1
|
Jiang T, Zeng Q, Wang J. Unlocking the secrets of Cardiac development and function: the critical role of FHL2. Mol Cell Biochem 2025; 480:2143-2157. [PMID: 39466483 DOI: 10.1007/s11010-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
FHL2 (Four-and-a-half LIM domain protein 2) is a crucial factor involved in cardiac morphogenesis, the process by which the heart develops its complex structure. It is expressed in various tissues during embryonic development, including the developing heart, and has been shown to play important roles in cell proliferation, differentiation, and migration. FHL2 interacts with multiple proteins to regulate cardiac development as a coactivator or a corepressor. It is involved in cardiac specification and determination of cell fate, cardiomyocyte growth, cardiac remodeling, myofibrillogenesis, and the regulation of HERG channels. Targeting FHL2 has therapeutic implications as it could improve cardiac function, control arrhythmias, alleviate heart failure, and maintain cardiac integrity in various pathological conditions. The identification of FHL2 as a signature gene in atrial fibrillation suggests its potential as a diagnostic marker and therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Clinical Laboratory, Hengyang Medical School, the Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Jing Wang
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- The First Clinical College, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
2
|
Gao R, Chen K, Wang Y, Guo R, Zhang X, Wu P, Wang W, Huang Q, Xie X, Yang S, Lv Y, Ren Q, Liu F, Chen S, Ma F, Cheng T, Cheng H. FHL2 deficiency aggravates Candida albicans infection through decreased myelopoiesis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:722-733. [PMID: 39815033 DOI: 10.1007/s11427-024-2645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/06/2024] [Indexed: 01/18/2025]
Abstract
Hematopoiesis is a finely tuned process that generates all blood cell types through self-renewal and differentiation, which is crucial for maintaining homeostasis. Acute infections can prompt a hematopoietic response known as emergency myelopoiesis. In this study, using a Candida albicans (C. albicans) infection model, we demonstrated for the first time that disruption of Fhl2 led to increased fungal burden, heightened inflammatory response and reduced survival rates. Impaired myeloid hematopoiesis and immune cell production were evident, as proved by the decreased numbers of hematopoietic stem and progenitor cells (HSPCs) and granulocytes in the bone marrow of Fhl2-deficient mice. In conclusion, FHL2 regulated emergency myelopoiesis in response to C. albicans, affecting the host's defense against pathogens.
Collapse
Affiliation(s)
- Rongmei Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Kanchao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Yimin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Qingxiang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Xuemei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China.
| |
Collapse
|
3
|
Kim JY, Vijayakumar KA, Cho GW. Exploring the impact of methylation aging on acute myeloid leukemia: Insights from the aging clock. Leuk Res 2025; 148:107620. [PMID: 39550906 DOI: 10.1016/j.leukres.2024.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Acute myeloid leukemia (AML) is more commonly diagnosed in adults. Though there are considerable knowledge about the relationship between adult leukemia and aging, it is rarely studies in children as the occurrence of the disease is rare. Additionally, adult and pediatric AML are known to have different etiology. Studies show that in adult AML, methylation aging is accelerated compared to healthy people. However, this association has not been extensively studied in pediatric AML. To investigate potential correlations between pediatric AML and aging, we analyzed methylation aging clock models that leverage DNA methylation patterns and predict epigenetic age. By established knowledge, we observed that the predicted epigenetic age in adult AML cases exceeds the actual chronological age. Similarly, we found that predicted epigenetic age in pediatric AML cases was also higher than chronological age. In addition, we observed significant changes in the CpG probes of the Epi clock, and these changes were observed to be extensive hypomethylation. Based on this, we found that the Epi clock can recognize changes specific to AML. These findings may have implications for strategies to address aging and quality of life after treatment in pediatric AML patients.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Biological Science, Chosun University, Gwangju 61452, South Korea
| | - Karthikeyan A Vijayakumar
- Department of Biological Science, Chosun University, Gwangju 61452, South Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, South Korea
| | - Gwang-Won Cho
- Department of Biological Science, Chosun University, Gwangju 61452, South Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, South Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, South Korea.
| |
Collapse
|
4
|
Pavel MA, Chen H, Hill M, Sridhar A, Barney M, DeSantiago J, Owais A, Sandu S, Darbar FA, Ornelas-Loredo A, Al-Azzam B, Chalazan B, Rehman J, Darbar D. A Titin Missense Variant Causes Atrial Fibrillation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.06.24318402. [PMID: 39677424 PMCID: PMC11643245 DOI: 10.1101/2024.12.06.24318402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Rare and common genetic variants contribute to the risk of atrial fibrillation (AF). Although ion channels were among the first AF candidate genes identified, rare loss-of-function variants in structural genes such as TTN have also been implicated in AF pathogenesis partly by the development of an atrial myopathy, but the underlying mechanisms are poorly understood. While TTN truncating variants (TTNtvs) have been causally linked to arrhythmia and cardiomyopathy syndromes, the role of missense variants (mvs) remains unclear. We report that rare TTNmvs are associated with adverse clinical outcomes in AF patients and we have identified a mechanism by which a TTNmv (T32756I) causes AF. Modeling the TTN-T32756I variant using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) revealed that the mutant cells display aberrant contractility, increased activity of a cardiac potassium channel (KCNQ1, Kv7.1), and dysregulated calcium homeostasis without compromising the sarcomeric integrity of the atrial cardiomyocytes. We also show that a titin-binding protein, the Four-and-a-Half Lim domains 2 (FHL2), has increased binding with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I-iPSC-aCMs, enhancing the slow delayed rectifier potassium current (I ks). Suppression of FHL2 in mutant iPSC-aCMs normalized the I ks, supporting FHL2 as an I ks modulator. Our findings demonstrate that a single amino acid change in titin not only affects function but also causes ion channel remodeling and AF. These findings emphasize the need for high-throughput screening to evaluate the pathogenicity of TTNmvs and establish a mechanistic link between titin, potassium ion channels, and sarcomeric proteins that may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Mahmud Arif Pavel
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Michael Hill
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Miles Barney
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jaime DeSantiago
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Asia Owais
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shashank Sandu
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Faisal A. Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Aylin Ornelas-Loredo
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Bahaa Al-Azzam
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Brandon Chalazan
- Division of Genetics, Genomics, and Metabolism, Department of Pediatrics, Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Pharmacology, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Liao YR, Tsai YC, Hsieh TH, Tsai MT, Lin FY, Lin SJ, Lin CC, Chiang HY, Chu PH, Li SY. FHL2 in arterial medial calcification in chronic kidney disease. Nephrol Dial Transplant 2024; 39:2025-2039. [PMID: 38664060 PMCID: PMC11596093 DOI: 10.1093/ndt/gfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into an osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS We employed transcriptomic analysis of human data and an animal reporter system to pinpoint four and a half LIM domains 2 (FHL2) as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation and chromatin immunoprecipitation experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2-null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS Among all the potential RUNX2 cofactors, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.
Collapse
MESH Headings
- Animals
- LIM-Homeodomain Proteins/metabolism
- LIM-Homeodomain Proteins/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/complications
- Humans
- Mice
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cells, Cultured
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/etiology
- Vascular Calcification/genetics
- Male
- Cell Transdifferentiation
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout
Collapse
Affiliation(s)
- Yuan-Ru Liao
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hou-Yu Chiang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Guang University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taiwan
| | - Szu-Yuan Li
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Yuan F, Han X, Huang M, Su Y, Zhang Y, Hu M, Yu X, Jin W, Li Y, Zhang L. The Human Milk-derived Peptide Drives Rapid Regulation of Macrophage Inflammation Responses in the Neonatal Intestine. Cell Mol Gastroenterol Hepatol 2024; 19:101420. [PMID: 39414025 PMCID: PMC11652890 DOI: 10.1016/j.jcmgh.2024.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND & AIMS The interactions between human milk and the regulation of innate immune homeostasis in newborns, and their impact on intestinal health, are not fully understood. This study aimed to explore the role of peptides in human milk extracellular vesicles (EVs) in this process. METHODS A comprehensive screening of peptides within human milk EVs was performed, leading to the identification of a beta-casein-derived peptide (CASB135-150). The effects of CASB135-150 on intestinal injury were evaluated in a rat necrotizing enterocolitis (NEC) model. Immunofluorescence analysis was used to determine its distribution, and its impact on NF-κB signaling and inflammation was studied in bone marrow-derived macrophages (BMDMs) and intestinal macrophages. Protein-protein interaction (PPI) analysis, single-cell RNA-seq (scRNA-seq), and co-immunoprecipitation (co-IP) experiments were conducted to explore the mechanism underlying CASB135-150 function. RESULTS CASB135-150 significantly mitigated intestinal injury in the rat NEC model. Immunofluorescence analysis revealed that CASB135-150 could target intestinal macrophages and rapidly inhibited NF-κB signaling and reduced inflammation. ScRNA-seq analyses indicated a strong association between FHL2 and NEC development, and co-IP confirmed the interaction between CASB135-150 and FHL2. CASB135-150 disrupted the FHL2/TRAF6 complex, reducing TRAF6 protein levels. Mutation of key amino acids in CASB135-150 disrupted its interaction with FHL2 and abolished its ability to inhibit NF-κB signaling, which also prevented its protective effect in vivo. RNA-seq of intestinal tissue further highlighted the impact of CASB135-150 on the NF-κB signaling pathway. CONCLUSIONS Our study identifies CASB135-150, a novel peptide in human milk EVs, that rapidly regulates macrophage inflammatory responses and protects against NEC-induced intestinal injury. These findings provide new insights into the role of human milk in modulating the infant immune system and intestinal health.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China; Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Xu Han
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinglin Su
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yiting Zhang
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Mengyuan Hu
- Department of Neonatology, Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiang Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weilai Jin
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China.
| | - Yun Li
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China.
| | - Le Zhang
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China; Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China.
| |
Collapse
|
7
|
Fujimoto Y, Nakazawa N. The roles of FHL2 as a mechanotransducer for cellular functions in the mechanical environment. Front Cell Dev Biol 2024; 12:1431690. [PMID: 39129787 PMCID: PMC11310055 DOI: 10.3389/fcell.2024.1431690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
The cell has multiple mechanisms for sensing and responding to dynamic changes in the mechanical environment. In the process, intracellular signaling is activated to modulate gene expression. Recent studies have shown that multifunctional signaling molecules that link intracellular force and gene expression are important for understanding cellular functions in the mechanical environment. This review discusses recent studies on one of the mechanotransducers, Four-and-a-half LIM domains 2 (FHL2), which localizes to focal adhesions (FAs), actin cytoskeleton, and nucleus. FHL2 localizes to FAs and the actin cytoskeleton in the cell on stiff substrate. In this situation, intracellular tension of F-actin by Myosin II is critical for FHL2 localization to FAs and actin stress fibers. In the case, a conserved phenylalanine in each LIM domain is responsible for its localization to F-actin. On the other hand, lower tension of F-actin in the cell on a soft substrate causes FHL2 to be released into the cytoplasm, resulting in its localization in the nucleus. At the molecular level, phosphorylation of specific tyrosine in FHL2 by FAK, non-receptor tyrosine kinase, is critical to nuclear localization. Finally, by binding to transcription factors, FHL2 modulates gene expression for cell proliferation as a transcriptional co-factor. Thus, FHL2 is involved in mechano-sensing and -transduction in the cell in a mechanical environment.
