1
|
Sun Y, Li TY. TMBIM-2 links neuronal mitochondrial stress to systemic adaptation via calcium signaling. J Cell Biol 2025; 224:e202503004. [PMID: 40266590 PMCID: PMC12017273 DOI: 10.1083/jcb.202503004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Mitochondrial function is critical for neuronal activity and systemic metabolic adaptation. In this issue, Li et al. (https://doi.org/10.1083/jcb.202408050) identify TMBIM-2 as a key regulator of calcium dynamics, coordinating the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt), pathogen-induced aversive learning, and aging.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Terytty Yang Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Huang W, Lou A, Wang J, Wang Y, Zhang W, Li J, Wang S, Geng S, Wang G, Li X. TMBIM1 ameliorates sepsis-induced cardiac dysfunction by promoting Parkin-mediated mitophagy. FASEB J 2025; 39:e70397. [PMID: 39937566 DOI: 10.1096/fj.202402599rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Myocardial dysfunction is a significant complication of sepsis that is associated with elevated mortality rates. Transmembrane BAX inhibitor motif containing 1 (TMBIM1), a stress-responsive protein, has garnered interest in the field of cardiovascular disease for its cardioprotective properties. Nevertheless, the role of TMBIM1 on sepsis-induced cardiac dysfunction (SICD) remains unknown. Here, our findings revealed a significant elevation in TMBIM1 expression within the myocardium following endotoxin challenge and further demonstrate the cardioprotective effects of TMBIM1 through adenovirus-mediated gene manipulation. Notably, lipopolysaccharide exposure markedly induced mitochondrial dysfunction in cardiomyocytes, which was effectively alleviated by TMBIM1 overexpression, while TMBIM1 knockdown exacerbated this dysfunction. Moreover, in cardiomyocytes subjected to endotoxin challenge, TMBIM1 was observed to interact with Parkin, facilitating its translocation from the cytosol to damaged mitochondria. This interaction enhanced the activation of mitophagy, thereby promoting the clearance of dysfunctional mitochondria and subsequently mitigating cellular injury. Hence, targeting TMBIM1 could be a novel therapeutic strategy for treating SICD.
Collapse
Affiliation(s)
- Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuegang Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jierui Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Stejerean-Todoran I, Gibhardt CS, Bogeski I. Calcium signals as regulators of ferroptosis in cancer. Cell Calcium 2024; 124:102966. [PMID: 39504596 DOI: 10.1016/j.ceca.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The field of ferroptosis research has grown exponentially since this form of cell death was first identified over a decade ago. Ferroptosis, an iron- and ROS-dependent type of cell death, is controlled by various metabolic pathways, including but not limited to redox and calcium (Ca2+) homeostasis, iron fluxes, mitochondrial function and lipid metabolism. Importantly, therapy-resistant tumors are particularly susceptible to ferroptotic cell death, rendering ferroptosis a promising therapeutic strategy against numerous malignancies. Calcium signals are important regulators of both cancer progression and cell death, with recent studies indicating their involvement in ferroptosis. Cells undergoing ferroptosis are characterized by plasma membrane rupture and the formation of nanopores, which facilitate influx of ions such as Ca2+ into the affected cells. Furthermore, mitochondrial Ca²⁺ levels have been implicated in directly influencing the cellular response to ferroptosis. Despite the remarkable progress made in the field, our understanding of the contribution of Ca2+ signals to ferroptosis remains limited. Here, we summarize key connections between Ca²⁺ signaling and ferroptosis in cancer pathobiology and discuss their potential therapeutic significance.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
4
|
Son G, Na Y, Kim Y, Son JH, Clemenson GD, Schafer ST, Yoo JY, Parylak SL, Paquola A, Do H, Kim D, Ahn I, Ju M, Kang CS, Ju Y, Jung E, McDonald AH, Park Y, Kim G, Paik SB, Hur J, Kim J, Han YM, Lee SH, Gage FH, Kim JS, Han J. miR-124 coordinates metabolic regulators acting at early stages of human neurogenesis. Commun Biol 2024; 7:1393. [PMID: 39455851 PMCID: PMC11511827 DOI: 10.1038/s42003-024-07089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic dysregulation of neurons is associated with diverse human brain disorders. Metabolic reprogramming occurs during neuronal differentiation, but it is not fully understood which molecules regulate metabolic changes at the early stages of neurogenesis. In this study, we report that miR-124 is a driver of metabolic change at the initiating stage of human neurogenesis. Proteome analysis has shown the oxidative phosphorylation pathway to be the most significantly altered among the differentially expressed proteins (DEPs) in the immature neurons after the knockdown of miR-124. In agreement with these proteomics results, miR-124-depleted neurons display mitochondrial dysfunctions, such as decreased mitochondrial membrane potential and cellular respiration. Moreover, morphological analyses of mitochondria in early differentiated neurons after miR-124 knockdown result in smaller and less mature shapes. Lastly, we show the potential of identified DEPs as novel metabolic regulators in early neuronal development by validating the effects of GSTK1 on cellular respiration. GSTK1, which is upregulated most significantly in miR-124 knockdown neurons, reduces the oxygen consumption rate of neural cells. Collectively, our data highlight the roles of miR-124 in coordinating metabolic maturation at the early stages of neurogenesis and provide insights into potential metabolic regulators associated with human brain disorders characterized by metabolic dysfunctions.
Collapse
Affiliation(s)
- Geurim Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongsung Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Yeon Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mingyu Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Sovargen.CO., LTD., Daejeon, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Aidan H McDonald
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Youngjin Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Gilhyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Junho Hur
- College of Medicine, Hanyang University, Seoul, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong-Mahn Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- BioMedical Research Center, KAIST, Daejeon, Korea.
- KAIST Stem Cell Center, KAIST, Daejeon, Korea.
| |
Collapse
|
5
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
6
|
Mentel M, Illová M, Krajčovičová V, Kroupová G, Mannová Z, Chovančíková P, Polčic P. Yeast Bax Inhibitor (Bxi1p/Ybh3p) Is Not Required for the Action of Bcl-2 Family Proteins on Cell Viability. Int J Mol Sci 2023; 24:12011. [PMID: 37569387 PMCID: PMC10419234 DOI: 10.3390/ijms241512011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Permeabilization of mitochondrial membrane by proteins of the BCL-2 family is a key decisive event in the induction of apoptosis in mammalian cells. Although yeast does not have homologs of the BCL-2 family, when these are expressed in yeast, they modulate the survival of cells in a way that corresponds to their activity in mammalian cells. The yeast gene, alternatively referred to as BXI1 or YBH3, encodes for membrane protein in the endoplasmic reticulum that was, contradictorily, shown to either inhibit Bax or to be required for Bax activity. We have tested the effect of the deletion of this gene on the pro-apoptotic activity of Bax and Bak and the anti-apoptotic activity of Bcl-XL and Bcl-2, as well on survival after treatment with inducers of regulated cell death in yeast, hydrogen peroxide and acetic acid. While deletion resulted in increased sensitivity to acetic acid, it did not affect the sensitivity to hydrogen peroxide nor to BCL-2 family members. Thus, our results do not support any model in which the activity of BCL-2 family members is directly affected by BXI1 but rather indicate that it may participate in modulating survival in response to some specific forms of stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
7
|
Zhou X, Zhao H. FAIM2 is correlated with metastasis of medulloblastoma through bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33591. [PMID: 37083768 PMCID: PMC10118330 DOI: 10.1097/md.0000000000033591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Medulloblastoma (MB) is one of the most frequent malignant brain tumors in children. The metastasis of MB outside the nervous system is associated with a poor prognosis. Our study aimed to explore the genes correlated with metastasis in MB. Using the data downloaded from the gene expression omnibus database, the differentially expressed genes were identified between the metastatic and nonmetastatic samples in MB, which were undergone functional enrichment. Prognosis related genes were identified using univariate Cox regression analysis. The gene set enrichment analysis was conducted to find MB metastasis related pathways. A total of 196 differentially expressed genes were identified between metastatic and nonmetastatic samples in MB patients, and these genes were significantly enriched in 483 gene ontology terms and 29 Kyoto encyclopedia of genes and genomes pathways. In addition, univariate Cox regression analysis screened the top 10 genes (CEMIP, GLCE, ART3, GABRA5, COLEC12, LIN28B, ZNF521, IL17RB, Fas apoptotic inhibitory molecule 2 (FAIM2), RCBTB2) that were significantly associated with survival of MB, among which FAIM2 was prominently expressed in cerebral cortex, cerebellum and hippocampus. The expression of FAIM2 was decreased in metastatic MB samples, and FAIM2 harbored missense mutations, amplifications and deep deletions in metastatic samples of MB. Moreover, a total of 25 pathways were significantly activated and 41 pathways were significantly inhibited in FAIM2 high expression group compared to FAIM2 low expression group in MB patients. FAIM2 was tightly correlated with metastasis in MB patients, and the low expression of FAIM2 was associated with poor prognosis.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Paediatric Neurology, Zibo Central Hospital, Zibo, Shandong, China
| | - Hao Zhao
- Department of Neurosurgery, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
8
|
Scheid JF, Eraslan B, Hudak A, Brown EM, Sergio D, Delorey TM, Phillips D, Lefkovith A, Jess AT, Duck LW, Elson CO, Vlamakis H, Plichta DR, Deguine J, Ananthakrishnan AN, Graham DB, Regev A, Xavier RJ. Remodeling of colon plasma cell repertoire within ulcerative colitis patients. J Exp Med 2023; 220:e20220538. [PMID: 36752797 PMCID: PMC9949229 DOI: 10.1084/jem.20220538] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/03/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Plasma cells (PCs) constitute a significant fraction of colonic mucosal cells and contribute to inflammatory infiltrates in ulcerative colitis (UC). While gut PCs secrete bacteria-targeting IgA antibodies, their role in UC pathogenesis is unknown. We performed single-cell V(D)J- and RNA-seq on sorted B cells from the colon of healthy individuals and patients with UC. A large fraction of B cell clones is shared between different colon regions, but inflammation in UC broadly disrupts this landscape, causing transcriptomic changes characterized by an increase in the unfolded protein response (UPR) and antigen presentation genes, clonal expansion, and isotype skewing from IgA1 and IgA2 to IgG1. We also directly expressed and assessed the specificity of 152 mAbs from expanded PC clones. These mAbs show low polyreactivity and autoreactivity and instead target both shared bacterial antigens and specific bacterial strains. Altogether, our results characterize the microbiome-specific colon PC response and how its disruption might contribute to inflammation in UC.
