1
|
Shamsi M, Al-Asbahy WM, Al-Areqi HQN, Alzowahi FAM. Probing the Biomolecular Interactions of DNA/HSA with the New Sn(IV) Complex and Computational Perspectives: Design, Synthesis, Characterization, Anticancer Activity, and Molecular Modeling Approach. J Med Chem 2024; 67:21841-21858. [PMID: 39661984 DOI: 10.1021/acs.jmedchem.4c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The ligands 2,2'-bipyridyl and indole-3-carboxylic acid were used to create a Sn(IV) complex, which was then synthesized and carefully characterized using elemental analysis and spectroscopic techniques (UV-vis, IR, 1H, 13C, and 119Sn NMR, and ESI-MS) and RXPD. Utilizing biophysical techniques such as UV-vis, fluorescence titrations, circular dichroism, FTIR (for HSA), and cleavage activity (for DNA), in vitro binding studies of Sn(IV) complex and DNA/HSA were satisfied with the strong electrostatic binding interaction of the Sn(IV) complex via the phosphate backbone of the DNA helix as well as in the subdomain IIA of HSA. The observed trend in the binding interactions and computational studies of the Sn(IV) complex was attributed to the nature of the ligands bound to the Sn(IV) center that influences their in vitro activities. The Sn(IV) complex showed sufficient effectiveness to be considered a viable candidate for the creation of anticancer medications.
Collapse
Affiliation(s)
- Manal Shamsi
- Department of Pharmacy, Faculty of Medical Sciences, National University (Ibb Branch), Ibb 46654, Yemen
| | - Waddhaah M Al-Asbahy
- Department of Chemistry, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen
| | - Hakim Q N Al-Areqi
- Department of Physics, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen
| | - Fahad A M Alzowahi
- Department of Pharmacy, Faculty of Medical Sciences, National University (Ibb Branch), Ibb 46654, Yemen
| |
Collapse
|
2
|
Manoochehri H, Farrokhnia M, Sheykhhasan M, Mahaki H, Tanzadehpanah H. Key target genes related to anti-breast cancer activity of ATRA: A network pharmacology, molecular docking and experimental investigation. Heliyon 2024; 10:e34300. [PMID: 39108872 PMCID: PMC11301165 DOI: 10.1016/j.heliyon.2024.e34300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 01/07/2025] Open
Abstract
All-trans retinoic acid (ATRA) has promising activity against breast cancer. However, the exact mechanisms of ATRA's anticancer effects remain complex and not fully understood. In this study, a network pharmacology and molecular docking approach was applied to identify key target genes related to ATRA's anti-breast cancer activity. Gene/disease enrichment analysis for predicted ATRA targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), the Comparative Toxicogenomics Database (CTD), and the Gene Set Cancer Analysis (GSCA) database. Protein-Protein Interaction Network (PPIN) generation and analysis was conducted via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and cytoscape, respectively. Cancer-associated genes were evaluated using MyGeneVenn from the CTD. Differential expression analysis was conducted using the Tumor, Normal, and Metastatic (TNM) Plot tool and the Human Protein Atlas (HPA). The Glide docking program was used to predict ligand-protein binding. Treatment response predication and clinical profile assessment were performed using Receiver Operating Characteristic (ROC) Plotter and OncoDB databases, respectively. Cytotoxicity and gene expression were measured using MTT/fluorescent assays and Real-Time PCR, respectively. Molecular functions of ATRA targets (n = 209) included eicosanoid receptor activity and transcription factor activity. Some enriched pathways included inclusion body myositis and nuclear receptors pathways. Network analysis revealed 35 hub genes contributing to 3 modules, with 16 of them were associated with breast cancer. These genes were involved in apoptosis, cell cycle, androgen receptor pathway, and ESR-mediated signaling, among others. CCND1, ESR1, MMP9, MDM2, NCOA3, and RARA were significantly overexpressed in tumor samples. ATRA showed a high affinity towards CCND1/CDK4 and MMP9. CCND1, ESR1, and MDM2 were associated with poor treatment response and were downregulated after treatment of the breast cancer cell line with ATRA. CCND1 and ESR1 exhibited differential expression across breast cancer stages. Therefore, some part of ATRA's anti-breast cancer activity may be exerted through the CCND1/CDK4 complex.
Collapse
Affiliation(s)
- Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Lépine M, Robert MC, Sleno L. Discovery and Verification of Sjögren's Syndrome Protein Biomarkers in Tears by Targeted LC-MRM. J Proteome Res 2024; 23:2219-2229. [PMID: 38682820 DOI: 10.1021/acs.jproteome.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sjögren's syndrome (SS) is an autoimmune rheumatic disorder characterized by exocrine gland dysfunction, mainly from the lacrimal and salivary glands. The disease causes severe aqueous dry eye syndrome (DED) and is associated with high rates of complications, including corneal ulceration, scaring, and perforation. Systemic complications may occur as well as a higher risk of developing lymphoma. Diagnosis of SS-DED is often delayed and difficult to establish. With the aim of discovering biomarkers to help discriminate SS-DED patients, a combination of untargeted and targeted LC-MS/MS analyses were performed on tear samples collected on Schirmer strips and subjected to tryptic digestion. Following the analysis of three cohorts and the development of two targeted LC-sMRM methods for the verification of putative biomarkers found in the first cohort of samples, 64 proteins could be linked to Sjögren's syndrome, in the hopes of helping to confirm diagnoses as well as potentially stratifying the severity of disease in these patients. Proteins that were increased in SS-DED showed activation of the immune system and alterations in homeostasis. Several proteases and protease inhibitors were found to be significantly changing in SS-DED, as well as a consistent decrease in specific proteins known to be secreted by the lacrimal gland.
Collapse
Affiliation(s)
- Maggy Lépine
- University of Quebec in Montreal (UQAM), Chemistry Department, PO Box 8888, Downtown Station, Montreal, Quebec H3C 3P8, Canada
- CERMO-FC, Centre d'Excellence de Recherche sur les Maladies Orphelines-Fondation Courtois, 141 Avenue du President Kennedy, Montreal, Quebec H2X 3Y7, Canada
| | - Marie-Claude Robert
- Centre de Recherche du Centre Hospitalier Universitaire de (CR-CHUM), Ophthalmology Department, 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
- CERMO-FC, Centre d'Excellence de Recherche sur les Maladies Orphelines-Fondation Courtois, 141 Avenue du President Kennedy, Montreal, Quebec H2X 3Y7, Canada
| | - Lekha Sleno
- University of Quebec in Montreal (UQAM), Chemistry Department, PO Box 8888, Downtown Station, Montreal, Quebec H3C 3P8, Canada
- CERMO-FC, Centre d'Excellence de Recherche sur les Maladies Orphelines-Fondation Courtois, 141 Avenue du President Kennedy, Montreal, Quebec H2X 3Y7, Canada
| |
Collapse
|
4
|
Al-Asbahy WM, Shamsi M, Senan A, Al-Areqi N. Binding mechanism, photo-induced cleavage and computational studies of interaction cefepime drug with Human serum albumin. J Biomol Struct Dyn 2024:1-11. [PMID: 38234057 DOI: 10.1080/07391102.2024.2304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
The binding interaction of cefepime to human serum albumin (HSA) in aqueous solution was investigated by molecular spectroscopy (UV spectra, fluorescence spectra and CD spectra), photo-cleavage and modeling studies under simulative physiological conditions. Spectrophotometric results are rationalized in terms of a static quenching process and binding constant (Kb) and the number of binding sites (n ≈ 1) were calculated using fluorescence quenching approaches at three temperature settings. Thermodynamic data of ΔG, ΔH and ΔS at different temperatures were evaluated. The results showed that the electrostatic and hydrogen bonding interactions play a major role in the binding of cefepime to HSA. The value of 3.4 nm for the distance r between the donor (HSA) and acceptor (cefepime) was derived from the fluorescence resonance energy transfer (FRET). FTIR and CD measurements has been reaffirmed HSA-cefepime association and demonstrated reduction in α-helical content of HSA. Furthermore, the study of molecular modeling also indicated that cefepime could strongly bind to the site I (subdomain IIA) of HSA. Additionally, cefepime shows efficient photo- cleavage of HSA cleavage. Our results may provide valuable information to understand the pharmacological profile of cefepime drug delivery in blood stream.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Waddhaah M Al-Asbahy
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Manal Shamsi
- Department of Biochemistry, Faculty of Medicine and Medical Sciences, Taiz University, Taiz, Yemen
| | - Ahmed Senan
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Niyazi Al-Areqi
- Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
5
|
Jerschke E, Eichinger A, Skerra A. Drastic alterations in the loop structure around colchicine upon complex formation with an engineered lipocalin indicate a conformational selection mechanism. Acta Crystallogr F Struct Biol Commun 2023; 79:231-239. [PMID: 37584182 PMCID: PMC10478763 DOI: 10.1107/s2053230x23006817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Using Anticalin technology, a lipocalin protein dubbed Colchicalin, with the ability to bind the toxic plant alkaloid colchicine with picomolar affinity, has previously been engineered, thus offering a potential antidote in vivo and also allowing its sensitive detection in biological samples. To further analyze the mode of ligand recognition, the crystal structure of Colchicalin is now reported in its unliganded form and is compared with the colchicine complex. A superposition of the protein structures revealed major rearrangements in the four structurally variable loops of the engineered lipocalin. Notably, the binding pocket in the unbound protein is largely occupied by the inward-bent loop #3, in particular Ile97, as well as by the phenylalanine side chain at position 71 in loop #2. Upon binding of colchicine, a dramatic shift of loop #3 by up to 11.1 Å occurs, in combination with a side-chain flip of Phe71, thus liberating the necessary space within the ligand pocket. Interestingly, the proline residue at the neighboring position 72, which arose during the combinatorial engineering of Colchicalin, remained in a cis configuration in both structures. These findings provide a striking example of a conformational adaptation mechanism, which is a long-known phenomenon for antibodies in immunochemistry, during the recognition of a small ligand by an engineered lipocalin, thus illustrating the general similarity between the mode of antigen/ligand binding by immunoglobulins and lipocalins.
