1
|
Sleiman L, Dinescu S. Role of Non-Coding RNAs in White and Brown Adipose Tissue Differentiation and Development. Noncoding RNA 2025; 11:30. [PMID: 40407588 PMCID: PMC12101253 DOI: 10.3390/ncrna11030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025] Open
Abstract
Adipocyte differentiation is a complex process in which pluripotent mesenchymal stem cells (MSCs) differentiate and develop into mature fat cells, also known as adipocytes. This process is controlled by various transcription factors, hormones, and signaling molecules that regulate the development of these cells. Recently, an increasing number of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), have been established to be involved in the regulation of many biological processes, including adipocyte differentiation, development, metabolism, and energy homeostasis of white and brown adipose tissue. Several in vitro and in vivo studies reported the significant role of ncRNAs in either promoting or inhibiting adipocyte differentiation into white or brown fat cells by targeting specific transcription factors and regulating the expression of key adipogenic genes. Identifying the function of ncRNAs and their subsequent targets contributes to our understanding of how these molecules can be used as potential biomarkers and tools for therapies against obesity, diabetes, and other diseases related to obesity. This could also contribute to advancements in tissue-engineering based treatments. In this review, we intended to present an up-to-date comprehensive literature overview of the role of ncRNAs, including miRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), focusing particularly on miRNAs, in regulating the differentiation and development of cells into white and brown adipose tissue. In addition, we further discuss the potential use of these molecules as biomarkers for the development of novel therapeutic strategies for future personalized treatment options for patients.
Collapse
Affiliation(s)
- Lea Sleiman
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), 050663 Bucharest, Romania
| |
Collapse
|
2
|
Luo N, Cheng A, Wang M, Chen S, Liu M, Zhu D, Wu Y, Tian B, Ou X, Huang J, Wu Z, Yin Z, Jia R. Up-regulated Lnc BTU promotes the production of duck plague virus DNA polymerase and inhibits the activation of JAK-STAT pathway to facilitate duck plague virus replication. Poult Sci 2024; 103:104238. [PMID: 39383668 PMCID: PMC11490923 DOI: 10.1016/j.psj.2024.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024] Open
Abstract
Duck plague virus (DPV) is the only herpes virus known to be transmissible among aquatic animals, leading to immunosuppression in ducks, geese and swans. Long noncoding RNAs (LncRNA) are known to participate in viral infections, acting as either immune defenders or viral targets to evade the host response, but their precise roles in waterfowl virus infections are yet to be fully understood. This study aimed to investigate the role of LncRNA in DPV-induced innate immune responses. Results showed that DPV infection greatly upregulated Lnc BTU expression in duck embryo fibroblasts (DEF) and Lnc BTU promoted DPV replication. Mechanically, 4 DPV proteins, namely UL46, UL42, VP22 and US10, interacted with Lnc BTU, leading to its upregulation. Specifically, Lnc BTU facilitated the production of DNA polymerase by enhancing UL42 expression, thereby promoting DPV replication. Additionally, Lnc BTU suppressed STAT1 expression by targeting the DNA binding domain (DBD) and promoting STAT1 degradation through the proteasome pathway. Furthermore, Lnc BTU inhibited the production of key antiviral factors such as IFN-α, IFN-β, MX and OASL during DPV infection. Treatment with 2 JAK-STAT pathway activators in DEFs resulted in the inhibition of Lnc BTU expression and DPV replication. Interestingly, DPV infection led to a decrease in STAT1 levels, which was reversed by Si-Lnc BTU. These findings suggest that DPV relies on Lnc BTU to inhibit the activation of the JAK-STAT pathway and limit the production of type 1 interferons (IFN) to complete immune evasion. Our study highlights the novel role of DPV proteins UL46, UL42, VP22, US10 as RNA-binding proteins in modulating the innate antiviral immune response, and discover the role of a new host factor, Lnc BTU, in DPV immune evasion, Lnc BTU and STAT1 can be used as a potential therapeutic target for DPV infection and immune evasion.
Collapse
Affiliation(s)
- Ning Luo
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China.
| |
Collapse
|
3
|
Li Z, Hu T, Li R, Li J, Wang Y, Li Y, Lin Y, Wang Y, Jiani X. Effect of DHCR7 on adipocyte differentiation in goats. Anim Biotechnol 2024; 35:2298399. [PMID: 38157229 DOI: 10.1080/10495398.2023.2298399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cholesterol is regarded as a signaling molecule in regulating the metabolism and function of fat cells, in which 7-Dehydrocholesterol reductase (DHCR7) is a key enzyme that catalyzes the conversion of 7-dehydrocholesterol to cholesterol, however, the exact function of DHCR7 in goat adipocytes remains unknown. Here, the effect of DHCR7 on the formation of subcutaneous and intramuscular fat in goats was investigated in vitro, and the result indicated that the mRNA level of DHCR7 showed a gradual downward trend in subcutaneous adipogenesis, but an opposite trend in intramuscular adipogenesis. In the process of subcutaneous preadipocytes differentiation, overexpression of DHCR7 inhibited the expression of adipocytes differentiation marker genes (CEBP/α, CEBP/β, SREBP1 and AP2), lipid metabolism-related genes (AGPAT6, FASN, SCD1 and LPL), and the lipid accumulation. However, in intramuscular preadipocyte differentiation, DHCR7 overexpression showed a promoting effect on adipocyte differentiation marker genes (CEBP/α, CEBP/β, PPARγ and SREBP1) and lipid metabolism-related genes (GPAM, AGPAT6, DGAT1 and SCD1) expression, and on lipid accumulation. In summary, our work demonstrated that DHCR7 played an important role in regulating adipogenic differentiation and lipid metabolism in preadipocytes in goats, which is of great significance for uncovering the underlying molecular mechanism of adipocyte differentiation and improving goat meat quality.
Collapse
Affiliation(s)
- Zhibin Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Hu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinlan Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqiu Lin
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Jiani
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Lin S, Shen ZY, Wang MD, Zhou XM, Xu T, Jiao XH, Wang LL, Guo XJ, Wu P. Lnc557 promotes Bombyx mori nucleopolyhedrovirus replication by interacting with BmELAVL1 to enhance its stability and expression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106046. [PMID: 39277373 DOI: 10.1016/j.pestbp.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that threatens the growth and sustainability of the sericultural industry. Currently, accumulated studies showed that long non-coding RNAs (lncRNAs) play important roles in the genesis and progression of various viruses and host-pathogens interactions. However, the functions and regulatory mechanisms of lncRNAs in insect-virus interaction are still limited. In this study, transcriptome sequencing and ribosome profiling sequencing (Ribo-seq) were performed in the BmNPV-infected midgut and control tissue, and a total of 9 differentially expressed (DE) lncRNAs and 27 small ORFs (sORFs) with micropeptide coding potential were identified. Among them, lncRNA XR_001139971.3 (lnc557) is verified to be significantly up-regulated upon BmNPV infection and may have the potential to encode a small peptide (ORF-674). The subcellular localization experiment showed that lnc557 was expressed in the cytoplasm. Overexpression of lnc557 promotes BmNPV replication and vice versa. By combining RNA pull-down, mass spectrometry, protein truncation and RNA immunoprecipitation (RIP) assays, we confirmed that lnc557 can bind to the RRM-5 domain of BmELAVL1 protein. Subsequently, we found that lnc557 could promote the expression of BmELAVL1 by enhancing the stability of BmELAVL1. Further, enhancing the expression of BmELAVL1 can promote the proliferation of BmNPV, while knockdown shows the opposite effect. Our data suggest that lnc557-mediated BmELAVL1 expression enhancement could play a positive role in BmNPV replication, which will provide a new insight into the molecular mechanism of interaction between Bombyx mori and virus.
