1
|
Sivanandham S, Sivanandham R, Xu C, Symmonds J, Sette P, He T, Funderburg N, Abdel-Mohsen M, Landay A, Apetrei C, Pandrea I. Plasma lipidomic alterations during pathogenic SIV infection with and without antiretroviral therapy. Front Immunol 2025; 16:1475160. [PMID: 40129985 PMCID: PMC11931036 DOI: 10.3389/fimmu.2025.1475160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Lipid profiles change in human immunodeficiency virus (HIV) infection and correlate with inflammation. Lipidomic alterations are impacted by multiple non-HIV-related behavioral risk factors; thus, use of animal models in which these behavioral factors are controlled may inform on the specific lipid changes induced by simian immunodeficiency virus (SIV) infection and/or antiretroviral therapy (ART). Methods Using ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy, we assessed and compared (ANOVA) longitudinal lipid changes in naïve and ART-treated SIV-infected pigtailed macaques (PTMs). Key parameters of infection (IL-6, TNFa, D-dimer, CRP and CD4+ T cell counts) were correlated (Spearman) with lipid concentrations at critical time points of infection and treatment. Results Sphingomyelins (SM) and lactosylceramides (LCER) increased during acute infection, returning to baseline during chronic infection; Hexosylceramides (HCER) increased throughout infection, being normalized with prolonged ART; Phosphatidylinositols (PI) and lysophosphatidylcholines (LPC) decreased with SIV infection and did not return to normal with ART; Phosphatidylethanolamines (PE), lysophosphatidylethanolamines (LPE) and phosphatidylcholines (PC) were unchanged by SIV infection, yet significantly decreased throughout ART. Specific lipid species (SLS) were also substantially modified by SIV and/or ART in most lipid classes. In conclusion, using a metabolically controlled model, we identified specific lipidomics signatures of SIV infection and/or ART, some of which were similar to people living with HIV (PWH). Many SLS were identical to those involved in development of organ dysfunctions encountered in virally suppressed individuals. Lipid changes also correlated with markers of disease progression, inflammation and coagulation. Discussion Our data suggest that lipidomic profile alterations contribute to residual systemic inflammation and comorbidities seen in HIV/SIV infections and therefore may be used as biomarkers of SIV/HIV comorbidities. Further exploration into the benefits of interventions targeting dyslipidemia is needed for the prevention HIV-related comorbidities.
Collapse
Affiliation(s)
- Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Alan Landay
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Dai J, Pang M, Cai J, Liu Y, Qin Y. Integrated transcriptomic and metabolomic investigation of the genes and metabolites involved in swine follicular cyst formation. Front Vet Sci 2024; 10:1298132. [PMID: 38274662 PMCID: PMC10808629 DOI: 10.3389/fvets.2023.1298132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Follicular cysts are a common reproductive disorder in mammals that is usually caused by stress. However, the pathogenesis of follicular cysts in sows remains unclear. To provide new insights into the mechanisms of follicular cyst formation in pigs, we conducted a combined transcriptomic and metabolomic analysis on theca interna and mural granulosa cells of follicular cysts and mature follicles. We identified 2,533 up-regulated and 1,355 down-regulated genes in follicular cysts, compared with mature follicles. These differentially expressed genes were mainly found in signaling pathways related to tumor formation and cortisol synthesis and secretion as shown by Ingenuity Pathway Analysis, which predicted 4,362 upstream regulatory factors. The combined gene expression and pathway analysis identified the following genes as potential biomarkers for porcine follicular cysts: cytochrome P450 family 2 subfamily C polypeptide 18, L-lactate dehydrogenase, carbamoyl-phosphate synthase, fibroblast growth factor 7, integrin binding sialoprotein, interleukin 23 receptor, prolactin receptor, epiregulin, interleukin 1 receptor type II, arginine vasopressin receptor 1A, fibroblast growth factor 10, claudin 7, G Protein Subunit Gamma 3, cholecystokinin B receptor and cytosolic phospholipase A2. Metabolomics analysis found significant differences in 87 metabolites, which were enriched in unsaturated fatty acid biosynthesis, and sphingolipid signaling pathways. These results provide valuable information on the molecular mechanisms of follicular cyst formation, which may facilitate the development of new therapeutics to prevent and treat follicular cysts.