Collapse
Affiliation(s)
- Elena Jerschke
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
6
|
Khatri K, O'Malley A, Linn C, Kowal K, Chruszcz M. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 2023; 23:497-508. [PMID: 37351723 PMCID: PMC11490272 DOI: 10.1007/s11882-023-01100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE OF REVIEW A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrea O'Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Santhakumari PR, Dhanabalan K, Virani S, Hopf-Jannasch AS, Benoit JB, Chopra G, Subramanian R. Variability in phenylalanine side chain conformations facilitates broad substrate tolerance of fatty acid binding in cockroach milk proteins. PLoS One 2023; 18:e0280009. [PMID: 37384723 PMCID: PMC10310036 DOI: 10.1371/journal.pone.0280009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Diploptera punctata, also known as the Pacific beetle cockroach, is a viviparous cockroach that gives birth to live offspring and secretes a highly concentrated mixture of glycosylated proteins as a source of nourishment for developing embryos. These proteins are lipocalins that bind to lipids and crystallize in the gut of the embryo. A structure of milk crystals harvested from the embryos showed that the milk-derived crystals were heterogeneous and made of three proteins (called Lili-Mips). We hypothesized that the isoforms of Lili-Mip would display different affinities for fatty acids due to the ability of the pocket to bind multiple acyl chain lengths. We previously reported the structures of Lili-Mip from crystals grown in vivo and recombinantly expressed Lili-Mip2. These structures are similar, and both bind to several fatty acids. This study explores the specificity and affinity of fatty acid binding to recombinantly expressed Lili-Mip 1, 2 & 3. We show that all isoforms can bind to different fatty acids with similar affinities. We also report the thermostability of Lili-Mip is pH dependent, where stability is highest at acidic pH and declines as the pH increases to physiological levels near 7.0. We show that thermostability is an inherent property of the protein, and glycosylation and ligand binding do not change it significantly. Measuring the pH in the embryo's gut lumen and gut cells suggests that the pH in the gut is acidic and the pH inside the gut cells is closer to neutral pH. In various crystal structures (reported here and previously by us), Phe-98 and Phe-100 occupy multiple conformations in the binding pocket. In our earlier work, we had shown that the loops at the entrance could adapt various conformations to change the size of the binding pocket. Here we show Phe-98 and Phe-100 can reorient to stabilize interactions at the bottom of the cavity-and change the volume of the cavity from 510 Å3 to 337 Å3. Together they facilitate the binding of fatty acids of different acyl chain lengths.
Collapse
Affiliation(s)
- Partha Radhakrishnan Santhakumari
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - KanagaVijayan Dhanabalan
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Saniya Virani
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States of America
| | - Amber S. Hopf-Jannasch
- Bindley Biosciences Centre, Purdue University, West Lafayette, Indiana, United States of America
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States of America
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Biosciences Centre, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
8
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood-brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Elevated levels of apolipoprotein D predict poor outcome in patients with suspected or established coronary artery disease. Atherosclerosis 2021; 341:27-33. [PMID: 34959206 DOI: 10.1016/j.atherosclerosis.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Apolipoprotein D (apoD) is a lipocalin exerting neuroprotective effects. However, the relevance of apoD in respect to cardiovascular risk is largely unexplored. Therefore, this study aimed to evaluate the ability of apoD to predict future all-cause mortality, cardiovascular mortality, and cardiovascular events. METHODS Serum apoD levels were measured in a cohort of 531 Caucasian individuals who underwent coronary angiography (356 males, 175 females; mean age 65 ± 10 years). Fatal and non-fatal events were recorded over a median follow-up period of 5.8 years. RESULTS ApoD concentrations at baseline correlated significantly with age, presence of the metabolic syndrome, body mass index, lipoprotein levels, fasting glucose, and estimated glomerular filtration rate. Kaplan-Meier curve analyses by gender-stratified quartiles of apoD revealed that the cumulative incidence rates of mortality and cardiovascular events become higher with increasing apoD levels. The adjusted hazard ratios for participants in the highest quartile of apoD compared to those in the lowest quartile were 4.00 (95% confidence interval [CI] 1.49-10.74) for overall mortality, 5.47 (95% CI 1.20-25.00) for cardiovascular mortality, and 2.52 (95% CI 1.28-5.00) for cardiovascular events. CONCLUSIONS High circulating levels of apoD are an indicator of poor prognosis in patients with suspected or established coronary artery disease.
Collapse
|
11
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
12
|
Ma W, Lu Y, Zuo Y, Wang C, Liu J. Effects of removing a highly conserved disulfide bond in ubiquitin-associated domain of human HOIP on biochemical characteristics. Protein Expr Purif 2021; 190:106005. [PMID: 34695570 DOI: 10.1016/j.pep.2021.106005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Disulfide bond formed between the cysteine pairs plays a key role in maintaining the integrity of the protein structure and function. The ubiquitin-associated (UBA) domain of human HOIP contains three cysteine residues, Cys504, Cys551, and Cys572. Disulfide bonds formed by Cys504 and Cys551 residues are highly conserved, but the effect of disulfide bonds on the biochemical characteristics of UBA has not been elucidated. In addition, due to the presence of isolated Cys572, inactive inclusion bodies may be formed during protein expression or trigger protein aggregation during protein purification. In this study, the co-expression of SUMO fusion protein combined with SUMO protease (ULP enzyme) in Escherichia coli was successfully applied to improve the soluble expression of UBA domain. Introduced three mutants (UBAC551A, UBAC572A and UBAC551,572A) determined the effects of disulfide bonds on the biochemical characteristics of UBA. Circular dichroism and analytical size exclusion chromatography results showed that the target proteins obtained by co-expression could be folded correctly and had biological activity. Both thermal-induced and urea-induced results demonstrated that the elimination of disulfide bonds would significantly reduce the stability of UBA. Fluorescence spectroscopy result showed that the elimination of disulfide bonds slightly increases the binding affinity of UBA to ligands. In summary, soluble, stable and active UBA domain and its mutants were prepared by co-expression system, which will further contribute to the structural and functional research of UBA.
Collapse
Affiliation(s)
- Wenlei Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Lu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yongmei Zuo
- Heilongjiang Institute of Animal Health Inspection, Harbin, 150006, China
| | - Chenchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiafu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
13
|
Glasgow BJ. Tear Lipocalin and Lipocalin-Interacting Membrane Receptor. Front Physiol 2021; 12:684211. [PMID: 34489718 PMCID: PMC8417070 DOI: 10.3389/fphys.2021.684211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Tear lipocalin is a primate protein that was recognized as a lipocalin from the homology of the primary sequence. The protein is most concentrated in tears and produced by lacrimal glands. Tear lipocalin is also produced in the tongue, pituitary, prostate, and the tracheobronchial tree. Tear lipocalin has been assigned a multitude of functions. The functions of tear lipocalin are inexorably linked to structural characteristics that are often shared by the lipocalin family. These characteristics result in the binding and or transport of a wide range of small hydrophobic molecules. The cavity of tear lipocalin is formed by eight strands (A-H) that are arranged in a β-barrel and are joined by loops between the β-strands. Recently, studies of the solution structure of tear lipocalin have unveiled new structural features such as cation-π interactions, which are extant throughout the lipocalin family. Lipocalin has many unique features that affect ligand specificity. These include a capacious and a flexible cavity with mobile and short overhanging loops. Specific features that confer promiscuity for ligand binding in tear lipocalin will be analyzed. The functions of tear lipocalin include the following: antimicrobial activities, scavenger of toxic and tear disruptive compounds, endonuclease activity, and inhibition of cysteine proteases. In addition, tear lipocalin binds and may modulate lipids in the tears. Such actions support roles as an acceptor for phospholipid transfer protein, heteropolymer formation to alter viscosity, and tear surface interactions. The promiscuous lipid-binding properties of tear lipocalin have created opportunities for its use as a drug carrier. Mutant analogs have been created to bind other molecules such as vascular endothelial growth factor for medicinal use. Tear lipocalin has been touted as a useful biomarker for several diseases including breast cancer, chronic obstructive pulmonary disease, diabetic retinopathy, and keratoconus. The functional possibilities of tear lipocalin dramatically expanded when a putative receptor, lipocalin-interacting membrane receptor was identified. However, opposing studies claim that lipocalin-interacting membrane receptor is not specific for lipocalin. A recent study even suggests a different function for the membrane protein. This controversy will be reviewed in light of gene expression data, which suggest that tear lipocalin has a different tissue distribution than the putative receptor. But the data show lipocalin-interacting membrane receptor is expressed on ocular surface epithelium and that a receptor function here would be rational.