Collapse
Affiliation(s)
- Su Lin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhen-Yu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Meng-Dong Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xue-Min Zhou
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tao Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xin-Hao Jiao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lu-Lai Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xi-Jie Guo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
5
|
Zhang D, Ma X, Li H, Li X, Wang J, Zan L. SERPINE1AS2 regulates intramuscular adipogenesis by inhibiting PAI1 protein expression. Int J Biol Macromol 2024; 275:133592. [PMID: 38960265 DOI: 10.1016/j.ijbiomac.2024.133592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Antisense long non-coding RNAs (lncRNAs) played a crucial role in the precise regulation of essential biological processes and were abundantly present in animals. Many of these antisense lncRNAs have been identified as key roles in adipose tissue accumulation in livestock, underscoring their vital role in the regulation of animal physiology. Nonetheless, the functional roles of these antisense lncRNAs in regulating adipogenesis and the specific molecular mechanisms these processes were still unclear, which was a significant gap in current scientific research. In this study, we identified and characterized SERPINE1AS2, a novel natural antisense lncRNA, was highly expressed in the fat tissues of adult cattle and calves. Its expression gradually increased during the differentiation of intramuscular adipocytes. Through functional studies, we observed that knockdown of SERPINE1AS2 inhibited the proliferation and adipogenesis of intramuscular adipocytes, while overexpression of SERPINE1AS2 produced the opposite effect. RNA sequencing (RNA-seq) analysis following SERPINE1AS2 knockdown revealed that differential expression genes (DEGs) were significantly enriched in key signaling pathways, notably the MAPK, Wnt, and mTOR signaling pathways. Furthermore, SERPINE1AS2 interacted with Plasminogen Activator Inhibitor-1 (PAI1), forming RNA dimers through complementary base pairing and consequently influencing PAI1 expression. Interestingly, studies on PAI1 suggested that reduced expression facilitated adipogenesis and the downregulation of PAI1 alleviated the inhibitory effect of reduced SERPINE1AS2 on adipogenesis. In summary, this study suggested that SERPINE1AS2 played a crucial role in the adipogenesis of bovine intramuscular adipocytes by modulating the expression of PAI1. SERPINE1AS2 also regulated adipogenesis by engaging in the MAPK, Wnt, and mTOR signaling pathways. Our results suggested that SERPINE1AS2 had a complex regulatory mechanism on adipogenesis in intramuscular adipocytes.
Collapse
Affiliation(s)
- Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huaxuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuefeng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
6
|
Chen Y, Wu S, Han Y, Shi H, Yuan J, Cui W. LncRNA SH3PXD2A-AS1 facilitates cisplatin resistance in non-small cell lung cancer by regulating FOXM1 succinylation. BMC Cancer 2024; 24:848. [PMID: 39020302 PMCID: PMC11256434 DOI: 10.1186/s12885-024-12624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Forkhead Box Protein M1/metabolism
- Forkhead Box Protein M1/genetics
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Drug Resistance, Neoplasm/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Animals
- Mice
- Sirtuins/metabolism
- Sirtuins/genetics
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Yunfeng Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Siyan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Yu Han
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Hai Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Jieqing Yuan
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China.
| | - Wenjie Cui
- Cancer Institute, Xuzhou Medical University, No. 206, Tongshan Road, Xuzhou, Jiangsu, 221116, China.
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
7
|
Ma X, He Y, Liu C, Zhu T, Li D, Li W, Sun G, Kang X. Long Noncoding RNA 6302 Regulates Chicken Preadipocyte Differentiation by Targeting SLC22A16. Genes (Basel) 2024; 15:758. [PMID: 38927694 PMCID: PMC11203196 DOI: 10.3390/genes15060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive deposition of abdominal adipocytes in chickens is detrimental to poultry production. However, the regulatory factors that affect abdominal adipogenesis in chickens are still poorly understood. SLC22A16 is differentially expressed in abdominal preadipocytes and 10-day differentiated adipocytes in chickens, but its role in regulating chicken adipogenesis has not been reported. In this study, the function of SLC22A16 in chicken abdominal preadipocytes was investigated. SLC22A16 is significantly upregulated during abdominal adipocyte differentiation. The overexpression of SLC2A16 upregulated the expression of adipogenic marker genes and proliferation-related genes, and promoted the proliferation of adipocytes and the accumulation of triglycerides. The knockdown of SLC22A16 downregulated the expression of adipogenic marker genes and proliferation-related genes, inhibited the proliferation of adipocytes, and impaired the accumulation of triglycerides in adipocytes. In addition, LNC6302 was differentially expressed in abdominal preadipocytes and mature adipocytes, and was significantly positively correlated with the expression of SLC22A16. Interference with LNC6302 inhibits the expression of adipogenic marker genes and proliferation-related genes. The data supported the notion that LNC6302 promotes the differentiation of chicken abdominal adipocytes by cis-regulating the expression of SLC22A16. This study identified the role of SLC22A16 in the differentiation and proliferation of chicken adipocytes, providing a potential target for improving abdominal adipogenesis in chickens.
Collapse
Affiliation(s)
- Xiangfei Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Guirong Sun
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| |
Collapse
|
8
|
Liang D, Li G. Pulling the trigger: Noncoding RNAs in white adipose tissue browning. Rev Endocr Metab Disord 2024; 25:399-420. [PMID: 38157150 DOI: 10.1007/s11154-023-09866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Collapse
Affiliation(s)
- Dehuan Liang
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
9
|
Ye RZ, Montastier E, Frisch F, Noll C, Allard-Chamard H, Gévry N, Tchernof A, Carpentier AC. Adipocyte hypertrophy associates with in vivo postprandial fatty acid metabolism and adipose single-cell transcriptional dynamics. iScience 2024; 27:108692. [PMID: 38226167 PMCID: PMC10788217 DOI: 10.1016/j.isci.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Adipocyte hypertrophy is associated with metabolic complications independent of obesity. We aimed to determine: 1) the association between adipocyte size and postprandial fatty acid metabolism; 2) the potential mechanisms driving the obesity-independent, hypertrophy-associated dysmetabolism in vivo and at a single-cell resolution. Tracers with positron emission tomography were used to measure fatty acid metabolism in 40 men and women with normal or impaired glucose tolerance (NCT02808182), and single nuclei RNA-sequencing (snRNA-seq) to determine transcriptional dynamics of subcutaneous adipose tissue (AT) between individuals with AT hypertrophy vs. hyperplasia matched for sex, ethnicity, glucose-tolerance status, BMI, total and percent body fat, and waist circumference. Adipocyte size was associated with high postprandial total cardiac fatty acid uptake and higher visceral AT dietary fatty acid uptake, but lower lean tissue dietary fatty acid uptake. We found major shifts in cell transcriptomal dynamics with AT hypertrophy that were consistent with in vivo metabolic changes.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Emilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugues Allard-Chamard
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, QC G1V 4G5, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
10
|
Yue Y, Ge Z, Guo Z, Wang Y, Yang G, Sun S, Li X. Screening of lncRNA profiles during intramuscular adipogenic differentiation in longissimus dorsi and semitendinosus muscles in pigs. Anim Biotechnol 2023; 34:4616-4626. [PMID: 36794392 DOI: 10.1080/10495398.2023.2176319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Intramuscular fat content is an important factor that determines meat quality in pigs. In recent years, epigenetic regulation has increasingly studied the physiological model of intramuscular fat. Although long noncoding RNAs (lncRNAs) play essential roles in various biological processes, their role in intramuscular fat deposition in pigs remains largely unknown. In this study, intramuscular preadipocytes in the longissimus dorsi and semitendinosus of Large White pigs were isolated and induced into adipogenic differentiation in vitro. High-throughput RNA-seq was carried out to estimate the expression of lncRNAs at 0, 2 and 8 days post-differentiation. At this stage, 2135 lncRNAs were identified. KEGG analysis showed that the differentially expressed lncRNAs were common in pathways involved with adipogenesis and lipid metabolism. lnc_000368 was found to gradually increase during the adipogenic process. Reverse-transcription quantitative polymerase chain reaction and a western blot revealed that the knockdown of lnc_000368 significantly repressed the expression of adipogenic genes and lipolytic genes. As a result, lipid accumulation in porcine intramuscular adipocytes was impaired by the silencing of lnc_000368. Overall, our study identified a genome-wide lncRNA profile related to porcine intramuscular fat deposition, and the results suggest that lnc_000368 is a potential target gene that might be targeted in pig breeding in the future.
Collapse
Affiliation(s)
- Yanru Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Zihao Ge
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Zhicheng Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Yuhe Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Shiduo Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
- Key Laboratory of Livestock Biology, Northwest A & F University, Xianyang, China
| |
Collapse
|
11
|
Chai J, Wang N, Chen L, Bai J, Zhang J, Zhang G, An J, Zhang T, Tong X, Wu Y, Li M, Jin L. Identification of a Novel Long Non-Coding RNA G8110 That Modulates Porcine Adipogenic Differentiation and Inflammatory Responses. Int J Mol Sci 2023; 24:16799. [PMID: 38069122 PMCID: PMC10706401 DOI: 10.3390/ijms242316799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been extensively studied, and their crucial roles in adipogenesis, lipid metabolism, and gene expression have been revealed. However, the exact regulatory or other mechanisms by which lncRNAs influence the functioning of mesenteric adipose tissue (MAT) remain largely unknown. In this paper, we report the identification of a new lncRNA, named G8110, from the MAT of Bama pigs. The coordinated expression levels of lncRNA G8110 and NFE2L1 were significantly decreased in the MAT of obese Bama pigs compared with those in the MAT of lean pigs. Using a bone mesenchymal stem cell adipogenic differentiation model, we found that lncRNA G8110 played a role in adipocyte differentiation by positively regulating NFE2L1. We also found that lncRNA G8110 inhibited the formation of intracellular lipid synthesis, promoted lipid metabolism, and inhibited the expression of inflammatory cytokines. Our findings regarding lipid synthesis may further promote the role of lncRNAs in driving adipose tissue remodeling and maintaining metabolic health.
