1
|
Li S, Yuan H, Li L, Li Q, Lin P, Li K. Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants (Basel) 2025; 14:201. [PMID: 40002387 PMCID: PMC11851681 DOI: 10.3390/antiox14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is a common event involved in cancer pathophysiology, frequently accompanied by unique lipid metabolic reprogramming phenomena. Oxidative stress is caused mainly by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant system in cancer cells. Emerging evidence has reported that oxidative stress regulates the expression and activity of lipid metabolism-related enzymes, leading to the alteration of cellular lipid metabolism; this involves a significant increase in fatty acid synthesis and a shift in the way in which lipids are taken up and utilized. The dysregulation of lipid metabolism provides abundant intermediates to synthesize biological macromolecules for the rapid proliferation of cancer cells; moreover, it contributes to the maintenance of intracellular redox homeostasis by producing a variety of reducing agents. Moreover, lipid derivatives and metabolites play critical roles in signal transduction within cancer cells and in the tumor microenvironment that evades immune destruction and facilitates tumor invasion and metastasis. These findings suggest a close relationship between oxidative stress and lipid metabolism during the malignant progression of cancers. This review focuses on the crosstalk between the redox system and lipid metabolic reprogramming, which provides an in-depth insight into the modulation of ROS on lipid metabolic reprogramming in cancers and discusses potential strategies for targeting lipid metabolism for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| |
Collapse
|
2
|
Panda M, Markaki M, Tavernarakis N. Mitostasis in age-associated neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167547. [PMID: 39437856 DOI: 10.1016/j.bbadis.2024.167547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are essential organelles that play crucial roles in various metabolic and signalling pathways. Proper neuronal function is highly dependent on the health of these organelles. Of note, the intricate structure of neurons poses a critical challenge for the transport and distribution of mitochondria to specific energy-intensive domains, such as synapses and dendritic appendages. When faced with chronic metabolic challenges and bioenergetic deficits, neurons undergo degeneration. Unsurprisingly, disruption of mitostasis, the process of maintaining cellular mitochondrial content and function within physiological limits, has been implicated in the pathogenesis of several age-associated neurodegenerative disorders. Indeed, compromised integrity and metabolic activity of mitochondria is a principal hallmark of neurodegeneration. In this review, we survey recent findings elucidating the role of impaired mitochondrial homeostasis and metabolism in the onset and progression of age-related neurodegenerative disorders. We also discuss the importance of neuronal mitostasis, with an emphasis on the major mitochondrial homeostatic and metabolic pathways that contribute to the proper functioning of neurons. A comprehensive delineation of these pathways is crucial for the development of early diagnostic and intervention approaches against neurodegeneration.
Collapse
Affiliation(s)
- Mrutyunjaya Panda
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Medicine, University of Verona, Verona 37134, Italy; Faculdade de Farmácia, University of Lisbon, Lisbon 1649-003, Portugal
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece.
| |
Collapse
|
3
|
Li H, Gong W, Sun W, Yao Y, Han Y. Role of VPS39, a key tethering protein for endolysosomal trafficking and mitochondria-lysosome crosstalk, in health and disease. J Cell Biochem 2024; 125:e30396. [PMID: 36924104 DOI: 10.1002/jcb.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Shiino H, Tashiro S, Hashimoto M, Sakata Y, Hosoya T, Endo T, Kojima H, Tamura Y. Chemical inhibition of phosphatidylcholine biogenesis reveals its role in mitochondrial division. iScience 2024; 27:109189. [PMID: 38420588 PMCID: PMC10901091 DOI: 10.1016/j.isci.2024.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Phospholipids are major components of biological membranes and play structural and regulatory roles in various biological processes. To determine the biological significance of phospholipids, the use of chemical inhibitors of phospholipid metabolism offers an effective approach; however, the availability of such compounds is limited. In this study, we performed a chemical-genetic screening using yeast and identified small molecules capable of inhibiting phosphatidylcholine (PC) biogenesis, which we designated PC inhibitors 1, 2, 3, and 4 (PCiB-1, 2, 3, and 4). Biochemical analyses indicated that PCiB-2, 3, and 4 inhibited the phosphatidylethanolamine (PE) methyltransferase activity of Cho2, whereas PCiB-1 may inhibit PE transport from mitochondria to the endoplasmic reticulum (ER). Interestingly, we found that PCiB treatment resulted in mitochondrial fragmentation, which was suppressed by expression of a dominant-negative mutant of the mitochondrial division factor Dnm1. These results provide evidence that normal PC biogenesis is important for the regulation of mitochondrial division.