Collapse
Affiliation(s)
- Jiage Dai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyue Pang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jiabao Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
3
|
Li H, Wang L, Zhu J, Xiao J, Yang H, Hai H, Hu J, Li L, Shi Y, Yu M, Shuai P, Liu Y, Ju X, Wu G, Zhou Y, Deng B, Gong B. Diagnostic serum biomarkers associated with ankylosing spondylitis. Clin Exp Med 2023; 23:1729-1739. [PMID: 36459277 DOI: 10.1007/s10238-022-00958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that mostly affects the axial skeleton. This study aimed to investigate reliable diagnostic serum biomarkers for AS. Serum samples were collected from 20 AS patients and 20 healthy controls (HCs) and analyzed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The differential metabolites between the AS patients and HCs were profiled using univariate and multivariate statistical analyses. Pathway analysis and a heat map were also conducted. Random forest (RF) analysis and the least absolute shrinkage and selection operator (LASSO) were used to establish predictive and diagnostic models. After controlling the variable importance in the projection (VIP) value > 1 and false discovery rate (FDR) < 0.05, a total of 61 differential metabolites were identified from 995 metabolites, which exhibited significant differences in the pathway analysis and heat map between the AS patients and HCs. RF as a predictive model also identified differential metabolites with 95% predictive accuracy and a high area under the curve (AUC) of 1. A diagnostic model comprising nine metabolites (cysteinylglycine disulfide, choline, N6, N6, N6-trimethyllysine, histidine, sphingosine, fibrinopeptide A, glycerol 3-phosphate, 1-linoleoyl-GPA (18:2), and fibrinopeptide A (3-16)) was generated using LASSO regression, capable of distinguishing HCs from AS with a high AUC of 1. Our results indicated that the UPLC-MS/MS analysis method is a powerful tool for identifying AS metabolite profiles. We developed a nine-metabolites-based model serving as a diagnostic tool to separate AS patients from HCs, and the identified diagnostic biomarkers appeared to have a diagnostic value for AS.
Collapse
Affiliation(s)
- Huan Li
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liang Wang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialing Xiao
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huining Yang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huanyue Hai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiarui Hu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Li
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Shi
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
| | - Ping Shuai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuping Liu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xueming Ju
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yu Zhou
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
| | - Bo Gong
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
4
|
Li J, Wu L, Chen Y, Yan Z, Fu J, Luo Z, Du J, Guo L, Xu J, Liu Y. Anticeramide Improves Sjögren's Syndrome by Blocking BMP6-Induced Th1. J Dent Res 2023; 102:93-102. [PMID: 36281063 DOI: 10.1177/00220345221119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T-cell dysfunction has been shown to play an important role in the pathogenesis of Sjögren's syndrome (SS). In recent studies, the increased expression of BMP6 has been reported to be related to SS. However, the roles that BMP6 plays in immune homeostasis in the development of SS as well as the downstream signals activated by BMP6 remain unclear. In this study, we investigated the effects and molecular mechanisms of BMP6 on naive CD4+ T cells, showing that BMP6 could upregulate interferon (IFN)-γ secretion from CD4+ T cells through a ceramide/nuclear factor-κB pathway, with no effect on T-cell activation or proliferation. Moreover, an in vivo study showed that anticeramide treatment (myriocin) for an SS animal model (NOD/LtJ mice) could significantly decrease the IFN-γ expression and Th1 frequency in the salivary glands and suppress the inflammation infiltration in salivary glands and maintain the salivary flow rates, both of which reflect SS-like symptoms. This study identifies a promising target that could effectively attenuate the abnormal state of CD4+ T cells and reverse the progression of SS.