Collapse
Affiliation(s)
- Yukari Fujimoto
- Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Naotaka Nakazawa
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| |
Collapse
|
8
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Wang Y, Kuang Z, Xing X, Qiu Y, Zhang J, Shao D, Huang J, Dai C, He W. Proximal tubular FHL2, a novel downstream target of hypoxia inducible factor 1, is a protector against ischemic acute kidney injury. Cell Mol Life Sci 2024; 81:244. [PMID: 38814462 PMCID: PMC11139843 DOI: 10.1007/s00018-024-05289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or β-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and β-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and β-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, β-catenin, GSK-3β or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and β-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and β-catenin signaling through the interactions with its multiple protein partners.
Collapse
Affiliation(s)
- Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Ziwei Kuang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Xueqi Xing
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jie Zhang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Dandan Shao
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jiaxin Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
10
|
Li C, Warren DT, Zhou C, De Silva S, Wilson DGS, Garcia-Maya M, Wheeler MA, Meinke P, Sawyer G, Ehler E, Wehnert M, Rao L, Zhang Q, Shanahan CM. Nesprin-2 is a novel scaffold protein for telethonin and FHL-2 in the cardiomyocyte sarcomere. J Biol Chem 2024; 300:107254. [PMID: 38569934 PMCID: PMC11078644 DOI: 10.1016/j.jbc.2024.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.
Collapse
Affiliation(s)
- Chen Li
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK; Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Derek T Warren
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK; School of Pharmacy, University of East Anglia, Norwich, UK
| | - Can Zhou
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Shanelle De Silva
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Darren G S Wilson
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Mitla Garcia-Maya
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Matthew A Wheeler
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Munich, Germany
| | - Greta Sawyer
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Elisabeth Ehler
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald, Greifswald, Germany
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK.
| | - Catherine M Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK.
| |
Collapse
|
11
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
12
|
Sommer J, Ehnis H, Seitz T, Schneider J, Wild AB, Moceri S, Buechler C, Bozec A, Weber GF, Merkel S, Beckervordersandforth R, Steinkasserer A, Schüle R, Trebicka J, Hartmann A, Bosserhoff A, von Hörsten S, Dietrich P, Hellerbrand C. Four-and-a-Half LIM-Domain Protein 2 (FHL2) Induces Neuropeptide Y (NPY) in Macrophages in Visceral Adipose Tissue and Promotes Diet-Induced Obesity. Int J Mol Sci 2023; 24:14943. [PMID: 37834391 PMCID: PMC10573629 DOI: 10.3390/ijms241914943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is characterized by the expansion of the adipose tissue, usually accompanied by inflammation, with a prominent role of macrophages infiltrating the visceral adipose tissue (VAT). This chronic inflammation is a major driver of obesity-associated comorbidities. Four-and-a-half LIM-domain protein 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of various biological functions and the maintenance of the homeostasis of different tissues. In this study, we aimed to gain new insights into the expression and functional role of FHL2 in VAT in diet-induced obesity. We found enhanced FHL2 expression in the VAT of mice with Western-type diet (WTD)-induced obesity and obese humans and identified macrophages as the cellular source of enhanced FHL2 expression in VAT. In mice with FHL2 deficiency (FHL2KO), WTD feeding resulted in reduced body weight gain paralleled by enhanced energy expenditure and uncoupling protein 1 (UCP1) expression, indicative of activated thermogenesis. In human VAT, FHL2 was inversely correlated with UCP1 expression. Furthermore, macrophage infiltration and the expression of the chemokine MCP-1, a known promotor of macrophage accumulation, was significantly reduced in WTD-fed FHL2KO mice compared with wild-type (wt) littermates. While FHL2 depletion did not affect the differentiation or lipid metabolism of adipocytes in vitro, FHL2 depletion in macrophages resulted in reduced expressions of MCP-1 and the neuropeptide Y (NPY). Furthermore, WTD-fed FHL2KO mice showed reduced NPY expression in VAT compared with wt littermates, and NPY expression was enhanced in VAT resident macrophages of obese individuals. Stimulation with recombinant NPY induced not only UCP1 expression and lipid accumulation but also MCP-1 expression in adipocytes. Collectively, these findings indicate that FHL2 is a positive regulator of NPY and MCP-1 expression in macrophages and herewith closely linked to the mechanism of obesity-associated lipid accumulation and inflammation in VAT. Thus, FHL2 appears as a potential novel target to interfere with the macrophage-adipocyte crosstalk in VAT for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Judith Sommer
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Hanna Ehnis
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Julia Schneider
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Andreas B. Wild
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstr. 4, D-91052 Erlangen, Germany; (A.B.W.); (A.S.)
| | - Sandra Moceri
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, D-91054 Erlangen, Germany; (S.M.); (S.v.H.)
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany;
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstr. 6, D-91054 Erlangen, Germany;
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, D-91054 Erlangen, Germany; (G.F.W.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, D-91054 Erlangen, Germany; (G.F.W.)
| | - Ruth Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstr. 4, D-91052 Erlangen, Germany; (A.B.W.); (A.S.)
| | - Roland Schüle
- Center for Clinical Research, University of Freiburg Medical School, Breisacherstr. 66, D-79106 Freiburg, Germany;
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany;
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 8/10, D-91054 Erlangen, Germany;
| | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, D-91054 Erlangen, Germany; (S.M.); (S.v.H.)
| | - Peter Dietrich
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| |
Collapse
|
13
|
Tojo T, Yamaoka-Tojo M. Molecular Mechanisms Underlying the Progression of Aortic Valve Stenosis: Bioinformatic Analysis of Signal Pathways and Hub Genes. Int J Mol Sci 2023; 24:ijms24097964. [PMID: 37175670 PMCID: PMC10177913 DOI: 10.3390/ijms24097964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The calcification of the aortic valve causes increased leaflet stiffness and leads to the development and progression of stenotic aortic valve disease. However, the molecular and cellular mechanisms underlying stenotic calcification remain poorly understood. Herein, we examined the gene expression associated with valve calcification and the progression of calcific aortic valve stenosis. We downloaded two publicly available gene expression profiles (GSE83453 and GSE51472) from NCBI-Gene Expression Omnibus database for the combined analysis of samples from human aortic stenosis and normal aortic valve tissue. After identifying the differentially expressed genes (DEGs) using the GEO2R online tool, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We also analyzed the protein-protein interactions (PPIs) of the DEGs using the NetworkAnalyst online tool. We identified 4603 upregulated and 6272 downregulated DEGs, which were enriched in the positive regulation of cell adhesion, leukocyte-mediated immunity, response to hormones, cytokine signaling in the immune system, lymphocyte activation, and growth hormone receptor signaling. PPI network analysis identified 10 hub genes: VCAM1, FHL2, RUNX1, TNFSF10, PLAU, SPOCK1, CD74, SIPA1L2, TRIB1, and CXCL12. Through bioinformatic analysis, we identified potential biomarkers and therapeutic targets for aortic stenosis, providing a theoretical basis for future studies.
Collapse
Affiliation(s)
- Taiki Tojo
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Minako Yamaoka-Tojo
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| |
Collapse
|
14
|
Habibe JJ, Boulund U, Clemente-Olivo MP, de Vries CJM, Eringa EC, Nieuwdorp M, Ferwerda B, Zwinderman K, van den Born BJH, Galenkamp H, van Raalte DH. FHL2 Genetic Polymorphisms and Pro-Diabetogenic Lipid Profile in the Multiethnic HELIUS Cohort. Int J Mol Sci 2023; 24:4332. [PMID: 36901761 PMCID: PMC10001862 DOI: 10.3390/ijms24054332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a prevalent disease often accompanied by the occurrence of dyslipidemia. Four and a half LIM domains 2 (FHL2) is a scaffolding protein, whose involvement in metabolic disease has recently been demonstrated. The association of human FHL2 with T2D and dyslipidemia in a multiethnic setting is unknown. Therefore, we used the large multiethnic Amsterdam-based Healthy Life in an Urban Setting (HELIUS) cohort to investigate FHL2 genetic loci and their potential role in T2D and dyslipidemia. Baseline data of 10,056 participants from the HELIUS study were available for analysis. The HELIUS study contained individuals of European Dutch, South Asian Surinamese, African Surinamese, Ghanaian, Turkish, and Moroccan descent living in Amsterdam and were randomly sampled from the municipality register. Nineteen FHL2 polymorphisms were genotyped, and associations with lipid panels and T2D status were investigated. We observed that seven FHL2 polymorphisms associated nominally with a pro-diabetogenic lipid profile including triglyceride (TG), high-density and low-density lipoprotein-cholesterol (HDL-C and LDL-C), and total cholesterol (TC) concentrations, but not with blood glucose concentrations or T2D status in the complete HELIUS cohort upon correcting for age, gender, BMI, and ancestry. Upon stratifying for ethnicity, we observed that only two of the nominally significant associations passed multiple testing adjustments, namely, the association of rs4640402 with increased TG and rs880427 with decreased HDL-C concentrations in the Ghanaian population. Our results highlight the effect of ethnicity on pro-diabetogenic selected lipid biomarkers within the HELIUS cohort, as well as the need for more large multiethnic cohort studies.