Collapse
Affiliation(s)
- Jin Chai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ning Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Chen
- Chongqing Academy of Animal Science, Chongqing 402460, China;
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Key Laboratory of Animal Resource Evaluation and Utilization (Pigs), Ministry of Agriculture and Rural Affairs, Chongqing 402160, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Geng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahua An
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Tong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Yue Y, Yue Y, Fan Z, Meng Y, Wen C, An Y, Yao Y, Li X. The long noncoding RNA lnc-H19 is important for endurance exercise by maintaining slow muscle fiber types. J Biol Chem 2023; 299:105281. [PMID: 37742921 PMCID: PMC10598739 DOI: 10.1016/j.jbc.2023.105281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023] Open
Abstract
Skeletal muscle consists of different muscle fiber types whose heterogeneity is characterized by different metabolic patterns and expression of MyHC isomers. The transformation of muscle fiber types is regulated by a complex molecular network in which long noncoding (lnc) RNAs play an important role. In this study, we found that lnc-H19 is more enriched in slow muscle fibers. In vitro, interference of lnc-H19 by siRNA significantly promoted the expression of fast muscle fiber gene MyHC IIB and inhibited the expression of the slow muscle fiber gene MyHC I, thereby leading to a fast muscle fiber phenotype. In addition, interference of lnc-H19 significantly inhibited mRNA expression of the mitochondrial genes, such as COX5A, COX-2, UQCRFSL, FABP3, and CD36. Overexpression of lnc-H19 resulted in an opposite result. In vivo, knockdown of lnc-H19 by AAV-shRNA-H19 suppressed the mRNA expression of the slow muscle fiber gene MyHC I and the protein expression of slow-MyHC. Simultaneously, mitochondria were reduced in number, swollen, and vacuolated. The activities of succinate dehydrogenase, lactic dehydrogenase, and superoxide dismutase were significantly inhibited, and malondialdehyde content was significantly increased, indicating that deficiency of lnc-H19 leads to decreased oxidative metabolism and antioxidant capacity in muscle. Furthermore, inhibition of lnc-H19 decreased the weight-bearing swimming time and limb suspension time of mice. In conclusion, our results revealed the role of lnc-H19 in maintaining slow muscle fiber types and maintaining exercise endurance, which may help to further improve the regulatory network of lnc-H19 in muscle function.
Collapse
Affiliation(s)
- Yongqi Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yanru Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zeyu Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yingying Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Chenglong Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yalong An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Ying Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
13
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
15
|
Lu Y, Qie D, Yang F, Wu J. LncRNA MEG3 aggravates adipocyte inflammation and insulin resistance by targeting IGF2BP2 to activate TLR4/NF-κB signaling pathway. Int Immunopharmacol 2023; 121:110467. [PMID: 37348228 DOI: 10.1016/j.intimp.2023.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Recently, emerging evidence has shown that LncRNA MEG3 is involved in adipocyte inflammation and insulin resistance progression, however, the specific mechanism of action remains unclear. In this study, we found that LncRNA MEG3 expression was increased in TNF-α stimulated 3T3-L1 mature adipocytes, and inflammatory factors IL-6 and MCP-1 secretion levels were increased, cell apoptosis and caspase3 activity was enhanced, ROS content was increased, and iNOS protein expression was increased. Moreover, TNF-α treatment attenuated glucose uptake, promoted triglyceride accumulation, inhibited GLUT4 protein expression at the plasma membrane, and reduced the phosphorylation levels of AMPK and ACC in the cells. Interestingly, we found that transfection of si-MEG3 reversed TNF-α caused inflammatory injury and insulin resistance of 3T3-L1 mature adipocytes. Next, we found that IGF2BP2 is an RNA binding protein of LncRNA MGE3 and transfection of si-IGF2BP2 reversed TNF-α caused inflammatory injury and insulin resistance in 3T3-L1 mature adipocytes, the same effects as transfection of si-MEG3. Mechanistically, LncRNA MGE3 was able to aggravate adipocyte inflammatory injury and dysregulation of insulin sensitivity by activating TLR4 pathway through upregulating the protein expression of IGF2BP2. In vivo findings showed that HFD mice with knockdown of MEG3 had reduced body weight, lower glucose concentrations and insulin levels in plasma, decreased inflammatory factors secretion, and reduced MEG3 and IGF2BP2 expression in epididymal adipose tissues and reduced fat accumulation in mice compared with HFD mice. Our results indicate that LncRNA MEG3 can aggravate chronic inflammation and insulin resistance in adipocytes by activating TLR4/NF-κB signaling pathway via targeting IGF2BP2.
Collapse
Affiliation(s)
- You Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Di Qie
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Fan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China..
| | - Jinhui Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China.; Department of Child Healthcare nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, Sichuan, China..
| |
Collapse
|
16
|
Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-Coding RNAs and Adipogenesis. Int J Mol Sci 2023; 24:9978. [PMID: 37373126 PMCID: PMC10298535 DOI: 10.3390/ijms24129978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.
Collapse
Affiliation(s)
- Wenxiu Ru
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| |
Collapse
|
17
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
18
|
Rashidmayvan M, Khorasanchi Z, Nattagh-Eshtivani E, Esfehani AJ, Sahebi R, Sharifan P, Assadiyan-Sohan P, Aghasizadeh M, Avan A, Ghayour-Mobarhan M, Ferns G. Association between Inflammatory Factors, Vitamin D, Long Non-Coding RNAs, MALAT1, and Adiponectin Antisense in Individuals with Metabolic Syndrome. Mol Nutr Food Res 2023; 67:e2200144. [PMID: 36317460 DOI: 10.1002/mnfr.202200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a common clustering of cardiovascular risk factors associated with increased inflammation. Long non-coding RNA (LncRNA) are involved in many of the body's metabolic activities, including inflammation. Vitamin D may play a vital role in preventing metabolic syndrome risk factors. This study aimed to evaluate the status of inflammation and expression of LncRNA and their relationship with serum vitamin D levels in patients with metabolic syndrome. METHOD This cross-sectional study included staff and Mashhad University of Medical Sciences students between 30 and 50 years old who met the International Diabetes Federation criteria for Mets. Total RNA was extracted from both frozen clinical samples using the Trizol reagent. RESULTS A total of eighty people were recruited into the two groups, with and without MetS. Inflammatory markers were higher in the individuals in the MetS group, and linear regression showed an inverse association between serum vitamin D and LncRNAs. There was a positive association between inflammatory biomarkers, lipid profiles and Adiponectin Antisense (APQ AS) expression. CONCLUSION APQ AS and MALAT1 levels are positively associated with inflammatory biomarkers and inverse relation between MALAT1 and serum 25 (OH) D concentration.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khorasanchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | | | - Reza Sahebi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Sharifan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Assadiyan-Sohan
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Aghasizadeh
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| |
Collapse
|
19
|
lncRNA ELFN1-AS1 promotes proliferation, migration and invasion and suppresses apoptosis in colorectal cancer cells by enhancing G6PD activity. Acta Biochim Biophys Sin (Shanghai) 2023; 55:649-660. [PMID: 36786074 DOI: 10.3724/abbs.2023010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumour cells change their metabolic patterns to support high proliferation rates and cope with oxidative stress. The lncRNA ELFN1-AS1 is highly expressed in a wide range of cancers and is essential to the proliferation and apoptosis of tumour cells. Nevertheless, its function in the metabolic reprogramming of tumour cells is unclear. Here we show that ELFN1-AS1 promotes glucose consumption as well as lactate and NADPH production. Database searching, bioinformatics analysis, RNA immunoprecipitation (RIP) and RNA pull-down assays show that ELFN1-AS1 enhances glucose-6-phosphate dehydrogenase ( G6PD) expression and activates the pentose phosphate pathway (PPP) by promoting TP53 degradation. In addition, luciferase reporter assay and chromatin immunoprecipitation (ChIP) show that YY1 binds to the ELFN1-AS1 promoter to promote transcriptional activation of ELFN1-AS1. Consistent with the in vitro experiments, knockdown of ELFN1-AS1 impedes the growth of tumours transplanted into mice by inhibiting the expression of G6PD. In conclusion, this study reveals that ELFN1-AS1 activates the PPP, and validates the regulatory role of the YY1/ ELFN1-AS1/ TP53/ G6PD axis in colorectal cancer.