Collapse
Affiliation(s)
- Johannes F. Scheid
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Basak Eraslan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Hudak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric M. Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dallis Sergio
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni M. Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Alison T. Jess
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lennard W. Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles O. Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
9
|
Lan YJ, Cheng CC, Chu SC, Chiang YW. A gating mechanism of the BsYetJ calcium channel revealed in an endoplasmic reticulum lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184153. [PMID: 36948481 DOI: 10.1016/j.bbamem.2023.184153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The transmembrane BAX inhibitor-1-containing motif 6 (TMBIM6) is suggested to modulate apoptosis by regulating calcium homeostasis in the endoplasmic reticulum (ER). However, the precise molecular mechanism underlying this calcium regulation remains poorly understood. To shed light on this issue, we investigated all negatively charged residues in BsYetJ, a bacterial homolog of TMBIM6, using mutagenesis and fluorescence-based functional assays. We reconstituted BsYetJ in membrane vesicles with a lipid composition similar to that of the ER. Our results show that the charged residues E49 and R205 work together as a major gate, regulating calcium conductance in these ER-like lipid vesicles. However, these residues become largely inactive when reconstituted in other lipid environments. In addition, we found that D195 acts as a minor filter compared to the E49-R205 dyad. Our study uncovers a previously unknown function of BsYetJ/TMBIM6 in the calcium-dependent inactivation of BsYetJ, providing a framework for the development of a lipid-dependent mechanistic model of BsYetJ that will facilitate our understanding of calcium-dependent apoptosis.
Collapse
Affiliation(s)
- Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chu-Chun Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Shu-Chi Chu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| |
Collapse
|
10
|
Liu S, Li Y, Wei X, Adi D, Wang YT, Han M, Liu F, Chen BD, Li XM, Yang YN, Fu ZY, Ma YT. Genetic analysis of DNA methylation in dyslipidemia: a case-control study. PeerJ 2022; 10:e14590. [PMID: 36570009 PMCID: PMC9774006 DOI: 10.7717/peerj.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Coronary heart disease has become the leading cause of death in developed countries, and dyslipidemia is closely associated with the risk of cardiovascular disease. Dyslipidemia is caused by the abnormal regulation of several genes and signaling pathways, and dyslipidemia is influenced mainly by genetic variation. AMFR, FBXW7, INSIG1, INSIG2, and MBTPS1 genes are associated with lipid metabolism. In a recent GWAS study, the GRINA gene has been reported to be associated with dyslipidemia, but its molecular mechanism has not been thoroughly investigated. The correlation between the DNA methylation of these genes and lipid metabolism has not been studied. This study aimed to examine the relationship between the DNA methylation of these genes and the risk of dyslipidemia by comparing the methylation levels of dyslipidemia and control samples. Methods A case-control research method was used in this study. The patient's blood samples were collected at the Heart Center of the First Affiliated Hospital of Xinjiang Medical University. In the Xinjiang Han population, 100 cases of hyperlipidemia and 80 cases of the control group were selected. The two groups were age and gender-matched. Quantitative methylation analysis of CpG sites in the gene promoter regions of six genes was performed by Solexa high-throughput sequencing. Results The DNA methylation levels of 23 CpG sites in six genes were shown to be associated with hyperlipidemia, and a total of 20 DNA methylation haplotypes showed statistically significant differences between the two groups. When compared with the control group, the dyslipidemia group had significantly higher levels of methylation in the GRINA gene (2.68 vs 2.36, P = 0.04). Additionally, we also discovered a significant methylation haplotype of GRINA (P = 0.017). Conclusion The findings of this study reveal that the DNA methylation of GRINA increases the risk for dyslipidemia in humans.
Collapse
Affiliation(s)
- Shuai Liu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Yang Li
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Xian Wei
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Dilare Adi
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Yong-Tao Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Min Han
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Fen Liu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Bang-Dang Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Xiao-Mei Li
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Yi-Ning Yang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Zhen-Yan Fu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| | - Yi-Tong Ma
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| |
Collapse
|
11
|
Austin S, Mekis R, Mohammed SEM, Scalise M, Wang W, Galluccio M, Pfeiffer C, Borovec T, Parapatics K, Vitko D, Dinhopl N, Demaurex N, Bennett KL, Indiveri C, Nowikovsky K. TMBIM5 is the Ca 2+ /H + antiporter of mammalian mitochondria. EMBO Rep 2022; 23:e54978. [PMID: 36321428 PMCID: PMC9724676 DOI: 10.15252/embr.202254978] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial Ca2+ ions are crucial regulators of bioenergetics and cell death pathways. Mitochondrial Ca2+ content and cytosolic Ca2+ homeostasis strictly depend on Ca2+ transporters. In recent decades, the major players responsible for mitochondrial Ca2+ uptake and release have been identified, except the mitochondrial Ca2+ /H+ exchanger (CHE). Originally identified as the mitochondrial K+ /H+ exchanger, LETM1 was also considered as a candidate for the mitochondrial CHE. Defining the mitochondrial interactome of LETM1, we identify TMBIM5/MICS1, the only mitochondrial member of the TMBIM family, and validate the physical interaction of TMBIM5 and LETM1. Cell-based and cell-free biochemical assays demonstrate the absence or greatly reduced Na+ -independent mitochondrial Ca2+ release in TMBIM5 knockout or pH-sensing site mutants, respectively, and pH-dependent Ca2+ transport by recombinant TMBIM5. Taken together, we demonstrate that TMBIM5, but not LETM1, is the long-sought mitochondrial CHE, involved in setting and regulating the mitochondrial proton gradient. This finding provides the final piece of the puzzle of mitochondrial Ca2+ transporters and opens the door to exploring its importance in health and disease, and to developing drugs modulating Ca2+ exchange.
Collapse
Affiliation(s)
- Shane Austin
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Present address:
Department of Biological & Chemical SciencesThe University of the West Indies, Cave Hill CampusCave HillBarbados
| | - Ronald Mekis
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Sami E M Mohammed
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
| | - Wen‐An Wang
- Department of Cell Physiology & MetabolismUniversity of GenevaGenevaSwitzerland
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
| | - Christina Pfeiffer
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Tamara Borovec
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Dijana Vitko
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Nora Dinhopl
- Department of Pathobiology, Institute of PathologyUniversity of Veterinary MedicineViennaAustria
| | - Nicolas Demaurex
- Department of Cell Physiology & MetabolismUniversity of GenevaGenevaSwitzerland
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
- CNR Institute of BiomembranesBioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
12
|
Zhang L, Dietsche F, Seitaj B, Rojas-Charry L, Latchman N, Tomar D, Wüst RC, Nickel A, Frauenknecht KB, Schoser B, Schumann S, Schmeisser MJ, Vom Berg J, Buch T, Finger S, Wenzel P, Maack C, Elrod JW, Parys JB, Bultynck G, Methner A. TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy. Life Sci Alliance 2022; 5:5/10/e202201478. [PMID: 35715207 PMCID: PMC9206080 DOI: 10.26508/lsa.202201478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
TMBIM5 deficiency reduces mitochondrial K+/H+ exchange. Mutation of the channel pore in mice destabilizes the protein and results in increased embryonic lethality and a skeletal myopathy. Ion fluxes across the inner mitochondrial membrane control mitochondrial volume, energy production, and apoptosis. TMBIM5, a highly conserved protein with homology to putative pH-dependent ion channels, is involved in the maintenance of mitochondrial cristae architecture, ATP production, and apoptosis. Here, we demonstrate that overexpressed TMBIM5 can mediate mitochondrial calcium uptake. Under steady-state conditions, loss of TMBIM5 results in increased potassium and reduced proton levels in the mitochondrial matrix caused by attenuated exchange of these ions. To identify the in vivo consequences of TMBIM5 dysfunction, we generated mice carrying a mutation in the channel pore. These mutant mice display increased embryonic or perinatal lethality and a skeletal myopathy which strongly correlates with tissue-specific disruption of cristae architecture, early opening of the mitochondrial permeability transition pore, reduced calcium uptake capability, and mitochondrial swelling. Our results demonstrate that TMBIM5 is an essential and important part of the mitochondrial ion transport system machinery with particular importance for embryonic development and muscle function.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Bruno Seitaj
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Liliana Rojas-Charry
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadina Latchman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Rob Ci Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Katrin Bm Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Munich, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jan B Parys
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Axel Methner
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Kubota N, Suyama M. Mapping of promoter usage QTL using RNA-seq data reveals their contributions to complex traits. PLoS Comput Biol 2022; 18:e1010436. [PMID: 36037215 PMCID: PMC9462676 DOI: 10.1371/journal.pcbi.1010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/09/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Genomic variations are associated with gene expression levels, which are called expression quantitative trait loci (eQTL). Most eQTL may affect the total gene expression levels by regulating transcriptional activities of a specific promoter. However, the direct exploration of genomic loci associated with promoter activities using RNA-seq data has been challenging because eQTL analyses treat the total expression levels estimated by summing those of all isoforms transcribed from distinct promoters. Here we propose a new method for identifying genomic loci associated with promoter activities, called promoter usage quantitative trait loci (puQTL), using conventional RNA-seq data. By leveraging public RNA-seq datasets from the lymphoblastoid cell lines of 438 individuals from the GEUVADIS project, we obtained promoter activity estimates and mapped 2,592 puQTL at the 10% FDR level. The results of puQTL mapping enabled us to interpret the manner in which genomic variations regulate gene expression. We found that 310 puQTL genes (16.1%) were not detected by eQTL analysis, suggesting that our pipeline can identify novel variant-gene associations. Furthermore, we identified genomic loci associated with the activity of "hidden" promoters, which the standard eQTL studies have ignored. We found that most puQTL signals were concordant with at least one genome-wide association study (GWAS) signal, enabling novel interpretations of the molecular mechanisms of complex traits. Our results emphasize the importance of the re-analysis of public RNA-seq datasets to obtain novel insights into gene regulation by genomic variations and their contributions to complex traits.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Carreras-Sureda A, Kroemer G, Cardenas JC, Hetz C. Balancing energy and protein homeostasis at ER-mitochondria contact sites. Sci Signal 2022; 15:eabm7524. [DOI: 10.1126/scisignal.abm7524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell and participates in multiple essential functions, including the production of secretory proteins, lipid synthesis, and calcium storage. Sustaining proteostasis requires an intimate coupling with energy production. Mitochondrial respiration evolved to be functionally connected to ER physiology through a physical interface between both organelles known as mitochondria-associated membranes. This quasi-synaptic structure acts as a signaling hub that tunes the function of both organelles in a bidirectional manner and controls proteostasis, cell death pathways, and mitochondrial bioenergetics. Here, we discuss the main signaling mechanisms governing interorganellar communication and their putative role in diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, 1211 Geneva, Switzerland
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Julio Cesar Cardenas
- Center for Integrative Biology, Mayor University, 7510041 Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claudio Hetz
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, 70086 Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, 70086 Santiago, Chile
| |
Collapse
|
15
|
Lu Y, Lu X, Xu Y, Ren Y, Shen Y, Yang X. Expression, purification and microscopic characterization of transmembrane BAX Inhibitor-1 motif containing protein 5. Protein Expr Purif 2022; 193:106045. [PMID: 34999216 DOI: 10.1016/j.pep.2022.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Transmembrane bax inhibitor-1 motif containing protein 5 (TMBIM5) is located on the inner membrane of mitochondria and is widely expressed in tissues but less frequently in the intestine and thymus. TMBIM5 affects mitochondrial cristae organization and is associated with Parkinson's disease. Here, we present the first report about expression, purification and the 2D classification projections derived from negatively stained electron micrographs of recombinant H. sapiens TMBIM5 (hTMBIM5). The described methods and results will support further structural and functional study of hTMBIM5.