Collapse
Affiliation(s)
- Jayron J. Habibe
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Ulrika Boulund
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Maria P. Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Carlie J. M. de Vries
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Etto C. Eringa
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Institute Maastricht, 6229 ER Maastricht, The Netherlands
| | - Max Nieuwdorp
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Koos Zwinderman
- Department of Clinical Epidemiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bert-Jan H. van den Born
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Daniel H. van Raalte
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
15
|
Stathopoulou K, Schnittger J, Raabe J, Fleischer F, Mangels N, Piasecki A, Findlay J, Hartmann K, Krasemann S, Schlossarek S, Uebeler J, Wixler V, Blake DJ, Baillie GS, Carrier L, Ehler E, Cuello F. CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS J 2022; 289:4622-4645. [PMID: 35176204 DOI: 10.1111/febs.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is an anti-hypertrophic adaptor protein that regulates cardiac myocyte signalling and function. Herein, we identified cardiomyopathy-associated 5 (CMYA5) as a novel FHL2 interaction partner in cardiac myocytes. In vitro pull-down assays demonstrated interaction between FHL2 and the N- and C-terminal regions of CMYA5. The interaction was verified in adult cardiac myocytes by proximity ligation assays. Immunofluorescence and confocal microscopy demonstrated co-localisation in the same subcellular compartment. The binding interface between FHL2 and CMYA5 was mapped by peptide arrays. Exposure of neonatal rat ventricular myocytes to a CMYA5 peptide covering one of the FHL2 interaction sites led to an increase in cell area at baseline, but a blunted response to chronic phenylephrine treatment. In contrast to wild-type hearts, loss or reduced FHL2 expression in Fhl2-targeted knockout mouse hearts or in a humanised mouse model of hypertrophic cardiomyopathy led to redistribution of CMYA5 into the perinuclear and intercalated disc region. Taken together, our results indicate a direct interaction of the two adaptor proteins FHL2 and CMYA5 in cardiac myocytes, which might impact subcellular compartmentation of CMYA5.
Collapse
Affiliation(s)
- Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Josef Schnittger
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Frederic Fleischer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Nils Mangels
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Jane Findlay
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - June Uebeler
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Viktor Wixler
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation, Westfaelische Wilhelms-University, Germany
| | - Derek J Blake
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Elisabeth Ehler
- School of Cardiovascular Medicine and Sciences, BHF Research Excellence Centre, King's College London, UK.,Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), King's College London, UK
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
16
|
Gu W, Madrid DMC, Joyce S, Driver JP. A single-cell analysis of thymopoiesis and thymic iNKT cell development in pigs. Cell Rep 2022; 40:111050. [PMID: 35793622 PMCID: PMC9704770 DOI: 10.1016/j.celrep.2022.111050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many aspects of the porcine immune system remain poorly characterized, which poses a barrier to improving swine health and utilizing pigs as preclinical models. Here, we employ single-cell RNA sequencing (scRNA-seq) to create a cell atlas of the early-adolescent pig thymus. Our data show conserved features as well as species-specific differences in cell states and cell types compared with human thymocytes. We also describe several unconventional T cell types with gene expression profiles associated with innate effector functions. This includes a cell census of more than 11,000 differentiating invariant natural killer T (iNKT) cells, which reveals that the functional diversity of pig iNKT cells differs substantially from the iNKT0/1/2/17 subset differentiation paradigm established in mice. Our data characterize key differentiation events in porcine thymopoiesis and iNKT cell maturation and provide important insights into pig T cell development.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Sebastian Joyce
- Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institution for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
18
|
Hu L, Ding M, He W. Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/β-Catenin Signaling. Front Pharmacol 2022; 12:830340. [PMID: 35082683 PMCID: PMC8784548 DOI: 10.3389/fphar.2021.830340] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a process in which differentiated epithelial cells undergo phenotypic transformation into myofibroblasts capable of producing extracellular matrix, and is generally regarded as an integral part of fibrogenesis after tissue injury. Although there is evidence that the complete EMT of tubular epithelial cells (TECs) is not a major contributor to interstitial myofibroblasts in kidney fibrosis, the partial EMT, a status that damaged TECs remain inside tubules, and co-express both epithelial and mesenchymal markers, has been demonstrated to be a crucial stage for intensifying fibrogenesis in the interstitium. The process of tubular EMT is governed by multiple intracellular pathways, among which Wnt/β-catenin signaling is considered to be essential mainly because it controls the transcriptome associated with EMT, making it a potential therapeutic target against kidney fibrosis. A growing body of data suggest that reducing the hyperactivity of Wnt/β-catenin by natural compounds, specific inhibitors, or manipulation of genes expression attenuates tubular EMT, and interstitial fibrogenesis in the TECs cultured under profibrotic environments and in animal models of kidney fibrosis. These emerging therapeutic strategies in basic researches may provide beneficial ideas for clinical prevention and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lichao Hu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ding
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Sex-dependent deterioration of cardiac function and molecular alterations in age- and disease-associated RAGE overexpression. Mech Ageing Dev 2022; 203:111635. [DOI: 10.1016/j.mad.2022.111635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
|
20
|
Habibe JJ, Clemente-Olivo MP, de Vries CJ. How (Epi)Genetic Regulation of the LIM-Domain Protein FHL2 Impacts Multifactorial Disease. Cells 2021; 10:2611. [PMID: 34685595 PMCID: PMC8534169 DOI: 10.3390/cells10102611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
Susceptibility to complex pathological conditions such as obesity, type 2 diabetes and cardiovascular disease is highly variable among individuals and arises from specific changes in gene expression in combination with external factors. The regulation of gene expression is determined by genetic variation (SNPs) and epigenetic marks that are influenced by environmental factors. Aging is a major risk factor for many multifactorial diseases and is increasingly associated with changes in DNA methylation, leading to differences in gene expression. Four and a half LIM domains 2 (FHL2) is a key regulator of intracellular signal transduction pathways and the FHL2 gene is consistently found as one of the top hyper-methylated genes upon aging. Remarkably, FHL2 expression increases with methylation. This was demonstrated in relevant metabolic tissues: white adipose tissue, pancreatic β-cells, and skeletal muscle. In this review, we provide an overview of the current knowledge on regulation of FHL2 by genetic variation and epigenetic DNA modification, and the potential consequences for age-related complex multifactorial diseases.
Collapse
Affiliation(s)
- Jayron J. Habibe
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 AZ Amsterdam, The Netherlands; (J.J.H.); (M.P.C.-O.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Maria P. Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 AZ Amsterdam, The Netherlands; (J.J.H.); (M.P.C.-O.)
| | - Carlie J. de Vries
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 AZ Amsterdam, The Netherlands; (J.J.H.); (M.P.C.-O.)
| |
Collapse
|
21
|
Xie Z, Xu Y, Wei X, An G, Hao M, Yu Z, Qiu L. Four and a Half LIM Domains Protein 2 Mediates Bortezomib-Induced Osteogenic Differentiation of Mesenchymal Stem Cells in Multiple Myeloma Through p53 Signaling and β-Catenin Nuclear Enrichment. Front Oncol 2021; 11:729799. [PMID: 34589431 PMCID: PMC8473907 DOI: 10.3389/fonc.2021.729799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Myeloma bone disease (MBD), caused by the inhibition of osteoblast activity and the activation of osteoclast in the bone marrow environment, is the most frequent and life-threatening complication in multiple myeloma (MM) patients. Bortezomib (Bzb) was shown to promote MM-derived mesenchymal stem cells (MM-MSCs) differentiation to osteoblast in vitro and in animal models, promoting the bone formation and regeneration, may be mediated via β-catenin/T-cell factor (TCF) pathway. Further defining molecular mechanism of Bzb-enhanced bone formation in MM will be beneficial for the treatment of myeloma patients. The present study has identified for the first time four and a half LIM domains protein 2 (FHL2), a tissue-specific coregulator that interacts with many osteogenic marker molecules, as a therapeutic target to ameliorate MM bone disease. First, increased messenger RNA (mRNA) and protein levels of FHL2, and the mRNA level of main osteoblast markers (including Runx2, ALP, and Col1A1), were found in MM-patients-derived MSCs after Bzb treatment. FHL2 KD with short hairpin RNA (shRNA) reduced the expression of osteoblast marker genes and blocked the osteogenic differentiation of MM-MSCs regardless of the presence or absence of Bzb, implying that FHL2 is an important activator of the osteogenic differentiation of human MSCs under a proteasome inhibition condition. Molecular analysis showed that the enhanced expression of FHL2 was associated with the Bzb-induced upregulation of p53. No significant change at protein level of total β-catenin was observed with or without Bzb treatment. However, it was mostly enriched to nuclei in MSCs after Bzb treatment. Moreover, β-catenin was restricted to the perinuclear region in FHL2 KD cells. These data provide evidence that FHL2 is essential for promoting β-catenin nuclear enrichment in MM-MSCs. In conclusion, FHL2 is critical for Bzb-induced osteoblast differentiation of MM-MSCs and promotes the osteogenesis, through p53 signaling and β-catenin activation. Targeting FHL2 in MM may provide a new therapeutic strategy for treating MBD.
Collapse
Affiliation(s)
- Zhenqing Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
22
|
Mathis CL, Barrios AM. Histidine phosphorylation in metalloprotein binding sites. J Inorg Biochem 2021; 225:111606. [PMID: 34555600 DOI: 10.1016/j.jinorgbio.2021.111606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) are invaluable regulatory tools for the control of catalytic functionality, protein-protein interactions, and signaling pathways. Historically, the study of phosphorylation as a PTM has been focused on serine, threonine, and tyrosine residues. In contrast, the significance of mammalian histidine phosphorylation remains largely unexplored. This gap in knowledge regarding the molecular basis for histidine phosphorylation as a regulatory agent exists in part because of the relative instability of phosphorylated histidine as compared with phosphorylated serine, threonine and tyrosine. However, the unique metal binding abilities of histidine make it one of the most common metal coordinating ligands in nature, and it is interesting to consider how phosphorylation would change the metal coordinating ability of histidine, and consequently, the properties of the phosphorylated metalloprotein. In this review, we examine eleven metalloproteins that have been shown to undergo reversible histidine phosphorylation at or near their metal binding sites. These proteins are described with respect to their biological activity and structure, with a particular emphasis on how phosphohistidine may tune the primary coordination sphere and protein conformation. Furthermore, several common methods, challenges, and limitations of studying sensitive, high affinity metalloproteins are discussed.