Collapse
|
20
|
lncRNA CRNDE Affects Th17/IL-17A and Inhibits Epithelial-Mesenchymal Transition in Lung Epithelial Cells Reducing Asthma Signs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2092184. [PMID: 36743692 PMCID: PMC9897922 DOI: 10.1155/2023/2092184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023]
Abstract
Background Asthma treatment is difficult due to disease heterogeneity and comorbidities. In addition, the development of drugs targeting the underlying mechanisms of asthma remains slow. We planned to identify the most upregulated differentially expressed long noncoding RNA in asthma to explore its regulatory patterns and pathways in asthma. Methods We sensitized mice using a mixture of ovalbumin, house dust mites, and lipopolysaccharide to establish an asthma mouse model. We also sensitized asthma cells with TGF-β1 in an in vitro model. We performed a microarray analysis to identify the lncRNA with the differential expression level in model mice. We applied hematoxylin and eosin and Masson's trichrome stainings to mouse tissues to quantify the tissue damage extent. Next, we assess the levels of lncRNA CRNDE, miR-29a-3p, TGF-β1, MCL-1, E-cadherin, vimentin, and snail. We counted the percentages of Th17 cells using flow cytometry. Finally, we performed a dual-luciferase reporter assay to assess the association between lncRNA CRNDE and miR-29a-3p. Results We successfully established asthma mouse/cell models and selected the lncRNA CRNDE for our study. Transfection of si-CRNDE reduced the degree of injury and inflammation in the mouse model and reversed the TGF-β1-induced epithelial-mesenchymal transition (EMT) in the cell model. Moreover, the E-cadherin level was upregulated, and the levels of IL-17A, vimentin, snail, and α-SMA were downregulated. We also discovered that lncRNA CRNDE negatively regulated miR-29a-3p and that this one in turn inhibited MCL-1 in mice. After lncRNA CRNDE expression downregulation, the level of miR-29a-3p was increased, and we detected reduced levels of MCL-1 and EMTs. Conclusions lncRNA CRNDE expression downregulation led to reduced inflammation and reduced lung damage in mice with induced asthma, it inhibited the EMTs of lung epithelial cells via the miR-29a-3p/MCL-1 pathway, and it reduced the levels of Th17/IL-17A cells to reduce asthma signs.
Collapse
|
21
|
Rashidmayvan M, Sahebi R, Avan A, Sharifan P, Esmaily H, Afshari A, Nattagh-Eshtivani E, Najar Sedghdoust F, Aghasizadeh M, Ferns GA, Ghayour-Mobarhan M. Double blind control trial of vitamin D fortified milk on the expression of lncRNAs and adiponectin for patients with metabolic syndrome. Diabetol Metab Syndr 2023; 15:9. [PMID: 36653874 PMCID: PMC9847060 DOI: 10.1186/s13098-023-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Metabolic syndrome (Mets) is a common metabolic disorder in which hypoadiponectinemia is one of the consequences for the body caused by inflammation, and vitamin D may help improve inflammatory symptoms. LncRNAs (long non-coding RNA) play several different regulatory roles in the body. The goal of this study was to see how adding vitamin D to milk affected the levels of adiponectin and inflammatory lncRNAs in the serum of people with Mets. METHODS This clinical trial was conducted on staff and students between the ages of 30 and 50 at Mashhad University of Medical Sciences and met the International Diabetes Federation's criteria for Mets. Eighty-two Mets were assigned randomly to one of two groups for ten weeks: fortified milk (FM) with 1500 IU vitamin D or non-fortified milk (NFM). Total RNA was extracted from both frozen clinical samples using Trizol reagent. APQ AS and MALAT1 lncRNA gene expression were measured by Real-Time PCR. RESULTS Serum adiponectin levels in the FM group increased significantly compared to the NFM group (p = 0.01). Also, the expression of APQ AS and MALAT1 genes decreased after ten weeks, which showed a significant decrease in APQ AS (p = 0.036). CONCLUSION As in FM, vitamin D may have anti-inflammatory effects and increase adiponectin levels in people with Mets via decreasing APQ AS gene expression.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Sharifan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Najar Sedghdoust
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Aghasizadeh
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, UK
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Li A, Li Y, Wang Y, Wang Y, Li X, Qubi W, Xiong Y, Zhu J, Liu W, Lin Y. ACADL Promotes the Differentiation of Goat Intramuscular Adipocytes. Animals (Basel) 2023; 13:281. [PMID: 36670821 PMCID: PMC9854987 DOI: 10.3390/ani13020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Intramuscular fat (IMF) deposits help improve meat quality such as marbling, juicy, flavor and tenderness. Long-chain acyl-CoA dehydrogenase (ACADL) is a key enzyme for catalyzing fatty acid oxidation, and studies have shown ACADL is involved in the deposition and differentiation of intramuscular adipocytes. However, the effect of ACADL on intramuscular adipocytes differentiation in goats needs further study. In this study, to explore the mechanism of ACADL on the development of goat intramuscular adipocytes, we constructed an over-expression plasmids and a SI-RNA of ACADL to explore the function of ACADL on the development of goat IMF. It was found that overexpression of ACADL promoted the differentiation of goat intramuscular adipocytes, and promoted the expression of fat cell differentiation marker genes lipoprotein lipase (LPL), peroxisome proliferator activated receptor gamma (PPARγ), APETALA-2-like transcription factor gene (AP2), CCAT enhancer binding protein (CEBPα), preadipocyte Factor 1 (Pref-1) and CCAT enhancer binding protein (CEBPβ), and the opposite trend occurred after interference. In addition, we screened of this related tumor necrosis factor (TNF) signaling pathway by RNA-Seq. So, we validate the signaling pathway with inhibitor of TNF signaling pathway. In summary, these results indicate that ACADL promotes intramuscular adipocytes differentiation through activation TNF signaling pathway. This study provides an important basis for the mechanism of IMF development.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Wuqie Qubi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
23
|
Comprehensive Analysis of Whole-Transcriptome Profiles in Response to Acute Hypersaline Challenge in Chinese Razor Clam Sinonovacula constricta. BIOLOGY 2023; 12:biology12010106. [PMID: 36671800 PMCID: PMC9856061 DOI: 10.3390/biology12010106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The Chinese razor clam (Sinonovacula constricta) is an important for Chinese aquaculture marine bivalve that naturally occurs across intertidal and estuarine areas subjected to significant changes in salinity level. However, the information on the molecular mechanisms related to high salinity stress in the species remain limited. In this study, nine gill samples of S. constricta treated with 20, 30, and 40 ppt salinity for 24 h were used for whole-transcriptome RNA sequencing, and a regulatory network of competing endogenous RNAs (ceRNAs) was constructed to better understand the mechanisms responsible for adaptation of the species to high salinity. A total of 83,262 lncRNAs, 52,422 mRNAs, 2890 circRNAs, and 498 miRNAs were identified, and 4175 of them displayed differential expression pattern among the three groups examined. The KEGG analyses of differentially expressed RNAs evidenced that amino acid synthesis and membrane transport were the dominant factors involved in the adaptation of the Chinese razor clam to acute salinity increase, while lipid metabolism and signaling played only a supporting role. In addition, lncRNA/circRNA-miRNA-mRNA regulatory networks (ceRNA network) showed clearly regulatory relationships among different RNAs. Moreover, the expression of four candidate genes, including tyrosine aminotransferase (TAT), hyaluronidase 4 (HYAL4), cysteine sulfinic acid decarboxylase (CSAD), and ∆1-pyrroline-5-carboxylate synthase (P5CS) at different challenge time were detected by qRT-PCR. The expression trend of TAT and HYAL4 was consistent with that of the ceRNA network, supporting the reliability of established network. The expression of TAT, CSAD, and P5CS were upregulated in response to increased salinity. This might be associated with increased amino acid synthesis rate, which seems to play an essential role in adaptation of the species to high salinity stress. In contrast, the expression level of HYAL4 gene decreased in response to elevated salinity level, which is associated with reduction Hyaluronan hydrolysis to help maintain water in the cell. Our findings provide a very rich reference for understanding the important role of ncRNAs in the salinity adaptation of shellfish. Moreover, the acquired information may be useful for optimization of the artificial breeding of the Chinese razor clam under aquaculture conditions.