Collapse
Affiliation(s)
- Ben J. Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Kristiansson A, Örbom A, Vilhelmsson Timmermand O, Ahlstedt J, Strand SE, Åkerström B. Kidney Protection with the Radical Scavenger α 1-Microglobulin (A1M) during Peptide Receptor Radionuclide and Radioligand Therapy. Antioxidants (Basel) 2021; 10:antiox10081271. [PMID: 34439519 PMCID: PMC8389303 DOI: 10.3390/antiox10081271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
α1-Microglobulin (A1M) is an antioxidant found in all vertebrates, including humans. It has enzymatic reductase activity and can scavenge radicals and bind free heme groups. Infused recombinant A1M accumulates in the kidneys and has therefore been successful in protecting kidney injuries in different animal models. In this review, we focus on A1M as a radioprotector of the kidneys during peptide receptor radionuclide/radioligand therapy (PRRT/RLT). Patients with, e.g., neuroendocrine tumors or castration resistant prostate cancer can be treated by administration of radiolabeled small molecules which target and therefore enable the irradiation and killing of cancer cells through specific receptor interaction. The treatment is not curative, and kidney toxicity has been reported as a side effect since the small, radiolabeled substances are retained and excreted through the kidneys. In recent studies, A1M was shown to have radioprotective effects on cell cultures as well as having a similar biodistribution as the somatostatin analogue peptide 177Lu-DOTATATE after intravenous infusion in mice. Therefore, several animal studies were conducted to investigate the in vivo radioprotective potential of A1M towards kidneys. The results of these studies demonstrated that A1M co-infusion yielded protection against kidney toxicity and improved overall survival in mouse models. Moreover, two different mouse studies reported that A1M did not interfere with tumor treatment itself. Here, we give an overview of radionuclide therapy, the A1M physiology and the results from the radioprotector studies of the protein.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Department of Clinical Sciences Lund, Oncology, Lund University, 221 00 Lund, Sweden; (A.Ö.); (O.V.T.); (S.-E.S.)
- Correspondence:
| | - Anders Örbom
- Department of Clinical Sciences Lund, Oncology, Lund University, 221 00 Lund, Sweden; (A.Ö.); (O.V.T.); (S.-E.S.)
| | - Oskar Vilhelmsson Timmermand
- Department of Clinical Sciences Lund, Oncology, Lund University, 221 00 Lund, Sweden; (A.Ö.); (O.V.T.); (S.-E.S.)
| | - Jonas Ahlstedt
- Department of Clinical Sciences Lund, CIPA, Lund University, 221 84 Lund, Sweden;
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 221 00 Lund, Sweden; (A.Ö.); (O.V.T.); (S.-E.S.)
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, 221 00 Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, 221 84 Lund, Sweden;
| |
Collapse
|
15
|
Ruiz M. Into the Labyrinth of the Lipocalin α1-Acid Glycoprotein. Front Physiol 2021; 12:686251. [PMID: 34168570 PMCID: PMC8217824 DOI: 10.3389/fphys.2021.686251] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
α1-acid glycoprotein (AGP), also known as Orosomucoid (ORM), belongs to the Lipocalin protein family and it is well-known for being a positive acute-phase protein. AGP is mostly found in plasma, with the liver as main contributor, but it is also expressed in other tissues such as the brain or the adipose tissue. Despite the vast literature on AGP, the physiological functions of the protein remain to be elucidated. A large number of activities mostly related to protection and immune system modulation have been described. Recently created AGP-knockout models have suggested novel physiological roles of AGP, including regulation of metabolism. AGP has an outstanding ability to efficiently bind endogenous and exogenous small molecules that together with the complex and variable glycosylation patterns, determine AGP functions. This review summarizes and discusses the recent findings on AGP structure (including glycans), ligand-binding ability, regulation, and physiological functions of AGP. Moreover, this review explores possible molecular and functional connections between AGP and other members of the Lipocalin protein family.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Sawyer L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front Physiol 2021; 12:678080. [PMID: 34093238 PMCID: PMC8173191 DOI: 10.3389/fphys.2021.678080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
The two lipocalins, β-lactoglobulin (βLg) and glycodelin (Gd), are possibly the most closely related members of the large and widely distributed lipocalin family, yet their functions appear to be substantially different. Indeed, the function of β-lactoglobulin, a major component of ruminant milk, is still unclear although neonatal nutrition is clearly important. On the other hand, glycodelin has several specific functions in reproduction conferred through distinct, tissue specific glycosylation of the polypeptide backbone. It is also associated with some cancer outcomes. The glycodelin gene, PAEP, reflecting one of its names, progestagen-associated endometrial protein, is expressed in many though not all primates, but the name has now also been adopted for the β-lactoglobulin gene (HGNC, www.genenames.org). After a general overview of the two proteins in the context of the lipocalin family, this review considers the properties of each in the light of their physiological functional significance, supplementing earlier reviews to include studies from the past decade. While the biological function of glycodelin is reasonably well defined, that of β-lactoglobulin remains elusive.
Collapse
Affiliation(s)
- Lindsay Sawyer
- School of Biological Sciences, IQB3, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Burda PC, Crosskey T, Lauk K, Zurborg A, Söhnchen C, Liffner B, Wilcke L, Pietsch E, Strauss J, Jeffries CM, Svergun DI, Wilson DW, Wilmanns M, Gilberger TW. Structure-Based Identification and Functional Characterization of a Lipocalin in the Malaria Parasite Plasmodium falciparum. Cell Rep 2021; 31:107817. [PMID: 32579913 DOI: 10.1016/j.celrep.2020.107817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/19/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Proteins of the lipocalin family are known to bind small hydrophobic ligands and are involved in various physiological processes ranging from lipid transport to oxidative stress responses. The genome of the malaria parasite Plasmodium falciparum contains a single protein PF3D7_0925900 with a lipocalin signature. Using crystallography and small-angle X-ray scattering, we show that the protein has a tetrameric structure of typical lipocalin monomers; hence we name it P. falciparum lipocalin (PfLCN). We show that PfLCN is expressed in the intraerythrocytic stages of the parasite and localizes to the parasitophorous and food vacuoles. Conditional knockdown of PfLCN impairs parasite development, which can be rescued by treatment with the radical scavenger Trolox or by temporal inhibition of hemoglobin digestion. This suggests a key function of PfLCN in counteracting oxidative stress-induced cell damage during multiplication of parasites within erythrocytes.
Collapse
Affiliation(s)
- Paul-Christian Burda
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany.
| | - Thomas Crosskey
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Katharina Lauk
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Aimo Zurborg
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Christoph Söhnchen
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Louisa Wilcke
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany.
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
18
|
Habeler M, Redl B. Phage-display reveals interaction of lipocalin allergen Can f 1 with a peptide resembling the antigen binding region of a human γδT-cell receptor. Biol Chem 2021; 402:433-437. [PMID: 33938175 PMCID: PMC10883907 DOI: 10.1515/hsz-2020-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
Although some progress has been achieved in understanding certain aspects of the allergenic mechanism of animal lipocalins, they still remain largely enigmatic. One possibility to unravel this property is to investigate their interaction with components of the immune system. Since these components are highly complex we intended to use a high-throughput technology for this purpose. Therefore, we used phage-display of a random peptide library for panning against the dog allergen Can f 1. By this method we identified a Can f 1 binding peptide corresponding to the antigen-binding site of a putative γδT-cell receptor. Additional biochemical investigations confirmed this interaction.