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xuhang Lu
- College of Life Sciences, Nankai University, Tianjin, 300094, China
| | - Yingjian Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yue Ren
- College of Life Sciences, Nankai University, Tianjin, 300094, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; College of Life Sciences, Nankai University, Tianjin, 300094, China; Synergetic Innovation Center of Chemical Science and Engineering, Tianjin, 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; College of Life Sciences, Nankai University, Tianjin, 300094, China.
| |
Collapse
|
16
|
Pihán P, Lisbona F, Borgonovo J, Edwards-Jorquera S, Nunes-Hasler P, Castillo K, Kepp O, Urra H, Saarnio S, Vihinen H, Carreras-Sureda A, Forveille S, Sauvat A, De Giorgis D, Pupo A, Rodríguez DA, Quarato G, Sagredo A, Lourido F, Letai A, Latorre R, Kroemer G, Demaurex N, Jokitalo E, Concha ML, Glavic Á, Green DR, Hetz C. Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1. SCIENCE ADVANCES 2021; 7:eabe5469. [PMID: 34767445 PMCID: PMC8589314 DOI: 10.1126/sciadv.abe5469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.
Collapse
Affiliation(s)
- Philippe Pihán
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fernanda Lisbona
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Janina Borgonovo
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Integrative Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Suvi Saarnio
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Amado Carreras-Sureda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sabrina Forveille
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Daniela De Giorgis
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Diego A. Rodríguez
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alfredo Sagredo
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fernanda Lourido
- Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston, MA 02215-02115, USA
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institutet, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Centro de Investigación de Estudios Avanzados, Universidad Católica del Maule, Talca, Chile
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Miguel L. Concha
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Integrative Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Álvaro Glavic
- Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
17
|
Gupta MK, Sahu A, Sun Y, Mohan ML, Kumar A, Zalavadia A, Wang X, Martelli EE, Stenson K, Witherow CP, Drazba J, Dasarathy S, Naga Prasad SV. Cardiac expression of microRNA-7 is associated with adverse cardiac remodeling. Sci Rep 2021; 11:22018. [PMID: 34759299 PMCID: PMC8581024 DOI: 10.1038/s41598-021-00778-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Although microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Anita Sahu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Yu Sun
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Maradumane L Mohan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Avinash Kumar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ajaykumar Zalavadia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xi Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Elizabeth E Martelli
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Kate Stenson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Conner P Witherow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Judy Drazba
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Srinivasan Dasarathy
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
18
|
Zhang L, Buhr S, Voigt A, Methner A. The Evolutionary Conserved Transmembrane BAX Inhibitor Motif (TMBIM) Containing Protein Family Members 5 and 6 Are Essential for the Development and Survival of Drosophila melanogaster. Front Cell Dev Biol 2021; 9:666484. [PMID: 34540824 PMCID: PMC8446389 DOI: 10.3389/fcell.2021.666484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Transmembrane BAX Inhibitor Motif (TMBIM) protein family consists of six evolutionarily conserved hydrophobic proteins that affect programmed cell death and the regulation of intracellular calcium levels. The bacterial ortholog BsYetJ is a pH-dependent calcium channel. We here identified seven TMBIM family members in Drosophila melanogaster and describe their expression levels in diverse tissues and developmental stages. A phylogenetic analysis revealed that CG30379 represents the ortholog of human TMBIM4 although these two proteins are much less related than TMBIM5 (CG2076 and CG1287/Mics1) and TMBIM6 (CG7188/Bi-1) to their respective orthologs. For TMBIM1-3 the assignment is more dubious because the fly and the human proteins cluster together. We conducted a functional analysis based on expression levels and the availability of RNAi lines. This revealed that the ubiquitous knockdown of CG3798/Nmda1 and CG3814/Lfg had no effect on development while knockdown of CG2076/dTmbim5 resulted in death at the pupa stage and knockdown of CG7188/dTmbim6 in death at the embryonic stage. Ubiquitous knockdown of the second TMBIM5 paralog CG1287/Mics1 ensued in male sterility. Knockdown of dTmbim5 and 6 in muscle and neural tissue also greatly reduced lifespan through different mechanisms. Knockdown of the mitochondrial family member dTmbim5 resulted in reduced ATP production and a pro-apoptotic expression profile while knockdown of the ER protein dTmbim6 increased the ER calcium levels similar to findings in mammalian cells. Our data demonstrate that dTmbim5 and 6 are essential for fly development and survival but affect cell survival through different mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Buhr
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich GmbH, JARA-Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen University, Aachen, Germany
| | - Axel Methner
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
19
|
Chen W, Yang X, Zhou Y, Ma Q, Wu X, Sha Y, Qian G. [Bax inhibitor-1 inhibits calcification of vascular smooth muscle cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1177-1182. [PMID: 34549708 DOI: 10.12122/j.issn.1673-4254.2021.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Bax inhibitor-1(BI-1)on calcification of vascular smooth muscle cells(VSMCs). METHODS VSMCs were isolated from the thoracic aorta of SD rats.VSMCs or BI-1-overexpressing VSMCs(transfected with a BI-1-overexpressing plasmid) were cultured in normal medium or calcified medium containing β-glycerophosphate and calcium chloride, and the cell calcification was examined with Alizarin red staining.Enzyme-linked immunosorbent assay was used to determine the intracellular calcium content and alkaline phosphatase activity.The expression levels of Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP-2) and caspase-3 were detected with Western blotting. RESULTS After 14 days of culture in the calcified medium, the VSMCs showed significantly reduced expression of BI-1 protein(P=0.001).BI-1 overexpression in the VSMCs caused a significant reduction of calcium level and alkaline phosphatase activities(P=0.0006) and lowered the expression levels of RUNX2 and BMP-2 (P=0.0001) in the cells.The VSMCs with induced calcification exhibited a significantly increased apoptosis rate, but BI-1 overexpression obviously inhibited VSMC apoptosis in the calcified medium (P=0.0003). CONCLUSION BI-1 may attenuate vascular calcification by inhibiting calcium deposition, osteogenic differentiation and apoptosis.
Collapse
Affiliation(s)
- W Chen
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China.,Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - X Yang
- Department of Cardiology, First Medical Center, General Hospital of PLA, Beijing 100853, China
| | - Y Zhou
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China
| | - Q Ma
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China
| | - X Wu
- Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - Y Sha
- Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - G Qian
- Department of Cardiology, First Medical Center, General Hospital of PLA, Beijing 100853, China
| |
Collapse
|
20
|
Zhao GN, Tian ZW, Tian T, Zhu ZP, Zhao WJ, Tian H, Cheng X, Hu FJ, Hu ML, Tian S, Ding T, Chen S, Ji YX, Zhang P, Zhang XJ, She ZG, Yuan Y, Chen W, Bai L, Li H. TMBIM1 is an inhibitor of adipogenesis and its depletion promotes adipocyte hyperplasia and improves obesity-related metabolic disease. Cell Metab 2021; 33:1640-1654.e8. [PMID: 34107313 DOI: 10.1016/j.cmet.2021.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
Obesity is characterized by the excessive accumulation of the white adipose tissue (WAT), but healthy expansion of WAT via adipocyte hyperplasia can offset the negative metabolic effects of obesity. Thus, identification of novel adipogenesis regulators that promote hyperplasia may lead to effective therapies for obesity-induced metabolic disorders. Using transcriptomic approaches, we identified transmembrane BAX inhibitor motif-containing 1 (TMBIM1) as an inhibitor of adipogenesis. Gain or loss of function of TMBIM1 in preadipocytes inhibited or promoted adipogenesis, respectively. In vivo, in response to caloric excess, adipocyte precursor (AP)-specific Tmbim1 knockout (KO) mice displayed WAT hyperplasia and improved systemic metabolic health, while overexpression of Tmbim1 in transgenic mice showed the opposite effects. Moreover, mature adipocyte-specific Tmbim1 KO did not affect WAT cellularity or nutrient homeostasis. Mechanistically, TMBIM1 binds to and promotes the autoubiquitination and degradation of NEDD4, which is an E3 ligase that stabilizes PPARγ. Our data show that TMBIM1 is a potent repressor of adipogenesis and a potential therapeutic target for obesity-related metabolic disease.