Collapse
|
24
|
Corral A, Alcala M, Carmen Duran-Ruiz M, Arroba AI, Ponce-Gonzalez JG, Todorčević M, Serra D, Calderon-Dominguez M, Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206:115305. [DOI: 10.1016/j.bcp.2022.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
25
|
Jing Y, Cheng B, Wang H, Bai X, Zhang Q, Wang N, Li H, Wang S. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness. BMC Genomics 2022; 23:790. [PMID: 36456907 PMCID: PMC9714206 DOI: 10.1186/s12864-022-09045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Excessive deposition of abdominal fat poses serious problems in broilers owing to rapid growth. Recently, the evolution of the existing knowledge on long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have established their indispensable roles in multiple physiological metabolic processes, including adipogenesis and fat deposition. However, not much has been explored on their profiles in the abdominal fat tissues of broilers to date. In the study, we aimed to characterize the vital candidates of lncRNAs and circRNAs and their underlying regulations for abdominal fat deposition in broilers. RESULTS The present study sequenced the lncRNAs and circRNAs expression profiles in the abdominal fat tissues isolated from 7-week-old broilers, who were divergently selected for their fatness. It identified a total of 3359 lncRNAs and 176 circRNAs, demonstrating differential expressed (DE) 30 lncRNAs and 17 circRNAs between the fat- and lean-line broilers (|log2FC| ≥ 1, P < 0.05). Subsequently, the 20 cis-targets and 48 trans-targets of the candidate DE lncRNAs were identified for depositing abdominal fat by adjacent gene analysis and co-expression analysis, respectively. In addition, the functional enrichment analysis showed the DE lncRNAs targets and DE circRNAs host genes to be mainly involved in the cellular processes, amino/fatty acid metabolism, and immune inflammation-related pathways and GO terms. Finally, the vital 16 DE lncRNAs located in cytoplasm and specifically expressed in fat/lean line and their targets were used to construct the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network, comprising 7 DE lncRNAs, 28 miRNAs, 11 DE mRNAs. Notably, three lncRNAs including XR_001468036.2, XR_003077610.1 and XR_001466431.2 with the most connected degrees might play hub regulatory roles in abdominal fat deposition of broilers. CONCLUSIONS This study characterized the whole expression difference of lncRNAs and circRNAs between the two lines broilers with divergently ability of abdominal fat. The vital candidate DE lncRNAs/circRNAs and ceRNA regulations were identified related to the deposition of abdominal fat in chicken. These results might further improve our understanding of regulating the non-coding RNAs in obesity.
Collapse
Affiliation(s)
- Yang Jing
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bohan Cheng
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Haoyu Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Xue Bai
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Qi Zhang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Ning Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Hui Li
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shouzhi Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
26
|
Bao Y, Wu S, Yang T, Wang Z, Wang Y, Jiang X, Ma H. Analysis of long non-coding RNA expression profile of bovine monocyte-macrophage infected by Mycobacterium avium subsp. paratuberculosis. BMC Genomics 2022; 23:768. [PMID: 36418939 PMCID: PMC9685057 DOI: 10.1186/s12864-022-08997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis. As a potential zoonotic pathogen, MAP also seriously threatens human health and social security. At present, long non-coding RNA (lncRNA) has attracted wide attention as an useful biomarker in various diseases. Therefore, our study analyzed the lncRNA expression profiles and lncRNA-mRNA regulatory network of MAP infected bovine monocytes-macrophages and uninfected bovine cells by high-throughput sequencing. A total of 4641 differentially expressed lncRNAs genes were identified, including 3111 up-regulated genes and 1530 down-regulated genes. In addition, lncRNA-mRNA interaction analysis was performed to predict the target genes of lncRNA. Among them, after MAP infection, 86 lncRNAs targeted to mRNA, of which only 6 genes were significantly different. The results of Gene Ontology (GO) enrichment analysis showed that the differentially expressed genes significantly enriched in functional groups were related to immune regulation. Multiple signal pathways including NF-κB, NOD-like receptor, Cytokine-cytokine receptor, Toll-like receptor signaling pathway, Chemokine signaling pathway, and other important biochemical, metabolic and signal transduction pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In this study, analysis of macrophage transcriptomes in response to MAP infection is expected to provide key information to deeply understand role of the pathogen in initiating an inappropriate and persistent infection in susceptible hosts and molecular mechanisms that might underlie the early phases of paratuberculosis.
Collapse
Affiliation(s)
- Yanhong Bao
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Shuiyin Wu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Tianze Yang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Zi Wang
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 China
| | - Yiming Wang
- grid.464353.30000 0000 9888 756XCollege of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China
| | - Xiuyun Jiang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China ,grid.440668.80000 0001 0006 0255College of Life Sciences, Changchun Sci-Tech University, Changchun, 130600 P.R. China
| | - Hongxia Ma
- grid.464353.30000 0000 9888 756XCollege of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China ,grid.464353.30000 0000 9888 756XThe Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China ,grid.464353.30000 0000 9888 756XThe Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China
| |
Collapse
|
27
|
Zhang B, Liang H, Zou H, Lu J, Zhang M, Liang B. Comprehensive analysis of the lncRNAs, mRNAs, and miRNAs implicated in the immune response of Pinctada fucata martensii to Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2022; 130:132-140. [PMID: 36084889 DOI: 10.1016/j.fsi.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Non-coding RNAs (ncRNAs) have been implicated in a variety of biological processes. However, most ncRNAs are of unknown function and are as-yet unannotated. The immune-related functions of ncRNAs in the pearl oyster Pinctada fucata martensii were explored based on transcriptomic differences in the expression levels of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) in the hemocytes of P.f. martensii after challenge by the pathogenic bacterium Vibrio parahaemolyticus. Across the challenged and control pearl oysters, 144 miRNAs and 14,571 lncRNAs were identified. In total, 13,375 ncRNAs were differentially expressed between the challenged and control pearl oysters; in the challenged pearl oysters as compared to the controls, 15 miRNAs and 5147 lncRNAs were upregulated, while 51 miRNAs and 8162 lncRNAs were downregulated. The sequencing results were validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. GO and KEGG pathway analysis showed that genes targeted by the differentially expressed ncRNAs were associated with the vascular endothelial growth factor (VEGF) signaling pathway and the nuclear factor kappa-B (NF-κB) signaling pathway. An lncRNA-mRNA-miRNA network that was developed based on the transcriptomic results of this study suggested that lncRNAs may compete with miRNAs for mRNA binding sites. This study may provide a useful framework for the detection of additional novel ncRNAs, as well as new insights into the pathogenic mechanisms underlying the response of P.f. martensii to V. parahaemolyticus.
Collapse
Affiliation(s)
- Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Hexin Zou
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bidan Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
28
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Zhang P, Wu S, He Y, Li X, Zhu Y, Lin X, Chen L, Zhao Y, Niu L, Zhang S, Li X, Zhu L, Shen L. LncRNA-Mediated Adipogenesis in Different Adipocytes. Int J Mol Sci 2022; 23:ijms23137488. [PMID: 35806493 PMCID: PMC9267348 DOI: 10.3390/ijms23137488] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain noncoding RNAs (lncRNAs) are RNAs that do not code for proteins, widely present in eukaryotes. They regulate gene expression at multiple levels through different mechanisms at epigenetic, transcription, translation, and the maturation of mRNA transcripts or regulation of the chromatin structure, and compete with microRNAs for binding to endogenous RNA. Adipose tissue is a large and endocrine-rich functional tissue in mammals. Excessive accumulation of white adipose tissue in mammals can cause metabolic diseases. However, unlike white fat, brown and beige fats release energy as heat. In recent years, many lncRNAs associated with adipogenesis have been reported. The molecular mechanisms of how lncRNAs regulate adipogenesis are continually investigated. In this review, we discuss the classification of lncRNAs according to their transcriptional location. lncRNAs that participate in the adipogenesis of white or brown fats are also discussed. The function of lncRNAs as decoy molecules and RNA double-stranded complexes, among other functions, is also discussed.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhu
- College of Life Science, China West Normal University, Nanchong 637009, China;
| | - Xutao Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| |
Collapse
|
30
|
Zhang L, Ma J, Pan X, Zhang M, Huang W, Liu Y, Yang H, Cheng Z, Zhang G, Qie M, Tong N. LncRNA MIR99AHG enhances adipocyte differentiation by targeting miR-29b-3p to upregulate PPARγ. Mol Cell Endocrinol 2022; 550:111648. [PMID: 35430304 DOI: 10.1016/j.mce.2022.111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
