1
|
Kawashima R, Matsushita K, Mandai K, Sugita Y, Maruo T, Mizutani K, Midoh Y, Oguchi A, Murakawa Y, Kuniyoshi K, Sato R, Furukawa T, Nishida K, Takai Y. Necl-1/CADM3 regulates cone synapse formation in the mouse retina. iScience 2024; 27:109577. [PMID: 38623325 PMCID: PMC11016759 DOI: 10.1016/j.isci.2024.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
In vertebrates, retinal neural circuitry for visual perception is organized in specific layers. The outer plexiform layer is the first synaptic region in the visual pathway, where photoreceptor synaptic terminals connect with bipolar and horizontal cell processes. However, molecular mechanisms underlying cone synapse formation to mediate OFF pathways remain unknown. This study reveals that Necl-1/CADM3 is localized at S- and S/M-opsin-containing cones and dendrites of type 4 OFF cone bipolar cells (CBCs). In Necl-1-/- mouse retina, synapses between cones and type 4 OFF CBCs were dislocated, horizontal cell distribution became abnormal, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors were dislocated. Necl-1-/- mice exhibited aberrant short-wavelength-light-elicited signal transmission from cones to OFF CBCs, which was rescued by AMPA receptor potentiator. Additionally, Necl-1-/- mice showed impaired optokinetic responses. These findings suggest that Necl-1 regulates cone synapse formation to mediate OFF cone pathways elicited by short-wavelength light in mouse retina.
Collapse
Affiliation(s)
- Rumi Kawashima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Matsushita
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Division of Pathogenetic Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yoshihiro Midoh
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, IMS RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, IMS RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Ryohei Sato
- Forefront Research Center for Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
2
|
Yu C, Yin X, Li A, Li R, Yu H, Xing R, Liu S, Li P. Toxin metalloproteinases exert a dominant influence on pro-inflammatory response and anti-inflammatory regulation in jellyfish sting dermatitis. J Proteomics 2024; 292:105048. [PMID: 37981009 DOI: 10.1016/j.jprot.2023.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Toxin metalloproteinases are the primary components responsible for various toxicities in jellyfish venom, and there is still no effective specific therapy for jellyfish stings. The comprehension of the pathogenic mechanisms underlying toxin metalloproteinases necessitates further refinement. In this study, we conducted a differential analysis of a dermatitis mouse model induced by jellyfish Nemopilema nomurai venom (NnNV) samples with varying levels of metalloproteinase activity. Through skin tissue proteomics and serum metabolomics, the predominant influence of toxin metalloproteinase activity on inflammatory response was revealed, and the signal pathway involved in its regulation was identified. In skin tissues, many membrane proteins were significantly down-regulated, which might cause tissue damage. The expression of pro-inflammatory factors was mainly regulated by PI3K-Akt signaling pathway. In serum, many fatty acid metabolites were significantly down-regulated, which might be the anti-inflammation feedback regulated by NF-κB p65 signaling pathway. These results reveal the dermatitis mechanism of toxin metalloproteinases and provide new therapeutic targets for further studies. SIGNIFICANCE: Omics is an important method to analyze the pathological mechanism and discover the key markers, which can reveal the pathological characteristics of jellyfish stings. Our research first analyzed the impact of toxin metalloproteinases on jellyfish sting dermatitis by skin proteomics and serum metabolomics. The present results suggest that inhibition of toxin metalloproteinases may be an effective treatment strategy, and provide new references for further jellyfish sting studies.
Collapse
Affiliation(s)
- Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujing Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
3
|
Zhang L, Wei X. SynCAMs in Normal Vertebrate Neural Development and Neuropsychiatric Disorders: from the Perspective of the OCAs. Mol Neurobiol 2024; 61:358-371. [PMID: 37607992 DOI: 10.1007/s12035-023-03579-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Neuronal synaptic junctions connect neurons to enable neuronal signal transmission in the nervous system. The proper establishment of synaptic connections required many adhesion molecules. Malfunctions of these adhesion molecules can result in neural development disorders and neuropsychiatric disorders. How specific synapses are established by various adhesion molecules for proper neural circuitry is a fundamental question of neuroscience. SynCAMs, also named CADMs, Necl, etc., are among the many adhesion proteins found in synapses. Here, we review the current understanding of the physical properties of SynCAMs and their roles in axon pathfinding, myelination, synaptogenesis, and synaptic plasticity. In addition, we discuss the involvement of SynCAMs in neuropsychiatric disorders. Finally, we propose that SynCAM functions can be better viewed and understood from the perspective of orientational cell adhesions (OCAs). In particular, we discuss the possibilities of how SynCAMs can be regulated at the cell-type specific expression, transcription variants, posttranslational modification, and subcellular localization to modulate the diversity of SynCAMs as OCA molecules. Being major components of the synapses, SynCAMs continue to be an important research topic of neuroscience, and many outstanding questions are waiting to be answered.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, Dalian, China.