Collapse
Affiliation(s)
- Matthias Habeler
- Institute of Molecular Biology, Medical University Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
| | - Bernhard Redl
- Institute of Molecular Biology, Medical University Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
| |
Collapse
|
19
|
Ma JYW, Sze YH, Bian JF, Lam TC. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). Int J Mol Med 2021; 47:83. [PMID: 33760148 PMCID: PMC7992922 DOI: 10.3892/ijmm.2021.4916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The tear film is a layer of body fluid that maintains the homeostasis of the ocular surface. The superior accessibility of tears and the presence of a high concentration of functional proteins make tears a potential medium for the discovery of non-invasive biomarkers in ocular diseases. Recent advances in mass spectrometry (MS) have enabled determination of an in-depth proteome profile, improved sensitivity, faster acquisition speed, proven variety of acquisition methods, and identification of disease biomarkers previously lacking in the field of ophthalmology. The use of MS allows efficient discovery of tear proteins, generation of reproducible results, and, more importantly, determines changes of protein quantity and post-translation modifications in microliter samples. The present review compared techniques for tear collection, sample preparation, and acquisition applied for the discovery of tear protein markers in normal subjects and multifactorial conditions, including dry eye syndrome, diabetic retinopathy, thyroid eye disease and primary open-angle glaucoma, which require an early diagnosis for treatment. It also summarized the contribution of MS to early discovery by means of disease-related protein markers in tear fluid and the potential for transformation of the tear MS-based proteome to antibody-based assay for future clinical application.
Collapse
Affiliation(s)
- Jessica Yuen Wuen Ma
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China
| | - Ying Hon Sze
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China
| | - Jing Fang Bian
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China
| |
Collapse
|
20
|
Small angle X-ray scattering analysis of ligand-bound forms of tetrameric apolipoprotein-D. Biosci Rep 2021; 41:227100. [PMID: 33399852 PMCID: PMC7786332 DOI: 10.1042/bsr20201423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein-D (apoD) is a glycosylated lipocalin that plays a protective role in Alzheimer's disease due to its antioxidant function. Native apoD from human body fluids forms oligomers, predominantly a stable tetramer. As a lipocalin, apoD binds and transports small hydrophobic molecules such as progesterone, palmitic acid and sphingomyelin. Oligomerisation is a common trait in the lipocalin family and is affected by ligand binding in other lipocalins. The crystal structure of monomeric apoD shows no major changes upon progesterone binding. Here, we used small-angle X-ray scattering (SAXS) to investigate the influence of ligand binding and oxidation on apoD oligomerisation and conformation. As a solution-based technique, SAXS is well suited to detect changes in oligomeric state and conformation in response to ligand binding. Our results show no change in oligomeric state of apoD and no major conformational changes or subunit rearrangements in response to binding of ligands or protein oxidation. This highlights the highly stable structure of the native apoD tetramer under various physiologically relevant experimental conditions.
Collapse
|
21
|
Bozhanova NG, Calcutt MW, Beavers WN, Brown BP, Skaar EP, Meiler J. Lipocalin Blc is a potential heme-binding protein. FEBS Lett 2021; 595:206-219. [PMID: 33210733 PMCID: PMC8177097 DOI: 10.1002/1873-3468.14001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022]
Abstract
Lipocalins are a superfamily of functionally diverse proteins defined by a well-conserved tertiary structure despite variation in sequence. Lipocalins bind and transport small hydrophobic molecules in organisms of all kingdoms. However, there is still uncertainty regarding the function of some members of the family, including bacterial lipocalin Blc from Escherichia coli. Here, we present evidence that lipocalin Blc may be involved in heme binding, trans-periplasmic transport, or heme storage. This conclusion is supported by a cocrystal structure, mass-spectrometric data, absorption titration, and in silico analysis. Binding of heme is observed at low micromolar range with one-to-one ligand-to-protein stoichiometry. However, the absence of classical coordination to the iron atom leaves the possibility that the primary ligand of Blc is another tetrapyrrole.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - M Wade Calcutt
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin P Brown
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Medical School, Leipzig University, Germany
| |
Collapse
|
22
|
Soler ZM, Schlosser RJ, Mulligan JK, Smith TL, Mace JC, Ramakrishan VR, Norris-Caneda K, Bethard JR, Ball LE. Olfactory cleft mucus proteome in chronic rhinosinusitis: a case-control pilot study. Int Forum Allergy Rhinol 2020; 11:1162-1176. [PMID: 33275311 DOI: 10.1002/alr.22743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mechanisms of smell loss in chronic rhinosinusitis (CRS) are still unclear and likely multifactorial. Little attention has been given to olfactory cleft (OC) mucus proteins involved in odorant binding and metabolizing enzymes and their potential role in smell loss. METHODS Mucus from the OC was sampled from patients with CRS (n = 20) and controls (n = 10). Liquid chromatography and mass spectrometry were performed, followed by data processing so that protein groups could be identified, quantified, and compared. Hierarchical clustering and bioinformatic analysis were performed on significantly different proteins to explore for enrichment in known biologic pathways. RESULTS A total of 2514 proteins were found in OC mucus from all 30 subjects. Significant differences in protein abundance were found between CRS and controls, including both CRSsNP (n = 351 proteins; log2 fold change range: -3.88 to 6.71) and CRSwNP (n = 298 proteins; log2 fold change range: -4.00 to -6.13). Significant differences were found between patients with normosmia and those with dysosmia (n = 183; log2 fold change range: -3.62 to -2.16) and across groups of interest for a number of odorant binding proteins and metabolizing enzymes. CONCLUSION OC mucous in CRS displays a rich and abundant array of proteins, many of which have been implicated in odorant transport and metabolization in animal studies. Significant differences in the olfactory mucus proteome were seen between CRS subtypes and controls, as well as between those with normal and abnormal olfaction. Further study should confirm these findings and explore the role individual proteins play in odorant transport and metabolization. ©2020 ARSAAOA, LLC.
Collapse
Affiliation(s)
- Zachary M Soler
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Rodney J Schlosser
- Division of Rhinology and Sinus Surgery, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC.,Department of Surgery, Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jennifer K Mulligan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Timothy L Smith
- Division of Rhinology and Sinus/Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Jess C Mace
- Division of Rhinology and Sinus/Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Vijay R Ramakrishan
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO
| | - Kim Norris-Caneda
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Jennifer R Bethard
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
23
|
Mazaheri S, Talebkhan Y, Mahboudi F, Nematollahi L, Cohan RA, Mirabzadeh Ardakani E, Bayat E, Sabzalinejad M, Sardari S, Torkashvand F. Improvement of Certolizumab Fab' properties by PASylation technology. Sci Rep 2020; 10:18464. [PMID: 33116155 PMCID: PMC7595094 DOI: 10.1038/s41598-020-74549-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Certolizumab pegol is a Fab' antibody fragment for treatment of rheumatoid arthritis and Crohn's disease which is conjugated to a 40 kDa PEG molecule in order to increase the protein half-life. PEGylation may have disadvantages including immunogenicity, hypersensitivity, vacuolation, decreased binding affinity and biological activity of the protein. To overcome these problems, PASylation has been developed as a new approach. The nucleotide sequence encoding 400 amino acid PAS residues was genetically fused to the corresponding nucleotide sequences of both chains of certolizumab. Then, the bioactivity as well as physicochemical and pharmacokinetic properties of the recombinant PASylated expressed protein was assayed. Circular dichroism spectroscopy demonstrated that the random coil structure of PAS sequences did not change the secondary structure of the PASylated Fab' molecule. It was observed that PASylation influenced the properties of the Fab' molecule by which the hydrodynamic radius and neutralization activity were increased. Also, the antigen binding and binding kinetic parameters improved in comparison to the PEGylated Fab' antibody. Pharmacokinetic studies also showed prolonged terminal half-life and improved pharmacokinetic parameters in PASylated recombinant protein in comparison to the PEGylated and Fab' control molecules. The results reconfirmed the efficiency of PASylation approach as a potential alternative method in increasing the half-life of pharmaceutical proteins.