AIM The aim is to identify new long noncoding RNAs (lncRNAs) involved in adipocyte differentiation. METHODS High-throughput RNA sequencing of 3T3-L1 preadipocytes was carried out before and after differentiation to identify the target lncRNAs and miRNAs. The effects of lncRNA, miRNA and the network mechanism on adipocyte differentiation were evaluated in vitro and in vivo. Visceral adipose tissue (VAT) was collected from Chinese subjects with obesity or a normal body mass index (BMI), and the levels of lncRNAs, adipogenic genes and miRNAs were measured. RESULTS MIR99AHG, miR-29b-3p were selected as the target lncRNA and miRNA. Short hairpin RNA against MIR99AHG inhibited the differentiation of 3T3-L1 preadipocytes, reduced the expression of the peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT enhancer-binding protein alpha (C/EBPα) and fatty acid binding protein 4 (FABP4) genes, upregulated the expression of miR-29b-3p. Overexpression of MIR99AHG showed the opposite effects. Overexpression of miR-29b-3p inhibited the differentiation of 3T3-L1 preadipocytes and decreased the PPARγ level, while inhibition of miR-29b-3p showed the opposite effects. MIR99AHG and PPARγ competed for binding to miR-29b-3p. In mice with high-fat diet-induced obesity, MIR99AHG and miR-29b-3p mRNA level were increased and decreased, respectively. Tail vein injection of adeno-associated virus 9-MIR99AHG-RNA interference (AAV9-MIR99AHG-RNAi) reduced the body weight, epididymal fat mass, MIR99AHG level and increased the expression of miR-29b-3p. The expression levels of MIR99AHG, PPARγ, C/EBPα and FABP4 in human visceral adipose tissue were higher in the obese group than in the normal weight group. CONCLUSIONS MIR99AHG enhances adipogenesis by regulating miR-29b-3p and PPARγ, providing a new target for therapeutic intervention in obesity.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetes and Islet Transplantation Research, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Jinfang Ma
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetes and Islet Transplantation Research, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetes and Islet Transplantation Research, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Huawu Yang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Zhong Cheng
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Guixiang Zhang
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Mingrong Qie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetes and Islet Transplantation Research, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
METTL3 promotes proliferation and myogenic differentiation through m6A RNA methylation/YTHDF1/2 signaling axis in myoblasts. Life Sci 2022; 298:120496. [DOI: 10.1016/j.lfs.2022.120496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 01/11/2023]
|
32
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
33
|
Fu Y, Wang Y, Huang Q, Zhao C, Li X, Kan Y, Li D. Long Noncoding RNA lncR17454 Regulates Metamorphosis of Silkworm Through let-7 miRNA Cluster. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:12. [PMID: 35640247 PMCID: PMC9155153 DOI: 10.1093/jisesa/ieac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 06/15/2023]
Abstract
A number of long noncoding RNAs (lncRNAs) have been identified in silkworm, but little is known about their functions. Recent study showed that the let-7 miRNA cluster (contains let-7, miR-2795, and miR-100) was transcribed from the last exon of lncRNA lncR17454 in silkworm. To investigate the functional role of lncR17454, dsRNAs of lncR17454 were injected into the hemolymph of 1-d-old third-instar larvae of Bombyx mori, repression of lncR17454 led to molting arrestment during the larval-larval and larval-pupal transition of silkworm, which was consistent to the result as let-7 knockdown in other studies. The expression level of mature let-7, miR-100, and miR-2795 decreased 40%, 36%, and 40%, respectively, while the mRNA level of two predicted target genes of let-7, the Broad Complex isoform 2 (BR-C-Z2) and the BTB-Zinc finger transcription repression factor gene Abrupt (Ab), increased significantly after lncR17454 knockdown. In contrast, when adding the 20-Hydroxyecdysone (20E) to silkworm BmN4 cell lines, the expression level of lncR17454 and let-7 cluster all increased significantly, but the expression of Abrupt, the predicted target gene of let-7, was repressed. Dual-luciferase reporter assays confirmed Abrupt was the real target of let-7. Here we found that the lncRNA lncR17454 can play regulator roles in the metamorphosis of silkworm through let-7 miRNA cluster and the ecdysone signaling pathway, which will provide new clues for lepidopteran pest control.
Collapse
Affiliation(s)
| | | | - Qunxia Huang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Chenyue Zhao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Xinmei Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | | | | |
Collapse
|
34
|
Fontanini M, Cabiati M, Giacomarra M, Federico G, Del Ry S. Long non-Coding RNAs and Obesity: New Potential Pathogenic Biomarkers. Curr Pharm Des 2022; 28:1592-1605. [DOI: 10.2174/1381612828666220211153304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Background:
A portion of the human genome is characterized by long non-coding RNAs (lncRNAs), a class of non-coding RNA longer than 200 nucleotides. Recently, the development of new biomolecular methods, made it possible to delineate the involvement of lncRNAs in the regulation of different biological processes, both physiological and pathological, by acting within the cell with different regulatory mechanisms based on their specific target. To date, obesity is one of the most important health problems spread all over the world, including the child population: the search for new potential early biomarkers could open the doors to novel therapeutic strategies useful to fight the disease early in life and to reduce the risk of obesity-related co-morbidities.
Objective:
This review highlights the lncRNAs involved in obesity, in adipogenesis, and lipid metabolism, particularly in lipogenesis.
Conclusion:
LncRNAs involved in adipogenesis and lipogenesis, being at the cross-road of obesity, should be deeply analysed in this contest, allowing to understand possible causative actions in starting obesity and whether they might be helpful to treat obesity.
Collapse
Affiliation(s)
- Martina Fontanini
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuel Giacomarra
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Via Roma n. 67 56126 Pisa, Italy
| | - Silvia Del Ry
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| |
Collapse
|
35
|
Chen D, Li H, Wang X, Zhang L, Ji Z, Zhang J. Hypertriglyceridemia impairs urethral spontaneous tone through down-regulation of ANO1 in mouse urethral smooth muscle cells. Urology 2022; 165:157-163. [DOI: 10.1016/j.urology.2022.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
|
36
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
37
|
Xue M, Xia F, Wang Y, Zhu L, Li Y, Jia D, Gao Y, Shi U, Zhang C, He Y, Liu C, Yuan D, Yuan C. The Role of LncRNA TUG1 in Obesity-Related Diseases. Mini Rev Med Chem 2022; 22:1305-1313. [PMID: 35040400 DOI: 10.2174/1389557522666220117120228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
With the continuous improvement of living standards, obesity has become an inevitable hotspot in our daily life. It remains a chronic and recurrent disease with serious adverse consequences. Over the past few years, several articles suggested that long non-coding RNA taurine increased gene 1(lncRNA TUG1), a useful RNA, was suggested to show a relationship to obesity-related disease occurrence and development. Exosome is an emerging research field, which contains substances that are actively involved in regulating the molecular mechanisms of disease. This review summarizes the current relevant TUG1 in different molecular pathways of diseases related to obesity, relationship between exosomes and TUG1 or diseases related to obesity. The aim is to explore TUG1 as a novel target for obesity, which can deepen the knowledge regarding epigenetic regulation pathway. Besides, it is likely to be a potential future targeting diseases related to obesity site treatment and diagnosis.
Collapse
Affiliation(s)
- Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Ue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang. Hubei 443002. China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang 443002, China
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang. Hubei 443002. China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China;
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang. Hubei 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China;
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang. Hubei 443002. China
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
38
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
39
|
Du K, Bai X, Yang L, Shi Y, Chen L, Wang H, Cai M, Wang J, Chen S, Jia X, Lai S. De Novo Reconstruction of Transcriptome Identified Long Non-Coding RNA Regulator of Aging-Related Brown Adipose Tissue Whitening in Rabbits. BIOLOGY 2021; 10:biology10111176. [PMID: 34827171 PMCID: PMC8614855 DOI: 10.3390/biology10111176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/16/2023]
Abstract
Simple Summary Brown adipose tissues (BATs) undergo the conversion to white adipose tissues (WATs) with age. Long non-coding RNAs (lncRNAs) were widely involved in adipose biology. Rabbit is an ideal model for studying the dynamics of the transformation from BATs to WATs. However, our knowledge of lncRNAs that mediate the transformation remains unknown in rabbits. By histological analysis and sequencing, we found rabbit interscapular adipose tissues (iATs) from BATs to WATs within two years and identified a total of 631 differentially expressed lncRNAs (DELs) during the transformation process. Several signal pathways were involved in the transformation from BAT to WAT. A novel lncRNA that was highly expressed in iATs of aged rabbits was validated to impair brown adipocyte differentiation in vitro. Our study provided a comprehensive catalog of lncRNAs involved in the transformation from BATs to WATs in rabbits, facilitating a better understanding of adipose biology. Abstract Brown adipose tissues (BATs) convert to a “white-like” phenotype with age, which is also known as “aging-related BAT whitening (ARBW)”. Emerging evidence suggested that long non-coding RNAs (lncRNAs) were widely involved in adipose biology. Rabbit is an ideal model for studying the dynamics of ARBW. In this study, we performed histological analysis and strand-specific RNA-sequencing (ssRNA-seq) of rabbit interscapular adipose tissues (iATs). Our data indicated that the rabbit iATs underwent the ARBW from 0 days to 2 years and a total of 2281 novel lncRNAs were identified in the iATs. The classical rabbit BATs showed low lncRNA transcriptional complexity compared to white adipose tissues (WATs). A total of 631 differentially expressed lncRNAs (DELs) were identified in four stages. The signal pathways of purine metabolism, Wnt signaling pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway, cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (cGMP-PKG) signaling pathway and lipid and atherosclerosis were significantly enriched by the DELs with unique expression patterns. A novel lncRNA that was highly expressed in the iATs of aged rabbits was validated to impair brown adipocyte differentiation in vitro. Our study provided a comprehensive catalog of lncRNAs involved in ARBW in rabbits, which facilitates a better understanding of adipose biology.