Collapse
Affiliation(s)
- Cheryl L Mathis
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Amy M Barrios
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
23
|
Wang F, Zhao J, Zhang M, Yang J, Zeng G. Genome-wide analysis of the mouse LIM gene family reveals its roles in regulating pathological cardiac hypertrophy. FEBS Lett 2021; 595:2271-2289. [PMID: 34328660 DOI: 10.1002/1873-3468.14168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/27/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022]
Abstract
LIM-domain proteins have been shown to be associated with heart development and diseases. Systematic studies of LIM family members at the genome-wide level, which are crucial to further understand their functions in cardiac hypertrophy, are currently lacking. Here, 70 LIM genes were identified and characterised in mice. The expression patterns of LIM genes differ greatly during cardiac development and in the case of hypertrophy. Both Crip2 and Xirp2 are differentially expressed in cardiac hypertrophy and during heart failure. In addition, the hypertrophic state of cardiomyocytes is controlled by the relative expression levels of Crip2 and Xirp2. This study provides a foundation for further understanding of the special roles of LIM proteins in mammalian cardiac development and hypertrophy.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jieqiong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jingxiao Yang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangwei Zeng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
- Department of Cardiology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Basu H, Pekkurnaz G, Falk J, Wei W, Chin M, Steen J, Schwarz TL. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J Cell Biol 2021; 220:212527. [PMID: 34342639 PMCID: PMC8340551 DOI: 10.1083/jcb.201912077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.
Collapse
Affiliation(s)
- Himanish Basu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Gulcin Pekkurnaz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Jill Falk
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Wei Wei
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Morven Chin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Judith Steen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Clemente-Olivo MP, Habibe JJ, Vos M, Ottenhoff R, Jongejan A, Herrema H, Zelcer N, Kooijman S, Rensen PCN, van Raalte DH, Nieuwdorp M, Eringa EC, de Vries CJ. Four-and-a-half LIM domain protein 2 (FHL2) deficiency protects mice from diet-induced obesity and high FHL2 expression marks human obesity. Metabolism 2021; 121:154815. [PMID: 34119536 DOI: 10.1016/j.metabol.2021.154815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Four-and-a-Half-LIM-domain-protein 2 (FHL2) modulates multiple signal transduction pathways but has not been implicated in obesity or energy metabolism. In humans, methylation and expression of the FHL2 gene increases with age, and high FHL2 expression is associated with increased body weight in humans and mice. This led us to hypothesize that FHL2 is a determinant of diet-induced obesity. METHODS FHL2-deficient (FHL2-/-) and wild type male mice were fed a high-fat diet. Metabolic phenotyping of these mice, as well as transcriptional analysis of key metabolic tissues was performed. Correlation of the expression of FHL2 and relevant genes was assessed in datasets from white adipose tissue of individuals with and without obesity. RESULTS FHL2 Deficiency protects mice from high-fat diet-induced weight gain, whereas glucose handling is normal. We observed enhanced energy expenditure, which may be explained by a combination of changes in multiple tissues; mild activation of brown adipose tissue with increased fatty acid uptake, increased cardiac glucose uptake and browning of white adipose tissue. Corroborating our findings in mice, expression of FHL2 in human white adipose tissue positively correlates with obesity and negatively with expression of browning-associated genes. CONCLUSION Our results position FHL2 as a novel regulator of obesity and energy expenditure in mice and human. Given that FHL2 expression increases during aging, we now show that low FHL2 expression associates with a healthy metabolic state.
Collapse
Affiliation(s)
- Maria P Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Jayron J Habibe
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, location VUmc, Amsterdam, the Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniël H van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, location VUmc, Amsterdam, the Netherlands
| | - Carlie J de Vries
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
26
|
Algaber A, Madhi R, Hawez A, Rönnow CF, Rahman M. Targeting FHL2-E-cadherin axis by miR-340-5p attenuates colon cancer cell migration and invasion. Oncol Lett 2021; 22:637. [PMID: 34295384 PMCID: PMC8273858 DOI: 10.3892/ol.2021.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Convincing data has suggested that four and a half LIM domain 2 protein (FHL2) serves a key function in cancer cell metastasis and that microRNA (miR)-340-5p can regulate cancer cell migration. The current study hypothesized that targeting FHL2 expression by miR-340-5p in colon cancer may attenuate colon cancer cell migration and invasion. FHL2 expression was therefore assessed in colon cancer microarray datasets using Qlucore omics explorer as well as in HT-29 and AZ-97 colon cancer cell lines via reverse transcription-quantitative PCR (RT-qPCR). Colon cancer cell migration and invasion were evaluated in the presence of miR-340-5p mimic, mimic control or mimic with a target site blocker. Confocal microscopy and RT-qPCR were subsequently performed to assess FHL2, E-cadherin (E-cad) protein and mRNA expression in colon cancer cells. Microarray dataset analysis revealed that FHL2 expression was lower in primary colon cancer cells compared with normal colonic mucosa. It was revealed that the expression of miR-340-5p and FHL2 were inversely related in serum-grown and low-serum conditions in HT-29 and AZ-97 cells. Short-time serum exposure to low-serum grown cells induced FHL2 expression. Transfection of HT-29 cells with miR-340-5p mimic not only decreased serum-induced expression of FHL2 but also decreased cancer cell migration and invasion. Bioinformatics analysis revealed that FHL2 mRNA had one putative binding site for miR-340-5p at the 3-untranslated region. Blocking of the target site using a specific blocker reverted miR-340-5p mimic-induced inhibition of FHL2 expression and cancer cell migration and invasion. Confocal microscopy confirmed that the reduction of FHL2 expression by miR-340-5p mimic also reversed serum-induced E-cad disruption and that the target site blocker abrogated the effect of miR-340-5p. The current results suggested that miR-340-5p could be used to antagonize colon cancer cell metastasis by targeting the FHL2-E-cad axis.
Collapse
Affiliation(s)
- Anwar Algaber
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden
| | - Raed Madhi
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden.,Department of Biology, College of Science, University of Misan, Maysan 62001, Iraq
| | - Avin Hawez
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden
| | - Carl-Fredrik Rönnow
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden
| |
Collapse
|
27
|
Verma M, Michalec L, Sripada A, McKay J, Sirohi K, Verma D, Sheth D, Martin R, Dyjack N, Seibold MA, Knapp JR, Tu TH, O'Connor BP, Gorska MM, Alam R. The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma. J Exp Med 2021; 218:212204. [PMID: 34076685 PMCID: PMC8176441 DOI: 10.1084/jem.20201354] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Repetitive exposure of Rag1−/− mice to the Alternaria allergen extract generated a form of memory that elicited an asthma-like response upon a subthreshold recall challenge 3–15 wk later. This memory was associated with lung ICOS+ST2+ ILC2s. Genetic, pharmacologic, and antibody-mediated inhibition and adoptive transfer established an essential role for ILC2s in memory-driven asthma. ATAC-seq demonstrated a distinct epigenetic landscape of memory ILC2s and identified Bach2 and AP1 (JunD and Fosl2) motifs as major drivers of altered gene accessibility. scRNA-seq, gene knockout, and signaling studies suggest that repetitive allergenic stress induces a gene repression program involving Nr4a2, Zeb1, Bach2, and JunD and a preparedness program involving Fhl2, FosB, Stat6, Srebf2, and MPP7 in memory ILC2s. A mutually regulated balance between these two programs establishes and maintains memory. The preparedness program (e.g., Fhl2) can be activated with a subthreshold cognate stimulation, which down-regulates repressors and activates effector pathways to elicit the memory-driven phenotype.
Collapse
Affiliation(s)
- Mukesh Verma
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Lidia Michalec
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Anand Sripada
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Jerome McKay
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Kapil Sirohi
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Divya Verma
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Dipa Sheth
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO
| | - Richard Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO.,Department of Pediatrics, National Jewish Health, Denver, CO
| | - Nathan Dyjack
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Max A Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO.,Department of Pediatrics, National Jewish Health, Denver, CO
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Ting-Hui Tu
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Brian P O'Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Magdalena M Gorska
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO.,School of Medicine, University of Colorado Denver, Denver, CO
| | - Rafeul Alam
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO.,School of Medicine, University of Colorado Denver, Denver, CO
| |
Collapse
|
28
|
Baranek T, Lebrigand K, de Amat Herbozo C, Gonzalez L, Bogard G, Dietrich C, Magnone V, Boisseau C, Jouan Y, Trottein F, Si-Tahar M, Leite-de-Moraes M, Mallevaey T, Paget C. High Dimensional Single-Cell Analysis Reveals iNKT Cell Developmental Trajectories and Effector Fate Decision. Cell Rep 2021; 32:108116. [PMID: 32905761 DOI: 10.1016/j.celrep.2020.108116] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
CD1d-restricted invariant Natural Killer T (iNKT) cells represent a unique class of T lymphocytes endowed with potent regulatory and effector immune functions. Although these functions are acquired during thymic ontogeny, the sequence of events that gives rise to discrete effector subsets remains unclear. Using an unbiased single-cell transcriptomic analysis combined with functional assays, we reveal an unappreciated diversity among thymic iNKT cells, especially among iNKT1 cells. Mathematical modeling and biological methods unravel a developmental map whereby iNKT2 cells constitute a transient branching point toward the generation of iNKT1 and iNKT17 cells, which reconciles the two previously proposed models. In addition, we identify the transcription co-factor Four-and-a-half LIM domains protein 2 (FHL2) as a critical cell-intrinsic regulator of iNKT1 specification. Thus, these data illustrate the changing transcriptional network that guides iNKT cell effector fate.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France.