Collapse
Affiliation(s)
- Somayeh Mazaheri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, Advanced Technology Group, Pasteur Institute of Iran, Tehran, Iran
| | | | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soroush Sardari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
24
|
Zajc CU, Salzer B, Taft JM, Reddy ST, Lehner M, Traxlmayr MW. Driving CARs with alternative navigation tools - the potential of engineered binding scaffolds. FEBS J 2020; 288:2103-2118. [PMID: 32794303 PMCID: PMC8048499 DOI: 10.1111/febs.15523] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
T cells that are genetically engineered to express chimeric antigen receptors (CAR T cells) have shown impressive clinical efficacy against B‐cell malignancies. In contrast to these highly potent CD19‐targeting CAR T cells, many of those directed against other tumor entities and antigens currently suffer from several limitations. For example, it has been demonstrated that many scFvs used as antigen‐binding domains in CARs show some degree of oligomerization, which leads to tonic signaling, T cell exhaustion, and poor performance in vivo. Therefore, in many cases alternatives to scFvs would be beneficial. Fortunately, due to the development of powerful protein engineering technologies, also non‐immunoglobulin‐based scaffolds can be engineered to specifically recognize antigens, thus eliminating the historical dependence on antibody‐based binding domains. Here, we discuss the advantages and disadvantages of such engineered binding scaffolds, in particular with respect to their application in CARs. We review recent studies, collectively showing that there is no functional or biochemical aspect that necessitates the use of scFvs in CARs. Instead, antigen recognition can also be mediated efficiently by engineered binding scaffolds, as well as natural ligands or receptors fused to the CAR backbone. Finally, we critically discuss the risk of immunogenicity and show that the extent of nonhuman amino acid stretches in engineered scaffolds—even in those based on nonhuman proteins—is more similar to humanized scFvs than might be anticipated. Together, we expect that engineered binding scaffolds and natural ligands and receptors will be increasingly used for the design of CAR T cells.
Collapse
Affiliation(s)
- Charlotte U Zajc
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Salzer
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Manfred Lehner
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
25
|
A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc Natl Acad Sci U S A 2020; 117:14926-14935. [PMID: 32554495 PMCID: PMC7334647 DOI: 10.1073/pnas.1911154117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.
Collapse
|
26
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
27
|
Wang BL, Kou SB, Lin ZY, Shi JH. Insight into the binding behavior of ceritinib on human α-1 acid glycoprotein: Multi-spectroscopic and molecular modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118160. [PMID: 32113179 DOI: 10.1016/j.saa.2020.118160] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Ceritinib is a second-generation anaplastic lymphoma kinase (ALK) inhibitor for mainly treating non-small cell lung cancer (NSCLC). This investigation focused on to clarify in detail the binding behavior between human α-1 acid glycoprotein (HAG) and ceritinib by means of multi-spectroscopic and molecular modeling approaches. Fluorescence data obtained at four different temperatures indicated ceritinib quenched the endogenous fluorescence of HAG by a static quenching mechanism. Based on the Kb value at 105 M-1 level, it can be inferred that the binding affinity between both is strong. From findings of thermodynamic parameter analysis, the competitive experiments with ANS and sucrose as well as molecular dynamic (MD) simulation, it can be inferred that hydrophobicity, hydrogen bonding, van der Waals forces as well as electrostatic interactions exist in the binding interaction between ceritinib and HAG. The findings from UV absorption, circular dichroism, and synchronous fluorescence spectroscopy indicated that the change in the microenvironment around the protein structure, secondary structure and tryptophan residues occurred after interaction with ceritinib. The data from FRET analysis confirmed that the non-radiative energy transfer between the two existed and the binding distance between the acceptor (ceritinib) and donor (HAG) was 2.11 nm. Meantime, the influence of Ca2+, Cu2+, Ni2+, Co2+, and Zn2+ ions on the binding interaction of ceritinib with HAG were obvious, especially Zn2+ ion.
Collapse
Affiliation(s)
- Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
28
|
Carlsson MLR, Kristiansson A, Bergwik J, Kanagarajan S, Bülow L, Åkerström B, Zhu LH. Expression, Purification and Initial Characterization of Functional α 1-Microglobulin (A1M) in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2020; 11:593773. [PMID: 33363557 PMCID: PMC7752767 DOI: 10.3389/fpls.2020.593773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
α1-Microglobulin (A1M) is a small glycoprotein that belongs to the lipocalin protein family. A major biological role of A1M is to protect cells and tissues against oxidative damage by clearing free heme and reactive oxygen species. Because of this, the protein has attracted great interest as a potential pharmaceutical candidate for treatment of acute kidney injury and preeclampsia. The aim of this study was to explore the possibility of expressing human A1M in plants through transient gene expression, as an alternative or complement to other expression systems. E. coli, insect and mammalian cell culture have previously been used for recombinant A1M (rA1M) or A1M production, but these systems have various drawbacks, including additional complication and expense in refolding for E. coli, while insect produced rA1M is heavily modified with chromophores and mammalian cell culture has been used only in analytical scale. For that purpose, we have used a viral vector (pJL-TRBO) delivered by Agrobacterium for expression of three modified A1M gene variants in the leaves of N. benthamiana. The results showed that these modified rA1M protein variants, A1M-NB1, A1M-NB2 and A1M-NB3, targeted to the cytosol, ER and extracellular space, respectively, were successfully expressed in the leaves, which was confirmed by SDS-PAGE and Western blot analysis. The cytosol accumulated A1M-NB1 was selected for further analysis, as it appeared to have a higher yield than the other variants, and was purified with a yield of ca. 50 mg/kg leaf. The purified protein had the expected structural and functional properties, displaying heme-binding capacity and capacity of protecting red blood cells against stress-induced cell death. The protein also carried bound chromophores, a characteristic feature of A1M and an indicator of a capacity to bind small molecules. The study showed that expression of the functional protein in N. benthamiana may be an attractive alternative for production of rA1M for pharmaceutical purposes and a basis for future research on A1M structure and function.
Collapse
Affiliation(s)
- Magnus L. R. Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jesper Bergwik
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- *Correspondence: Li-Hua Zhu,
| |
Collapse
|
29
|
Dauner M, Skerra A. Scavenging Bacterial Siderophores with Engineered Lipocalin Proteins as an Alternative Antimicrobial Strategy. Chembiochem 2019; 21:601-606. [PMID: 31613035 PMCID: PMC7079049 DOI: 10.1002/cbic.201900564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/30/2022]
Abstract
Iron acquisition mediated by siderophores, high-affinity chelators for which bacteria have evolved specific synthesis and uptake mechanisms, plays a crucial role in microbiology and in host-pathogen interactions. In the ongoing fight against bacterial infections, this area has attracted biomedical interest. Beyond several approaches to interfere with siderophore-mediated iron uptake from medicinal and immunochemistry, the development of high-affinity protein scavengers that tightly complex the siderophores produced by pathogenic bacteria has appeared as a novel strategy. Such binding proteins have been engineered based on siderocalin-also known as lipocalin 2-an endogenous human scavenger of enterobactin and bacillibactin that controls the systemic spreading of commensal bacteria such as Escherichia coli. By using combinatorial protein design, siderocalin was reshaped to bind several siderophores from Pseudomonas aeruginosa and, in particular, petrobactin from Bacillus anthracis, none of which is recognized by the natural protein. Such engineered versions of siderocalin effectively suppress the growth of corresponding pathogenic bacteria by depriving them of their iron supply and offer the potential to complement antibiotic therapy in situations of acute or persistent infection.
Collapse
Affiliation(s)
- Martin Dauner
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120, Halle/Saale, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| |
Collapse
|
30
|
LCAT, ApoD, and ApoA1 Expression and Review of Cholesterol Deposition in the Cornea. Biomolecules 2019; 9:biom9120785. [PMID: 31779197 PMCID: PMC6995527 DOI: 10.3390/biom9120785] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is an enzyme secreted by the liver and circulates with high-density lipoprotein (HDL) in the blood. The enzyme esterifies plasma cholesterol and increases the capacity of HDL to carry and potentially remove cholesterol from tissues. Cholesterol accumulates within the extracellular connective tissue matrix of the cornea stroma in individuals with genetic deficiency of LCAT. LCAT can be activated by apolipoproteins (Apo) including ApoD and ApoA1. ApoA1 also mediates cellular synthesis of HDL. This study examined the expression of LCAT by epithelial cells, keratocytes, and endothelial cells, the cell types that comprise from anterior to posterior the three layers of the cornea. LCAT and ApoD were immunolocalized to all three cell types within the cornea, while ApoA1 was immunolocalized to keratocytes and endothelium but not epithelium. In situ hybridization was used to detect LCAT, ApoD, and ApoA1 mRNA to learn what cell types within the cornea synthesize these proteins. No corneal cells showed mRNA for ApoA1. Keratocytes and endothelium both showed ApoD mRNA, but epithelium did not. Epithelium and endothelium both showed LCAT mRNA, but despite the presence of LCAT protein in keratocytes, keratocytes did not show LCAT mRNA. RNA sequencing analysis of serum-cultured dedifferentiated keratocytes (commonly referred to as corneal stromal fibroblasts) revealed the presence of both LCAT and ApoD (but not ApoA1) mRNA, which was accompanied by their respective proteins detected by immunolabeling of the cultured keratocytes and Western blot analysis of keratocyte lysates. The results indicate that keratocytes in vivo show both ApoA1 and LCAT proteins, but do not synthesize these proteins. Rather, keratocytes in vivo must take up ApoA1 and LCAT from the corneal interstitial tissue fluid.