Collapse
Affiliation(s)
- Guang-Nian Zhao
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zheng-Wei Tian
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tian Tian
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Peng Zhu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Wen-Jie Zhao
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xu Cheng
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng-Jiao Hu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Man-Li Hu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ting Ding
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Siping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China.
| | - Wenping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Lan Bai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| |
Collapse
|
21
|
Chen K, Yang LN, Lai C, Liu D, Zhu LQ. Role of Grina/Nmdara1 in the Central Nervous System Diseases. Curr Neuropharmacol 2021; 18:861-867. [PMID: 32124700 PMCID: PMC7569322 DOI: 10.2174/1570159x18666200303104235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/11/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Glutamate receptor, ionotropic, N-methyl-D-aspartate associated protein 1 (GRINA) is a member of the NMDA receptors (NMDARs) and is involved in several neurological diseases, which governs the key processes of neuronal cell death or the release of neurotransmitters. Upregulation of GRINA has been reported in multiple diseases in human beings, such as major depressive disorder (MDD) and schizophrenia (SCZ), with which the underlying mechanisms remain elusive. In this review, we provide a general overview of the expression and physiological function of GRINA in the central nervous system (CNS) diseases, including stroke, depression, epilepsy, SCZ, and Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Liu Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Chuan Lai
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| |
Collapse
|
22
|
Song N, Yang M, Zhang H, Yang SK. Intracellular Calcium Homeostasis and Kidney Disease. Curr Med Chem 2021; 28:3647-3665. [PMID: 33138745 DOI: 10.2174/0929867327666201102114257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Kidney disease is a serious health problem that burdens our healthcare system. It is crucial to find the accurate pathogenesis of various types of kidney disease to provide guidance for precise therapies for patients suffering from these diseases. However, the exact molecular mechanisms underlying these diseases have not been fully understood. Disturbance of calcium homeostasis in renal cells plays a fundamental role in the development of various types of kidney disease, such as primary glomerular disease, diabetic nephropathy, acute kidney injury and polycystic kidney disease, through promoting cell proliferation, stimulating extracellular matrix accumulation, aggravating podocyte injury, disrupting cellular energetics as well as dysregulating cell survival and death dynamics. As a result, preventing the disturbance of calcium homeostasis in specific renal cells (such as tubular cells, podocytes and mesangial cells) is becoming one of the most promising therapeutic strategies in the treatment of kidney disease. The endoplasmic reticulum and mitochondria are two vital organelles in this process. Calcium ions cycle between the endoplasmic reticulum and mitochondria at the conjugation of these two organelles known as the mitochondria-associated endoplasmic reticulum membrane, maintaining calcium homeostasis. The pharmacologic modulation of cellular calcium homeostasis can be viewed as a novel therapeutic method for renal diseases. Here, we will introduce calcium homeostasis under physiological conditions and the disturbance of calcium homeostasis in kidney diseases. We will focus on the calcium homeostasis regulation in renal cells (including tubular cells, podocytes and mesangial cells), especially in the mitochondria- associated endoplasmic reticulum membranes of these renal cells.
Collapse
Affiliation(s)
- Na Song
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Shi-Kun Yang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
23
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
24
|
Pontisso I, Combettes L. Role of Sigma-1 Receptor in Calcium Modulation: Possible Involvement in Cancer. Genes (Basel) 2021; 12:139. [PMID: 33499031 PMCID: PMC7911422 DOI: 10.3390/genes12020139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.
Collapse
Affiliation(s)
- Ilaria Pontisso
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| | - Laurent Combettes
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
25
|
Structure and regulation of the BsYetJ calcium channel in lipid nanodiscs. Proc Natl Acad Sci U S A 2020; 117:30126-30134. [PMID: 33208533 DOI: 10.1073/pnas.2014094117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BsYetJ is a bacterial homolog of transmembrane BAX inhibitor-1 motif-containing 6 (TMBIM6) membrane protein that plays a key role in the control of calcium homeostasis. However, the BsYetJ (or TMBIM6) structure embedded in a lipid bilayer is uncharacterized, let alone the molecular mechanism of the calcium transport activity. Herein, we report structures of BsYetJ in lipid nanodiscs identified by double electron-electron resonance spectroscopy. Our results reveal that BsYetJ in lipid nanodiscs is structurally different from those crystallized in detergents. We show that BsYetJ conformation is pH-sensitive in apo state (lacking calcium), whereas in a calcium-containing solution it is stuck in an intermediate, inert to pH changes. Only when the transmembrane calcium gradient is established can the calcium-release activity of holo-BsYetJ occur and be mediated by pH-dependent conformational changes, suggesting a dual gating mechanism. Conformational substates involved in the process and a key residue D171 relevant to the gating of calcium are identified. Our study suggests that BsYetJ/TMBIM6 is a pH-dependent, voltage-gated calcium channel.
Collapse
|
26
|
|
27
|
Transmembrane BAX Inhibitor-1 Motif Containing Protein 5 (TMBIM5) Sustains Mitochondrial Structure, Shape, and Function by Impacting the Mitochondrial Protein Synthesis Machinery. Cells 2020; 9:cells9102147. [PMID: 32977469 PMCID: PMC7598220 DOI: 10.3390/cells9102147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson's disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.
Collapse
|
28
|
Transcriptomic Profiling of Ca2+ Transport Systems During the Formation of the Cerebral Cortex in Mice. Cells 2020; 9:cells9081800. [PMID: 32751129 PMCID: PMC7465657 DOI: 10.3390/cells9081800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels. At the end of neurogenesis (E17 and onward), a more numerous and diverse population of Ca2+ uptake systems was observed. In addition to the actors listed above, prominent Ca2+-conducting systems of the cortical wall emerged, including acid-sensing ion channel 1 (ASIC1), Orai2, P2X2, and GluN1. Altogether, this study provides a detailed view of the pattern of expression of the main actors participating in the import, export, and release of Ca2+. This work can serve as a framework for further functional and mechanistic studies on Ca2+ signaling during cerebral cortex formation.
Collapse
|
29
|
Wu L, Wang Q, Guo F, Ma X, Wang J, Zhao Y, Yan Y, Qin G. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol 2020; 236:1454-1468. [PMID: 32691413 DOI: 10.1002/jcp.29951] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is acknowledged as a serious chronic complication of diabetes mellitus. Nevertheless, its pathogenesis is complicated and unclear. Thus, in this study, the role of miR-27a-3p-prohibitin/TMBIM6 signaling axis in the progression of DN was elucidated. Type 2 diabetic db/db mice and high glucose (HG)-challenged HK-2 cells were used as in vivo and in vitro models. Our results showed that miR-27a-3p was upregulated and prohibitin or transmembrane BAX inhibitor motif containing 6 (TMBIM6) was downregulated in the kidney tissues of db/db mice and HG-treated HK-2 cells. Silencing miR-27a-3p enhanced the expression of prohibitin and TMBIM6 in the kidney tissues and HK-2 cells. Inhibition of miR-27a-3p improved functional injury, as evidenced by decreased blood glucose, urinary albumin, serum creatinine, and blood urea nitrogen levels. MiR-27a-3p silencing ameliorated renal fibrosis, reflected by reduced profibrogenic genes (e.g., transforming growth factor β1, fibronectin, collagen I and III, and α-smooth muscle actin). Furthermore, inhibition of miR-27a-3p relieved mitochondrial dysfunction in the kidney of db/db mice, including upregulation of mitochondrial membrane potential, complex I and III activities, adenosine triphosphate, and mitochondrial cytochrome C, as well as suppressing reactive oxygen species production. In addition, miR-27a-3p silencing attenuated endoplasmic reticulum (ER) stress, reflected by reduced expression of p-IRE1α, p-eIF2α, XBP1s, and CHOP. Mechanically, we identified prohibitin and TMBIM6 as direct targets of miR-27a-3p. Inhibition of miR-27a-3p protected HG-treated HK-2 cells from apoptosis, extracellular matrix accumulation, mitochondrial dysfunction, and ER stress by regulating prohibitin or TMBIM6. Taken together, we reveal that miR-27a-3p-prohibitin/TMBIM6 signaling axis regulates the progression of DN, which can be a potential therapeutic target.
Collapse
Affiliation(s)
- Lina Wu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingzhu Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yushan Yan
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Zhai X, Sterea AM, El Hiani Y. Lessons from the Endoplasmic Reticulum Ca 2+ Transporters-A Cancer Connection. Cells 2020; 9:E1536. [PMID: 32599788 PMCID: PMC7349521 DOI: 10.3390/cells9061536] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is an integral mediator of intracellular signaling, impacting almost every aspect of cellular life. The Ca2+-conducting transporters located on the endoplasmic reticulum (ER) membrane shoulder the responsibility of constructing the global Ca2+ signaling landscape. These transporters gate the ER Ca2+ release and uptake, sculpt signaling duration and intensity, and compose the Ca2+ signaling rhythm to accommodate a plethora of biological activities. In this review, we explore the mechanisms of activation and functional regulation of ER Ca2+ transporters in the establishment of Ca2+ homeostasis. We also contextualize the aberrant alterations of these transporters in carcinogenesis, presenting Ca2+-based therapeutic interventions as a means to tackle malignancies.
