Ther Adv Neurol Disord 2018; 11:1756286418769830. [PMID: 29774054 PMCID: PMC5949927 DOI: 10.1177/1756286418769830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Sphingolipids are versatile signaling molecules derived from membrane lipids of eukaryotic cells. Ceramides regulate cellular processes such as proliferation, differentiation and apoptosis and are involved in cellular stress responses. Experimental evidence suggests a pivotal role of sphingolipids in the pathogenesis of cardiovascular diseases, including ischemic stroke. A neuroprotective effect has been shown for beta-adrenergic antagonists in rodent stroke models and supported by observational clinical data. However, the exact underlying pathophysiological mechanisms are still under investigation. We aimed to examine the influence of propranolol on the ceramide metabolism in the stroke-affected brain. Methods: Mice were subjected to 60 or 180 min transient middle cerebral artery occlusion (tMCAO) and infarct size, functional neurological deficits, glucose tolerance, and brain ceramide levels were assessed after 12, 24, and 72 h to evaluate whether the latter two processes occur in a similar time frame. Next, we assessed the effects of propranolol (10 mg/kg bw) at 0, 4 and 8 h after tMCAO and FTY720 (fingolimod; 1 mg/kg) on infarct size, functional outcome, immune cell counts and brain ceramide levels at 24 h after 60 min tMCAO. Results: We found a temporal coincidence between stroke-associated impaired glucose tolerance and brain ceramide accumulation. Whereas propranolol reduced ischemic lesion size, improved functional outcome and reduced brain ceramide accumulation without an effect on circulating immune cells, FTY720 showed the known neuroprotective effect and strong reduction of circulating immune cells without affecting brain ceramide accumulation. Conclusions: Propranolol ameliorates both stroke-associated impairment of glucose tolerance and brain ceramide accumulation which are temporally linked, strengthening the evidence for a role of the sympathetic nervous system in regulating post-stroke glucose metabolism and its metabolic consequences in the brain.
Collapse
Affiliation(s)
- Sebastian Luger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany; Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Annette Schwebler
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | | | - Sandra Labocha
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe University, Frankfurt am Main, Germany; Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, Goethe University, Neurovascular Lipid Signalling Group (NLSG), Schleusenweg 2-16, Frankfurt am Main, 60528, Germany
| |
Collapse
|
49
|
Pou A, Abad JL, Ordóñez YF, Garrido M, Casas J, Fabriàs G, Delgado A. From the configurational preference of dihydroceramide desaturase-1 towards Δ 6-unsaturated substrates to the discovery of a new inhibitor. Chem Commun (Camb) 2018; 53:4394-4397. [PMID: 28379228 DOI: 10.1039/c6cc08268h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the last step of ceramide synthesis de novo, thus regulating the physiologically relevant balance between dihydrosphingolipids and sphingolipids. Here we report on the configurational preference of Des1 towards isomeric Δ6-unsaturated dihydroceramide analogs and the discovery of a potent Des1 inhibitor.
Collapse
Affiliation(s)
- Ana Pou
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034-Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhu Q, Yang J, Zhu R, Jiang X, Li W, He S, Jin J. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis. Apoptosis 2018; 21:1033-44. [PMID: 27364952 DOI: 10.1007/s10495-016-1267-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, results showed that the inhibition of PA-induced HepG2 cell growth takes place in a time- and concentration-dependent manner, that activation of caspase 9 is necessary for PA-induced HepG2 cell apoptosis, that dihydroceramide desaturase 1 (DES1) plays a key role in PA-mediated caspase 9 and caspase 3 activation, and that palmitoleic acid (POA), an omega-7 monounsaturated fatty acid, reverses PA-induced apoptosis through DES1 → Ceramide → Caspase 9 → Caspase 3 signaling.
Collapse
Affiliation(s)
- Qun Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, Jiangsu, People's Republic of China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Jianjun Yang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Rongping Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Xin Jiang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Wanlian Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Songqing He
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
| |
Collapse
|