Collapse
|
31
|
Li D, Yan Sun W, Fu B, Xu A, Wang Y. Lipocalin-2-The myth of its expression and function. Basic Clin Pharmacol Toxicol 2019; 127:142-151. [PMID: 31597008 DOI: 10.1111/bcpt.13332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
Lipocalin-2 is a functional biomarker for acute and chronic kidney diseases, heart failure and obesity-related medical complications. It is rapidly induced in epithelial cells under stress conditions, but constitutively produced from pre-adipocytes and mature adipocytes. Measuring the lipocalin-2 levels represents an effective approach for risk prediction, patient stratification and disease management. Nevertheless, due to ligand-binding, post-translational modification and protein-protein interaction, lipocalin-2 exists as multiple variants that elicit different pathophysiological functions. To characterize the specific structure-functional relationships of lipocalin-2 variants is critical for the development of biomarker assays with sufficient precision and reliability. Moreover, identifying the pathological forms of lipocalin-2 will provide new therapeutic targets and treatment approaches for obesity-related complications.
Collapse
Affiliation(s)
- Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Yan Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Bowen Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
32
|
Serchenya T, Shcharbin D, Shyrochyna I, Sviridov O, Terekhova M, Dzmitruk V, Abashkin V, Apartsin E, Mignani S, Majoral JP, Ionov M, Bryszewska M. Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids Surf B Biointerfaces 2019; 179:226-232. [DOI: 10.1016/j.colsurfb.2019.03.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 01/15/2023]
|
33
|
The human olfactory cleft mucus proteome and its age-related changes. Sci Rep 2018; 8:17170. [PMID: 30464187 PMCID: PMC6249231 DOI: 10.1038/s41598-018-35102-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Age-related decreases in olfactory sensitivity are often accompanied by a decrease in the quality of life. However, the molecular mechanisms underlying these changes are not well described. Inhaled substances including odorants are detected by sensory neurons in the olfactory cleft covered with a layer of mucus. This olfactory mucus is the first molecular machinery responsible for tissue protection and for detection of environmental odorants. Yet, little is known about the molecular identities of the actors because of the lack of information on the mucus proteome and its age-related changes. Here, we sampled human mucus from different nasal locations and from young and elderly subjects. The composition of the mucus was extensively analyzed by shotgun proteomic analysis for a vast array of proteins. We also explored correlations between the levels of each mucus proteins with the olfactory sensitivity of subjects. This analysis revealed previously unrecognized proteins with potentially important functions in olfaction. Taken together, this report describes the most comprehensive catalogue of the nasal mucus proteins to date, their positional and age-related differences, and candidate proteins associated with olfaction. This catalogue will provide fundamental information useful for future studies, such as identification of olfactory auxiliary proteins, causes of age-related declines in olfaction, and biomarkers for neurodegenerative disorders.
Collapse
|
34
|
Glasgow BJ, Abduragimov AR. Ligand binding complexes in lipocalins: Underestimation of the stoichiometry parameter (n). BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1001-1007. [PMID: 30037780 PMCID: PMC6481938 DOI: 10.1016/j.bbapap.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The stoichiometry of a ligand binding reaction to a protein is given by a parameter (n). The value of this parameter may indicate the presence of protein monomer or dimers in the binding complex. Members of the lipocalin superfamily show variation in the stoichiometry of binding to ligands. In some cases the stoichiometry parameter (n) has been variously reported for the same protein as mono- and multimerization of the complex. Prime examples include retinol binding protein, β lactoglobulin and tear lipocalin, also called lipocalin-1(LCN1). Recent work demonstrated the stoichiometric ratio for ceramide:tear lipocalin varied (range n = 0.3-0.75) by several different methods. The structure of ceramide raises the intriguing possibility of a lipocalin dimer complex with each lipocalin molecule attached to one of the two alkyl chains of ceramide. The stoichiometry of the ceramide-tear lipocalin binding complex was explored in detail using size exclusion chromatography and time resolved fluorescence anisotropy. Both methods showed consistent results that tear lipocalin remains monomeric when bound to ceramide. Delipidation experiments suggest the most likely explanation is that the low 'n' values result from prior occupancy of the binding sites by native ligands. Lipocalins such as tear lipocalin that have numerous binding partners are particularly prone to an underestimated apparent stoichiometry parameter.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
35
|
Abstract
Anticalin proteins are an emerging class of clinical-stage biopharmaceuticals with high potential as an alternative to antibodies. Anticalin molecules are generated by combinatorial design from natural lipocalins, which are abundant plasma proteins in humans, and reveal a simple, compact fold dominated by a central β-barrel, supporting four structurally variable loops that form a binding site. Reshaping of this loop region results in Anticalin proteins that can recognize and tightly bind a wide range of medically relevant targets, from small molecules to peptides and proteins, as validated by X-ray structural analysis. Their robust format allows for modification in several ways, both as fusion proteins and by chemical conjugation, for example, to tune plasma half-life. Antagonistic Anticalin therapeutics have been developed for systemic administration (e.g., PRS-080: anti-hepcidin) or pulmonary delivery (e.g. PRS-060/AZD1402: anti-interleukin [IL]-4-Rα). Moreover, Anticalin proteins allow molecular formatting as bi- and even multispecific fusion proteins, especially in combination with antibodies that provide a second specificity. For example, PRS-343, which has recently entered clinical-stage development, combines an agonistic Anticalin targeting the costimulatory receptor 4-1BB with an antibody directed against the cancer antigen human epidermal growth factor receptor 2 (HER2), thus offering a novel treatment option in immuno-oncology.
Collapse
Affiliation(s)
- Christine Rothe
- Pieris Pharmaceuticals GmbH, Lise-Meitner-Straße 30, 85354, Freising, Germany.
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising (Weihenstephan), Germany.
| |
Collapse
|
36
|
Elmes MW, Volpe AD, d'Oelsnitz S, Sweeney JM, Kaczocha M. Lipocalin-Type Prostaglandin D Synthase Is a Novel Phytocannabinoid-Binding Protein. Lipids 2018; 53:353-360. [PMID: 29668081 DOI: 10.1002/lipd.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 11/10/2022]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS; EC:5.3.99.2) is an enzyme with dual functional roles as a prostaglandin D2 -synthesizing enzyme and as an extracellular transporter for diverse lipophilic compounds in the cerebrospinal fluid (CSF). Transport of hydrophobic endocannabinoids is mediated by serum albumin in the blood and intracellularly by the fatty acid binding proteins, but no analogous transport mechanism has yet been described in CSF. L-PGDS has been reported to promiscuously bind a wide variety of lipophilic ligands and is among the most abundant proteins found in the CSF. Here, we examine the binding of several classes of endogenous and synthetic ligands to L-PGDS. Endocannabinoids exhibited low affinity toward L-PGDS, while cannabinoid metabolites and synthetic cannabinoids displayed higher affinities for L-PGDS. These results indicate that L-PGDS is unlikely to function as a carrier for endocannabinoids in the CSF, but it may bind and transport a subset of cannabinoids.
Collapse
Affiliation(s)
- Matthew W Elmes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anthony D Volpe
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Simon d'Oelsnitz
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph M Sweeney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
37
|
Glasgow BJ, Abduragimov AR. Interaction of ceramides and tear lipocalin. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:399-408. [PMID: 29331331 PMCID: PMC5835416 DOI: 10.1016/j.bbalip.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
38
|
In Silico Study on Retinoid-binding Modes in Human RBP and ApoD Lipocalins. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
Lowe AD, Bawazeer S, Watson DG, McGill S, Burchmore RJS, Pomeroy PPP, Kennedy MW. Rapid changes in Atlantic grey seal milk from birth to weaning - immune factors and indicators of metabolic strain. Sci Rep 2017; 7:16093. [PMID: 29170469 PMCID: PMC5700954 DOI: 10.1038/s41598-017-16187-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother’s metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.