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Li Y, Xu B, Jin M, Zhang H, Ren N, Hu J, He J. Homophilic interaction of cell adhesion molecule 3 coordinates retina neuroepithelial cell proliferation. J Cell Biol 2023; 222:e202204098. [PMID: 37022761 PMCID: PMC10082328 DOI: 10.1083/jcb.202204098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Correct cell number generation is central to tissue development. However, in vivo roles of coordinated proliferation of individual neural progenitors in regulating cell numbers of developing neural tissues and the underlying molecular mechanism remain mostly elusive. Here, we showed that wild-type (WT) donor retinal progenitor cells (RPCs) generated significantly expanded clones in host retinae with G1-lengthening by p15 (cdkn2a/b) overexpression (p15+) in zebrafish. Further analysis showed that cell adhesion molecule 3 (cadm3) was reduced in p15+ host retinae, and overexpression of either full-length or ectodomains of Cadm3 in p15+ host retinae markedly suppressed the clonal expansion of WT donor RPCs. Notably, WT donor RPCs in retinae with cadm3 disruption recapitulated expanded clones that were found in p15+ retinae. More strikingly, overexpression of Cadm3 without extracellular ig1 domain in RPCs resulted in expanded clones and increased retinal total cell number. Thus, homophilic interaction of Cadm3 provides an intercellular mechanism underlying coordinated cell proliferation to ensure cell number homeostasis of the developing neuroepithelia.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baijie Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Jin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningxin Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Hu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Yang Q, Liu J, Wang Z. 4.1N-Mediated Interactions and Functions in Nerve System and Cancer. Front Mol Biosci 2021; 8:711302. [PMID: 34589518 PMCID: PMC8473747 DOI: 10.3389/fmolb.2021.711302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 01/05/2023] Open
Abstract
Scaffolding protein 4.1N is a neuron-enriched 4.1 homologue. 4.1N contains three conserved domains, including the N-terminal 4.1-ezrin-radixin-moesin (FERM) domain, internal spectrin–actin–binding (SAB) domain, and C-terminal domain (CTD). Interspersed between the three domains are nonconserved domains, including U1, U2, and U3. The role of 4.1N was first reported in the nerve system. Then, extensive studies reported the role of 4.1N in cancers and other diseases. 4.1N performs numerous vital functions in signaling transduction by interacting, locating, supporting, and coordinating different partners and is involved in the molecular pathogenesis of various diseases. In this review, recent studies on the interactions between 4.1N and its contactors (including the α7AChr, IP3R1, GluR1/4, GluK1/2/3, mGluR8, KCC2, D2/3Rs, CASK, NuMA, PIKE, IP6K2, CAM 1/3, βII spectrin, flotillin-1, pp1, and 14-3-3) and the 4.1N-related biological functions in the nerve system and cancers are specifically and comprehensively discussed. This review provides critical detailed mechanistic insights into the role of 4.1N in disease relationships.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,School of Medical Laboratory, Shao Yang University, Shaoyang, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Rebelo AP, Cortese A, Abraham A, Eshed-Eisenbach Y, Shner G, Vainshtein A, Buglo E, Camarena V, Gaidosh G, Shiekhattar R, Abreu L, Courel S, Burns DK, Bai Y, Bacon C, Feely SME, Castro D, Peles E, Reilly MM, Shy ME, Zuchner S. A CADM3 variant causes Charcot-Marie-Tooth disease with marked upper limb involvement. Brain 2021; 144:1197-1213. [PMID: 33889941 DOI: 10.1093/brain/awab019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 01/19/2023] Open
Abstract
The CADM family of proteins consists of four neuronal specific adhesion molecules (CADM1, CADM2, CADM3 and CADM4) that mediate the direct contact and interaction between axons and glia. In the peripheral nerve, axon-Schwann cell interaction is essential for the structural organization of myelinated fibres and is primarily mediated by the binding of CADM3, expressed in axons, to CADM4, expressed by myelinating Schwann cells. We have identified-by whole exome sequencing-three unrelated families, including one de novo patient, with axonal Charcot-Marie-Tooth disease (CMT2) sharing the same private variant in CADM3, Tyr172Cys. This variant is absent in 230 000 control chromosomes from gnomAD and predicted to be pathogenic. Most CADM3 patients share a similar phenotype consisting of autosomal dominant CMT2 with marked upper limb involvement. High resolution mass spectrometry analysis detected a newly created disulphide bond in the mutant CADM3 potentially modifying the native protein conformation. Our data support a retention of the mutant protein in the endoplasmic reticulum and reduced cell surface expression in vitro. Stochastic optical reconstruction microscopy imaging revealed decreased co-localization of the mutant with CADM4 at intercellular contact sites. Mice carrying the corresponding human mutation (Cadm3Y170C) showed reduced expression of the mutant protein in axons. Cadm3Y170C mice showed normal nerve conduction and myelin morphology, but exhibited abnormal axonal organization, including abnormal distribution of Kv1.2 channels and Caspr along myelinated axons. Our findings indicate the involvement of abnormal axon-glia interaction as a disease-causing mechanism in CMT patients with CADM3 mutations.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Andrea Cortese
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Amit Abraham
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gal Shner
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Buglo
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Vladimir Camarena
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Gabriel Gaidosh
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, USA
| | - Ramin Shiekhattar
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, USA
| | - Lisa Abreu
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Steve Courel
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Dennis K Burns
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Chelsea Bacon
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Diana Castro