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | | | - Loïc Gonzalez
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Gemma Bogard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Céline Dietrich
- Université de Paris, Paris, France; Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| | | | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France; Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Maria Leite-de-Moraes
- Université de Paris, Paris, France; Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomaterials & Biomedical Engineering, Toronto, ON M5S 1A8, Canada
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France.
| |
Collapse
|
29
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
30
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
31
|
Wan Y, Cheng Y, Liu Y, Shen L, Hou J. Screening and identification of a novel FHL2 mutation by whole exome sequencing in twins with familial Waldenström macroglobulinemia. Cancer 2021; 127:2039-2048. [PMID: 33764527 DOI: 10.1002/cncr.33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Waldenström macroglobulinemia (WM) is a rare chronic B-cell lymphoma. Familial clustering of WM has been observed over the years. However, little is known about the contribution of inherited genetic variants to familial WM cases. METHODS The authors performed whole exome sequencing (WES) of germline DNA samples from twins, one diagnosed with WM and the other diagnosed with immunoglobulin M monoclonal gammopathy of undetermined significance, and their healthy siblings. Bioinformatics analysis of public biological databases was used to identify the most relevant familial WM candidate from WES. Transcript expression and protein levels of the familial WM candidate were evaluated in the WM patient and 2 unaffected members of the kindred. RESULTS Among the 10 shared candidate mutations in the twins, the authors identified a novel heterozygous germline mutation in four and a half LIM domains protein 2 (FHL2; c.G226A, p.V76M) as a familial WM-associated mutation. FHL2 appeared to be connected with reported signaling pathways and disease-driving genes such as IL6 and HCK in WM. In addition, the authors found reduced FHL2 messenger RNA and protein expression in peripheral blood samples from the patient with WM in comparison with the healthy siblings. CONCLUSIONS Taken together, these findings indicate that an FHL2g226a mutation may play an important role in familial WM, and they provide new screening possibilities for familial cases. LAY SUMMARY Familial clustering in Waldenström macroglobulinemia (WM) has been observed over the years. The authors performed whole exome sequencing of germline DNA samples from twins, one diagnosed with WM and the other diagnosed with immunoglobulin M monoclonal gammopathy of undetermined significance, and their healthy siblings. Among the 10 shared candidate mutations in the twins, a novel heterozygous germline mutation in four and a half LIM domains protein 2 (FHL2; c.G226A, p.V76M) was identified as the most relevant familial WM candidate through bioinformatics analysis of a public database. Also, messenger RNA and protein expression of FHL2 was significantly lower in peripheral blood mononuclear cells of the WM patient in comparison with the healthy siblings, and this suggested that the function of FHL2 was impaired when mutated.
Collapse
Affiliation(s)
- Yike Wan
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuexin Cheng
- Department of Hematology, The First People's Hospital of Yancheng, Yancheng Affiliated Hospital of Xuzhou Medical University, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lijing Shen
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Hagdorn QAJ, Kurakula K, Koop AMC, Bossers GPL, Mavrogiannis E, van Leusden T, van der Feen DE, de Boer RA, Goumans MJTH, Berger RMF. Volume Load-Induced Right Ventricular Failure in Rats Is Not Associated With Myocardial Fibrosis. Front Physiol 2021; 12:557514. [PMID: 33716758 PMCID: PMC7952521 DOI: 10.3389/fphys.2021.557514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/25/2021] [Indexed: 01/15/2023] Open
Abstract
Background Right ventricular (RV) function and failure are key determinants of morbidity and mortality in various cardiovascular diseases. Myocardial fibrosis is regarded as a contributing factor to heart failure, but its importance in RV failure has been challenged. This study aims to assess whether myocardial fibrosis drives the transition from compensated to decompensated volume load-induced RV dysfunction. Methods Wistar rats were subjected to aorto-caval shunt (ACS, n = 23) or sham (control, n = 15) surgery, and sacrificed after 1 month, 3 months, or 6 months. Echocardiography, RV pressure-volume analysis, assessment of gene expression and cardiac histology were performed. Results At 6 months, 6/8 ACS-rats (75%) showed clinical signs of RV failure (pleural effusion, ascites and/or liver edema), whereas at 1 month and 3 months, no signs of RV failure had developed yet. Cardiac output has increased two- to threefold and biventricular dilatation occurred, while LV ejection fraction gradually decreased. At 1 month and 3 months, RV end-systolic elastance (Ees) remained unaltered, but at 6 months, RV Ees had decreased substantially. In the RV, no oxidative stress, inflammation, pro-fibrotic signaling (TGFβ1 and pSMAD2/3), or fibrosis were present at any time point. Conclusions In the ACS rat model, long-term volume load was initially well tolerated at 1 month and 3 months, but induced overt clinical signs of end-stage RV failure at 6 months. However, no myocardial fibrosis or increased pro-fibrotic signaling had developed. These findings indicate that myocardial fibrosis is not involved in the transition from compensated to decompensated RV dysfunction in this model.
Collapse
Affiliation(s)
- Quint A J Hagdorn
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kondababu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne-Marie C Koop
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Guido P L Bossers
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Emmanouil Mavrogiannis
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tom van Leusden
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Diederik E van der Feen
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marie-José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Mal A, Dey P, Hayes RM, McCarthy JV, Ray A, De A. In Silico Identification of Potential Phosphorylation in the Cytoplasmic Domain of Epithelial Cell Adhesion Molecule. ACS OMEGA 2020; 5:30808-30816. [PMID: 33324790 PMCID: PMC7726786 DOI: 10.1021/acsomega.0c02113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The epithelial cell adhesion molecule (EpCAM) is a transmembrane cell adhesion glycoprotein, which primarily contributes to stemness, proliferation, and metastasis properties of tumor cells. Regulated intramembrane proteolysis by ADAM proteases and γ-secretase cleaves EpCAM into an ∼27 kDa soluble extracellular and an ∼4 kDa cytoplasmic domain (EpICD). After the EpICD fragment is released inside the cell, the formation of a nuclear signaling complex with the FHL2 molecule is critical for exerting its regulatory role. Trop-2, a homologous protein of EpCAM, undergoes phosphorylation in its cytoplasmic domain (Trop-IC). The phosphorylation of Trop-2 is reported to be crucial for its function. This led us to ask the fundamental question if EpCAM does undergo similar post-translational modification(PTM) like its homologous protein to carry out its diverse biological function. Here, we identify a putative phosphorylation site at Tyr297 located in the cytoplasmic domain of EpCAM. Molecular dynamic simulation (MDS) of 90 ns was carried out to understand the biological/functional relevance of the putative phosphorylation. It was observed that this phosphorylation stabilizes the α-helical structure of the EpICD. Though Tyr297 does not affect the γ-secretase mediated cleavage of EpCAM, it affects the binding of EpICD to FHL2. Docking analysis revealed that phosphorylation mediated structural stability of EpICD positively impacts its binding affinity with FHL2, which was further validated using 100 ns MDS. Phosphorylated EpICD forms higher numbers of hydrogen bonds, salt bridges, and other non-bonded interactions with FHL2, leading to enhanced interactions. This in silico study reveals a potential PTM in the EpICD, providing the basis for future research in understanding the mechanism behind the diverse biological function of EpCAM.
Collapse
Affiliation(s)
- Arijit Mal
- Molecular Functional
Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Life Science, Homi Bhaba National Institute, Mumbai 400094, India
| | - Pranay Dey
- Molecular Functional
Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Life Science, Homi Bhaba National Institute, Mumbai 400094, India
| | - Robert Michael Hayes
- Signal Transduction Laboratory, School of Biochemistry
& Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry
& Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Arjun Ray
- Computational Biology, Indraprastha
Institute of Information Technology, Delhi 110020, India
| | - Abhijit De
- Molecular Functional
Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Life Science, Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
34
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
35
|
Kullmann MK, Podmirseg SR, Roilo M, Hengst L. The CDK inhibitor p57 Kip2 enhances the activity of the transcriptional coactivator FHL2. Sci Rep 2020; 10:7140. [PMID: 32346031 PMCID: PMC7188849 DOI: 10.1038/s41598-020-62641-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
The eukaryotic cell cycle is negatively regulated by cyclin-dependent kinase inhibitors (CKIs). p57Kip2 is a member of the Cip/Kip family of CKIs and frequently inactivated by genomic mutations associated with human overgrowth disorders. There is increasing evidence for p57 to control cellular processes in addition to cell cycle and CDK regulation including transcription, apoptosis, migration or development. In order to obtain molecular insights to unknown functions of p57, we performed a protein interaction screen. We identified the transcription regulator four-and-a-half LIM-only protein 2 (FHL2) as a novel p57-binding protein. Co-immunoprecipitation and reporter gene assays were used to elucidate the physiological and functional relevance of p57/FHL2 interaction. We found in cancer cells that endogenous p57 and FHL2 are in a complex. We observed a substantial induction of established FHL2-regulated gene promoters by p57 in reporter gene experiments and detected strong induction of the intrinsic transactivation activity of FHL2. Treatment of cells with histone deacetylase (HDAC) inhibitors and binding of exogenous FHL2 to HDACs indicated repression of FHL2 transcription activity by HDACs. In the presence of the HDAC inhibitor sodium butyrate activation of FHL2 by p57 is abrogated suggesting that p57 shares a common pathway with HDAC inhibitors. p57 competes with HDACs for FHL2 binding which might partly explain the mechanism of FHL2 activation by p57. These results suggest a novel function of p57 in transcription regulation.