Collapse
Affiliation(s)
- Xingjian Zhai
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | | | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
31
|
Philippaert K, Roden M, Lisak D, Bueno D, Jelenik T, Radyushkin K, Schacht T, Mesuere M, Wüllner V, Herrmann AK, Baumgart J, Vennekens R, Methner A. Bax inhibitor-1 deficiency leads to obesity by increasing Ca 2+-dependent insulin secretion. J Mol Med (Berl) 2020; 98:849-862. [PMID: 32394396 PMCID: PMC7297831 DOI: 10.1007/s00109-020-01914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Abstract Transmembrane BAX inhibitor motif containing 6 (TMBIM6), also known as Bax inhibitor-1, is an evolutionarily conserved protein involved in endoplasmic reticulum (ER) function. TMBIM6 is an ER Ca2+ leak channel and its deficiency enhances susceptibility to ER stress due to inhibition of the ER stress sensor IRE1α. It was previously shown that TMBIM6 overexpression improves glucose metabolism and that TMBIM6 knockout mice develop obesity. We here examined the metabolic alterations underlying the obese phenotype and subjected TMBIM6 knockout mice to indirect calorimetry and euglycemic-hyperinsulinemic tests with stable isotope dilution to gauge tissue-specific insulin sensitivity. This demonstrated no changes in heat production, food intake, activity or hepatic and peripheral insulin sensitivity. TMBIM6 knockout mice, however, featured a higher glucose-stimulated insulin secretion in vivo as assessed by the hyperglycemic clamp test and hepatic steatosis. This coincided with profound changes in glucose-mediated Ca2+ regulation in isolated pancreatic β cells and increased levels of IRE1α levels but no differences in downstream effects of IRE1α like increased Xbp1 mRNA splicing or Ire1-dependent decay of insulin mRNA in the pancreas. We therefore conclude that lack of TMBIM6 does not affect insulin sensitivity but leads to hyperinsulinemia, which serves to explain the weight gain. TMBIM6-mediated metabolic alterations are mainly caused by its role as a Ca2+ release channel in the ER. Key messages TMBIM6−/− leads to obesity and hepatic steatosis. Food intake and energy expenditure are not changed in TMBIM6−/− mice. No changes in insulin resistance in TMBIM6−/− mice. Increased insulin secretion caused by altered calcium dynamics in β cells.
Collapse
Affiliation(s)
- Koenraad Philippaert
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany. .,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Dmitrij Lisak
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Diones Bueno
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Teresa Schacht
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Margot Mesuere
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Verena Wüllner
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ann-Kathrin Herrmann
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, The Johannes Gutenberg University, Mainz, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Axel Methner
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
32
|
Interstitial serum albumin empowers osteosarcoma cells with FAIM2 transcription to obtain viability via dedifferentiation. In Vitro Cell Dev Biol Anim 2020; 56:129-144. [PMID: 31942726 DOI: 10.1007/s11626-019-00421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
During hematogenous metastasis, cancer cells escape from primary lesions and enter into the circulatory system, and only a few can colonize distant organs. However, the mechanism of cell survival and metastasis in the hematopoietic environment remains unclear. Angiorrhea is the character of pathological neovascularization in malignant tumors and commonly detected in osteosarcoma (OS), a bone tumor that prefers circulatory metastasis. In the present study, we focused on the notable role of serum albumin, the highest content in blood plasma, on OS progression. Our results indicated that serum albumin might act as a barrier against exogenous cancer cells during hematogenous metastasis. OS cells with high metastatic potential could gradually obtain strong viability through dedifferentiation under the effect of serum albumin in the angiorrhea region. Further exploration showed that serum albumin could increase the intracellular calcium concentration by activating the voltage-dependent calcium channel Cav2.1 in OS cells to affect the cytoskeleton, sequentially leading to dedifferentiation. Dedifferentiated OS cells with increased FAS apoptosis inhibitory molecule 2 (FAIM2) expression would gradually acquire survival ability, whereas knockdown of FAIM2 caused apoptosis in serum albumin. Moreover, FAIM2 overexpression rescued the viability of OS cells with low metastatic potential in serum albumin. In clinical specimens, OS cells showed markedly stronger positive staining of FAIM2 in the angiorrhea area. Taken together, our findings indicate that serum albumin in the angiorrhea region is a critical substance during pulmonary metastasis of OS cells. Angiorrhea is a nonnegligible prognostic element and FAIM2 might serve as a promising therapeutic target.
Collapse
|
33
|
DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Res Cardiol 2020; 115:11. [PMID: 31919590 DOI: 10.1007/s00395-019-0773-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/27/2019] [Indexed: 01/24/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel inducer to promote mitochondrial apoptosis and suppress tumor growth in a variety of cells although its role in cardiovascular diseases remains obscure. This study was designed to examine the role of DNA-PKcs in cardiac ischemia reperfusion (IR) injury and mitochondrial damage. Cardiomyocyte-specific DNA-PKcs knockout (DNA-PKcsCKO) mice were subjected to IR prior to assessment of myocardial function and mitochondrial apoptosis. Our data revealed that IR challenge, hypoxia-reoxygenation (HR) or H2O2-activated DNA-PKcs through post-transcriptional phosphorylation in murine hearts or cardiomyocytes. Mice deficient in DNA-PKcs in cardiomyocytes were protected against cardiomyocyte death, infarct area expansion and cardiac dysfunction. DNA-PKcs ablation countered IR- or HR-induced oxidative stress, mPTP opening, mitochondrial fission, mitophagy failure and Bax-mediated mitochondrial apoptosis, possibly through suppression of Bax inhibitor-1 (BI-1) activity. A direct association between DNA-PKcs and BI-1 was noted where DNA-PKcs had little effect on BI-1 transcription but interacted with BI-1 to promote its degradation. Loss of DNA-PKcs stabilized BI-1, thus offering resistance of mitochondria and cardiomyocytes against IR insult. Moreover, DNA-PKcs ablation-induced beneficial cardioprotection against IR injury was mitigated by concurrent knockout of BI-1. Double deletion of DNA-PKcs and BI-1 failed to exert protection against global IR injury and mitochondrial damage, confirming a permissive role of BI-1 in DNA-PKcs deletion-elicited cardioprotection against IR injury. DNA-PKcs serves as a novel causative factor for mitochondrial damage via suppression of BI-1, en route to the onset and development of cardiac IR injury.
Collapse
|
34
|
Lebeaupin C, Blanc M, Vallée D, Keller H, Bailly-Maitre B. BAX inhibitor-1: between stress and survival. FEBS J 2020; 287:1722-1736. [PMID: 31841271 DOI: 10.1111/febs.15179] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Cellular gatekeepers are essential to maintain order within a cell and anticipate signals of stress to promote survival. BCL2 associated X, apoptosis regulator (BAX) inhibitor-1 (BI-1), also named transmembrane BAX inhibitor motif containing-6, is a highly conserved endoplasmic reticulum (ER) transmembrane protein. Originally identified as an inhibitor of BAX-induced apoptosis, its pro-survival properties have been expanded to include functions targeted against ER stress, calcium imbalance, reactive oxygen species accumulation, and metabolic dysregulation. Nevertheless, the structural biology and biochemical mechanism of action of BI-1 are still under debate. BI-1 has been implicated in several diseases, including chronic liver disease, diabetes, ischemia/reperfusion injury, neurodegeneration, and cancer. While most studies have demonstrated a beneficial role for BI-1 in the ubiquitous maintenance of cellular homeostasis, its expression in cancer cells seems most often to contribute to tumorigenesis and metastasis. Here, we summarize what is known about BI-1 and encourage future studies on BI-1's contribution to cellular life and death decisions to advocate its potential as a target for drug development and other therapeutic strategies.
Collapse
Affiliation(s)
- Cynthia Lebeaupin
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marina Blanc
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France
| | | | - Harald Keller
- INRA1355-CNRS7254, Université Côte d'Azur, Sophia Antipolis, France
| | | |
Collapse
|
35
|
Yu W, Zhang B, Song H, Zhan R, Li L, He C, Jiang Q, Wang X, Wei L, Zhao N, Guo W, Wang X. Preliminary investigation demonstrating the GHITM gene probably involved in apoptosis and growth of the golden apple snail (Pomacea canaliculata). BMC Genomics 2020; 21:19. [PMID: 31906861 PMCID: PMC6945724 DOI: 10.1186/s12864-019-6434-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Background Growth hormone inducible transmembrane protein (GHITM) is a highly conserved transmembrane protein. This study was conducted to investigate the role of GHITM gene in the apoptosis and growth of the golden apple snail Pomacea canaliculate. Results The complete cDNA of this gene was cloned using the rapid amplification of cDNA ends (RACE) method and subjected to bioinformatics analysis. The full-length cDNA was 2242 bp, including an open reading frame of 1021 bp that encoded a protein of 342 amino acid residues. The mRNA expression profiles of GHITM gene in different tissues (liver, kidney, gonad and foot) and different growth phases (6-months old and 2-years old) showed that it was expressed in various tissues and different growth phases. Silencing of the GHITM gene by RNAi (RNA interference) experiments revealed that the GHITM gene possibly plays a role in inhibiting apoptosis through detecting the Caspase (Cysteine-requiring Aspartate Protease)-3 activity. In addition, the aperture width and body whorl length of the snail was significantly affected by RNAi, suggesting that this gene plays a significant role in promoting the growth of the organism. Conclusions These results demonstrated that the GHITM gene was involved in apoptosis and growth in golden apple snail.