- Departments of Pediatrics, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
7
|
Differential Contribution of Cadm1-Cadm3 Cell Adhesion Molecules to Peripheral Myelinated Axons. J Neurosci 2021; 41:1393-1400. [PMID: 33397712 DOI: 10.1523/jneurosci.2736-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion proteins of the Cadm (SynCAM/Necl) family regulate myelination and the organization of myelinated axons. In the peripheral nervous system (PNS), intercellular contact between Schwann cells and their underlying axons is believed to be mediated by binding of glial Cadm4 to axonal Cadm3 or Cadm2. Nevertheless, given that distinct neurons express different combinations of the Cadm proteins, the identity of the functional axonal ligand for Cadm4 remains to be determined. Here, we took a genetic approach to compare the phenotype of Cadm4 null mice, which exhibit abnormal distribution of Caspr and Kv1 potassium channels, with mice lacking different combinations of Cadm1-Cadm3 genes. We show that in contrast to mice lacking the single Cadm1, Cadm2, or Cadm3 genes, genetic ablation of all three phenocopies the abnormalities detected in the absence of Cadm4. Similar defects were observed in double mutant mice lacking Cadm3 and Cadm2 (i.e., Cadm3 -/- /Cadm2 -/-) or Cadm3 and Cadm1 (i.e., Cadm3 -/- /Cadm1 -/-), but not in mice lacking Cadm1 and Cadm2 (i.e., Cadm1 -/- /Cadm2 -/-). Furthermore, axonal organization abnormalities were also detected in Cadm3 null mice that were heterozygous for the two other axonal Cadms. Our results identify Cadm3 as the main axonal ligand for glial Cadm4, and reveal that its absence could be compensated by the combined action of Cadm2 and Cadm1.SIGNIFICANCE STATEMENT Myelination by Schwann cells enables fast conduction of action potentials along motor and sensory axons. In these nerves, Schwann cell-axon contact is mediated by cell adhesion molecules of the Cadm family. Cadm4 in Schwann cells regulates axonal ensheathment and myelin wrapping, as well as the organization of the axonal membrane, but the identity of its axonal ligands is not clear. Here, we reveal that Cadm mediated axon-glia interactions depend on a hierarchical adhesion code that involves multiple family members. Our results provide important insights into the molecular mechanisms of axon-glia communication, and the function of Cadm proteins in PNS myelin.
Collapse
|
8
|
Heffernan C, Jain MR, Liu T, Kim H, Barretto K, Li H, Maurel P. Nectin-like 4 Complexes with Choline Transporter-like Protein-1 and Regulates Schwann Cell Choline Homeostasis and Lipid Biogenesis in Vitro. J Biol Chem 2017; 292:4484-4498. [PMID: 28119456 DOI: 10.1074/jbc.m116.747816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Nectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. In vitro and in vivo studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear. We used an in vitro approach to begin identifying some of the mechanisms that could explain NECL4 function. Using mass spectrometry and Western blotting techniques, we have identified choline transporter-like 1 (CTL1) as a putative complexing partner with NECL4. We show that intracellular choline levels are significantly elevated in NECL4-deficient Schwann cells. The analysis of extracellular d9-choline uptake revealed a deficit in the amount of d9-choline found inside NECL4-deficient Schwann cells, suggestive of either reduced transport capabilities or increased metabolization of transported choline. An extensive lipidomic screen of choline derivatives showed that total phosphatidylcholine and phosphatidylinositol (but not diacylglycerol or sphingomyelin) are significantly elevated in NECL4-deficient Schwann cells, particularly specific subspecies of phosphatidylcholine carrying very long polyunsaturated fatty acid chains. Finally, CTL1-deficient Schwann cells are significantly impaired in their ability to myelinate neurites in vitro To our knowledge, this is the first demonstration of a bona fide cell adhesion molecule, NECL4, regulating choline homeostasis and lipid biogenesis. Phosphatidylcholines are major myelin phospholipids, and several phosphorylated phosphatidylinositol species are known to regulate key aspects of peripheral myelination. Furthermore, the biophysical properties imparted to plasma membranes are regulated by fatty acid chain profiles. Therefore, it will be important to translate these in vitro observations to in vivo studies of NECL4 and CTL1-deficient mice.
Collapse
Affiliation(s)
- Corey Heffernan
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Mohit R Jain
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Tong Liu
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Hyosung Kim
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Kevin Barretto
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Hong Li
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Patrice Maurel
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| |
Collapse
|
9
|
Frei JA, Stoeckli ET. SynCAMs - From axon guidance to neurodevelopmental disorders. Mol Cell Neurosci 2016; 81:41-48. [PMID: 27594578 DOI: 10.1016/j.mcn.2016.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Many cell adhesion molecules are located at synapses but only few of them can be considered synaptic cell adhesion molecules in the strict sense. Besides the Neurexins and Neuroligins, the LRRTMs (leucine rich repeat transmembrane proteins) and the SynCAMs/CADMs can induce synapse formation when expressed in non-neuronal cells and therefore are true synaptic cell adhesion molecules. SynCAMs (synaptic cell adhesion molecules) are a subfamily of the immunoglobulin superfamily of cell adhesion molecules. As suggested by their name, they were first identified as cell adhesion molecules at the synapse which were sufficient to trigger synapse formation. They also contribute to myelination by mediating axon-glia cell contacts. More recently, their role in earlier stages of neural circuit formation was demonstrated, as they also guide axons both in the peripheral and in the central nervous system. Mutations in SynCAM genes were found in patients diagnosed with autism spectrum disorders. The diverse functions of SynCAMs during development suggest that neurodevelopmental disorders are not only due to defects in synaptic plasticity. Rather, early steps of neural circuit formation are likely to contribute.