Collapse
Affiliation(s)
- Hiroya Shiino
- Graduate School of Global Symbiotic Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Shinya Tashiro
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Michiko Hashimoto
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto 603-8555, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| |
Collapse
|
5
|
Maio G, Smith M, Bhawal R, Zhang S, Baskin JM, Li J, Lin H. Interactome Analysis Identifies the Role of BZW2 in Promoting Endoplasmic Reticulum-Mitochondria Contact and Mitochondrial Metabolism. Mol Cell Proteomics 2024; 23:100709. [PMID: 38154691 PMCID: PMC10835002 DOI: 10.1016/j.mcpro.2023.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023] Open
Abstract
Understanding the molecular functions of less-studied proteins is an important task of life science research. Despite reports of basic leucine zipper and W2 domain-containing protein 2 (BZW2) promoting cancer progression first emerging in 2017, little is known about its molecular function. Using a quantitative proteomic approach to identify its interacting proteins, we found that BZW2 interacts with both endoplasmic reticulum (ER) and mitochondrial proteins. We thus hypothesized that BZW2 localizes to and promotes the formation of ER-mitochondria contact sites and that such localization would promote calcium transport from ER to the mitochondria and promote ATP production. Indeed, we found that BZW2 localized to ER-mitochondria contact sites and that BZW2 knockdown decreased ER-mitochondria contact, mitochondrial calcium levels, and ATP production. These findings provide key insights into molecular functions of BZW2, the potential role of BZW2 in cancer progression, and highlight the utility of interactome data in understanding the function of less-studied proteins.
Collapse
Affiliation(s)
- George Maio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Mike Smith
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jenny Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Howard Hughes Medical Institute, Cornell University, Ithaca, New York, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
6
|
Su H, Guo H, Qiu X, Lin TY, Qin C, Celio G, Yong P, Senders M, Han X, Bernlohr DA, Chen X. Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice. Nat Commun 2023; 14:6729. [PMID: 37872178 PMCID: PMC10593768 DOI: 10.1038/s41467-023-42473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Xiaoxue Qiu
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Te-Yueh Lin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Gail Celio
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Mark Senders
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
7
|
Renne MF, Bao X, Hokken MWJ, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AIPM. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J 2022; 41:e106837. [PMID: 34873731 PMCID: PMC8762554 DOI: 10.15252/embj.2020106837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xue Bao
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Margriet WJ Hokken
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Adolf S Bierhuizen
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Martin Hermansson
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Tom A Ewing
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Wageningen Food & Biobased ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Xiao Ma
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ruud C Cox
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Jos F Brouwers
- Biochemistry and Cell BiologyDepartment of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Present address:
Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Christer S Ejsing
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Anton IPM de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
8
|
Kakimoto-Takeda Y, Kojima R, Shiino H, Shinmyo M, Kurokawa K, Nakano A, Endo T, Tamura Y. Dissociation of ERMES clusters plays a key role in attenuating the endoplasmic reticulum stress. iScience 2022; 25:105362. [PMID: 36339260 PMCID: PMC9626684 DOI: 10.1016/j.isci.2022.105362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
In yeast, ERMES, which mediates phospholipid transport between the ER and mitochondria, forms a limited number of oligomeric clusters at ER-mitochondria contact sites in a cell. Although the number of the ERMES clusters appears to be regulated to maintain proper inter-organelle phospholipid trafficking, its underlying mechanism and physiological relevance remain poorly understood. Here, we show that mitochondrial dynamics control the number of ERMES clusters. Moreover, we find that ER stress causes dissociation of the ERMES clusters independently of Ire1 and Hac1, canonical ER-stress response pathway components, leading to a delay in the phospholipid transport from the ER to mitochondria. Our biochemical and genetic analyses strongly suggest that the impaired phospholipid transport contributes to phospholipid accumulation in the ER, expanding the ER for ER stress attenuation. We thus propose that the ERMES dissociation constitutes an overlooked pathway of the ER stress response that operates in addition to the canonical Ire1/Hac1-dependent pathway. Mitochondrial fusion and division regulate the clustering of the ERMES complex ER stress leads to dissociation of the ERMES clusters independently of Ire1 and Hac1 The dissociated ERMES complexes have less activity in transporting phospholipids The defective phospholipid transport may cause the ER expansion to relieve ER stress
Collapse
Affiliation(s)
- Yuriko Kakimoto-Takeda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Rieko Kojima
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Hiroya Shiino
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Manatsu Shinmyo
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
- Corresponding author
| |
Collapse
|
9
|
Kimura K, Kawai F, Kubota-Kawai H, Watanabe Y, Tomii K, Kojima R, Hirata K, Yamamori Y, Endo T, Tamura Y. Crystal structure of Tam41 cytidine diphosphate diacylglycerol synthase from a Firmicutes bacterium. J Biochem 2021; 171:429-441. [PMID: 34964897 DOI: 10.1093/jb/mvab154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Translocator assembly and maintenance 41 (Tam41) catalyzes the synthesis of cytidine diphosphate diacylglycerol (CDP-DAG), which is a high-energy intermediate phospholipid critical for generating cardiolipin in mitochondria. Although Tam41 is present almost exclusively in eukaryotic cells, a Firmicutes bacterium contains the gene encoding Tam41-type CDP-DAG synthase (FbTam41). FbTam41 converted phosphatidic acid (PA) to CDP-DAG using a ternary complex mechanism in vitro. Additionally, FbTam41 functionally substituted yeast Tam41 in vivo. These results demonstrate that Tam41-type CDP-DAG synthase functions in some prokaryotic cells. We determined the crystal structure of FbTam41 lacking the C-terminal 18 residues in the cytidine triphosphate (CTP)-Mg2+ bound form at a resolution of 2.6 Å. The crystal structure showed that FbTam41 contained a positively charged pocket that specifically accommodated CTP-Mg2+ and PA in close proximity. By using this structure, we constructed a model for the full-length structure of FbTam41 containing the last α-helix, which was missing in the crystal structure. Based on this model, we propose a molecular mechanism for CDP-DAG synthesis in bacterial cells and mitochondria.