Collapse
Affiliation(s)
- J Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - L Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - Y Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Z Yan
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Z Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - L Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - J Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P.R. China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, P.R. China
| |
Collapse
|
5
|
Song Z, Yan W, Abulikemu M, Wang J, Xing Y, Zhou Q, Ma S, Chang C. Sphingolipid profiles and their relationship with inflammatory factors in asthmatic patients of different sexes. Chronic Dis Transl Med 2021; 7:199-205. [PMID: 34505020 PMCID: PMC8413120 DOI: 10.1016/j.cdtm.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease with distinct prevalence and manifestation between sexes. This study was to identify sex-specific features of asthma via metabolomic analysis of sphingolipids. METHODS Forty-two asthma patients (27 women and 15 men) admitted to the Peking University Third Hospital from January 2015 to December 2015 were enrolled. Peripheral venous blood was collected for metabolomic analysis by targeted liquid chromatography-mass spectrometry. Sex hormones(estradiol, progesterone, testosterone, and androstenedione) and multiple inflammatory factors (periostin, leptin, IgE, IL-4, IL-5, IL-10, IL-13, IL-17A, and IFN-γ) were also assessed. The eosinophil percentage in induced sputum was also detected. All these data were applied to comparative analysis between sexes. RESULTS Testosterone was negatively related to periostin (ρ = -0.420, P = 0.009) and IL-5 (ρ = -0.540, P = 0.012), while estradiol was positively related to the blood eosinophil percentage (ρ = 0.384, P = 0.025). Among the eighteen species of sphingolipids detected in the 42 patients, five ceramide (Cer) species (Cer16:0, Cer:20:0, Cer22:0, Cer24:0, and Cer26:0) and one sphingomyelin (SM) species (SM38:0) were significantly higher in male than in female patients. Further investigation found that the correlation between Cer20:0 and IL-5 was positive in males (ρ = 0.943, P = 0.005) but negative in females (ρ = -0.561, P = 0.030). CONCLUSIONS Testosterone was negatively correlated with eosinophil inflammatory factors, but estradiol was positively correlated. Male asthma patients had higher ceramide and sphingomyelin levels than female patients. Different sexes had opposite correlations with ceramide and IL-5, respectively, suggesting that therapeutic strategies targeting ceramide should be different between sexes.
Collapse
Affiliation(s)
- Zhu Song
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Wei Yan
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Mairipaiti Abulikemu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Juan Wang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - Qingtao Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Chun Chang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
6
|
Siao AC, Shih LJ, Lin YY, Tsuei YW, Kuo YC, Ku HC, Chuu CP, Hsiao PJ, Kao YH. Investigation of the Molecular Mechanisms by Which Endothelin-3 Stimulates Preadipocyte Growth. Front Endocrinol (Lausanne) 2021; 12:661828. [PMID: 34093437 PMCID: PMC8176213 DOI: 10.3389/fendo.2021.661828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Endothelins induce many biological responses, and they are composed of three peptides: ET-1, ET-2, and ET-3. Reports have indicated that ET-1 regulates cell proliferation, adipogenesis, and other cell responses and that ET-3 stimulates the growth of gastrointestinal epithelial cells and melanocytes. However, the signalling pathways of ET3 that mediate the growth of fat cells are still unclear. Using 3T3-L1 white preadipocytes, we found that ET-3 induced increases in both cell number and BrdU incorporation. Pretreatment with an ETAR antagonist (but not an ETBR antagonist) blocked the ET-3-induced increases in both cell number and BrdU incorporation. Additionally, BQ610 suppressed the ET-3-induced increases in phosphorylation of AMPK, c-JUN, and STAT3 proteins, and pretreatment with specific inhibitors of AMPK, JNK/c-JUN, or JAK/STAT3 prevented the ET-3-induced increases in phosphorylation of AMPK, c-JUN, and STAT3, respectively. Neither p38 MAPK inhibitor nor PKC inhibitor altered the effects of ET-3 on cell growth. These data suggest that ET-3 stimulates preadipocyte growth through the ETAR, AMPK, JNK/c-JUN, and STAT3 pathways. Moreover, ET-3 did not alter HIB1B brown preadipocyte and D12 beige preadipocyte growth, suggesting a preadipocyte type-dependent effect. The results of this study may help explain how endothelin mediates fat cell activity and fat cell-associated diseases.