Collapse
Affiliation(s)
- Jeannine A Frei
- Hussman Institute for Autism, 801 W Baltimore Street, Baltimore, MD 20201, United States
| | - Esther T Stoeckli
- Dept of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
10
|
4.1N is involved in a flotillin-1/β-catenin/Wnt pathway and suppresses cell proliferation and migration in non-small cell lung cancer cell lines. Tumour Biol 2016; 37:12713-12723. [DOI: 10.1007/s13277-016-5146-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023] Open
|
11
|
Frei JA, Andermatt I, Gesemann M, Stoeckli ET. The SynCAM synaptic cell adhesion molecules are involved in sensory axon pathfinding by regulating axon-axon contacts. J Cell Sci 2014; 127:5288-302. [PMID: 25335893 DOI: 10.1242/jcs.157032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synaptic cell adhesion molecules (SynCAMs) are crucial for synapse formation and plasticity. However, we have previously demonstrated that SynCAMs are also required during earlier stages of neural circuit formation because SynCAM1 and SynCAM2 (also known as CADM1 and CADM2, respectively) are important for the guidance of post-crossing commissural axons. In contrast to the exclusively homophilic cis-interactions reported by previous studies, our previous in vivo results suggested the existence of heterophilic cis-interactions between SynCAM1 and SynCAM2. Indeed, as we show here, the presence of homophilic and heterophilic cis-interactions modulates the interaction of SynCAMs with trans-binding partners, as observed previously for other immunoglobulin superfamily cell adhesion molecules. These in vitro findings are in agreement with results from in vivo studies, which demonstrate a role for SynCAMs in the formation of sensory neural circuits in the chicken embryo. In the absence of SynCAMs, selective axon-axon interactions are perturbed resulting in aberrant pathfinding of sensory axons.
Collapse
Affiliation(s)
- Jeannine A Frei
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Irwin Andermatt
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Frei JA, Stoeckli ET. SynCAMs extend their functions beyond the synapse. Eur J Neurosci 2014; 39:1752-60. [DOI: 10.1111/ejn.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Jeannine A. Frei
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
13
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
14
|
Xi C, Ren C, Hu A, Lin J, Yao Q, Wang Y, Gao Z, An X, Liu C. Defective expression of Protein 4.1N is correlated to tumor progression, aggressive behaviors and chemotherapy resistance in epithelial ovarian cancer. Gynecol Oncol 2013; 131:764-71. [PMID: 23994105 DOI: 10.1016/j.ygyno.2013.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/16/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Protein 4.1N (4.1N) is a member of the Protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. In this study, we evaluated the expression of 4.1N protein and its potential roles in epithelial ovarian cancer (EOC) tumorigenesis and progression. METHODS 4.1N protein expression was investigated in a total of 280 samples including 74 normal tissues, 35 benign, 30 borderline and 141 malignant epithelial ovarian tumors by immunohistochemistry. Correlation between 4.1N expression levels and clinicopathologic features was statistically analyzed. The expression of 4.1N in EOC cell lines was examined by western blotting. RESULTS Immunohistochemistry analysis revealed that, although there was no loss of 4.1N expression in normal tissues and benign tumors, absence of Protein 4.1N was significantly more common in EOCs (44.0%) than in borderline tumors (3.3%) (p<0.001). Furthermore, loss or decreased expression of 4.1N protein expression was correlated with malignant potential of the tumors (14.3% in benign tumors, 56.7% in borderline tumors and 92.9% in malignancy) (p<0.001). In EOC samples, loss of 4.1N protein was significantly associated with advanced-stage (p=0.004), ascites (p=0.009), omental metastasis (p=0.018), suboptimal debulking (p=0.024), poorly histological differentiation (p=0.009), high-grade serous carcinoma (p=0.001), short progression-free-survival (p=0.018) and poor chemosensitivity to first-line chemotherapy (p=0.029). Moreover, western blotting analysis revealed that expression of 4.1N protein was lost in 4/8 (50%) EOC cell lines. CONCLUSIONS 4.1N protein expression level was significantly decreased during malignant transformation of epithelial ovarian tumors and that loss of 4.1N expression was closely correlated to poorly differentiated and biologically aggressive EOCs.