Collapse
Affiliation(s)
- Keisuke Kimura
- Graduate School of Global Symbiotic Sciences, Yamagata University, Japan
| | | | | | | | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Rieko Kojima
- Faculty of Science, Yamagata University, Japan.,Toyama Prefectural Institute for Pharmaceutical Research, Toyama 939-0363, Japan
| | | | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
10
|
Rojas ML, Cruz Del Puerto MM, Flores-Martín J, Racca AC, Kourdova LT, Miranda AL, Panzetta-Dutari GM, Genti-Raimondi S. Role of the lipid transport protein StarD7 in mitochondrial dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159029. [PMID: 34416390 DOI: 10.1016/j.bbalip.2021.159029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Mitochondria are dynamic organelles crucial for cell function and survival implicated in oxidative energy production whose central functions are tightly controlled by lipids. StarD7 is a lipid transport protein involved in the phosphatidylcholine (PC) delivery to mitochondria. Previous studies have shown that StarD7 knockdown induces alterations in mitochondria and endoplasmic reticulum (ER) with a reduction in PC content, however whether StarD7 modulates mitochondrial dynamics remains unexplored. Here, we generated HTR-8/SVneo stable cells expressing the precursor StarD7.I and the mature processed StarD7.II isoforms. We demonstrated that StarD7.I overexpression altered mitochondrial morphology increasing its fragmentation, whereas no changes were observed in StarD7.II-overexpressing cells compared to the control (Ct) stable cells. StarD7.I (D7.I) stable cells were able to transport higher fluorescent PC analog to mitochondria than Ct cells, yield mitochondrial fusions, maintained the membrane potential, and produced lower levels of reactive oxygen species (ROS). Additionally, the expression of Dynamin Related Protein 1 (Drp1) and Mitofusin (Mfn2) proteins were increased, whereas the amount of Mitofusin 1 (Mfn1) decreased. Moreover, transfections with plasmids encoding Drp1-K38A, Drp1-S637D or Drp1-S637A mutants indicated that mitochondrial fragmentation in D7.I cells occurs in a fission-dependent manner via Drp1. In contrast, StarD7 silencing decreased Mfn1 and Mfn2 fusion proteins without modification of Drp1 protein level. These cells increased ROS levels and presented donut-shape mitochondria, indicative of metabolic stress. Altogether our findings provide novel evidence indicating that alterations in StarD7.I expression produce significant changes in mitochondrial morphology and dynamics.
Collapse
Affiliation(s)
- María L Rojas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Mariano M Cruz Del Puerto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Jésica Flores-Martín
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
11
|
Poveda-Huertes D, Taskin AA, Dhaouadi I, Myketin L, Marada A, Habernig L, Büttner S, Vögtle FN. Increased mitochondrial protein import and cardiolipin remodelling upon early mtUPR. PLoS Genet 2021; 17:e1009664. [PMID: 34214073 PMCID: PMC8282050 DOI: 10.1371/journal.pgen.1009664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/15/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial defects can cause a variety of human diseases and protective mechanisms exist to maintain mitochondrial functionality. Imbalances in mitochondrial proteostasis trigger a transcriptional program, termed mitochondrial unfolded protein response (mtUPR). However, the temporal sequence of events in mtUPR is unclear and the consequences on mitochondrial protein import are controversial. Here, we have quantitatively analyzed all main import pathways into mitochondria after different time spans of mtUPR induction. Kinetic analyses reveal that protein import into all mitochondrial subcompartments strongly increases early upon mtUPR and that this is accompanied by rapid remodelling of the mitochondrial signature lipid cardiolipin. Genetic inactivation of cardiolipin synthesis precluded stimulation of protein import and compromised cellular fitness. At late stages of mtUPR upon sustained stress, mitochondrial protein import efficiency declined. Our work clarifies the enigma of protein import upon mtUPR and identifies sequential mtUPR stages, in which an early increase in protein biogenesis to restore mitochondrial proteostasis is followed by late stages characterized by a decrease in import capacity upon prolonged stress induction.
Collapse
Affiliation(s)
- Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
13
|
Hewlett B, Singh NP, Vannier C, Galli T. ER-PM Contact Sites - SNARING Actors in Emerging Functions. Front Cell Dev Biol 2021; 9:635518. [PMID: 33681218 PMCID: PMC7928305 DOI: 10.3389/fcell.2021.635518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The compartmentalisation achieved by confining cytoplasm into membrane-enclosed organelles in eukaryotic cells is essential for maintaining vital functions including ATP production, synthetic and degradative pathways. While intracellular organelles are highly specialised in these functions, the restricting membranes also impede exchange of molecules responsible for the synchronised and responsive cellular activities. The initial identification of contact sites between the ER and plasma membrane (PM) provided a potential candidate structure for communication between organelles without mixing by fusion. Over the past decades, research has revealed a far broader picture of the events. Membrane contact sites (MCSs) have been recognized as increasingly important actors in cell differentiation, plasticity and maintenance, and, upon dysfunction, responsible for pathological conditions such as cancer and neurodegenerative diseases. Present in multiple organelles and cell types, MCSs promote transport of lipids and Ca2+ homoeostasis, with a range of associated protein families. Interestingly, each MCS displays a unique molecular signature, adapted to organelle functions. This review will explore the literature describing the molecular components and interactions taking place at ER-PM contact sites, their functions, and implications in eukaryotic cells, particularly neurons, with emphasis on lipid transfer proteins and emerging function of SNAREs.