Collapse
Affiliation(s)
- Michael Keith Kullmann
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria.
| | - Silvio Roland Podmirseg
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Martina Roilo
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| |
Collapse
|
36
|
Pahari S, Li G, Murthy AK, Liang S, Fragoza R, Yu H, Alexov E. SAAMBE-3D: Predicting Effect of Mutations on Protein-Protein Interactions. Int J Mol Sci 2020; 21:E2563. [PMID: 32272725 PMCID: PMC7177817 DOI: 10.3390/ijms21072563] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Maintaining wild type protein-protein interactions is essential for the normal function of cell and any mutation that alter their characteristics can cause disease. Therefore, the ability to correctly and quickly predict the effect of amino acid mutations is crucial for understanding disease effects and to be able to carry out genome-wide studies. Here, we report a new development of the SAAMBE method, SAAMBE-3D, which is a machine learning-based approach, resulting in accurate predictions and is extremely fast. It achieves the Pearson correlation coefficient ranging from 0.78 to 0.82 depending on the training protocol in benchmarking five-fold validation test against the SKEMPI v2.0 database and outperforms currently existing algorithms on various blind-tests. Furthermore, optimized and tested via five-fold cross-validation on the Cornell University dataset, the SAAMBE-3D achieves AUC of 1.0 and 0.96 on a homo and hereto-dimer test datasets. Another important feature of SAAMBE-3D is that it is very fast, it takes less than a fraction of a second to complete a prediction. SAAMBE-3D is available as a web server and as well as a stand-alone code, the last one being another important feature allowing other researchers to directly download the code and run it on their local computer. Combined all together, SAAMBE-3D is an accurate and fast software applicable for genome-wide studies to assess the effect of amino acid mutations on protein-protein interactions. The webserver and the stand-alone codes (SAAMBE-3D for predicting the change of binding free energy and SAAMBE-3D-DN for predicting if the mutation is disruptive or non-disruptive) are available.
Collapse
Affiliation(s)
- Swagata Pahari
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA; (S.P.); (G.L.); (A.K.M.)
| | - Gen Li
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA; (S.P.); (G.L.); (A.K.M.)
| | - Adithya Krishna Murthy
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA; (S.P.); (G.L.); (A.K.M.)
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA; (S.L.); (R.F.); (H.Y.)
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA; (S.L.); (R.F.); (H.Y.)
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA; (S.L.); (R.F.); (H.Y.)
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA; (S.P.); (G.L.); (A.K.M.)
| |
Collapse
|
37
|
Zhang L, Li R, Chen L, Xing Z, Song Y, Nie X, Wang L, Han H, Liu A, Ma X, Ma RZ, Tian S. Expression, location and biological effects of four and a half LIM domain protein 2 (FHL2) on granulosa cells in ovine. Reprod Domest Anim 2020; 55:737-746. [PMID: 32181932 DOI: 10.1111/rda.13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
Abstract
Previous studies have shown that four and a half LIM domain protein 2 (FHL2) plays an essential role in the regulation of follicular development in mammals. Although the FHL2 genes of human and mouse have been well characterized, the expression and location of FHL2 in ovary and the biological functions of FHL2 on granulosa cells (GCs) of ovine are still not clear. In this study, full-length complementary DNA (cDNA) of FHL2 from ovine follicular GCs was amplified by real-time PCR (RT-PCR). The expression and location of FHL2 in ovary and GCs of ovine were studied by immunohistochemistry and immunofluorescence, and the biological effects of FHL2 on the cell proliferation, cell apoptosis, cell cycles and expression level of related genes of ovine GCs were also explored by overexpression or knockdown of FHL2. The results indicated that FHL2 was expressed in ovine follicular GCs and the sequence of the FHL2 cDNA was consistent with that predicted in GenBank, which did not cause an amino acid change. According to the results, FHL2 was expressed in ovine ovary and mainly located in the cytoplasm and nucleus of GCs. In addition, overexpression of FHL2 significantly reduced the cell viability, promoted the cell apoptosis and decreased the percentage of G0/G1 and S phase cells. RT-PCR showed that overexpression of FHL2 significantly increased the mRNA expression level of Bax and decreased the expression of Bcl-2 and the Bcl-2/Bax mRNA ratio compared with the control group. Besides, the knockdown of FHL2 gene in ovine GCs significantly improved the cell viability, suppressed the cell apoptosis, decreased the mRNA expression level of Caspase-3 gene, increased the Bcl-2/Bax mRNA ratio and increased the percentage of S and G2/M phase cells. Our results suggest that FHL2 may play an important role in the biological functions of GCs in ovine.
Collapse
Affiliation(s)
- Limeng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Runting Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Longxin Chen
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Zhenzhen Xing
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Yue Song
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Xiaoning Nie
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Linqing Wang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Hongye Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Aiju Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaofei Ma
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Runlin Z Ma
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China.,State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,Research Center of Cattle and Sheep, Embryonic Technique of Hebei Province, Baoding, China
| |
Collapse
|
38
|
Ahamad A, Wang J, Ge S, Kirschen GW. Early Dendritic Morphogenesis of Adult-Born Dentate Granule Cells Is Regulated by FHL2. Front Neurosci 2020; 14:202. [PMID: 32256309 PMCID: PMC7090230 DOI: 10.3389/fnins.2020.00202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Dentate granule cells (DGCs), the progeny of neural stem cells (NSCs) in the sub-granular zone of the dentate gyrus (DG), must develop and functionally integrate with the mature cohort of neurons in order to maintain critical hippocampal functions throughout adulthood. Dysregulation in the continuum of DGC development can result in aberrant morphology and disrupted functional maturation, impairing neuroplasticity of the network. Yet, the molecular underpinnings of the signaling involved in adult-born DGC maturation including dendritic growth, which correlates with functional integration, remains incompletely understood. Given the high metabolic activity in the dentate gyrus (DG) required to achieve continuous neurogenesis, we investigated the potential regulatory role of a cellular metabolism-linked gene recently implicated in NSC cycling and neuroblast migration, called Four and a half LIM domain 2 (FHL2). The FHL2 protein modulates numerous pathways related to proliferation, migration, survival and cytoskeletal rearrangement in peripheral tissues, interacting with the machinery of the sphingosine-1-phosphate pathway, also known to be highly active especially in the hippocampus. Yet, the potential relevance of FHL2 to adult-born DGC development remains unknown. To elucidate the role of FHL2 in DGC development in the adult brain, we first confirmed the endogenous expression of FHL2 in NSCs and new granule cells within the DG, then engineered viral vectors for genetic manipulation experiments, investigating morphological changes in early stages of DGC development. Overexpression of FHL2 during early DGC development resulted in marked sprouting and branching of dendrites, while silencing of FHL2 increased dendritic length. Together, these findings suggest a novel role of FHL2 in adult-born DGC morphological maturation, which may open up a new line of investigation regarding the relevance of this gene in physiology and pathologies of the hippocampus such as mesial temporal lobe epilepsy (MTLE).
Collapse
Affiliation(s)
- Afrinash Ahamad
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,School of Health Technology and Management, Stony Brook University, Stony Brook, NY, United States
| | - Jia Wang
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
39
|
Sommer J, Dorn C, Gäbele E, Bataille F, Freese K, Seitz T, Thasler WE, Büttner R, Weiskirchen R, Bosserhoff A, Hellerbrand C. Four-And-A-Half LIM-Domain Protein 2 (FHL2) Deficiency Aggravates Cholestatic Liver Injury. Cells 2020; 9:cells9010248. [PMID: 31963815 PMCID: PMC7016690 DOI: 10.3390/cells9010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestasis occurs in different clinical circumstances and leads to severe hepatic disorders. The four-and-a-half LIM-domain protein 2 (FHL2) is a scaffolding protein that modulates multiple signal transduction pathways in a tissue- and cell context-specific manner. In this study, we aimed to gain insight into the function of FHL2 in cholestatic liver injury. FHL2 expression was significantly increased in the bile duct ligation (BDL) model in mice. In Fhl2-deficient (Fhl2-ko) mice, BDL caused a more severe portal and parenchymal inflammation, extended portal fibrosis, higher serum transaminase levels, and higher pro-inflammatory and pro-fibrogenic gene expression compared to wild type (wt) mice. FHL2 depletion in HepG2 cells with siRNA resulted in a higher expression of the bile acid transporter Na+-taurocholate cotransporting polypeptide (NTCP) gene. Furthermore, FHL2-depleted HepG2 cells showed higher expression of markers for oxidative stress, lower B-cell lymphoma 2 (Bcl2) expression, and higher Bcl2-associated X protein (BAX) expression after stimulation with deoxycholic acid (DCA). In hepatic stellate cells (HSCs), FHL2 depletion caused an increased expression of TGF-β and several pro-fibrogenic matrix metalloproteinases. In summary, our study shows that deficiency in FHL2 aggravates cholestatic liver injury and suggests FHL2-mediated effects on bile acid metabolisms and HSCs as potential mechanisms for pronounced hepatocellular injury and fibrosis.
Collapse
Affiliation(s)
- Judith Sommer
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | - Christoph Dorn
- Institute of Pharmacy, University Regensburg, D-93053 Regensburg, Germany;
| | - Erwin Gäbele
- Department of Internal Medicine I, University Hospital Regensburg, D-93053 Regensburg, Germany;
| | - Frauke Bataille
- Institute of Pathology, University Regensburg, D-93049 Regensburg, Germany;
| | - Kim Freese
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | - Tatjana Seitz
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | | | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, D-50937 Cologne, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Anja Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24644; Fax: +49-9131-85-22485
| |
Collapse
|
40
|
Duan Y, Qiu Y, Huang X, Dai C, Yang J, He W. Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling. J Mol Med (Berl) 2020; 98:291-307. [PMID: 31927599 DOI: 10.1007/s00109-019-01870-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) has been proposed involving in β-catenin activity. We previously reported that FHL2 mediates TGF-β1-induced tubular epithelial-to-mesenchymal transition through activating Wnt/β-catenin signaling. However, the potential role and mechanism for FHL2 in TGF-β1-induced fibroblast activation and kidney fibrosis remains unknown. Here, we initially observed higher levels of FHL2 expression in fibrotic kidneys from both patients and mice, especially in α-smooth muscle actin (α-SMA)-positive cells in the interstitium. In cultured interstitial fibroblasts, FHL2 expression was induced by TGF-β1. Knockdown of FHL2 remarkably suppressed TGF-β1-induced α-SMA, type I collagen, and fibronectin expression, while overexpression of FHL2 was sufficient to activate fibroblasts. In mice, fibroblast-specific deletion of FHL2 diminished renal induction of α-SMA, type I collagen, and fibronectin and interstitial extracellular matrix deposition at 2 weeks after ureteral obstruction. We next investigated Wnt/β-catenin activity and found that β-catenin was activated in most FHL2-positive cells in renal interstitium from mice with obstructive nephropathy. In vitro, TGF-β1 induced a physical interaction between FHL2 and β-catenin, especially in the nucleus. Downregulation of FHL2 inhibited TGF-β1-induced active β-catenin upregulation, β-catenin nuclear translocation, and β-catenin-mediated transcription, whereas overexpression of FHL2 was able to activate Wnt/β-catenin signaling. FHL2 overexpression-induced β-catenin-mediated gene transcription could be hindered by ICG-001, but FHL2 overexpression-induced upregulation of active β-catenin could not be. Collectively, this study reveals that the signal regulatory effect of FHL2 on β-catenin plays an important role in TGF-β1-induced fibroblast activation and kidney fibrosis.