Collapse
Affiliation(s)
- Chenguang Xi
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhu Y, Li H, Li K, Zhao X, An T, Hu X, Park J, Huang H, Bin Y, Qiang B, Yuan J, Peng X, Qiu M. Necl-4/SynCAM-4 is expressed in myelinating oligodendrocytes but not required for axonal myelination. PLoS One 2013; 8:e64264. [PMID: 23700466 PMCID: PMC3659047 DOI: 10.1371/journal.pone.0064264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/10/2013] [Indexed: 12/04/2022] Open
Abstract
The timing and progression of axonal myelination are precisely controlled by intercellular interactions between neurons and glia in development. Previous in vitro studies demonstrated that Nectin like 4 (Necl-4, also known as cell adhesion molecule Cadm-4 or SynCAM-4) plays an essential role in axonal myelination by Schwann cells in the peripheral nervous system (PNS). However, the role of Necl-4 protein in axonal myelination in the developing central nervous system (CNS) has remained unknown. In this study, we discovered upregulation of Necl-4 expression in mature oligodendrocytes at perinatal stages when axons undergo active myelination. We generated Necl4 gene knockout mice, but found that disruption of Necl-4 gene did not affect oligodendrocyte differentiation and myelin formation in the CNS. Surprisingly, disruption of Necl-4 had no significant effect on axonal myelination in the PNS either. Therefore, our results demonstrated that Necl-4 is dispensable for axonal myelination in the developing nervous system.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kehan Li
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Zhao
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tai An
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemei Hu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jinsil Park
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yin Bin
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangang Yuan
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XP); (MQ)
| | - Mengsheng Qiu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- * E-mail: (XP); (MQ)
| |
Collapse
|
16
|
Freistadt M, Eberle KE, Huang W, Schwarzenberger P. CD34+ hematopoietic stem cells support entry and replication of poliovirus: a potential new gene introduction route. Cancer Gene Ther 2013; 20:201-7. [PMID: 23392202 DOI: 10.1038/cgt.2013.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pluripotent hematopoietic stem cells (HSC) are critical in sustaining and constantly renewing the blood and immune system. The ability to alter biological characteristics of HSC by introducing and expressing genes would have enormous therapeutic possibilities. Previous unpublished work suggested that human HSC co-express CD34 (cluster of differentiation 34; an HSC marker) and CD155 (poliovirus receptor; also called Necl-5/Tage4/PVR/CD155). In the present study, we demonstrate the co-expression of CD34 and CD155 in primary human HSC. In addition, we demonstrate that poliovirus infects and replicates in human hematopoietic progenitor cell lines. Finally, we show that poliovirus replicates in CD34+ enriched primary HSC. CD34+ enriched HSC co-express CD155 and support poliovirus replication. These data may help further understanding of poliovirus spread in vivo and also demonstrate that human HSC may be amenable for gene therapy via poliovirus-capsid-based vectors. They may also help elucidate the normal function of Necl-5/Tage4/PVR/CD155.
Collapse
Affiliation(s)
- M Freistadt
- Science and Math, Delgado Community College, New Orleans, LA 70119, USA.
| | | | | | | |
Collapse
|
17
|
Ji Z, Shi X, Liu X, Shi Y, Zhou Q, Liu X, Li L, Ji X, Gao Y, Qi Y, Kang Q. The membrane-cytoskeletal protein 4.1N is involved in the process of cell adhesion, migration and invasion of breast cancer cells. Exp Ther Med 2012; 4:736-740. [PMID: 23170136 PMCID: PMC3501401 DOI: 10.3892/etm.2012.653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/11/2012] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1N belongs to the protein 4.1 superfamily that links transmembrane proteins to the actin cytoskeleton. Recent evidence has shown that protein 4.1 is important in tumor suppression. However, the functions of 4.1N in the metastasis of breast cancer are largely unknown. In the present study, MCF-7, T-47D and MDA-MB-231 breast cancer cell lines with various metastatic abilities were employed. Protein 4.1N was found to be expressed in poorly metastatic MCF-7 and middle metastatic T-47D cell lines, and was predominantly associated with cell-cell junctions. However, no 4.1N expression was detected in the highly metastatic MDA-MB-231 cells. Moreover, re-expression of 4.1N in MDA-MB-231 cells inhibited cell adhesion, migration and invasion. The results suggest that protein 4.1N is a negative regulator of cell metastasis in breast cancer.
Collapse
Affiliation(s)
- Zhenyu Ji
- Department of Bioengineering, Zhengzhou University, Zhengzhou 450001; ; Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ivanovic A, Horresh I, Golan N, Spiegel I, Sabanay H, Frechter S, Ohno S, Terada N, Möbius W, Rosenbluth J, Brose N, Peles E. The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. ACTA ACUST UNITED AC 2012; 196:337-44. [PMID: 22291039 PMCID: PMC3275379 DOI: 10.1083/jcb.201111127] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deletion of the Schwann cell cytoskeletal adapter protein 4.1G led to aberrant distribution of glial adhesion molecules and axonal proteins along the internodes. Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G−/− mice, these proteins “piled up” at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface.
Collapse
Affiliation(s)
- Aleksandra Ivanovic
- Department of Molecular Neurobiology and 2 Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nagata M, Sakurai-Yageta M, Yamada D, Goto A, Ito A, Fukuhara H, Kume H, Morikawa T, Fukayama M, Homma Y, Murakami Y. Aberrations of a cell adhesion molecule CADM4 in renal clear cell carcinoma. Int J Cancer 2011; 130:1329-37. [DOI: 10.1002/ijc.26160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 01/27/2011] [Indexed: 11/07/2022]
|
20
|
Abstract
During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron-glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and βII spectrin are polarized in Schwann cells and colocalize with signaling molecules known to modulate myelination in vitro. Silencing expression of these spectrins inhibited myelination in vitro, and remyelination in vivo. Furthermore, myelination was disrupted in motor nerves of zebrafish lacking αII spectrin. Finally, we demonstrate that loss of spectrin significantly reduces both F-actin in the Schwann cell cytoskeleton and the Nectin-like protein, Necl4, at the contact site between Schwann cells and axons. Therefore, we propose αII and βII spectrin in Schwann cells integrate the neuron-glia interactions mediated by membrane proteins into the actin-dependent cytoskeletal rearrangements necessary for myelination.