Collapse
Affiliation(s)
- Bailey Hewlett
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Neha Pratap Singh
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Christian Vannier
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Thierry Galli
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,GHU PARIS Psychiatrie and Neurosciences, Paris, France
| |
Collapse
|
14
|
Shiino H, Furuta S, Kojima R, Kimura K, Endo T, Tamura Y. Phosphatidylserine flux into mitochondria unveiled by organelle-targeted Escherichia coli phosphatidylserine synthase PssA. FEBS J 2020; 288:3285-3299. [PMID: 33283454 DOI: 10.1111/febs.15657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | | |
Collapse
|
15
|
Bergami M, Motori E. Reweaving the Fabric of Mitochondrial Contact Sites in Astrocytes. Front Cell Dev Biol 2020; 8:592651. [PMID: 33195262 PMCID: PMC7649784 DOI: 10.3389/fcell.2020.592651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are classically regarded as very dynamic organelles in cell lines. Their frequent morphological changes and repositioning underlie the transient generation of physical contact sites (so-called mitochondria-ER contacts, or MERCs) which are believed to support metabolic processes central for cellular signaling and function. The extent of regulation over these organelle dynamics has likely further achieved a higher level of complexity in polarized cells like neurons and astrocytes to match their elaborated geometries and specialized functions, thus ensuring the maintenance of MERCs at metabolically demanding locations far from the soma. Yet, live imaging of adult brain tissue has recently revealed that the true extent of mitochondrial dynamics in astrocytes is significantly lower than in cell culture settings. On one hand, this suggests that organelle dynamics in mature astroglia in vivo may be highly regulated and perhaps triggered only by defined physiological stimuli. On the other hand, this extent of control may greatly facilitate the stabilization of those MERCs required to maintain regionalized metabolic domains underlying key astrocytic functions. In this perspective, we review recent evidence suggesting that the resulting spatial distribution of mitochondria and ER in astrocytes in vivo may create the conditions for maintaining extensive MERCs within specialized territories – like perivascular endfeet – and discuss the possibility that their enrichment at these distal locations may facilitate specific forms of cellular plasticity relevant for physiology and disease.
Collapse
Affiliation(s)
- Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany.,Institute of Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
16
|
Rickman OJ, Baple EL, Crosby AH. Lipid metabolic pathways converge in motor neuron degenerative diseases. Brain 2020; 143:1073-1087. [PMID: 31848577 PMCID: PMC7174042 DOI: 10.1093/brain/awz382] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) encompass an extensive and heterogeneous group of upper and/or lower motor neuron degenerative disorders, in which the particular clinical outcomes stem from the specific neuronal component involved in each condition. While mutations in a large number of molecules associated with lipid metabolism are known to be implicated in MNDs, there remains a lack of clarity regarding the key functional pathways involved, and their inter-relationships. This review highlights evidence that defines defects within two specific lipid (cholesterol/oxysterol and phosphatidylethanolamine) biosynthetic cascades as being centrally involved in MND, particularly hereditary spastic paraplegia. We also identify how other MND-associated molecules may impact these cascades, in particular through impaired organellar interfacing, to propose ‘subcellular lipidome imbalance’ as a likely common pathomolecular theme in MND. Further exploration of this mechanism has the potential to identify new therapeutic targets and management strategies for modulation of disease progression in hereditary spastic paraplegias and other MNDs.
Collapse
Affiliation(s)
- Olivia J Rickman
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
17
|
Fernández-Del-Río L, Kelly ME, Contreras J, Bradley MC, James AM, Murphy MP, Payne GS, Clarke CF. Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. Free Radic Biol Med 2020; 154:105-118. [PMID: 32387128 PMCID: PMC7611304 DOI: 10.1016/j.freeradbiomed.2020.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is an essential player in the respiratory electron transport chain and is the only lipid-soluble antioxidant synthesized endogenously in mammalian and yeast cells. In humans, genetic mutations, pathologies, certain medical treatments, and aging, result in CoQ deficiencies, which are linked to mitochondrial, cardiovascular, and neurodegenerative diseases. The only strategy available for these patients is CoQ supplementation. CoQ supplements benefit a small subset of patients, but the poor solubility of CoQ greatly limits treatment efficacy. Consequently, the efficient delivery of CoQ to the mitochondria and restoration of respiratory function remains a major challenge. A better understanding of CoQ uptake and mitochondrial delivery is crucial to make this molecule a more efficient and effective therapeutic tool. In this study, we investigated the mechanism of CoQ uptake and distribution using the yeast Saccharomyces cerevisiae as a model organism. The addition of exogenous CoQ was tested for the ability to restore growth on non-fermentable medium in several strains that lack CoQ synthesis (coq mutants). Surprisingly, we discovered that the presence of CoQ biosynthetic intermediates impairs assimilation of CoQ into a functional respiratory chain in yeast cells. Moreover, a screen of 40 gene deletions considered to be candidates to prevent exogenous CoQ from rescuing growth of the CoQ-less coq2Δ mutant, identified six novel genes (CDC10, RTS1, RVS161, RVS167, VPS1, and NAT3) as necessary for efficient trafficking of CoQ to mitochondria. The proteins encoded by these genes represent essential steps in the pathways responsible for transport of exogenously supplied CoQ to its functional sites in the cell, and definitively associate CoQ distribution with endocytosis and intracellular vesicular trafficking pathways conserved from yeast to human cells.