Collapse
Affiliation(s)
- Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Xue Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Li Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Li Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Haoding Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Mingchen Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, China; (K.D.); (X.B.); (L.Y.); (Y.S.); (L.C.); (H.W.); (M.C.); (J.W.); (S.C.); (X.J.)
- Correspondence: or
| |
Collapse
|
40
|
Liu Y, Liu R, Zhao J, Zeng Z, Shi Z, Lu Q, Guo J, Li L, Yao Y, Liu X, Xu Q. LncRNA TMEM220-AS1 suppresses hepatocellular carcinoma cell proliferation and invasion by regulating the TMEM220/β-catenin axis. J Cancer 2021; 12:6805-6813. [PMID: 34659569 PMCID: PMC8517989 DOI: 10.7150/jca.63351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical drivers and suppressors of human hepatocellular carcinoma (HCC). The downregulation of transmembrane protein 220 antisense RNA 1 (TMEM220-AS1) is correlated with poor prognosis in HCC. Nevertheless, the role of TMEM220-AS1 in HCC and the underlying mechanism remains unclear. In this study, TMEM220-AS1 levels were markedly reduced in HCC tissues compared with noncancerous tissues. TMEM220-AS1 downregulation was confirmed in HCC cell lines. TMEM220-AS1 expression was associated with tumor stage, venous infiltration, tumor size, and survival of HCC patients. TMEM220-AS1 overexpression suppressed the migration, invasion, and proliferation of HCC cells. Interestingly, ectopic expression of TMEM220-AS1 increased TMEM220 levels in HCC cells. Decreased TMEM220 levels were observed in HCC tissues and cell lines. TMEM220 expression was positively correlated with TMEM220-AS1 levels in HCC tissue samples and TMEM220 downregulation was significantly correlated with reduced patient survival. TMEM220 overexpression suppressed HCC cell proliferation and mobility. TMEM220 knockdown eliminated the suppressive effect of TMEM220-AS1 in HCCLM3 cells. Mechanistically, TMEM220 overexpression reduced the nuclear accumulation of β-catenin and decreased MYC, Cyclin D1, and Snail1 mRNA levels in HCCLM3 cells. BIO, a GSK3β inhibitor, eliminated TMEM220-induced Wnt/β-catenin pathway inactivation and inhibited HCC cell proliferation and mobility. In conclusion, TMEM220-AS1 and TMEM220 were expressed at low levels in HCC patients. TMEM220-AS1 inhibited the malignant behavior of HCC cells by enhancing TMEM220 expression and subsequently inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yang Liu
- The Medical College of Qingdao University, Qingdao, 266071, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Zhi Zeng
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Zhan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Jinhui Guo
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Lijie Li
- Department of Obstetrics and Gynaecology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
41
|
Guo S, Zhang Y, Wang S, Yang T, Ma B, Li X, Zhang Y, Jiang X. LncRNA PCA3 promotes antimony-induced lipid metabolic disorder in prostate cancer by targeting MIR-132-3 P/SREBP1 signaling. Toxicol Lett 2021; 348:50-58. [PMID: 34052307 DOI: 10.1016/j.toxlet.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Antimony is a common environmental contaminant that causes biological toxicity in exposed populations worldwide. Previous studies have revealed that antimony promotes prostate cancer growth by stabilizing the c-Myc protein and mimicking androgen activity. However, the role of lncRNAs in the regulation of antimony-induced carcinogenesis remains unknown, and the precise mechanisms need to be explored. In the present study, we found that chronic exposure to antimony promoted cell growth and lipid metabolic disequilibrium in prostate cancer. Mechanistically, we identified a long noncoding RNA molecule, PCA3, that was substantially upregulated in LNCaP cells in response to long-term antimony exposure. Functional studies indicated that abnormal PCA3 expression modulated antimony-induced proliferation and cellular triglyceride and cholesterol levels. In addition, PCA3 levels were found to be inversely correlated with MIR-132-3 P levels by acting as a decoy for MIR-132-3P. Besides, SREBP1 directly interacted with MIR-132-3 P to increase cell growth and disrupt lipid metabolism by targeting its 3'UTR regions. Taken together, our results revealed that lncRNA PCA3 promotes antimony-induced lipid metabolic disorder in prostate cancer by targeting MIR-132-3 P/SREBP1 signaling.
Collapse
Affiliation(s)
- Shanqi Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyi Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuo Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Tong Yang
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Baojie Ma
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; The School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
42
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
43
|
Zeng Z, Shi Z, Liu Y, Zhao J, Lu Q, Guo J, Liu X, Huang D, Xu Q. HIF-1α-activated TM4SF1-AS1 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by enhancing TM4SF1 expression. Biochem Biophys Res Commun 2021; 566:80-86. [PMID: 34118595 DOI: 10.1016/j.bbrc.2021.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) are essential drivers or suppressors in human hepatocellular carcinoma (HCC) by participating in controlling transcription, translation, mRNA stability, and protein degradation protein-protein interaction. TM4SF1-AS1 is recently identified as a tumor-promoting factor in lung cancer. Nevertheless, its function in HCC and related molecular mechanisms remain unknown. Here, our data indicated that either hypoxia or hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (DMOG) induced the upregulation of TM4SF1-AS1 in HCC cells. HIF-1α knockdown rather than HIF-2α silencing remarkably abrogated hypoxia-upregulated TM4SF1-AS1 expression. Furthermore, we confirmed the elevated expression of TM4SF1-AS1 in HCC tissue samples and cell lines. The silencing of TM4SF1-AS1 prominently inhibited the proliferative, migratory, and invasive abilities of HCC cells. TM4SF1-AS1 depletion significantly blocked hypoxia-enhanced Hep3B cell proliferation and mobility. Interfering TM4SF1-AS1 remarkably reduced TM4SF1 mRNA and protein levels in HCC cells. But TM4SF1-AS1 knockdown did not impact the stability of TM4SF1 mRNA. Hypoxia enhanced the expression of TM4SF1 mRNA, which was subsequently decreased by TM4SF1-AS1 knockdown in HCC cells. We confirmed the positive correlation between TM4SF1 mRNA and TM4SF1-AS1 expression in HCC specimens. Finally, TM4SF1 prominently reversed the inhibitory role of TM4SF1-AS1 depletion in Hep3B cells. In summary, hypoxia-responsive TM4SF1-AS1 was overexpressed in human HCC and contributed to the malignant behaviors of tumor cells by enhancing TM4SF1-AS1 expression.
Collapse
Affiliation(s)
- Zhi Zeng
- The Medical College of Qingdao University, Qingdao, 266071, China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu, 233030, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Jinhui Guo
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
44
|
Xiao F, Tang CY, Tang HN, Wu HX, Hu N, Li L, Zhou HD. Long Non-coding RNA 332443 Inhibits Preadipocyte Differentiation by Targeting Runx1 and p38-MAPK and ERK1/2-MAPK Signaling Pathways. Front Cell Dev Biol 2021; 9:663959. [PMID: 34169072 PMCID: PMC8217766 DOI: 10.3389/fcell.2021.663959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral regulators of pathophysiological processes, but their specific roles and mechanisms in adipose tissue development remain largely unknown. Here, through microarray analysis, co-expression, and tissue specific analysis of adipocyte tissues after fasting for 72 h, we found that Lnc-FR332443 expression was dramatically decreased, as well as the expression of Runx1. The UCSC database and Ensembl database indicated that Lnc-FR332443 is the antisense lncRNA of Runx1. Lnc-FR332443 and Runx1 are highly enriched in adipose tissue and downregulated during adipogenic differentiation. Adipose tissue-specific knockdown of Lnc-FR332443 increased fat mass in vivo, and specific knockdown of Lnc-FR332443 in 3T3-L1 preadipocytes promoted adipogenic differentiation. In this process, Runx1 expression was decreased when Lnc-FR332443 was downregulated in adipocytes or 3T3-L1 preadipocytes, and vice versa, when Lnc-FR332443 was upregulated, the expression of Runx1 was increased. However, overexpression of Runx1 decreased the expression of the adipocyte cell marker genes PPARγ, C/EBPα and FABP4 significantly, while not affected the expression of Lnc-FR332443. Mechanistically, Lnc-FR332443 positively regulates Runx1 expression in mouse adipocytes and suppresses adipocyte differentiation by attenuating the phosphorylation of MAPK-p38 and MAPK-ERK1/2 expression. Thus, this study indicated that Lnc-FR332443 inhibits adipogenesis and which might be a drug target for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chen-Yi Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Nan Hu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
45
|
Du G, Zhang Y, Hu S, Zhou X, Li Y. Non-coding RNAs in exosomes and adipocytes cause fat loss during cancer cachexia. Noncoding RNA Res 2021; 6:80-85. [PMID: 33997537 PMCID: PMC8081875 DOI: 10.1016/j.ncrna.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer Cachexia (CC) is a disease that changes various metabolisms in human body. Fat metabolism is significantly affected in CC, leading to fat loss. Non-coding RNAs (ncRNAs) in adipocytes and exosomes secreted by tumor play an important role in fat loss. However, there is no related reviews summarizing how ncRNAs contribute to fat loss during CC. This review screens recent articles to summarize how ncRNAs are packaged, transported in exosomes, and play the role in fat loss. Not only does this review summarize the mechanisms, we also point out the research orientations in the future.