Collapse
Affiliation(s)
- An-Ci Siao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Li-Jane Shih
- Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Wei Tsuei
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
| | - Yow-Chii Kuo
- Department of Gastroenterology, Landseed Hospital, Taoyuan, Taiwan
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Ping Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Po-Jen Hsiao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Zhang YH, Cui SX, Wan SB, Wu SH, Qu XJ. Increased S1P induces S1PR2 internalization to blunt the sensitivity of colorectal cancer to 5-fluorouracil via promoting intracellular uracil generation. Acta Pharmacol Sin 2021; 42:460-469. [PMID: 32647340 PMCID: PMC8027438 DOI: 10.1038/s41401-020-0460-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022]
Abstract
Sphingosine-1-phosphate (S1P), the backbone of most sphingolipids, activating S1P receptors (S1PRs) and the downstream G protein signaling has been implicated in chemoresistance. In this study we investigated the role of S1PR2 internalization in 5-fluorouracil (5-FU) resistance in human colorectal cancer (CRC). Clinical data of randomly selected 60 CRC specimens showed the correlation between S1PR2 internalization and increased intracellular uracil (P < 0.001). Then we explored the regulatory mechanisms in CRC model of villin-S1PR2-/- mice and CRC cell lines. We showed that co-administration of S1P promoted S1PR2 internalization from plasma membrane (PM) to endoplasmic reticulum (ER), thus blunted 5-FU efficacy against colorectal tumors in WT mice, compared to that in S1PR2-/- mice. In HCT116 and HT-29 cells, application of S1P (10 μM) empowered S1PR2 to internalize from PM to ER, thus inducing 5-FU resistance, whereas the specific S1PR2 inhibitor JTE-013 (10 μM) effectively inhibited S1P-induced S1PR2 internalization. Using Mag-Fluo-AM-labeling [Ca2+]ER and LC-ESI-MS/MS, we revealed that internalized S1PR2 triggered elevating [Ca2+]ER levels to activate PERK-eLF2α-ATF4 signaling in HCT116 cells. The activated ATF4 upregulated RNASET2-mediated uracil generation, which impaired exogenous 5-FU uptake to blunt 5-FU therapy. Overall, this study reveals a previously unrecognized mechanism of 5-FU resistance resulted from S1PR2 internalization-upregulated uracil generation in colorectal cancer, and provides the novel insight into the significance of S1PR2 localization in predicting the benefit of CRC patients from 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shu-Xiang Cui
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Sheng-Biao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Shu-Hua Wu
- Department of Pathology, Hospital of Binzhou Medical University, Binzhou 264003, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Dong YY, Xia M, Wang L, Cui S, Li QB, Zhang JC, Meng SS, Zhang YK, Kong QX. Spatiotemporal Expression of SphK1 and S1PR2 in the Hippocampus of Pilocarpine Rat Model and the Epileptic Foci of Temporal Lobe Epilepsy. Front Cell Dev Biol 2020; 8:800. [PMID: 33134289 PMCID: PMC7578367 DOI: 10.3389/fcell.2020.00800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a severe chronic neurological disease caused by abnormal discharge of neurons in the brain and seriously affect the long-term life quality of patients. Currently, new insights into the pathogenesis of TLE are urgently needed to provide more personalized and effective therapeutic strategies. Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate receptor 2 (S1PR2) signaling pathway plays a pivotal role in central nervous system (CNS) diseases. However, the precise altered expression of SphK1 and S1PR2 in TLE is remaining obscure. Here, we have confirmed the expression of SphK1 and S1PR2 in the pilocarpine-induced epileptic rat hippocampus and report for the first time the expression of SphK1 and S1PR2 in the temporal cortex of TLE patients. We found an increased expression of SphK1 in the brain from both epileptic rats and TLE patients. Conversely, S1PR2 expression level was markedly decreased. We further investigated the localization of SphK1 and S1PR2 in epileptic brains. Our study showed that both SphK1 and S1PR2 co-localized with activated astrocytes and neurons. Surprisingly, we observed different subcellular localization of SphK1 and S1PR2 in epileptic brain specimens. Taken together, our study suggests that the alteration of the SphK1/S1PR2 signaling axis is closely associated with the course of TLE and provides a new target for the treatment of TLE.