Collapse
Affiliation(s)
- Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Miranda E Kelly
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Jaime Contreras
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, UK; Department of Medicine, University of Cambridge, UK
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|
18
|
Kohler V, Aufschnaiter A, Büttner S. Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy. Cells 2020; 9:E1184. [PMID: 32397538 PMCID: PMC7290522 DOI: 10.3390/cells9051184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), allowing interorganellar communication and a functional integration of cellular processes. These MCS coordinate the exchange of diverse metabolites and serve as hubs for lipid synthesis and trafficking. While this of course indirectly impacts on a plethora of biological functions, including autophagy, accumulating evidence shows that MCS can also directly regulate autophagic processes. Here, we focus on the nexus between interorganellar contacts and autophagy in yeast and mammalian cells, highlighting similarities and differences. We discuss MCS connecting the ER to mitochondria or the plasma membrane, crucial for early steps of both selective and non-selective autophagy, the yeast-specific nuclear-vacuolar tethering system and its role in microautophagy, the emerging function of distinct autophagy-related proteins in organellar tethering as well as novel MCS transiently emanating from the growing phagophore and mature autophagosome.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
19
|
Vallese F, Barazzuol L, Maso L, Brini M, Calì T. ER-Mitochondria Calcium Transfer, Organelle Contacts and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:719-746. [PMID: 31646532 DOI: 10.1007/978-3-030-12457-1_29] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is generally accepted that interorganellar contacts are central to the control of cellular physiology. Virtually, any intracellular organelle can come into proximity with each other and, by establishing physical protein-mediated contacts within a selected fraction of the membrane surface, novel specific functions are acquired. Endoplasmic reticulum (ER) contacts with mitochondria are among the best studied and have a major role in Ca2+ and lipid transfer, signaling, and membrane dynamics.Their functional (and structural) diversity, their dynamic nature as well as the growing number of new players involved in the tethering concurred to make their monitoring difficult especially in living cells. This review focuses on the most established examples of tethers/modulators of the ER-mitochondria interface and on the roles of these contacts in health and disease by specifically dissecting how Ca2+ transfer occurs and how mishandling eventually leads to disease. Additional functions of the ER-mitochondria interface and an overview of the currently available methods to measure/quantify the ER-mitochondria interface will also be discussed.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padua, Padua, Italy
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy.
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padua Neuroscience Center (PNC), Padua, Italy.
| |
Collapse
|
20
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
21
|
Eisenberg-Bord M, Tsui HS, Antunes D, Fernández-Del-Río L, Bradley MC, Dunn CD, Nguyen TPT, Rapaport D, Clarke CF, Schuldiner M. The Endoplasmic Reticulum-Mitochondria Encounter Structure Complex Coordinates Coenzyme Q Biosynthesis. ACTA ACUST UNITED AC 2019; 2:2515256418825409. [PMID: 30937424 PMCID: PMC6441334 DOI: 10.1177/2515256418825409] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Loss of the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) complex that resides in contact sites between the yeast ER and mitochondria leads to impaired respiration; however, the reason for that is not clear. We find that in ERMES null mutants, there is an increase in the level of mRNAs encoding for biosynthetic enzymes of coenzyme Q6 (CoQ6), an essential electron carrier of the mitochondrial respiratory chain. We show that the mega complexes involved in CoQ6 biosynthesis (CoQ synthomes) are destabilized in ERMES mutants. This, in turn, affects the level and distribution of CoQ6 within the cell, resulting in reduced mitochondrial CoQ6. We suggest that these outcomes contribute to the reduced respiration observed in ERMES mutants. Fluorescence microscopy experiments demonstrate close proximity between the CoQ synthome and ERMES, suggesting a spatial coordination. The involvement of the ER-mitochondria contact site in regulation of CoQ6 biogenesis highlights an additional level of communication between these two organelles.