Collapse
|
21
|
Lack of protein 4.1G causes altered expression and localization of the cell adhesion molecule nectin-like 4 in testis and can cause male infertility. Mol Cell Biol 2011; 31:2276-86. [PMID: 21482674 DOI: 10.1128/mcb.01105-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein 4.1G is a member of the protein 4.1 family, which in general serves as adaptors linking transmembrane proteins to the cytoskeleton. 4.1G is thought to be widely expressed in many cells and tissues, but its function remains largely unknown. To explore the function of 4.1G in vivo, we generated 4.1G(-/-) mice and bred the mice in two backgrounds: C57BL/6 (B6) and 129/Sv (129) hybrids (B6-129) and inbred B6. Although the B6 4.1G(-/-) mice showed no obvious abnormalities, deficiency of 4.1G in B6-129 hybrids was associated with male infertility. Histological examinations of these 4.1G(-/-) mice revealed atrophy, impaired cell-cell contact and sloughing off of spermatogenic cells in seminiferous epithelium, and lack of mature spermatids in the epididymis. Ultrastructural examination revealed enlarged intercellular spaces between spermatogenic and Sertoli cells as well as the spermatid deformities. At the molecular level, 4.1G is associated with the nectin-like 4 (NECL4) adhesion molecule. Importantly, the expression of NECL4 was decreased, and the localization of NECL4 was altered in 4.1G(-/-) testis. Thus, our findings imply that 4.1G plays a role in spermatogenesis by mediating cell-cell adhesion between spermatogenic and Sertoli cells through its interaction with NECL4 on Sertoli cells. Additionally, the finding that infertility is present in B6-129 but not on the B6 background suggests the presence of a major modifier gene(s) that influences 4.1G function and is associated with male infertility.
Collapse
|
22
|
Yin B, Li KH, An T, Chen T, Peng XZ. Nectin-like Molecule 1 Inhibits the Migration and Invasion of U251 Glioma Cells by Regulating the Expression of An Extracellular Matrix Protein Osteopontin. ACTA ACUST UNITED AC 2010; 25:100-4. [DOI: 10.1016/s1001-9294(10)60030-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci 2010; 30:2480-9. [PMID: 20164332 DOI: 10.1523/jneurosci.5225-09.2010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Caspr and Caspr2 regulate the formation of distinct axonal domains around the nodes of Ranvier. Caspr is required for the generation of a membrane barrier at the paranodal junction (PNJ), whereas Caspr2 serves as a membrane scaffold that clusters Kv1 channels at the juxtaparanodal region (JXP). Both Caspr and Caspr2 interact with protein 4.1B, which may link the paranodal and juxtaparanodal adhesion complexes to the axonal cytoskeleton. To determine the role of protein 4.1B in the function of Caspr proteins, we examined the ability of transgenic Caspr and Caspr2 mutants lacking their 4.1-binding sequence (d4.1) to restore Kv1 channel clustering in Caspr- and Caspr2-null mice, respectively. We found that Caspr-d4.1 was localized to the PNJ and is able to recruit the paranodal adhesion complex components contactin and NF155 to this site. Nevertheless, in axons expressing Caspr-d4.1, Kv1 channels were often detected at paranodes, suggesting that the interaction of Caspr with protein 4.1B is necessary for the generation of an efficient membrane barrier at the PNJ. We also found that the Caspr2-d4.1 transgene did not accumulate at the JXP, even though it was targeted to the axon, demonstrating that the interaction with protein 4.1B is required for the accumulation of Caspr2 and Kv1 channels at the juxtaparanodal axonal membrane. In accordance, we show that Caspr2 and Kv1 channels are not clustered at the JXP in 4.1B-null mice. Our results thus underscore the functional importance of protein 4.1B in the organization of peripheral myelinated axons.
Collapse
|
24
|
Gao J, Chen T, Liu J, Liu W, Hu G, Guo X, Yin B, Gong Y, Zhao J, Qiang B, Yuan J, Peng X. Loss of NECL1, a novel tumor suppressor, can be restored in glioma by HDAC inhibitor-Trichostatin A through Sp1 binding site. Glia 2009; 57:989-99. [PMID: 19062177 DOI: 10.1002/glia.20823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nectin-like molecule 1 (NECL1)/CADM3/IGSF4B/TSLL1/SynCAM3 is a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule downregulated at the mRNA level in 12 human glioma cell lines. Here we found that the expression of NECL1 was lost in six glioma cell lines and 15 primary glioma tissues at both RNA and protein levels. Re-expression of NECL1 into glioma cell line U251 would repress cell proliferation in vitro by inducing cell cycle arrest. And also NECL1 could decrease the growth rate of tumors in nude mice in vivo. To further investigate the mechanism why NECL1 was silenced in glioma, the basic promoter region located at -271 to +81 in NECL1 genomic sequence was determined. DNA bisulfite sequencing was performed to study the methylation status of CpG islands in NECL1 promoter; however, no hypermethylated CpG site was found. Additionally, the activity of histone deacetylase (HDACs) in glioma was higher than that in normal brain tissues, and the expression of NECL1 in glioma cell lines could be reactivated by HDACs inhibitor-Trichostatin A (TSA). So the loss of NECL1 in glioma was at least partly caused by histone deacetylation. Luciferase reporter assays, chromatin immunoprecipitation and co-immunoprecipitation (co-IP) assays indicated that Sp1 played an important role in this process by binding to either HDAC1 in untreated glioma cells or p300/CBP in TSA treated cells. Our finding suggests that NECL1 may act as a tumor suppressor in glioma and loss of it in glioma may be caused by histone deacetylation.