Collapse
Affiliation(s)
- Yuan-Yuan Dong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Min Xia
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lin Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuai Cui
- Department of Surgery, Weifang Medical University, Weifang, China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jun-Chen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shu-Shu Meng
- Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Yan-Ke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
9
|
Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J Stroke 2020; 22:29-46. [PMID: 32027790 PMCID: PMC7005353 DOI: 10.5853/jos.2019.02236] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a catastrophic illness causing significant morbidity and mortality. Despite advances in surgical technique addressing primary brain injury caused by ICH, little progress has been made treating the subsequent inflammatory cascade. Pre-clinical studies have made advancements identifying components of neuroinflammation, including microglia, astrocytes, and T lymphocytes. After cerebral insult, inflammation is initially driven by the M1 microglia, secreting cytokines (e.g., interleukin-1β [IL-1β] and tumor necrosis factor-α) that are involved in the breakdown of the extracellular matrix, cellular integrity, and the blood brain barrier. Additionally, inflammatory factors recruit and induce differentiation of A1 reactive astrocytes and T helper 1 (Th1) cells, which contribute to the secretion of inflammatory cytokines, augmenting M1 polarization and potentiating inflammation. Within 7 days of ICH ictus, the M1 phenotype coverts to a M2 phenotype, key for hematoma removal, tissue healing, and overall resolution of inflammation. The secretion of anti-inflammatory cytokines (e.g., IL-4, IL-10) can drive Th2 cell differentiation. M2 polarization is maintained by the secretion of additional anti-inflammatory cytokines by the Th2 cells, suppressing M1 and Th1 phenotypes. Elucidating the timing and trigger of the anti-inflammatory phenotype may be integral in improving clinical outcomes. A challenge in current translational research is the absence of an equivalent disease animal model mirroring the patient population and comorbid pathophysiologic state. We review existing data and describe potential therapeutic targets around which we are creating a bench to bedside translational research model that better reflects the pathophysiology of ICH patients.
Collapse
Affiliation(s)
- Christine Tschoe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cheryl D Bushnell
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Pamela W Duncan
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA.,Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Stacey Q Wolfe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
10
|
Lipocalin 2: A New Antimicrobial in Mast Cells. Int J Mol Sci 2019; 20:ijms20102380. [PMID: 31091692 PMCID: PMC6566617 DOI: 10.3390/ijms20102380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Mast cells (MCs) play a significant role in the innate immune defense against bacterial infection through the release of cytokines and antimicrobial peptides. However, their antimicrobial function is still only partially described. We therefore hypothesized that MCs express additional antimicrobial peptides. In this study, we used FANTOM 5 transcriptome data to identify for the first time that MCs express lipocalin 2 (LCN2), a known inhibitor of bacterial growth. Using MCs derived from mice which were deficient in LCN2, we showed that this antimicrobial peptide is an important component of the MCs' antimicrobial activity against Escherichia coli (E. coli). Since sphingosine-1-phosphate receptors (S1PRs) on MCs are known to regulate their function during infections, we hypothesized that S1P could activate LCN2 production in MCs. Using an in vitro assay, we demonstrated that S1P enhances MCs antimicrobial peptide production and increases the capacity of MCs to directly kill S. aureus and E. coli via an LCN2 release. In conclusion, we showed that LCN2 is expressed by MCs and plays a role in their capacity to inhibit bacterial growth.