Collapse
Affiliation(s)
| | - Hui S Tsui
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Diana Antunes
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, Wheeler H, Reinisch KM, De Camilli P. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 2018; 217:3625-3639. [PMID: 30093493 PMCID: PMC6168267 DOI: 10.1083/jcb.201807019] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Mutations in the human VPS13 genes are responsible for neurodevelopmental and neurodegenerative disorders including chorea acanthocytosis (VPS13A) and Parkinson's disease (VPS13C). The mechanisms of these diseases are unknown. Genetic studies in yeast hinted that Vps13 may have a role in lipid exchange between organelles. In this study, we show that the N-terminal portion of VPS13 is tubular, with a hydrophobic cavity that can solubilize and transport glycerolipids between membranes. We also show that human VPS13A and VPS13C bind to the ER, tethering it to mitochondria (VPS13A), to late endosome/lysosomes (VPS13C), and to lipid droplets (both VPS13A and VPS13C). These findings identify VPS13 as a lipid transporter between the ER and other organelles, implicating defects in membrane lipid homeostasis in neurological disorders resulting from their mutations. Sequence and secondary structure similarity between the N-terminal portions of Vps13 and other proteins such as the autophagy protein ATG2 suggest lipid transport roles for these proteins as well.
Collapse
Affiliation(s)
- Nikit Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Marianna Leonzino
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| | - William Hancock-Cerutti
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Florian A Horenkamp
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - PeiQi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Joshua A Lees
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Heather Wheeler
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Karin M Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
23
|
Sinzel M, Zeitler A, Dimmer KS. Interaction network of the mitochondrial outer membrane protein Mcp3. FEBS Lett 2018; 592:3210-3220. [PMID: 30192984 DOI: 10.1002/1873-3468.13243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
Mitochondria are organelles containing two membranes that are distinct in composition and function. A role of the mitochondrial outer membrane (MOM) is to mediate contact of the organelle with the rest of the cell. In yeast, the MOM contains about 40 different integral proteins. Recently, we described the MOM protein Mcp3, which can serve as a multicopy suppressor of loss of ERMES complex that mediates mitochondria-endoplasmic reticulum contacts. To shed further light on the role of Mcp3 in the MOM, we analyzed its physical interaction with other proteins. We show that Mcp3 interacts with the MOM protein Om45 and the inner membrane protein Aim19. Our observations hint toward a potential involvement of Mcp3 in a structural and/or functional link between both mitochondrial membranes.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Andreas Zeitler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Kai S Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| |
Collapse
|
24
|
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The Origin and Diversification of Mitochondria. Curr Biol 2018; 27:R1177-R1192. [PMID: 29112874 DOI: 10.1016/j.cub.2017.09.015] [Citation(s) in RCA: 655] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondria are best known for their role in the generation of ATP by aerobic respiration. Yet, research in the past half century has shown that they perform a much larger suite of functions and that these functions can vary substantially among diverse eukaryotic lineages. Despite this diversity, all mitochondria derive from a common ancestral organelle that originated from the integration of an endosymbiotic alphaproteobacterium into a host cell related to Asgard Archaea. The transition from endosymbiotic bacterium to permanent organelle entailed a massive number of evolutionary changes including the origins of hundreds of new genes and a protein import system, insertion of membrane transporters, integration of metabolism and reproduction, genome reduction, endosymbiotic gene transfer, lateral gene transfer and the retargeting of proteins. These changes occurred incrementally as the endosymbiont and the host became integrated. Although many insights into this transition have been gained, controversy persists regarding the nature of the original endosymbiont, its initial interactions with the host and the timing of its integration relative to the origin of other features of eukaryote cells. Since the establishment of the organelle, proteins have been gained, lost, transferred and retargeted as mitochondria have specialized into the spectrum of functional types seen across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| |
Collapse
|
25
|
Non-vesicular lipid trafficking at the endoplasmic reticulum–mitochondria interface. Biochem Soc Trans 2018; 46:437-452. [DOI: 10.1042/bst20160185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria are highly dynamic organelles involved in various cellular processes such as energy production, regulation of calcium homeostasis, lipid trafficking, and apoptosis. To fulfill all these functions and preserve their morphology and dynamic behavior, mitochondria need to maintain a defined protein and lipid composition in both their membranes. The maintenance of mitochondrial membrane identity requires a selective and regulated transport of specific lipids from/to the endoplasmic reticulum (ER) and across the mitochondria outer and inner membranes. Since they are not integrated in the classical vesicular trafficking routes, mitochondria exchange lipids with the ER at sites of close apposition called membrane contact sites. Deregulation of such transport activities results in several pathologies including cancer and neurodegenerative disorders. However, we are just starting to understand the function of ER–mitochondria contact sites in lipid transport, what are the proteins involved and how they are regulated. In this review, we summarize recent insights into lipid transport pathways at the ER–mitochondria interface and discuss the implication of recently identified lipid transfer proteins in these processes.