Collapse
Affiliation(s)
- Ying Duan
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China.,Department of Blood Purification Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China.
| |
Collapse
|
41
|
LIM-only protein FHL2 attenuates inflammation in vascular smooth muscle cells through inhibition of the NFκB pathway. Vascul Pharmacol 2019; 125-126:106634. [PMID: 31866461 DOI: 10.1016/j.vph.2019.106634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/10/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022]
Abstract
Despite the advent of new-generation drug-eluting stents, in-stent restenosis remains a significant problem in patients with coronary artery disease. In- stent restenosis is defined as the gradual re-narrowing of a stented coronary artery lesion due to arterial damage with subsequent local inflammation of the vessel wall and excessive growth of the vascular smooth muscle cells (vSMCs). Four-and-a-half LIM-domain protein 2 (FHL2) is a scaffold protein involved in regulating vSMC function and inflammation. Previously we have demonstrated that FHL2 prevents vSMC proliferation in a murine carotid artery ligation model. However, the effect of FHL2 on the inflammatory response of the vSMCs is not investigated. Therefore, we studied the inflammatory response in the vessel wall of FHL2-deficient (-KO) mice after carotid artery ligation. We found that circulating cytokines and local macrophage infiltration in the ligated carotid vessels were increased in FHL2-KO mice after carotid artery ligation. Moreover, FHL2-KO vSMCs showed increased secretion of cytokines such as SDF-1α and RANTES, and enhanced activation of the NFκB pathway. Finally, we found that blocking the NFκB signalling pathway abrogated this pro-inflammatory state in FHL2-KO vSMCs. Taken together, our results demonstrate that FHL2 decreases the inflammatory response of vSMCs through inhibition of the NFkB-signalling pathway.
Collapse
|
42
|
Chen CY, Tsai HY, Tsai SH, Chu PH, Huang PH, Chen JW, Lin SJ. Deletion of the FHL2 gene attenuates intima-media thickening in a partially ligated carotid artery ligated mouse model. J Cell Mol Med 2019; 24:160-173. [PMID: 31714683 PMCID: PMC6933399 DOI: 10.1111/jcmm.14687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
The four and a half LIM domain protein 2 (FHL2) is a member of the four and a half LIM domain (FHL) gene family, and it is associated with cholesterol‐enriched diet‐promoted atherosclerosis. However, the effect of FHL2 protein on vascular remodelling in response to hemodynamic alterations remains unclear. Here, we investigated the role of FHL2 in a model of restricted blood flow‐induced atherosclerosis. To promote neointimal hyperplasia in vivo, we subjected FHL2+/+ and FHL2−/− mice to partial ligation of the left carotid artery (LCA). The expression of p‐ERK and p‐AKT was decreased in FHL2−/− mice. FHL2 bound to AKT regulated AKT phosphorylation and led to Rac1‐GTP inactivation. FHL2 silencing in human aortic smooth muscle cells down‐regulated the PDGF‐induced phosphorylation of ERK and AKT. Furthermore, FHL2 silencing reduced cytoskeleton conformational changes and caused cell cycle arrest. We concluded that FHL2 is essential for the regulation of arterial smooth muscle cell function. FHL2 modulates proliferation and migration via mitogen‐activated protein kinase (MAPK) and PI3K‐AKT signalling, leading to arterial wall thickening and thus neointimal hyperplasia.
Collapse
Affiliation(s)
- Chi-Yu Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ya Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Hsien Chu
- First Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
43
|
Kroone C, Vos M, Rademakers T, Kuijpers M, Hoogenboezem M, van Buul J, Heemskerk JWM, Ruf W, van Hylckama Vlieg A, Versteeg HH, Goumans MJ, de Vries CJM, Kurakula K. LIM-only protein FHL2 attenuates vascular tissue factor activity, inhibits thrombus formation in mice and FHL2 genetic variation associates with human venous thrombosis. Haematologica 2019; 105:1677-1685. [PMID: 31467128 PMCID: PMC7271603 DOI: 10.3324/haematol.2018.203026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Bleeding disorders and thrombotic complications are major causes of morbidity and mortality with many cases being unexplained. Thrombus formation involves aberrant expression and activation of tissue factor (TF) in vascular endothelial and smooth muscle cells. Here, we sought to identify factors that modulate TF gene expression and activity in these vascular cells. The LIM-only protein FHL2 is a scaffolding protein that modulates signal transduction pathways with crucial functions in endothelial and smooth muscle cells. However, the role of FHL2 in TF regulation and thrombosis remains unexplored. Using a murine model of venous thrombosis in mesenteric vessels, we demonstrated that FHL2 deficiency results in exacerbated thrombus formation. Gain- and loss-of-function experiments revealed that FHL2 represses TF expression in endothelial and smooth muscle cells through inhibition of the transcription factors nuclear factor κB and activating protein-1. Furthermore, we observed that FHL2 interacts with the cytoplasmic tail of TF. In line with our in vivo observations, FHL2 decreases TF activity in endothelial and smooth muscle cells whereas FHL2 knockdown or deficiency results in enhanced TF activity. Finally, the FHL2 single nucleotide polymorphism rs4851770 was associated with the risk of venous thrombosis in a large population of venous thrombosis cases and control subjects from 12 studies (INVENT consortium). Altogether, our results highlight functional involvement of FHL2 in TF-mediated coagulation and identify FHL2 as a novel gene associated with venous thrombosis in humans.
Collapse
Affiliation(s)
- Chantal Kroone
- The Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (UMC), Leiden, the Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo Rademakers
- Department of Molecular Cell Biology, Sanquin Research, Amsterdam, the Netherlands
| | - Marijke Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC, Maastricht, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research, Amsterdam, the Netherlands
| | - Jaap van Buul
- Department of Molecular Cell Biology, Sanquin Research, Amsterdam, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC, Maastricht, The Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Center for Thrombosis and Hemostasis Mainz, Germany
| | | | - Henri H Versteeg
- The Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (UMC), Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kondababu Kurakula
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands .,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
44
|
Bao J, Rousseaux S, Shen J, Lin K, Lu Y, Bedford MT. The arginine methyltransferase CARM1 represses p300•ACT•CREMτ activity and is required for spermiogenesis. Nucleic Acids Res 2019; 46:4327-4343. [PMID: 29659998 PMCID: PMC5961101 DOI: 10.1093/nar/gky240] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 01/04/2023] Open
Abstract
CARM1 is a protein arginine methyltransferase (PRMT) that has been firmly implicated in transcriptional regulation. However, the molecular mechanisms by which CARM1 orchestrates transcriptional regulation are not fully understood, especially in a tissue-specific context. We found that Carm1 is highly expressed in the mouse testis and localizes to the nucleus in spermatids, suggesting an important role for Carm1 in spermiogenesis. Using a germline-specific conditional Carm1 knockout mouse model, we found that it is essential for the late stages of haploid germ cell development. Loss of Carm1 led to a low sperm count and deformed sperm heads that can be attributed to defective elongation of round spermatids. RNA-seq analysis of Carm1-null spermatids revealed that the deregulated genes fell into similar categories as those impacted by p300-loss, thus providing a link between Carm1 and p300. Importantly, p300 has long been known to be a major Carm1 substrate. We found that CREMτ, a key testis-specific transcription factor, associates with p300 through its activator, ACT, and that this interaction is negatively regulated by the methylation of p300 by Carm1. Thus, high nuclear Carm1 levels negatively impact the p300•ACT•CREMτ axis during late stages of spermiogenesis.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Sophie Rousseaux
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, La Tronche, France
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
45
|
Jin J, Togo S, Kadoya K, Tulafu M, Namba Y, Iwai M, Watanabe J, Nagahama K, Okabe T, Hidayat M, Kodama Y, Kitamura H, Ogura T, Kitamura N, Ikeo K, Sasaki S, Tominaga S, Takahashi K. Pirfenidone attenuates lung fibrotic fibroblast responses to transforming growth factor-β1. Respir Res 2019; 20:119. [PMID: 31185973 PMCID: PMC6558902 DOI: 10.1186/s12931-019-1093-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pirfenidone, an antifibrotic agent used for the treatment of idiopathic pulmonary fibrosis (IPF), functions by inhibiting myofibroblast differentiation, which is involved in transforming growth factor (TGF)-β1-induced IPF pathogenesis. However, unlike normal lung fibroblasts, the relationship between pirfenidone responses of TGF-β1-induced human fibrotic lung fibroblasts and lung fibrosis has not been elucidated. METHODS The effects of pirfenidone were evaluated in lung fibroblasts isolated from fibrotic human lung tissues after TGF-β1 exposure. The ability of two new pharmacological targets of pirfenidone, collagen triple helix repeat containing protein 1(CTHRC1) and four-and-a-half LIM domain protein 2 (FHL2), to mediate contraction of collagen gels and migration toward fibronectin were assessed in vitro. RESULTS Compared to control lung fibroblasts, pirfenidone significantly restored TGF-β1-stimulated fibroblast-mediated collagen gel contraction, migration, and CTHRC1 release in lung fibrotic fibroblasts. Furthermore, pirfenidone attenuated TGF-β1- and CTHRC1-induced fibroblast activity, upregulation of bone morphogenic protein-4(BMP-4)/Gremlin1, and downregulation of α-smooth muscle actin, fibronectin, and FHL2, similar to that observed post-CTHRC1 inhibition. In contrast, FHL2 inhibition suppressed migration and fibronectin expression, but did not downregulate CTHRC1. CONCLUSIONS Overall, pirfenidone suppressed fibrotic fibroblast-mediated fibrotic processes via inverse regulation of CTHRC1-induced lung fibroblast activity. Thus, CTHRC1 can be used for predicting pirfenidone response and developing new therapeutic targets for lung fibrosis.