Collapse
Affiliation(s)
- Amanda D Lowe
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Sami Bawazeer
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Suzanne McGill
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - Richard J S Burchmore
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - P P Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
40
|
Hajny S, Christoffersen C. A Novel Perspective on the ApoM-S1P Axis, Highlighting the Metabolism of ApoM and Its Role in Liver Fibrosis and Neuroinflammation. Int J Mol Sci 2017; 18:ijms18081636. [PMID: 28749426 PMCID: PMC5578026 DOI: 10.3390/ijms18081636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, renal proximal tubule cells as well as the highly specialized endothelium of the blood brain barrier (BBB) express and secrete apolipoprotein M (apoM). ApoM is a typical lipocalin containing a hydrophobic binding pocket predominantly carrying Sphingosine-1-Phosphate (S1P). The small signaling molecule S1P is associated with several physiological as well as pathological pathways whereas the role of apoM is less explored. Hepatic apoM acts as a chaperone to transport S1P through the circulation and kidney derived apoM seems to play a role in S1P recovery to prevent urinal loss. Finally, polarized endothelial cells constituting the lining of the BBB express apoM and secrete the protein to the brain as well as to the blood compartment. The review will provide novel insights on apoM and S1P, and its role in hepatic fibrosis, neuroinflammation and BBB integrity.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
41
|
Pascua-Maestro R, Diez-Hermano S, Lillo C, Ganfornina MD, Sanchez D. Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genet 2017; 13:e1006603. [PMID: 28182653 PMCID: PMC5325589 DOI: 10.1371/journal.pgen.1006603] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/24/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Environmental insults such as oxidative stress can damage cell membranes. Lysosomes are particularly sensitive to membrane permeabilization since their function depends on intraluminal acidic pH and requires stable membrane-dependent proton gradients. Among the catalog of oxidative stress-responsive genes is the Lipocalin Apolipoprotein D (ApoD), an extracellular lipid binding protein endowed with antioxidant capacity. Within the nervous system, cell types in the defense frontline, such as astrocytes, secrete ApoD to help neurons cope with the challenge. The protecting role of ApoD is known from cellular to organism level, and many of its downstream effects, including optimization of autophagy upon neurodegeneration, have been described. However, we still cannot assign a cellular mechanism to ApoD gene that explains how this protection is accomplished. Here we perform a comprehensive analysis of ApoD intracellular traffic and demonstrate its role in lysosomal pH homeostasis upon paraquat-induced oxidative stress. By combining single-lysosome in vivo pH measurements with immunodetection, we demonstrate that ApoD is endocytosed and targeted to a subset of vulnerable lysosomes in a stress-dependent manner. ApoD is functionally stable in this acidic environment, and its presence is sufficient and necessary for lysosomes to recover from oxidation-induced alkalinization, both in astrocytes and neurons. This function is accomplished by preventing lysosomal membrane permeabilization. Two lysosomal-dependent biological processes, myelin phagocytosis by astrocytes and optimization of neurodegeneration-triggered autophagy in a Drosophila in vivo model, require ApoD-related Lipocalins. Our results uncover a previously unknown biological function of ApoD, member of the finely regulated and evolutionary conserved gene family of extracellular Lipocalins. They set a lipoprotein-mediated regulation of lysosomal membrane integrity as a new mechanism at the hub of many cellular functions, critical for the outcome of a wide variety of neurodegenerative diseases. These results open therapeutic opportunities by providing a route of entry and a repair mechanism for lysosomes in pathological situations. This work is the result of our search for the mechanism of action of Apolipoprotein D (ApoD), a neuroprotective lipid-binding protein that confers cell resistance to oxidative stress. ApoD is one of the few genes consistently over-expressed in the aging brain of all vertebrate species, and no nervous system disease has been found concurring without ApoD over-expression. All evidence supports ApoD as an endogenous mechanism of protection. We demonstrate here that this extracellular lipid binding protein is endocytosed and targeted in a finely controlled way to subsets of lysosomes in need of protection, those most sensitive to oxidative stress. ApoD reveals the existence of biologically relevant lysosomal heterogeneity that conditions the oxidation state of cells, their phagocytic or autophagic capacity, and the final output in neurodegenerative conditions. The stable presence of ApoD in lysosomes is sufficient and necessary for lysosomes to recover from oxidation-induced membrane permeabilization and loss of proton gradients. ApoD-mediated control of lysosomal membrane integrity represents a new cell-protection mechanism at the hub of many cellular functions, and is critical for the outcome of a wide variety of neurodegenerative diseases. Therapeutic opportunities open, by providing a route of entry and a repair mechanism for lysosomes in pathological situations.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Sergio Diez-Hermano
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Maria D. Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
- * E-mail: (MDG); (DS)
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
- * E-mail: (MDG); (DS)
| |
Collapse
|
42
|
Zhang T, Watson DG, Zhang R, Hou R, Loeffler IK, Kennedy MW. Changeover from signalling to energy-provisioning lipids during transition from colostrum to mature milk in the giant panda (Ailuropoda melanoleuca). Sci Rep 2016; 6:36141. [PMID: 27808224 PMCID: PMC5093549 DOI: 10.1038/srep36141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
Among the large placental mammals, ursids give birth to the most altricial neonates with the lowest neonatal:maternal body mass ratios. This is particularly exemplified by giant pandas. To examine whether there is compensation for the provision of developmentally important nutrients that other species groups may provide in utero, we examined changes in the lipids of colostrum and milk with time after birth in giant pandas. Lipids that are developmental signals or signal precursors, and those that are fundamental to nervous system construction, such as docosahexaenoic acid (DHA) and phosphatidylserines, appear early and then fall dramatically in concentration to a baseline at 20–30 days. The dynamics of lysophosphatidic acid and eicosanoids display similar patterns, but with progressive differences between mothers. Triglycerides occur at relatively low levels initially and increase in concentration until a plateau is reached at about 30 days. These patterns indicate an early provision of signalling lipids and their precursors, particularly lipids crucial to brain, retinal and central nervous system development, followed by a changeover to lipids for energy metabolism. Thus, in giant pandas, and possibly in all bears, lactation is adapted to provisioning a highly altricial neonate to a degree that suggests equivalence to an extension of gestation.
Collapse
Affiliation(s)
- Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Rong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510405, P.R. China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, P.R. China
| | - I Kati Loeffler
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, P.R. China
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health and Comparative Medicine, and Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
43
|
Napoli PE, Coronella F, Satta GM, Iovino C, Sanna R, Fossarello M. A Simple Novel Technique of Infrared Meibography by Means of Spectral-Domain Optical Coherence Tomography: A Cross-Sectional Clinical Study. PLoS One 2016; 11:e0165558. [PMID: 27798696 PMCID: PMC5087862 DOI: 10.1371/journal.pone.0165558] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To compare a novel spectral-domain optical coherence tomography (SD-OCT) technique with traditional lid transillumination for evaluation of meibomian glands (MGs) and to assess the relation of MG morphologic changes to the glandular atrophy. DESIGN Evaluation of diagnostic technology. PARTICIPANTS Sixty-one patients with obstructive MGD (30 men, 31 women; age [mean ± standard deviation] 45.1 ± 12.1 years), and 75 control subjects (32 men, 43 women; 44.1 ± 12.5 years) were recruited in order to have a balanced distribution of glandular features. METHODS Agreement between SD-OCT and lid transillumination examination for the detection of drop-out (partial or complete loss of MGs) and microscopic changes (i.e. shortening, distortion, segmentation and entanglement), as well as the relationship between morphological features and MG atrophy were evaluated. MAIN OUTCOME MEASURES Agreement between the two meibographic techniques, bias in symmetry of classification, and association analysis between microscopic changes and MG dropout. RESULTS Overall agreement for all morphological features was substantial (Cohen kappa coefficient = 0.77; p<0.001), even if, the majority of disagreement occurred for cases with segmentation, where agreement was present in only 108 (81.82%) of 132 eyes with adequate images for interpretation, and where SD-OCT tended to diagnose more cases not detected by traditional lid transillumination (McNemar test, p<0.001). Moreover, segmentation and distortion pattern negatively correlated with the degree of drop-out, whereas shortening and entanglement pattern demonstrated only a weak correlation (Spearman's ρ was -0.691, -0.491, -0.359, -0.385, respectively). CONCLUSIONS Each method has its advantages but in general there was close agreement between these meibographic techniques, particularly for MG dropout, which supports the reliability of our novel, simple and patient-friendly SD-OCT approach.