Collapse
|
26
|
Csordás G, Weaver D, Hajnóczky G. Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol 2018; 28:523-540. [PMID: 29588129 DOI: 10.1016/j.tcb.2018.02.009] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Interorganellar contacts are increasingly recognized as central to the control of cellular behavior. These contacts, which typically involve a small fraction of the endomembrane surface, are local communication hubs that resemble synapses. We propose the term contactology to denote the analysis of interorganellar contacts. Endoplasmic reticulum (ER) contacts with mitochondria were recognized several decades ago; major roles in ion and lipid transfer, signaling, and membrane dynamics have been established, while others continue to emerge. The functional diversity of ER-mitochondrial (ER-mito) contacts is mirrored in their structural heterogeneity, with subspecialization likely supported by multiple, different linker-forming protein structures. The nanoscale size of the contacts has made studying their structure, function, and dynamics difficult. This review focuses on the structure of the ER-mito contacts, methods for studying them, and the roles of contacts in Ca2+ and reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Leonov A, Arlia-Ciommo A, Bourque SD, Koupaki O, Kyryakov P, Dakik P, McAuley M, Medkour Y, Mohammad K, Di Maulo T, Titorenko VI. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget 2018; 8:30672-30691. [PMID: 28410198 PMCID: PMC5458158 DOI: 10.18632/oncotarget.16766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously found that exogenously added lithocholic acid delays yeast chronological aging. We demonstrated that lithocholic acid enters the yeast cell, is sorted to mitochondria, resides in both mitochondrial membranes, changes the relative concentrations of different membrane phospholipids, triggers changes in the concentrations of many mitochondrial proteins, and alters some key aspects of mitochondrial functionality. We hypothesized that the lithocholic acid-driven changes in mitochondrial lipidome may have a causal role in the remodeling of mitochondrial proteome, which may in turn alter the functional state of mitochondria to create a mitochondrial pattern that delays yeast chronological aging. Here, we test this hypothesis by investigating how the ups1?, ups2? and psd1? mutations that eliminate enzymes involved in mitochondrial phospholipid metabolism influence the mitochondrial lipidome. We also assessed how these mutations affect the mitochondrial proteome, influence mitochondrial functionality and impinge on the efficiency of aging delay by lithocholic acid. Our findings provide evidence that 1) lithocholic acid initially creates a distinct pro-longevity pattern of mitochondrial lipidome by proportionally decreasing phosphatidylethanolamine and cardiolipin concentrations to maintain equimolar concentrations of these phospholipids, and by increasing phosphatidic acid concentration; 2) this pattern of mitochondrial lipidome allows to establish a specific, aging-delaying pattern of mitochondrial proteome; and 3) this pattern of mitochondrial proteome plays an essential role in creating a distinctive, geroprotective pattern of mitochondrial functionality.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Simon D Bourque
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Olivia Koupaki
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pavlo Kyryakov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Paméla Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Tamara Di Maulo
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
28
|
Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3074769. [PMID: 29636840 PMCID: PMC5831759 DOI: 10.1155/2018/3074769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.
Collapse
|
29
|
Muallem S, Chung WY, Jha A, Ahuja M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep 2017; 18:1893-1904. [PMID: 29030479 DOI: 10.15252/embr.201744331] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/10/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.
Collapse
Affiliation(s)
- Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| |
Collapse
|
30
|
Baudier J. ATAD3 proteins: brokers of a mitochondria-endoplasmic reticulum connection in mammalian cells. Biol Rev Camb Philos Soc 2017; 93:827-844. [PMID: 28941010 DOI: 10.1111/brv.12373] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
In yeast, a sequence of physical and genetic interactions termed the endoplasmic reticulum (ER)-mitochondria organizing network (ERMIONE) controls mitochondria-ER interactions and mitochondrial biogenesis. Several functions that characterize ERMIONE complexes are conserved in mammalian cells, suggesting that a similar tethering complex must exist in metazoans. Recent studies have identified a new family of nuclear-encoded ATPases associated with diverse cellular activities (AAA+-ATPase) mitochondrial membrane proteins specific to multicellular eukaryotes, called the ATPase family AAA domain-containing protein 3 (ATAD3) proteins (ATAD3A and ATAD3B). These proteins are crucial for normal mitochondrial-ER interactions and lie at the heart of processes underlying mitochondrial biogenesis. ATAD3A orthologues have been studied in flies, worms, and mammals, highlighting the widespread importance of this gene during embryonic development and in adulthood. ATAD3A is a downstream effector of target of rapamycin (TOR) signalling in Drosophila and exhibits typical features of proteins from the ERMIONE-like complex in metazoans. In humans, mutations in the ATAD3A gene represent a new link between altered mitochondrial-ER interaction and recognizable neurological syndromes. The primate-specific ATAD3B protein is a biomarker of pluripotent embryonic stem cells. Through negative regulation of ATAD3A function, ATAD3B supports mitochondrial stemness properties.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284, Marseille Cedex 07, France.,Institut de Biologie du Développement de Marseille-UMR CNRS 7288, 13288, Marseille Cedex 9, France
| |
Collapse
|
31
|
Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. Int J Mol Sci 2017; 18:ijms18071576. [PMID: 28726733 PMCID: PMC5536064 DOI: 10.3390/ijms18071576] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca2+ handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Jędrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Justyna Janikiewicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Bernadeta Michalska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariasole Perrone
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Wiesław Ziółkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland.