Collapse
Affiliation(s)
- Jin Jin
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China.,Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kotaro Kadoya
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Miniwan Tulafu
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yukiko Namba
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Respiratory Medicine Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Kanazawa-ku, Yokohama, Kanagawa, 236-0051, Japan
| | - Moe Iwai
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Junko Watanabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kumi Nagahama
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takahiro Okabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Moulid Hidayat
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuzo Kodama
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hideya Kitamura
- Department of Respiratory Medicine Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Kanazawa-ku, Yokohama, Kanagawa, 236-0051, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Kanazawa-ku, Yokohama, Kanagawa, 236-0051, Japan
| | - Norikazu Kitamura
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Shinichi Sasaki
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Chiba, 279-0001, Japan
| | - Shigeru Tominaga
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Chiba, 279-0001, Japan
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1 -1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
46
|
Abstract
The 4-and-a-half LIM domain protein 2 (FHL2) is a multifunctional adaptor protein that can interact with cell surface receptors, cytosolic adaptor and structural proteins, kinases, and nuclear transcription factors. It is involved in numerous functional activities, including the epithelial-mesenchymal transition, cell proliferation, apoptosis, adhesion, migration, structural stability, and gene expression. Despite this, FHL2-knockout (KO) mice are viable and fertile with no obvious abnormalities, rather suggesting a high capacity for fine-tuning adjustment and functional redundancy of FHL2. Indeed, challenging FHL2-KO cells or mice provided numerous evidences for the great functional significance of FHL2. In recent years, several reviews have been published describing the high capacity of FHL2 to bind diverse proteins as well as the versatile functions of FHL2, emphasizing in particular its role in cardiovascular diseases and carcinogenesis. Here, we view the function of FHL2 from a different perspective. We summarize the published data demonstrating the impact of FHL2 on wound healing and inflammation. FHL2 seems to be involved in numerous steps of these extremely complex and multidirectional but tightly regulated tissue remodeling processes, supporting tissue repair and coordinating inflammation. Deficiency of FHL2 not only slows down ongoing wound healing but also often turns it into a chronic condition.-Wixler, V. The role of FHL2 in wound healing and inflammation.
Collapse
Affiliation(s)
- Viktor Wixler
- Centre for Molecular Biology of Inflammation, Institute of Molecular Virology, Westfaelische Wilhelms University Muenster, Muenster, Germany
| |
Collapse
|
47
|
Liu Z, Han S, Wang Y, Cui C, Zhu Q, Jiang X, Yang C, Du H, Yu C, Li Q, He H, Shen X, Chen Y, Zhang Y, Ye L, Zhang Z, Li D, Zhao X, Yin H. The LIM-Only Protein FHL2 is involved in Autophagy to Regulate the Development of Skeletal Muscle Cell. Int J Biol Sci 2019; 15:838-846. [PMID: 30906214 PMCID: PMC6429013 DOI: 10.7150/ijbs.31371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Scope: Four and a half LIM domain protein 2 (FHL2) is a LIM domain protein expressed in muscle tissue whose deletion is causative of myopathies. Although FHL2 has a confirmed important role in muscle development, its autophagy-related function in muscle differentiation has not been fully determined. Methods: C2C12 cells were treated with FHL2-konwdown or FHL2-overexpression. The morphology of C2C12 cells was observed by transmission electron microscopy. The mRNA and protein abundances of muscle related genes and autophagy related genes were measured by RT-PCR and western blot. Immunofluorescence and co-immunoprecipitation assay were used to verify the interaction between FHL2 and LC3 protein. Results: FHL2 silencing reduced LC3-Ⅱ protein expression and the amount of LC3 that co-immunoprecipitated with FHL2, indicating that FHL2 interacts with LC3-Ⅱ in the formation of autophagosomes. Moreover, the expression of muscle development marker genes such as MyoD1 and MyoG was lower in FHL2-silenced C2C12 cells but not in FHL2-overexpressing C2C12 cells. Electron microscopy analysis revealed large empty autophagosomes in FHL2-silenced myoblasts, while flow cytometry suggested that FHL2 silencing made cells more vulnerable to staurosporine-induced cell death. Conclusion: These results suggest that FHL2 interacts with LC3-Ⅱ in autophagosome formation to regulate the development of muscle cells.
Collapse
Affiliation(s)
- Zihao Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, 610066, PR China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, 610066, PR China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, 610066, PR China
| | - Chunlin Yu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, 610066, PR China
| | - Qingyun Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, 610066, PR China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuqi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Lin Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
48
|
Lorda‐Diez C, Montero J, Sanchez‐Fernandez C, Garcia‐Porrero J, Chimal‐Monroy J, Hurle J. Four and a half domain 2 (FHL2) scaffolding protein is a marker of connective tissues of developing digits and regulates fibrogenic differentiation of limb mesodermal progenitors. J Tissue Eng Regen Med 2018; 12:e2062-e2072. [DOI: 10.1002/term.2637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023]
Affiliation(s)
- C.I. Lorda‐Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J.A. Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - C. Sanchez‐Fernandez
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J.A. Garcia‐Porrero
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| | - J. Chimal‐Monroy
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de Mexico Mexico
| | - J.M. Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de MedicinaUniversidad de Cantabria Santander Spain
| |
Collapse
|
49
|
Nemade H, Chaudhari U, Acharya A, Hescheler J, Hengstler JG, Papadopoulos S, Sachinidis A. Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol 2018; 92:1507-1524. [PMID: 29397400 PMCID: PMC5882643 DOI: 10.1007/s00204-018-2170-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Etoposide (ETP) and anthracyclines are applied for wide anti-cancer treatments. However, the ETP-induced cardiotoxicity remains to be a major safety issue and the underlying cardiotoxic mechanisms are not well understood. This study is aiming to unravel the cardiotoxicity profile of ETP in comparison to anthracyclines using physiologically relevant human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). Using xCELLigence real-time cell analyser (RTCA), we found that single high dose of ETP induces irreversible increase in hPSC-CMs beating rate and decrease in beating amplitude. We also identified 58 deregulated genes consisting of 33 upregulated and 25 downregulated genes in hPSC-CMs after ETP treatment. Gene ontology (GO) and pathway analysis showed that most upregulated genes are enriched in GO categories like positive regulation of apoptotic process, regulation of cell death, and mitochondria organization, whereas most downregulated genes were enriched in GO categories like cytoskeletal organization, muscle contraction, and Ca2+ ion homeostasis. Moreover, we also found upregulation in 5 miRNAs (has-miR-486-3p, has-miR-34c-5p, has-miR-4423-3p, has-miR-182-5p, and has-miR-139-5p) which play role in muscle contraction, arginine and proline metabolism, and hypertrophic cardiomyopathy (HCM). Immunostaining and transmission electron microscopy also confirmed the cytoskeletal and mitochondrial damage in hPSC-CMs treated with ETP, as well as noticeable alterations in intracellular calcium handling and mitochondrial membrane potential were also observed. The apoptosis inhibitor, Pifithrin-α, found to protect hPSC-CMs from ETP-induced cardiotoxicity, whereas hPSC-CMs treated with ferroptosis inhibitor, Liproxstatin-1, showed significant recovery in hPSC-CMs functional properties like beating rate and amplitude after ETP treatment. We suggest that the damage to mitochondria is a major contributing factor involved in ETP-induced cardiotoxicity and the activation of the p53-mediated ferroptosis pathway by ETP is likely the critical pathway in ETP-induced cardiotoxicity. We also conclude that the genomic biomarkers identified in this study will significantly contribute to develop and predict potential cardiotoxic effects of novel anti-cancer drugs in vitro.
Collapse
Affiliation(s)
- Harshal Nemade
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Umesh Chaudhari
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Aviseka Acharya
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | - Symeon Papadopoulos
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany.
| |
Collapse
|
50
|
Cai T, Sun D, Duan Y, Qiu Y, Dai C, Yang J, He W. FHL2 promotes tubular epithelial-to-mesenchymal transition through modulating β-catenin signalling. J Cell Mol Med 2017; 22:1684-1695. [PMID: 29193729 PMCID: PMC5824423 DOI: 10.1111/jcmm.13446] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022] Open
Abstract
β-Catenin signalling plays an important role in regulating tubular epithelial-to-mesenchymal transition (EMT), an indispensable programme for driving renal fibrosis. As an adapter protein, four and a half LIM domain protein 2 (FHL2) acts as a coregulator of β-catenin in several other cell types. To determine whether FHL2 affects β-catenin signalling and thus is involved in tubular EMT, we examined its expression and function in the process of TGF-β1-induced EMT. FHL2 mRNA and protein were induced by TGF-β1 in rat tubular epithelial cells (NRK-52E), an effect that intracellular Smad signalling was required. Ectopic expression of FHL2 inhibited E-cadherin and enhanced α-smooth muscle actin (α-SMA) and fibronectin expression, whereas knockdown of FHL2 partially restored E-cadherin and reduced α-SMA and fibronectin induction stimulated by TGF-β1. Overexpression of FHL2 increased β-catenin dephosphorylation (Ser37/Thr41), nuclear translocation and β-catenin-mediated transcription and up-regulated expression of β-catenin target, EMT-related genes, such as Snail, Twist, vimentin, plasminogen activator inhibitor-1 and matrix metalloproteinase-7. Conversely, knockdown of FHL2 increased β-catenin phosphorylation (Ser33/37/Thr41), decreased its nuclear translocation and inhibited β-catenin-mediated transcription and target genes expression. TGF-β1 induced a FHL2/β-catenin interaction in NRK-52E cells, especially in the nuclei. In a mouse model of obstructive nephropathy, FHL2 mRNA and protein were induced in a time-dependent fashion, and the extent and pattern of renal β-catenin activation were positively correlated with FHL2 induction. Collectively, this study suggests that FHL2, via modulating β-catenin signalling, may implicate in regulation of TGF-β1-mediated tubular EMT and could be a potential therapeutic target for fibrotic kidney disease.
Collapse
Affiliation(s)
- Ting Cai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danqin Sun
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Duan
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|