Collapse
Affiliation(s)
- Wenchao Yu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Baolu Zhang
- Oceanic Consultation Center, Ministry of Natural Resources of the People's Republic of China, Beijing, 100071, China
| | - Hongce Song
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Rui Zhan
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cheng He
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Qiuyun Jiang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Nannan Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5Yushan Road, Qingdao, 266003, Shandong, China
| | - Wen Guo
- Center for Mollusc Study and Development, Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
36
|
Hong CJ, Yeon J, Yeo BK, Woo H, An HK, Heo W, Kim K, Yu SW. Fas-apoptotic inhibitory molecule 2 localizes to the lysosome and facilitates autophagosome-lysosome fusion through the LC3 interaction region motif-dependent interaction with LC3. FASEB J 2020; 34:161-179. [PMID: 31914609 DOI: 10.1096/fj.201901626r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Fas-apoptotic inhibitory molecule 2 (FAIM2) is a member of the transmembrane BAX inhibitor motif-containing (TMBIM) family. TMBIM family is comprised of six anti-apoptotic proteins that suppress cell death by regulating endoplasmic reticulum Ca2+ homeostasis. Recent studies have implicated two TMBIM proteins, GRINA and BAX Inhibitor-1, in mediating cytoprotection via autophagy. However, whether FAIM2 plays a role in autophagy has been unknown. Here we show that FAIM2 localizes to the lysosomes at basal state and facilitates autophagy through interaction with microtubule-associated protein 1 light chain 3 proteins in human neuroblastoma SH-SY5Y cells. FAIM2 overexpression increased autophagy flux, while autophagy flux was impaired in shRNA-mediated knockdown (shFAIM2) cells, and the impairment was more evident in the presence of rapamycin. In shFAIM2 cells, autophagosome maturation through fusion with lysosomes was impaired, leading to accumulation of autophagosomes. A functional LC3-interacting region motif within FAIM2 was essential for the interaction with LC3 and rescue of autophagy flux in shFAIM2 cells while LC3-binding property of FAIM2 was dispensable for the anti-apoptotic function in response to Fas receptor-mediated apoptosis. Suppression of autophagosome maturation was also observed in a null mutant of Caenorhabditis elegans lacking xbx-6, the ortholog of FAIM2. Our study suggests that FAIM2 is a novel regulator of autophagy mediating autophagosome maturation through the interaction with LC3.
Collapse
Affiliation(s)
- Caroline Jeeyeon Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jihye Yeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Bo Kyoung Yeo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hanwoong Woo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Woojung Heo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
37
|
Wang J, Zhu P, Li R, Ren J, Zhang Y, Zhou H. Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics 2020; 10:384-397. [PMID: 31903127 PMCID: PMC6929616 DOI: 10.7150/thno.40098] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Bax inhibitor-1 (BI1) conveys anti-apoptotic signals for mitochondria while prohibitin 2 (PHB2) is implicated in sustaining mitochondrial morphology and function. However, their regulatory roles in acute kidney injury (AKI) are largely unknown. Methods: In human patients with AKI, levels of BI1 in urine and plasma were determined using ELISA. An experimental model of AKI was established using ATP depletion-mediated metabolic stress and ischemia-reperfusion injury (IRI) in primary tubule cells and BI1 transgenic mice, respectively. Western blots, ELISA, qPCR, immunofluorescence, RNA silencing, and domain deletion assay were employed to evaluate the roles of BI1 and PHB2 in the preservation of mitochondrial integrity. Results: Levels of BI1 in urine and plasma were decreased in patients with AKI and its expression correlated inversely with renal function. However, reconstitution of BI1 in a murine AKI model was capable of alleviating renal failure, inflammation and tubular death. Further molecular scrutiny revealed that BI1 preserved mitochondrial genetic integrity, reduced mitochondrial oxidative stress, promoted mitochondrial respiration, inhibited excessive mitochondrial fission, improved mitophagy and suppressed mitochondrial apoptosis. Intriguingly, levels of the mitochondria-localized PHB2 were sustained by BI1 and knockdown of PHB2 abolished the mitochondrial- and renal- protective properties of BI1. Furthermore, BI1 promoted PHB2 retention within mitochondria through direct interaction with cytoplasmic PHB2 to facilitate its mitochondrial import. This was confirmed by the observation that the C-terminus of BI1 and the PHB domain of PHB2 were required for the BI1-PHB2 cross-linking. Conclusion: Our data have unveiled an essential role of BI1 as a master regulator of renal tubule function through sustaining mitochondrial localization of PHB2, revealing novel therapeutic promises against AKI.
Collapse
|
38
|
Almeida N, Carrara G, Palmeira CM, Fernandes AS, Parsons M, Smith GL, Saraiva N. Stimulation of cell invasion by the Golgi Ion Channel GAAP/TMBIM4 via an H 2O 2-Dependent Mechanism. Redox Biol 2019; 28:101361. [PMID: 31693977 PMCID: PMC6838802 DOI: 10.1016/j.redox.2019.101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanisms by which the Golgi apparatus (GA) impacts on cell invasion are poorly understood. The human Golgi Anti-Apoptotic Protein (hGAAP, also known as TMBIM4) is a highly conserved Golgi cation channel that modulates intracellular Ca2+ fluxes. Human GAAP is expressed in all human tissues, is essential for cell viability and provides resistance against a range of apoptotic stresses. Furthermore, hGAAP enhances adhesion and cell migration by increasing the turnover of focal adhesions due to activation of store-operated Ca2+ entry. Here, we describe a GA-derived mechanism that controls cell invasion. The overexpression of hGAAP stimulates 3-dimensional proteolytic cell invasion by a mechanism that is dependent on the accumulation of intracellular hydrogen peroxide, which might be produced by the hGAAP-dependent stimulation of mitochondrial respiration. These findings provide new insight into the complex mechanisms by which Ca2+ and reactive oxygen species signaling contribute to cell invasion and to the role of the GA in these processes.
Collapse
Affiliation(s)
- Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London, SE1 1UL, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal.
| |
Collapse
|
39
|
Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell 2019; 178:1344-1361.e11. [PMID: 31474371 PMCID: PMC6736209 DOI: 10.1016/j.cell.2019.08.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 01/07/2023]
Abstract
Necrosis of infected macrophages constitutes a critical pathogenetic event in tuberculosis by releasing mycobacteria into the growth-permissive extracellular environment. In zebrafish infected with Mycobacterium marinum or Mycobacterium tuberculosis, excess tumor necrosis factor triggers programmed necrosis of infected macrophages through the production of mitochondrial reactive oxygen species (ROS) and the participation of cyclophilin D, a component of the mitochondrial permeability transition pore. Here, we show that this necrosis pathway is not mitochondrion-intrinsic but results from an inter-organellar circuit initiating and culminating in the mitochondrion. Mitochondrial ROS induce production of lysosomal ceramide that ultimately activates the cytosolic protein BAX. BAX promotes calcium flow from the endoplasmic reticulum into the mitochondrion through ryanodine receptors, and the resultant mitochondrial calcium overload triggers cyclophilin-D-mediated necrosis. We identify ryanodine receptors and plasma membrane L-type calcium channels as druggable targets to intercept mitochondrial calcium overload and necrosis of mycobacterium-infected zebrafish and human macrophages. TNF induces mitochondrial ROS to cause necrosis of mycobacterium-infected macrophages Mitochondrial ROS activate lysosomal enzymes that lead to BAX activation BAX activates ER ryanodine receptors to cause Ca2+ flow into the mitochondrion Drugs preventing mitochondrial Ca2+ overload prevent pathogenic macrophage necrosis in TB
Collapse
Affiliation(s)
- Francisco J Roca
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK.
| | - Laura J Whitworth
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Sarah Redmond
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Ana A Jones
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Jiménez-González V, Ogalla-García E, García-Quintanilla M, García-Quintanilla A. Deciphering GRINA/Lifeguard1: Nuclear Location, Ca 2+ Homeostasis and Vesicle Transport. Int J Mol Sci 2019; 20:ijms20164005. [PMID: 31426446 PMCID: PMC6719933 DOI: 10.3390/ijms20164005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023] Open
Abstract
The Glutamate Receptor Ionotropic NMDA-Associated Protein 1 (GRINA) belongs to the Lifeguard family and is involved in calcium homeostasis, which governs key processes, such as cell survival or the release of neurotransmitters. GRINA is mainly associated with membranes of the endoplasmic reticulum, Golgi, endosome, and the cell surface, but its presence in the nucleus has not been explained yet. Here we dissect, with the help of different software tools, the potential roles of GRINA in the cell and how they may be altered in diseases, such as schizophrenia or celiac disease. We describe for the first time that the cytoplasmic N-terminal half of GRINA (which spans a Proline-rich domain) contains a potential DNA-binding sequence, in addition to cleavage target sites and probable PY-nuclear localization sequences, that may enable it to be released from the rest of the protein and enter the nucleus under suitable conditions, where it could participate in the transcription, alternative splicing, and mRNA export of a subset of genes likely involved in lipid and sterol synthesis, ribosome biogenesis, or cell cycle progression. To support these findings, we include additional evidence based on an exhaustive review of the literature and our preliminary data of the protein–protein interaction network of GRINA.