| | - Jerzy Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Agnieszka Dobrzyń
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariusz R Więckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| |
Collapse
|
32
|
Ellenrieder L, Rampelt H, Becker T. Connection of Protein Transport and Organelle Contact Sites in Mitochondria. J Mol Biol 2017; 429:2148-2160. [DOI: 10.1016/j.jmb.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
|
33
|
Jain A, Holthuis JCM. Membrane contact sites, ancient and central hubs of cellular lipid logistics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1450-1458. [PMID: 28554771 DOI: 10.1016/j.bbamcr.2017.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022]
Abstract
Membrane contact sites (MCSs) are regions where two organelles are closely apposed to facilitate molecular communication and promote a functional integration of compartmentalized cellular processes. There is growing evidence that MCSs play key roles in controlling intracellular lipid flows and distributions. Strikingly, even organelles connected by vesicular trafficking exchange lipids en bulk via lipid transfer proteins that operate at MCSs. Herein, we describe how MCSs developed into central hubs of lipid logistics during the evolution of eukaryotic cells. We then focus on how modern eukaryotes exploit MCSs to help solve a major logistical problem, namely to preserve the unique lipid mixtures of their early and late secretory organelles in the face of extensive vesicular trafficking. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Amrita Jain
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany; Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
34
|
Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2916985. [PMID: 28593023 PMCID: PMC5448074 DOI: 10.1155/2017/2916985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging.
Collapse
|
35
|
Eisenberg-Bord M, Schuldiner M. Mitochatting - If only we could be a fly on the cell wall. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1469-1480. [PMID: 28433686 DOI: 10.1016/j.bbamcr.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria, cellular metabolic hubs, perform many essential processes and are required for the production of metabolites such as ATP, iron-sulfur clusters, heme, amino acids and nucleotides. To fulfill their multiple roles, mitochondria must communicate with all other organelles to exchange small molecules, ions and lipids. Since mitochondria are largely excluded from vesicular trafficking routes, they heavily rely on membrane contact sites. Contact sites are areas of close proximity between organelles that allow efficient transfer of molecules, saving the need for slow and untargeted diffusion through the cytosol. More globally, multiple metabolic pathways require coordination between mitochondria and additional organelles and mitochondrial activity affects all other cellular entities and vice versa. Therefore, uncovering the different means of mitochondrial communication will allow us a better understanding of mitochondria and may illuminate disease processes that occur in the absence of proper cross-talk. In this review we focus on how mitochondria interact with all other organelles and emphasize how this communication is essential for mitochondrial and cellular homeostasis. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
36
|
Braun RJ, Westermann B. With the Help of MOM: Mitochondrial Contributions to Cellular Quality Control. Trends Cell Biol 2017; 27:441-452. [PMID: 28291566 DOI: 10.1016/j.tcb.2017.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
Mitochondria are essential organelles because they have key roles in cellular energy metabolism and many other metabolic pathways. Several quality control systems have evolved to ensure that dysfunctional mitochondria are either repaired or eliminated. The activities of these pathways are crucial for cellular health because they maintain functional mitochondria. In addition, the cytosolic ubiquitin-proteasome system (UPS) and the mitochondria-associated degradation pathway (MAD) share some of their core components, are functionally tightly interconnected, and mutually modulate their activities. Thus, the mitochondrial outer membrane (MOM) actively supports quality control systems in extramitochondrial compartments. Furthermore, mitochondrial quality surveillance systems also act on cytosolic or endoplasmic reticulum (ER) substrates and modulate immune responses. Therefore, mitochondria contribute to cellular quality control and homeostasis on several levels.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.
| | - Benedikt Westermann
- Institut für Zellbiologie, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.
| |
Collapse
|
37
|
Daum G. Preface. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1-2. [PMID: 27826110 DOI: 10.1016/j.bbalip.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Elustondo P, Martin LA, Karten B. Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:90-101. [PMID: 27565112 DOI: 10.1016/j.bbalip.2016.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
All animal subcellular membranes require cholesterol, which influences membrane fluidity and permeability, fission and fusion processes, and membrane protein function. The distribution of cholesterol among subcellular membranes is highly heterogeneous and the cholesterol content of each membrane must be carefully regulated. Compared to other subcellular membranes, mitochondrial membranes are cholesterol-poor, particularly the inner mitochondrial membrane (IMM). As a result, steroidogenesis can be controlled through the delivery of cholesterol to the IMM, where it is converted to pregnenolone. The low basal levels of cholesterol also make mitochondria sensitive to changes in cholesterol content, which can have a relatively large impact on the biophysical and functional characteristics of mitochondrial membranes. Increased mitochondrial cholesterol levels have been observed in diverse pathological conditions including cancer, steatohepatitis, Alzheimer disease and Niemann-Pick Type C1-deficiency, and are associated with increased oxidative stress, impaired oxidative phosphorylation, and changes in the susceptibility to apoptosis, among other alterations in mitochondrial function. Mitochondria are not included in the vesicular trafficking network; therefore, cholesterol transport to mitochondria is mostly achieved through the activity of lipid transfer proteins at membrane contact sites or by cytosolic, diffusible lipid transfer proteins. Here we will give an overview of the main mechanisms involved in mitochondrial cholesterol import, focusing on the steroidogenic acute regulatory protein StAR/STARD1 and other members of the StAR-related lipid transfer (START) domain protein family, and we will discuss how changes in mitochondrial cholesterol levels can arise and affect mitochondrial function. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Pia Elustondo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Laura A Martin
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
39
|
Intramitochondrial phospholipid trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:81-89. [PMID: 27542541 DOI: 10.1016/j.bbalip.2016.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022]
Abstract
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|