Collapse
|
11
|
Shao C, Song J, Zhao S, Jiang H, Wang B, Chi A. Therapeutic Effect and Metabolic Mechanism of A Selenium-Polysaccharide from Ziyang Green Tea on Chronic Fatigue Syndrome. Polymers (Basel) 2018; 10:polym10111269. [PMID: 30961194 PMCID: PMC6401680 DOI: 10.3390/polym10111269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
Ziyang green tea was considered a medicine food homology plant to improve chronic fatigue Ssyndrome (CFS) in China. The aim of this research was to study the therapeutic effect of selenium-polysaccharides (Se-TP) from Ziyang green tea on CFS and explore its metabolic mechanism. A CFS-rats model was established in the present research and Se-TP was administrated to evaluate the therapeutic effect on CFS. Some serum metabolites including blood urea nitrogen (BUN), blood lactate acid (BLA), corticosterone (CORT), and aldosterone (ALD) were checked. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS). Multivariate statistical analysis was also used to check the data. The results selected biomarkers that were entered into the MetPA database to analyze their corresponding metabolic pathways. The results demonstrated that Se-TP markedly improved the level of BUN and CORT in CFS rats. A total of eight differential metabolites were detected in GC-MS analysis, which were benzoic acid, itaconic acid, glutaric acid, 4-acetamidobutyric acid, creatine, 2-hydroxy-3-isopropylbutanedioic acid, l-dopa, and 21-hydroxypregnenolone. These differential metabolites were entered into the MetPA database to search for the corresponding metabolic pathways and three related metabolic pathways were screened out. The first pathway was steroid hormone biosynthesis. The second was tyrosine metabolism, and the third was arginine-proline metabolism. The 21-hydroxypregnenolone level of rats in the CFS group markedly increased after the Se-TP administration. In conclusion, Se-TP treatments on CFS rats improved their condition. Its metabolic mechanism was closely related to that which regulates the steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Changzhuan Shao
- College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China.
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Jing Song
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Shanguang Zhao
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongke Jiang
- College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China.
| | - Baoping Wang
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Aiping Chi
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
12
|
Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer's Disease. Nat Commun 2018; 9:1479. [PMID: 29662056 PMCID: PMC5902554 DOI: 10.1038/s41467-018-03674-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
Although many reports have revealed the importance of defective microglia-mediated amyloid β phagocytosis in Alzheimer’s disease (AD), the underlying mechanism remains to be explored. Here we demonstrate that neurons in the brains of patients with AD and AD mice show reduction of sphingosine kinase1 (SphK1), leading to defective microglial phagocytosis and dysfunction of inflammation resolution due to decreased secretion of specialized proresolving mediators (SPMs). Elevation of SphK1 increased SPMs secretion, especially 15-R-Lipoxin A4, by promoting acetylation of serine residue 565 (S565) of cyclooxygenase2 (COX2) using acetyl-CoA, resulting in improvement of AD-like pathology in APP/PS1 mice. In contrast, conditional SphK1 deficiency in neurons reduced SPMs secretion and abnormal phagocytosis similar to AD. Together, these results uncover a novel mechanism of SphK1 pathogenesis in AD, in which impaired SPMs secretion leads to defective microglial phagocytosis, and suggests that SphK1 in neurons has acetyl-CoA-dependent cytoplasmic acetyltransferase activity towards COX2. Sphingosine kinase (SphK) converts sphingosine into lipids, and is implicated in inflammation. Here the authors show that SphK1 functions as an acetyltransferase, regulates microglial phagocytosis and is reduced in a model of Alzheimer’s Disease, such that its restoration ameliorates pathology
Collapse
|
13
|
Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2. Crit Care Med 2018; 46:e258-e267. [DOI: 10.1097/ccm.0000000000002916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF. Sphingosine kinase inhibitors: A patent review. Int J Mol Med 2018; 41:2450-2460. [PMID: 29484372 DOI: 10.3892/ijmm.2018.3505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanjun Zhou
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
15
|
Maia LP, Santos PS, Alves PT, Rodrigues CM, Araújo TG, Maia YCP, Câmara ATF, Santos DW, Goulart LR. Altered Leukocyte Sphingolipid Pathway in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122521. [PMID: 29186783 PMCID: PMC5751124 DOI: 10.3390/ijms18122521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 01/04/2023] Open
Abstract
Sphingolipid metabolism pathway is essential in membrane homeostasis, and its dysfunction has been associated with favorable tumor microenvironment, disease progression, and chemotherapy resistance. Its major components have key functions on survival and proliferation, with opposing effects. We have profiled the components of the sphingolipid pathway on leukocytes of breast cancer (BC) patients undergoing chemotherapy treatment and without, including the five sphingosine 1-phosphate (S1P) receptors, the major functional genes, and cytokines, in order to better understand the S1P signaling in the immune cells of these patients. To the best of our knowledge, this is the first characterization of the sphingolipid pathway in whole blood of BC patients. Skewed gene profiles favoring high SPHK1 expression toward S1P production during BC development was observed, which was reversed by chemotherapy treatment, and reached similar levels to those found in healthy donors. Such levels were also correlated with high levels of TNF-α. Our data revealed an important role of the sphingolipid pathway in immune cells in BC with skewed signaling of S1P receptors, which favored cancer development even under chemotherapy, and may probably be a trigger of cancer resistance. Thus, these molecules must be considered as a target pathway for combined BC therapeutics.