Collapse
Affiliation(s)
- Jing Gao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, National Human Genome Center, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Disruption of Nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J Neurosci 2009; 28:12815-9. [PMID: 19036974 DOI: 10.1523/jneurosci.2665-08.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nectin-like 1 (Necl-1) is a neural-specific cell adhesion molecule that is expressed in both the CNS and PNS. Previous in vitro studies suggested that Necl-1 expression is essential for the axon-glial interaction and myelin sheath formation in the PNS. To investigate the in vivo role of Necl-1 in axonal myelination of the developing nervous system, we generated the Necl-1 mutant mice by replacing axons 2-5 with the LacZ reporter gene. Expression studies revealed that Necl-1 is exclusively expressed by neurons in the CNS. Disruption of Necl-1 resulted in developmental delay of axonal myelination in the optic nerve and spinal cord, suggesting that Necl-1 plays an important role in the initial axon-oligodendrocyte recognition and adhesion in CNS myelination.
Collapse
|
26
|
Gao J, Chen T, Hu G, Gong Y, Qiang B, Yuan J, Peng X. Nectin-like molecule 1 is a glycoprotein with a single N-glycosylation site at N290KS which influences its adhesion activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1429-35. [PMID: 18420026 DOI: 10.1016/j.bbamem.2008.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/24/2008] [Accepted: 03/11/2008] [Indexed: 01/03/2023]
Abstract
Nectin-like molecule 1 (NECL1)/CADM3/IGSF4B/TSLL1/SynCAM3, from now on referred to as NECL1, is a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule which has Ca(2+)-independent homo- or heterophilic cell-cell adhesion activity and plays an important role in the formation of synapses, axon bundles and myelinated axons. Here we first detected the expression of NECL1 in human fetal and adult brains, and mouse brains at different developmental stages. The results indicated that two bands with molecular weights of about 62 kDa and 48 kDa were found in human fetal brain, while only one band with a molecular weight of about 48 kDa was found in human adult brain; two bands with molecular weights of about 62 kDa and 48 kDa whose expression level gradually increased were also found from mouse E16 to P14, while only one band with a molecular weight of about 48 kDa was found from P14. Bioinformatics analysis showed there were two putative N-glycosylation sites within human NECL1 at positions N25LS and N290KS and within mouse Necl1 at positions N23LS and N288KS, respectively. There was no O-glycosylation site in either human NECL1 or mouse Necl1. Based on the results of N-Glycosidase F treatment with human fetal brain tissue and lysates from transient transfection with human wild-type or glycosylation site mutant NECL1 in 293ET cells, we demonstrated that human NECL1 is an N-linked glycoprotein with a single glycosylation site at position N290KS. Cell aggregation assay further showed there was an increased adhesion activity after the glycosylation site mutation of NECL1 molecule.
Collapse
Affiliation(s)
- Jing Gao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, National Human Genome Center, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL. Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. ACTA ACUST UNITED AC 2007; 178:861-74. [PMID: 17724124 PMCID: PMC2064549 DOI: 10.1083/jcb.200705132] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axon-glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo-glial interactions along the internode.
Collapse
Affiliation(s)
- Patrice Maurel
- Department of Cell Biology and Neurology, Smilow Neuroscience Program, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pellissier F, Gerber A, Bauer C, Ballivet M, Ossipow V. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci 2007; 8:90. [PMID: 17967169 PMCID: PMC2176061 DOI: 10.1186/1471-2202-8-90] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/29/2007] [Indexed: 01/15/2023] Open
Abstract
Background Cell adhesion molecules are plasma membrane proteins specialized in cell-cell recognition and adhesion. Two related adhesion molecules, Necl-1 and Necl-2/SynCAM, were recently described and shown to fulfill important functions in the central nervous system. The purpose of the work was to investigate the distribution, and the properties of Necl-3/SynCAM-2, a previously uncharacterized member of the Necl family with which it shares a conserved modular organization and extensive sequence homology. Results We show that Necl-3/SynCAM-2 is a plasma membrane protein that accumulates in several tissues, including those of the central and peripheral nervous system. There, Necl-3/SynCAM-2 is expressed in ependymal cells and in myelinated axons, and sits at the interface between the axon shaft and the myelin sheath. Several independent assays demonstrate that Necl-3/SynCAM-2 functionally and selectively interacts with oligodendrocytes. We finally prove that Necl-3/SynCAM-2 is a bona fide adhesion molecule that engages in homo- and heterophilic interactions with the other Necl family members, leading to cell aggregation. Conclusion Collectively, our manuscripts and the works on Necl-1 and SynCAM/Necl-2 reveal a complex set of interactions engaged in by the Necl proteins in the nervous system. Our work also support the notion that the family of Necl proteins fulfils key adhesion and recognition functions in the nervous system, in particular between different cell types.