Collapse
Affiliation(s)
- Pietro Emanuele Napoli
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
- * E-mail:
| | - Franco Coronella
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Giovanni Maria Satta
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Claudio Iovino
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Raffaele Sanna
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Maurizio Fossarello
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| |
Collapse
|
44
|
Kuhn N, Schmidt CQ, Schlapschy M, Skerra A. PASylated Coversin, a C5-Specific Complement Inhibitor with Extended Pharmacokinetics, Shows Enhanced Anti-Hemolytic Activity in Vitro. Bioconjug Chem 2016; 27:2359-2371. [PMID: 27598771 DOI: 10.1021/acs.bioconjchem.6b00369] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ornithodoros moubata Complement Inhibitor (OmCI) binds complement component 5 (C5) with high affinity and, thus, selectively prevents proteolytic activation of the terminal lytic complement pathway. A recombinant version of OmCI (also known as Coversin and rEV576) has proven efficacious in several animal models of complement-mediated diseases and successfully completed a phase Ia clinical trial. Coversin is a small 17 kDa lipocalin protein which has a very short plasma half-life if not bound to C5; therefore, the drug requires frequent dosing. We have improved the pharmacokinetics of Coversin by N-terminal translational conjugation with a 600 residue polypeptide composed of Pro, Ala, and Ser (PAS) residues. To this end, PAS-Coversin as well as the unmodified Coversin were functionally expressed in the cytoplasm of E. coli and purified to homogeneity. Both versions showed identical affinity to human C5, as determined by surface plasmon resonance measurements, and revealed similar complement inhibitory activity, as measured in ELISAs with human serum. In line with the PEG-like biophysical properties, PASylation dramatically prolonged the plasma half-life of uncomplexed Coversin by a factor ≥50 in mice. In a clinically relevant in vitro model of the complement-mediated disease paroxysmal nocturnal hemoglobinuria (PNH) both versions of Coversin effectively reduced erythrocyte lysis. Unexpectedly, while the IC50 values were comparable, PAS-Coversin reached a substantially lower plateau of residual lysis at saturating inhibitor concentrations. Taken together, our data demonstrate two clinically relevant improvements of PASylated Coversin: markedly increased plasma half-life and considerably reduced background hemolysis of erythrocytes with PNH-induced phenotype.
Collapse
Affiliation(s)
- Nadine Kuhn
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München , Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University , Helmholtzstrasse 20, 89081 Ulm, Germany
| | - Martin Schlapschy
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München , Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany.,XL-protein GmbH , Lise-Meitner-Strasse 30, 85354 Freising, Germany
| | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München , Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany.,XL-protein GmbH , Lise-Meitner-Strasse 30, 85354 Freising, Germany
| |
Collapse
|
45
|
High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide. Biochem J 2016; 473:1563-78. [PMID: 27029347 PMCID: PMC4888463 DOI: 10.1042/bcj20160114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/30/2016] [Indexed: 01/25/2023]
Abstract
Anticalins engineered for high affinity and specificity towards the central VFFAED epitope in Aβ peptides potently inhibit their aggregation, thus providing novel reagents to study the molecular pathology of Alzheimer's disease (AD) and alternative drug candidates compared with current biopharmaceutical treatments. Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutations targeted at 20 exposed amino acid positions in the four loops that form the natural binding site was performed using both recombinant and synthetic target peptides and resulted in three different Anticalins. Biochemical characterization of the purified proteins produced by periplasmic secretion in Escherichia coli revealed high folding stability in a monomeric state, with Tm values ranging from 53.4°C to 74.5°C, as well as high affinities for Aβ40, between 95 pM and 563 pM, as measured by real-time surface plasmon resonance analysis. The central linear VFFAED epitope within the Aβ sequence was mapped using a synthetic peptide array on membranes and was shared by all three Anticalins, despite up to 13 mutual amino acid differences in their binding sites. All Anticalins had the ability–with varying extent–to inhibit Aβ aggregation in vitro according to the thioflavin-T fluorescence assay and, furthermore, they abolished Aβ42-mediated toxicity in neuronal cell culture. Thus, these Anticalins provide not only useful protein reagents to study the molecular pathology of AD but they also show potential as alternative drug candidates compared with antibodies.
Collapse
|
46
|
Guo H, Foncea R, O'Byrne SM, Jiang H, Zhang Y, Deis JA, Blaner WS, Bernlohr DA, Chen X. Lipocalin 2, a Regulator of Retinoid Homeostasis and Retinoid-mediated Thermogenic Activation in Adipose Tissue. J Biol Chem 2016; 291:11216-29. [PMID: 27008859 DOI: 10.1074/jbc.m115.711556] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
We have recently characterized the role of lipocalin 2 (Lcn2) as a new adipose-derived cytokine in the regulation of adaptive thermogenesis via a non-adrenergic pathway. Herein, we explored a potential non-adrenergic mechanism by which Lcn2 regulates thermogenesis and lipid metabolism. We found that Lcn2 is a retinoic acid target gene, and retinoic acid concurrently stimulated UCP1 and Lcn2 expression in adipocytes. Lcn2 KO mice exhibited a blunted effect of all-trans-retinoic acid (ATRA) on body weight and fat mass, lipid metabolism, and retinoic acid signaling pathway activation in adipose tissue under the high fat diet-induced obese condition. We further demonstrated that Lcn2 is required for the full action of ATRA on the induction of UCP1 and PGC-1α expression in brown adipocytes and the restoration of cold intolerance in Lcn2 KO mice. Interestingly, we discovered that Lcn2 KO mice have decreased levels of retinoic acid and retinol in adipose tissue. The protein levels of STRA6 responsible for retinol uptake were significantly decreased in adipose tissue. The retinol transporter RBP4 was increased in adipose tissue but decreased in the circulation, suggesting the impairment of RBP4 secretion in Lcn2 KO adipose tissue. Moreover, Lcn2 deficiency abolished the ATRA effect on RBP4 expression in adipocytes. All the data suggest that the decreased retinoid level and action are associated with impaired retinol transport and storage in adipose tissue in Lcn2 KO mice. We conclude that Lcn2 plays a critical role in regulating metabolic homeostasis of retinoids and retinoid-mediated thermogenesis in adipose tissue.
Collapse
Affiliation(s)
- Hong Guo
- From the Departments of Food Science and Nutrition and
| | - Rocio Foncea
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minnesota 55108 and
| | - Sheila M O'Byrne
- the Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Hongfeng Jiang
- the Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | - William S Blaner
- the Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - David A Bernlohr
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minnesota 55108 and
| | - Xiaoli Chen
- From the Departments of Food Science and Nutrition and
| |
Collapse
|
47
|
Ahlstedt J, Tran TA, Strand SE, Gram M, Åkerström B. Human Anti-Oxidation Protein A1M--A Potential Kidney Protection Agent in Peptide Receptor Radionuclide Therapy. Int J Mol Sci 2015; 16:30309-20. [PMID: 26694383 PMCID: PMC4691176 DOI: 10.3390/ijms161226234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/28/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M) is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.
Collapse
Affiliation(s)
- Jonas Ahlstedt
- Section for Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| | - Thuy A Tran
- Lund University Bioimaging Center, Lund University, Lund 221 84, Sweden.
| | - Sven-Erik Strand
- Section of Medical Radiation Physics, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| | - Magnus Gram
- Section for Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| |
Collapse
|
48
|
Gille H, Hülsmeyer M, Trentmann S, Matschiner G, Christian HJ, Meyer T, Amirkhosravi A, Audoly LP, Hohlbaum AM, Skerra A. Functional characterization of a VEGF-A-targeting Anticalin, prototype of a novel therapeutic human protein class. Angiogenesis 2015; 19:79-94. [DOI: 10.1007/s10456-015-9490-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
49
|
Chen W, Zhao X, Zhang M, Yuan Y, Ge L, Tang B, Xu X, Cao L, Guo H. High-efficiency secretory expression of human neutrophil gelatinase-associated lipocalin from mammalian cell lines with human serum albumin signal peptide. Protein Expr Purif 2015; 118:105-12. [PMID: 26518367 DOI: 10.1016/j.pep.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
Human neutrophil gelatinase associated lipocalin (NGAL) is a secretory glycoprotein initially isolated from neutrophils. It is thought to be involved in the incidence and development of immunological diseases and cancers. Urinary and serum levels of NGAL have been investigated as a new biomarker of acute kidney injury (AKI), for an earlier and more accurate detection method than with creatinine level. However, expressing high-quality recombinant NGAL is difficult both in Escherichia coli and mammalian cells for the low yield. Here, we cloned and fused NGAL to the C-terminus of signal peptides of human NGAL, human interleukin-2 (IL2), gaussia luciferase (Gluc), human serum albumin preproprotein (HSA) or an hidden Markov model-generated signal sequence (HMM38) respectively for transient expression in Expi293F suspension cells to screen for their ability to improve the secretory expression of recombinant NGAL. The best results were obtained with signal peptide derived from HSA. The secretory recombinant protein could react specifically with NGAL antibody. For scaled production, we used HSA signal peptide to establish stable Chinese hamster ovary cell lines. Then we developed a convenient colony-selection system to select high-expression, stable cell lines. Moreover, we purified the NGAL with Ni-Sepharose column. The recombinant human NGAL displayed full biological activity. We provide a method to enhance the secretory expression of recombinant human NGAL by using the HSA signal peptide and produce the glycoprotein in mammalian cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Xiaozhi Zhao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Mingxin Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Yimin Yuan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Liyuan Ge
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Bo Tang
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Xiaoyu Xu
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Lin Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China.
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China.
| |
Collapse
|
50
|
Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites. Biochem J 2015; 473:43-54. [PMID: 26487699 DOI: 10.1042/bj20150836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.
Collapse
|