Collapse
Affiliation(s)
| | | | - Shoushan Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
46
|
Zhu R, Feng X, Wei Y, Guo D, Li J, Liu Q, Jiang J, Shi D, Huang J. lncSAMM50 Enhances Adipogenic Differentiation of Buffalo Adipocytes With No Effect on Its Host Gene. Front Genet 2021; 12:626158. [PMID: 33841496 PMCID: PMC8033173 DOI: 10.3389/fgene.2021.626158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Fat deposition is one of the most important traits that are mediated by a set of complex regulatory factors in meat animals. Several researches have revealed the significant role of long non-coding RNAs (lncRNAs) in fat deposition while the precise regulatory mechanism is still largely elusive. In this study, we investigated the lncRNA profiles of adipose and muscle tissues in buffalo by using the Illumina HiSeq 3000 platform. In total, 43,809 lncRNAs were finally identified based on the computer algorithm. A comparison analysis revealed 241 lncRNAs that are differentially expressed (DE) in adipose and muscle tissues. We focused on lncSAMM50, a DE lncRNA that has a high expression in adipose tissue. Sequence alignment showed that lncSAMM50 is transcribed from the antisense strand of the upstream region of sorting and assembly machinery component 50 homolog (SAMM50), a gene involved in the function of mitochondrion and is subsequently demonstrated to inhibit the adipogenic differentiation of 3T3-L1 adipocyte cells in this study. lncSAMM50 is highly expressed in adipose tissue and upregulated in the mature adipocytes and mainly exists in the nucleus. Gain-of-function experiments demonstrated that lncSAMM50 promotes the adipogenic differentiation by upregulating adipogenic markers but with no effect on its host gene SAMM50 in buffalo adipocytes. These results indicate that lncSAMM50 enhances fat deposition in buffalo and provide a new factor for the regulatory network of adipogenesis.
Collapse
Affiliation(s)
- Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xue Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yutong Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Duo Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jiaojiao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
47
|
Long non-coding RNA RP11-284P20.2 promotes cell proliferation and invasion in hepatocellular carcinoma by recruiting EIF3b to induce c-met protein synthesis. Biosci Rep 2021; 40:222211. [PMID: 32100822 PMCID: PMC7069891 DOI: 10.1042/bsr20200297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
A newly identified lncRNA designated as RP11-284P20.2 has been identified to be up-regulated in hepatocellular carcinoma (HCC), but its role in HCC remain poorly understood. Quantitative PCR and immunocytochemical analysis were performed using the HCC tissues to identify the potential interaction partners of RP11-284P20.2. Moreover, RP11-284P20.2 was knocked down in HCC cell lines, HepG2 and SMMC7721, to investigate the influence of this lncRNA on cell growth properties. Additionally, RNA fluorescence in situ hybridization and immunofluorescence, RNA immunoprecipitation, and RNA pull-down assays were performed to determine the interaction of RP11-284P20.2 with c-met mRNA and eukaryotic translation initiation factor 3b (EIF3b). Silencing RP11-284P20.2 inhibited cell viability, migration, invasion, and colony formation, and increased apoptosis. Overexpression of c-met abolished these effects of RP11-284P20.2 in HCC cells. Histopathological examination showed that HCC tissues with high RP11-284P20.2 expression had higher c-met protein level than that in HCC tissues with low RP11-284P20.2 expression. However, there was no positive correlation between the expression levels of RP11-284P20.2 and c-met mRNA. RP11-284P20.2 knockdown led to a decease in c-met protein expression level, but did not affect the c-met mRNA expression level. These data suggest that RP11-284P20.2 regulates c-met protein expression level, which is independent of c-Met mRNA expression level. It was also confirmed that RP11-284P20.2 has high affinity toward both c-met mRNA and EIF3b protein, and hence RP11-284P20.2 probably recruits EIF3b protein to c-met mRNA and further facilitates its translation. RP11-284P20.2 promotes cell proliferation and invasion in hepatocellular carcinoma by recruiting EIF3b to induce c-met protein synthesis.
Collapse
|
48
|
Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis. J Biol Chem 2021; 296:100376. [PMID: 33548229 PMCID: PMC8289116 DOI: 10.1016/j.jbc.2021.100376] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is one of the most important organs of the animal body. Long noncoding RNAs play a crucial role in the regulation of skeletal muscle development via several mechanisms. We recently identified obesity-related lncRNA (lnc-ORA) in a search for long noncoding RNAs that influence adipogenesis, finding it impacted adipocyte differentiation by regulating the PI3K/protein kinase B/mammalian target of rapamycin pathway. However, whether lnc-ORA has additional roles, specifically in skeletal muscle myogenesis, is not known. Here, we found that lnc-ORA was significantly differentially expressed with age in mouse skeletal muscle tissue and predominantly located in the cytoplasm. Overexpression of lnc-ORA promoted C2C12 myoblast proliferation and inhibited myoblast differentiation. In contrast, lnc-ORA knockdown repressed myoblast proliferation and facilitated myoblast differentiation. Interestingly, silencing of lnc-ORA rescued dexamethasone-induced muscle atrophy in vitro. Furthermore, adeno-associated virus 9–mediated overexpression of lnc-ORA decreased muscle mass and the cross-sectional area of muscle fiber by upregulating the levels of muscle atrophy–related genes and downregulating the levels of myogenic differentiation–related genes in vivo. Mechanistically, lnc-ORA inhibited skeletal muscle myogenesis by acting as a sponge of miR-532-3p, which targets the phosphatase and tensin homolog gene; the resultant changes in phosphatase and tensin homolog suppressed the PI3K/protein kinase B signaling pathway. In addition, lnc-ORA interacted with insulin-like growth factor 2 mRNA-binding protein 2 and reduced the stability of myogenesis genes, such as myogenic differentiation 1 and myosin heavy chain. Collectively, these findings indicate that lnc-ORA could be a novel underlying regulator of skeletal muscle development.
Collapse
|
49
|
Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:diagnostics11010145. [PMID: 33478141 PMCID: PMC7835902 DOI: 10.3390/diagnostics11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has opened a new paradigm to use ncRNAs as biomarkers to detect disease progression. Long non-coding RNAs (lncRNA) have garnered the most attention due to their specific cell-origin and their existence in biological fluids. Type 2 diabetes patients will develop cardiovascular disease (CVD) complications, and CVD remains the top risk factor for mortality. Understanding the lncRNA roles in T2D and CVD conditions will allow the future use of lncRNAs to detect CVD complications before the symptoms appear. This review aimed to discuss the roles of lncRNAs in T2D and CVD conditions and their diagnostic potential as molecular biomarkers for CVD complications in T2D.
Collapse
|
50
|
Xing C, Sun SG, Yue ZQ, Bai F. Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother 2020; 134:111158. [PMID: 33360049 DOI: 10.1016/j.biopha.2020.111158] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules with a transcript length of more than 200 nt and lack a protein-coding ability. They regulate gene expression by interacting with protein, RNA, and DNA. Their function is closely related to their subcellular localization. In the nucleus, lncRNAs regulate gene expression at the epigenetic and transcriptional levels, and in the cytoplasm, they regulate gene expression at the post-transcriptional and translational levels. Abnormalities in lncRNAs have been confirmed to exhibit tumor suppressor or carcinogenic effects and play an important role in the development of tumors. In particular, the lung cancer-related transcript 1 (LUCAT1) located in the antisense strand of the q14.3 region of chromosome 5 was first discovered in smoking-related lung cancer. Increasing evidence have showed that LUCAT1 is involved in breast cancer, ovarian cancer, thyroid cancer, renal cell carcinoma. It is highly expressed in liver cancer and other malignant tumors and has been confirmed to be induce various malignant tumors. It regulates tumor proliferation, invasion, and migration via various mechanisms and is related to the clinicopathological characteristics of tumor patients. Thus, LUCAT1 is a potential prognostic biological marker and therapeutic target for cancer. This article reviews its expression, function, and molecular mechanism in various malignant tumors.
Collapse
Affiliation(s)
- Ce Xing
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Shou-Gang Sun
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Zhi-Quan Yue
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Feng Bai
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China.
| |
Collapse
|