Collapse
Affiliation(s)
| | - Elena Ogalla-García
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Meritxell García-Quintanilla
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Albert García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain.
| |
Collapse
|
41
|
Martyna B, Małgorzata MW, Nikola Z, Beniamin G, Urszula M, Grażyna J. Expression Profile of Genes Associated with the Proteins Degradation Pathways in Colorectal adenocarcinoma. Curr Pharm Biotechnol 2019; 20:551-561. [DOI: 10.2174/1389201020666190516090744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/01/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Background:Changes in expression of genes associated with proteins or organelles degradation system in the cell may be a cause or signal to carcinogenesis. Thus, the aim of this study was to assess the profile of gene expression linked to the degradation systems of proteins or organelles in histo-pathologically confirmed colorectal adenocarcinoma in relation to normal colon tissue.Methods:Using oligonucleotide microarrays and GeneSpring 13.0, and PANTHER 13.1 software’s we characterized 1095 mRNAs linked to the degradation system of proteins and organelles in sections of colorectal cancer from patients at various clinical stages of disease. Subsequent analyses with restrictive assumptions narrowed down the number of genes differentiating cancer, assuming a P-value of less than 0.05.Results:We found that most of the significant genes were silenced in the development of colorectal cancer. The FOXO1 had the lowest fold change value in the first clinical stage (CSI) comparing to the control. The HSPA8 was up-regulated in the two early clinical stages (CSI and CSII), and UBB only in the CSI. Only little-known PTPN22 showed increasing expression at all stages.Conclusion:In summary, the examined colorectal adenocarcinoma samples were characterized by almost complete silencing of the significant genes associated with the degradation of proteins and mitochondria in transcriptomic level. The FOXO1, HSPA8 and UBB genes may become potential diagnostic and/or therapeutic targets in the early stage of this cancer.
Collapse
Affiliation(s)
- Bednarczyk Martyna
- Department and Clinic of Internal Diseases, School of Public Health, Medical University of Silesia, Katowice, Poland
| | - Muc-Wierzgoń Małgorzata
- Department and Clinic of Internal Diseases, School of Public Health, Medical University of Silesia, Katowice, Poland
| | - Zmarzły Nikola
- Department of Molecular Biology, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Grabarek Beniamin
- Department of Molecular Biology, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Mazurek Urszula
- Department of Molecular Biology, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Janikowska Grażyna
- Department of Analytical Chemistry, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
42
|
Junjappa RP, Kim HK, Park SY, Bhattarai KR, Kim KW, Soh JW, Kim HR, Chae HJ. Expression of TMBIM6 in Cancers: The Involvement of Sp1 and PKC. Cancers (Basel) 2019; 11:cancers11070974. [PMID: 31336725 PMCID: PMC6678130 DOI: 10.3390/cancers11070974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
Transmembrane Bax Inhibitor Motif-containing 6 (TMBIM6) is upregulated in several cancer types and involved in the metastasis. Specific downregulation of TMBIM6 results in cancer cell death. However, the TMBIM6 gene transcriptional regulation in normal and cancer cells is least studied. Here, we identified the core promoter region (−133/+30 bp) sufficient for promoter activity of TMBIM6 gene. Reporter gene expression with mutations at transcription factor binding sites, EMSA, supershift, and ChIP assays demonstrated that Sp1 is an essential transcription factor for basal promoter activity of TMBIM6. The TMBIM6 mRNA expression was increased with Sp1 levels in a concentration dependent manner. Ablation of Sp1 through siRNA or inhibition with mithramycin-A reduced the TMBIM6 mRNA expression. We also found that the protein kinase-C activation stimulates promoter activity and endogenous TMBIM6 mRNA by 2- to 2.5-fold. Additionally, overexpression of active mutants of PKCι, PKCε, and PKCδ increased TMBIM6 expression by enhancing nuclear translocation of Sp1. Immunohistochemistry analyses confirmed that the expression levels of PKCι, Sp1, and TMBIM6 were correlated with one another in samples from human breast, prostate, and liver cancer patients. Altogether, this study suggests the involvement of Sp1 in basal transcription and PKC in the enhanced expression of TMBIM6 in cancer.
Collapse
Affiliation(s)
- Raghu Patil Junjappa
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Hyun-Kyoung Kim
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Seong Yeol Park
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration (RDA), Wanju-gun, Chonbuk 54875, Korea
| | - Jae-Won Soh
- Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54896, Korea.
| |
Collapse
|
43
|
Rice SJ, Tselepi M, Sorial AK, Aubourg G, Shepherd C, Almarza D, Skelton AJ, Pangou I, Deehan D, Reynard LN, Loughlin J. Prioritization of PLEC and GRINA as Osteoarthritis Risk Genes Through the Identification and Characterization of Novel Methylation Quantitative Trait Loci. Arthritis Rheumatol 2019; 71:1285-1296. [PMID: 30730609 PMCID: PMC6790675 DOI: 10.1002/art.40849] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To identify methylation quantitative trait loci (mQTLs) correlating with osteoarthritis (OA) risk alleles and to undertake mechanistic characterization as a means of target gene prioritization. METHODS We used genome-wide genotyping and cartilage DNA methylation array data in a discovery screen of novel OA risk loci. This was followed by methylation, gene expression analysis, and genotyping studies in additional cartilage samples, accompanied by in silico analyses. RESULTS We identified 4 novel OA mQTLs. The most significant mQTL contained 9 CpG sites where methylation correlated with OA risk genotype, with 5 of the CpG sites having P values <1 × 10-10 . The 9 CpG sites reside in an interval of only 7.7 kb within the PLEC gene and form 2 distinct clusters. We were able to prioritize PLEC and the adjacent gene GRINA as independent targets of the OA risk. We identified PLEC and GRINA expression QTLs operating in cartilage, as well as methylation-expression QTLs operating on the 2 genes. GRINA and PLEC also demonstrated differential expression between OA hip and non-OA hip cartilage. CONCLUSION PLEC encodes plectin, a cytoskeletal protein that maintains tissue integrity by regulating intracellular signaling in response to mechanical stimuli. GRINA encodes the ionotropic glutamate receptor TMBIM3 (transmembrane BAX inhibitor 1 motif-containing protein family member 3), which regulates cell survival. Based on our results, we hypothesize that in a joint predisposed to OA, expression of these genes alters in order to combat aberrant biomechanics, and that this is epigenetically regulated. However, carriage of the OA risk-conferring allele at this locus hinders this response and contributes to disease development.
Collapse
Affiliation(s)
- Sarah J Rice
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Tselepi
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Antony K Sorial
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Guillaume Aubourg
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Shepherd
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - David Almarza
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Skelton
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Ioanna Pangou
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | | | - Louise N Reynard
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - John Loughlin
- International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
44
|
Guo G, Xu M, Chang Y, Luyten T, Seitaj B, Liu W, Zhu P, Bultynck G, Shi L, Quick M, Liu Q. Ion and pH Sensitivity of a TMBIM Ca 2+ Channel. Structure 2019; 27:1013-1021.e3. [PMID: 30930064 PMCID: PMC6560632 DOI: 10.1016/j.str.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
The anti-apoptotic transmembrane Bax inhibitor motif (TMBIM) containing protein family regulates Ca2+ homeostasis, cell death, and the progression of diseases including cancers. The recent crystal structures of the TMBIM homolog BsYetJ reveal a conserved Asp171-Asp195 dyad that is proposed in regulating a pH-dependent Ca2+ translocation. Here we show that BsYetJ mediates Ca2+ fluxes in permeabilized mammalian cells, and its interaction with Ca2+ is sensitive to protons and other cations. We report crystal structures of BsYetJ in additional states, revealing the flexibility of the dyad in a closed state and a pore-opening mechanism. Functional studies show that the dyad is responsible for both Ca2+ affinity and pH dependence. Computational simulations suggest that protonation of Asp171 weakens its interaction with Arg60, leading to an open state. Our integrated analysis provides insights into the regulation of the BsYetJ Ca2+ channel that may inform understanding of human TMBIM proteins regarding their roles in cell death and diseases.
Collapse
Affiliation(s)
- Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Min Xu
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA
| | - Yanqi Chang
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Tomas Luyten
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Wu Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA.
| | - Matthias Quick
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
45
|
Čiháková D, Eaton WW, Talor MV, Harkus UH, Demyanovich H, Rodriguez K, Feldman S, Kelly DL. Gut permeability and mimicry of the Glutamate Ionotropic Receptor NMDA type Subunit Associated with protein 1 (GRINA) as potential mechanisms related to a subgroup of people with schizophrenia with elevated antigliadin antibodies (AGA IgG). Schizophr Res 2019; 208:414-419. [PMID: 30685393 PMCID: PMC11905772 DOI: 10.1016/j.schres.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
About one third of people with schizophrenia have elevated IgG antibodies to gliadin (AGA IgG) and increased inflammation. Understanding the mechanism by which this immune response occurs is critical to the development of personalized treatments. We examined gut permeability and mimicry to the glutamate receptor as possible mechanisms related to high gliadin antibodies (AGA IgG) seen in some people with schizophrenia. The Glutamate Ionotropic Receptor NMDA type Subunit Associated with protein 1 (GRINA) has a similar protein structure to gliadin representing a potential target for cross reactivity or mimicry. In a population of schizophrenia subjects (N = 160) and healthy controls (N = 80) we analyzed serum samples for both GRINA and Anti-Saccharomyces Cerevisiae antibodies (ASCA), related to gut permeability. Schizophrenia patients compared to controls had a higher prevalence of positivity to ASCA IgA (p = 0.004) and IgG (p < 0.001). Multinomial logistic regression showed an association between AGA IgG and ASCA IgG in schizophrenia (p = 0.05 for the estimated regression coefficient) but not in healthy controls (p = 0.13). GRINA IgG was higher in schizophrenia patients than in healthy controls (0.43 ± 0.30 vs. 0.22 ± 0.24, p < 0.001). Logistic regressions showed an association between AGA IgG and GRINA IgG in schizophrenia (p = 0.016 for the estimated regression coefficient) but not for the controls (p = 0.471). Thus, we propose that mimicry through the presence of cross-reactivity between gliadin and GRINA might disrupt the functions of the glutamate system and relate to illness pathophysiology in those with schizophrenia and elevated AGA IgG.