Collapse
Affiliation(s)
- François Pellissier
- Department of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, Sciences II, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Miyoshi J, Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol 2007; 27:590-604. [PMID: 17823505 DOI: 10.1159/000108103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/17/2007] [Indexed: 12/13/2022]
Abstract
Nectins and nectin-like molecules (Necls) are structurally related transmembrane proteins primarily involved in cell adhesion. Nectins and afadin, the adaptor or anchoring protein, stabilize the epithelium and endothelium and establish apical-basal polarity of epithelial cells, independently or in cooperation with other cell adhesion molecules. Necls facilitate cell-cell communication implicated in cell movement and proliferation, immune responses, and cancer cell phenotypes. Necls interact with nectins and specific ligands at cell-cell contacts, whereas Necls associate with integrin alpha v beta 3 and growth factor receptors on the same cell surface. Besides their roles in cell adhesion, nectins regulate the activities of Rho family small G proteins which play critical roles in maintaining the apical junctions of epithelial cells through reorganization of the actin cytoskeleton. Since mice lacking the Rho GDP-dissociation inhibitor (GDI)alpha show massive proteinuria and degeneration of renal epithelial cells, nectins and other cell adhesion molecules may play roles in the structural and functional aspects of renal diseases. Here we summarize our knowledge of nectins and Necls and discuss cell adhesion biology in the kidney.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | |
Collapse
|
30
|
Spiegel I, Adamsky K, Eshed Y, Milo R, Sarig–Nadir O, Horresh I, Scherer SS, Rasband MN, Peles E. A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci 2007; 10:861-9. [PMID: 17558405 PMCID: PMC2836764 DOI: 10.1038/nn1915] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/05/2007] [Indexed: 12/21/2022]
Abstract
Myelination in the peripheral nervous system requires close contact between Schwann cells and the axon, but the underlying molecular basis remains largely unknown. Here we show that cell adhesion molecules (CAMs) of the nectin-like (Necl, also known as SynCAM or Cadm) family mediate Schwann cell-axon interaction during myelination. Necl4 is the main Necl expressed by myelinating Schwann cells and is located along the internodes in direct apposition to Necl1, which is localized on axons. Necl4 serves as the glial binding partner for axonal Necl1, and the interaction between these two CAMs mediates Schwann cell adhesion. The disruption of the interaction between Necl1 and Necl4 by their soluble extracellular domains, or the expression of a dominant-negative Necl4 in Schwann cells, inhibits myelination. These results suggest that Necl proteins are important for mediating axon-glia contact during myelination in peripheral nerves.
Collapse
Affiliation(s)
- Ivo Spiegel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Konstantin Adamsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Eshed
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ron Milo
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Offra Sarig–Nadir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Horresh
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Matthew N. Rasband
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
31
|
Gruber-Olipitz M, Yang JW, Slavc I, Lubec G. Nectin-like molecule 1 is a high abundance protein in cerebellar neurons. Amino Acids 2006; 30:409-15. [PMID: 16773244 DOI: 10.1007/s00726-006-0323-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/05/2005] [Indexed: 11/29/2022]
Abstract
Nectins and Nectin-like molecules belong to the Ca-independent immunoglobulin superfamily of cell adhesion molecules and are mandatory for various cellular functions such as morphogenesis, differentiation and proliferation. Among them, Nectin-like molecule 1 (Necl-1) is unique for its exclusive expression in the brain where it is localized at the contact sites among axon terminals and glia cell processes, cooperatively forming synapses. We hereby aimed to unambiguously characterize Necl-1 at the protein level in rat brain. Rat cerebellar neurons were lysed, proteins extracted and run on two-dimensional gel electrophoresis with subsequent in-gel digestion and mass spectrometrical (MS/MS) analysis of protein spots. One spot at pI 5.96 with an observed molecular weight of 26 kDa was identified as Nectin-like molecule 1. MS/MS analyses of three matching peptides warranted unambiguous identification for the first time. Additionally, we verified the result by immunoblotting and detected two bands at about 48 kDa and 60 kDa. The proposed roles of Necl-1 in cerebellar morphogenesis as well as plasticity of synapses challenge further research on its function in more detail and we hereby provide a fair analytical tool for the unequivocal determination of Necl-1, independent of antibody availability and specificity.
Collapse
Affiliation(s)
- M Gruber-Olipitz
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Dong X, Xu F, Gong Y, Gao J, Lin P, Chen T, Peng Y, Qiang B, Yuan J, Peng X, Rao Z. Crystal structure of the V domain of human Nectin-like molecule-1/Syncam3/Tsll1/Igsf4b, a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule. J Biol Chem 2006; 281:10610-7. [PMID: 16467305 DOI: 10.1074/jbc.m513459200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily proteins that participate in the organization of epithelial and endothelial junctions. Nectins have three Ig-like domains in the extracellular region, and the first one is essential in cell-cell adhesion and plays a central role in the interaction with the envelope glycoprotein D of several viruses. Five Nectin-like molecules (Necl-1 through -5) with similar domain structures to those of Nectins have been identified. Necl-1 is specifically expressed in neural tissue, has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity, and plays an important role in the formation of synapses, axon bundles, and myelinated axons. Here we report the first crystal structure of its N-terminal Ig-like V domain at 2.4 A, providing insight into trans-cellular recognition mediated by Necl-1. The protein crystallized as a dimer, and the dimeric form was confirmed by size-exclusion chromatography and chemical cross-linking experiments, indicating this V domain is sufficient for homophilic interaction. Mutagenesis work demonstrated that Phe(82) is a key residue for the adhesion activity of Necl-1. A model for homophilic adhesion of Necl-1 at synapses is proposed based on its structure and previous studies.
Collapse
Affiliation(s)
- Xiuhua Dong
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|