Collapse
Affiliation(s)
- Daniela Čiháková
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - William W Eaton
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Monica V Talor
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Uasim H Harkus
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Demyanovich
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States of America
| | - Katrina Rodriguez
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Stephanie Feldman
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States of America
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States of America.
| |
Collapse
|
46
|
Zhang J, Fu Y, Chen J, Li Q, Guo H, Yang B. Genetic variant of TMBIM1 is associated with the susceptibility of colorectal cancer in the Chinese population. Clin Res Hepatol Gastroenterol 2019; 43:324-329. [PMID: 30447906 DOI: 10.1016/j.clinre.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Recent meta-analysis of genome-wide association studies (GWASs) identified a novel variant rs992157 at 2q35 that was associated with colorectal cancer (CRC) in the population of European ancestry. We aimed to replicate the association of rs992157 with CRC in the Chinese population and to further determine the real susceptible gene of CRC as indicated by this variant. METHODS 824 CRC patients and 1063 healthy controls were included. The frequency of the genotype and the allele of rs992157 were compared between the patients and the controls and between different subgroups of patients classified by status of metastasis. Expression level of TMBIM1 was compared between the tumor tissue and the adjacent normal tissues collected from 43 patients during surgery. Besides, the relationship between genotypes of rs992157 and the tissue expression of TMBIM1 was analyzed. RESULTS Patients were found to have significantly higher frequency of allele G than the controls (44.2% vs. 40.0%, P = 0.009; OR = 1.18). Moreover, allele G was associated with an increased risk of lymph node metastasis (P = 0.02) and distant metastasis of CRC (P = 0.04). The mean expression level of TMBIM1 was significantly higher in tumor tissue than in the adjacent normal tissues (0.0019 ± 0.00068 vs. 0.00041 ± 0.00024, P < 0.001). In addition, patients with genotype GG were found to have remarkably higher TMBIM1 expression in the tumors than those with genotype AA (0.0024 ± 0.00052 vs. 0.0015 ± 0.00078, P = 0.005). CONCLUSION Variant rs992157 is significantly associated with the susceptibility and progression of CRC. It can increase the risk of CRC possibly via up-regulation of TMBIM1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Jiangsu Taizhou People's Hospital, Taizhou, PR China
| | - Yiwei Fu
- Department of Gastroenterology, Jiangsu Taizhou People's Hospital, Taizhou, PR China
| | - Jiebin Chen
- Department of Paediatrics, Jiangsu Taizhou People's Hospital, Taizhou, PR China
| | - Qianjun Li
- Department of Gastroenterology, Huai'an First People's Hospital of Nanjing Medical University, Huai'an, PR China
| | - Huimin Guo
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Bin Yang
- Department of Gastroenterology, Jiangsu Taizhou People's Hospital, Taizhou, PR China.
| |
Collapse
|
47
|
Xie S, Wang Y, Wei W, Li C, Liu Y, Qu J, Meng Q, Lin Y, Yin W, Yang Y, Luo C. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens. Curr Genet 2019; 65:1185-1197. [PMID: 30993412 DOI: 10.1007/s00294-019-00970-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 01/31/2023]
Abstract
Bax inhibitor-1 (BI-1), an evolutionarily conserved protein, is a suppressor of cell death induced by the proapoptotic protein Bax and is involved in the response to biotic and abiotic stress in animals, plants and yeast. Rice false smut caused by Ustilaginoidea virens is one of the destructive rice diseases worldwide. Although BI-1 proteins are widely distributed across filamentous fungi, few of them are functionally characterized. In this study, we identified a BI-1 protein in U. virens, UvBI-1, which contains a predicted Bax inhibitor-1-like family domain and could suppress the cell death induced by Bax. By co-transformation of the CRISPR/Cas9 construct along with donor DNA fragment containing the hygromycin resistance gene, we successfully generated Uvbi-1 deletion mutants. The UvBI-1 deletion showed an increase in mycelia vegetative growth and conidiation, suggesting this gene acts as a negative regulator of the growth and conidiation. In addition, the Uvbi-1 mutants exhibited higher sensitivity to osmotic and salt stress, hydrogen peroxide stress, and cell wall or membrane stress than the wild-type strain. Furthermore, UvBI-1 deletion was found to cause increased production of secondary metabolites and loss of pathogenicity of U. virens. Taken together, our results demonstrate that UvBI-1 plays a negative role in mycelial growth and conidiation, and is critical for stress tolerance, cell wall integrity, secondary metabolites production and pathogenicity of U. virens. Therefore, this study provides new evidence on the conserved function of BI-1 among fungal organisms and other species.
Collapse
Affiliation(s)
- Songlin Xie
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufu Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Wei
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chongyang Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Liu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsong Qu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianghong Meng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lin
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weixiao Yin
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaoxi Luo
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
48
|
Grina/TMBIM3 modulates voltage-gated Ca V2.2 Ca 2+ channels in a G-protein-like manner. Cell Calcium 2019; 80:71-78. [PMID: 30991297 DOI: 10.1016/j.ceca.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 11/21/2022]
Abstract
Grina/TMBIM3 is a poorly characterized transmembrane protein with a broad expression pattern in mammals and with a very ancient origin within eukaryotes. Although initially characterized as an NMDA-receptor associated subunit, there is increasing evidence that Grina/TMBIM3 is involved in the unfolded protein response and controls apoptosis via regulation of Ca2+ homeostasis. Here, we investigate a putative direct interaction of Grina/TMBIM3 with voltage gated Ca2+ channels, in particular with the CaV2.2 α1-subunit and describe its modulatory effects on the current through CaV2.2 N-type channels. Direct interaction was confirmed by co-immunoprecipitation studies and membrane localization was proven. Co-expression of Grina/TMBIM3 with CaV2.2 channels resulted in a significant decrease of the current amplitude and in a slowing of the kinetics of current activation. This effect was accompanied by a significant shift of the voltage dependencies of activation time constants towards more depolarized voltages. Application of a stimulus protocol including a strong depolarizing pulse relieved inhibition of current amplitude by Grina/TMBIM3. When Grina/TMBIM3 was present, inactivation by an action potential-like train of pulses was diminished. Both observations resemble mechanisms that are well-studied modulatory effects of G-protein βγ subunits on CaV2 channels. The impact of Grina/TMBIM3 and G-protein βγ subunits are rather comparable with respect to suppression of current amplitude and slowing of activation kinetics. Furthermore, both modulators had the same effect on current inactivation when evoked by an action potential-like train of pulses.
Collapse
|
49
|
Antunes S, Couto J, Ferrolho J, Sanches GS, Merino Charrez JO, De la Cruz Hernández N, Mazuz M, Villar M, Shkap V, de la Fuente J, Domingos A. Transcriptome and Proteome Response of Rhipicephalus annulatus Tick Vector to Babesia bigemina Infection. Front Physiol 2019; 10:318. [PMID: 31001128 PMCID: PMC6454348 DOI: 10.3389/fphys.2019.00318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
A system biology approach was used to gain insight into tick biology and interactions between vector and pathogen. Rhipicephalus annulatus is one of the main vectors of Babesia bigemina which has a massive impact on animal health. It is vital to obtain more information about this relationship, to better understand tick and pathogen biology, pathogen transmission dynamics, and new potential control approaches. In ticks, salivary glands (SGs) play a key role during pathogen infection and transmission. RNA sequencing obtained from uninfected and B. bigemina infected SGs obtained from fed female ticks resulted in 6823 and 6475 unigenes, respectively. From these, 360 unigenes were found to be differentially expressed (p < 0.05). Reversed phase liquid chromatography-mass spectrometry identified a total of 3679 tick proteins. Among them 406 were differently represented in response to Babesia infection. The omics data obtained suggested that Babesia infection lead to a reduction in the levels of mRNA and proteins (n = 237 transcripts, n = 212 proteins) when compared to uninfected controls. Integrated transcriptomics and proteomics datasets suggested a key role for stress response and apoptosis pathways in response to infection. Thus, six genes coding for GP80, death-associated protein kinase (DAPK-1), bax inhibitor-1 related (BI-1), heat shock protein (HSP), heat shock transcription factor (PHSTF), and queuine trna-ribosyltransferase (QtRibosyl) were selected and RNA interference (RNAi) performed. Gene silencing was obtained for all genes except phstf. Knockdown of gp80, dapk-1, and bi-1 led to a significant increase in Babesia infection levels while hsp and QtRibosyl knockdown resulted in a non-significant decrease of infection levels when compared to the respective controls. Gene knockdown did not affect tick survival, but engorged female weight and egg production were affected in the gp80, dapk-1, and QtRibosyl-silenced groups in comparison to controls. These results advanced our understanding of tick-Babesia molecular interactions, and suggested new tick antigens as putative targets for vaccination to control tick infestations and pathogen infection/transmission.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gustavo Seron Sanches
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Ned De la Cruz Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Varda Shkap
- Kimron Veterinary Institute, Bet Dagan, Israel
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
50
|
Identification of Zebrafish Calcium Toolkit Genes and their Expression in the Brain. Genes (Basel) 2019; 10:genes10030230. [PMID: 30889933 PMCID: PMC6471419 DOI: 10.3390/genes10030230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023] Open
Abstract
Zebrafish are well-suited for in vivo calcium imaging because of the transparency of their larvae and the ability to express calcium probes in various cell subtypes. This model organism has been used extensively to study brain development, neuronal function, and network activity. However, only a few studies have investigated calcium homeostasis and signaling in zebrafish neurons, and little is known about the proteins that are involved in these processes. Using bioinformatics analysis and available databases, the present study identified 491 genes of the zebrafish Calcium Toolkit (CaTK). Using RNA-sequencing, we then evaluated the expression of these genes in the adult zebrafish brain and found 380 hits that belonged to the CaTK. Based on quantitative real-time polymerase chain reaction arrays, we estimated the relative mRNA levels in the brain of CaTK genes at two developmental stages. In both 5 dpf larvae and adult zebrafish, the highest relative expression was observed for tmbim4, which encodes a Golgi membrane protein. The present data on CaTK genes will contribute to future applications of zebrafish as a model for in vivo and in vitro studies of Ca2+ signaling.
Collapse
|