Collapse
Affiliation(s)
- Larissa P. Maia
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
| | - Paula S. Santos
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
| | - Patrícia T. Alves
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
| | - Cláudia M. Rodrigues
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
| | - Thaíse G. Araújo
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
| | - Yara Cristina P. Maia
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
| | - Alinne Tatiane F. Câmara
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
| | - Donizeti W. Santos
- Obstetric Division, Internal Medicine, University Hospital, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38405-320, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Umuarama, Uberlandia, MG 38400-902, Brazil; (L.P.M.); (P.S.S.); (P.T.A.); (C.M.R.); (T.G.A.); (Y.C.P.M.); (A.T.F.C.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +55-34-3225-8440
| |
Collapse
|
16
|
Effects of FTY720 on Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats. Mediators Inflamm 2017; 2017:5301312. [PMID: 29249870 PMCID: PMC5700482 DOI: 10.1155/2017/5301312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/09/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a biologically active lysophospholipid mediator involved in modulating inflammatory process. We investigated the effects of FTY720, a structural analogue of S1P after phosphorylation, on lung injury induced by hindlimb ischemia reperfusion (IR) in rats. Methods Fifty Sprague-Dawley rats were divided into groups SM, IR, F3, F5, and F10. Group SM received sham operation, and bilateral hindlimb IR was established in group IR. The rats in groups F3, F5, and F10 were pretreated with 3, 5, and 10 mg/kg/d FTY720 for 7 days before IR. S1P lyase (S1PL), sphingosine kinase (SphK) 1, and SphK2 mRNA expressions, wet/dry weight (W/D), and polymorphonuclear/alveolus (P/A) in lung tissues were detected, and the lung injury score was evaluated. Results W/D, P/A, and mRNA expressions of S1PL, SphK1, and SphK2 were higher in group IR than in group SM, while these were decreased in both groups F5 and F10 as compared to IR (p < 0.05). The lung tissue presented severe lesions in group IR, which were attenuated in groups F5 and F10 with lower lung injury scores than in group IR (p < 0.05). Conclusions FTY720 pretreatment could attenuate lung injury induced by hindlimb IR by modulating S1P metabolism and decreasing pulmonary neutrophil infiltration.
Collapse
|
17
|
Sun W, Ding Z, Xu S, Su Z, Li H. Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response. Int J Mol Med 2017; 40:1750-1758. [PMID: 29039449 PMCID: PMC5716455 DOI: 10.3892/ijmm.2017.3165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/06/2017] [Indexed: 01/06/2023] Open
Abstract
Stroke is associated with high morbidity and mortality, and much remains unknown about the injury-related mechanisms that occur following reperfusion. This study aimed to explore the roles of Toll-like receptor 2 (TLR2) and sphingosine kinase 1 (Sphk1) in microglial cells in inflammatory responses induced by cerebral ischemia/reperfusion (I/R). For this purpose, C57BL/6 mice were randomly divided into 4 groups as follows: the sham-operated group, the I/R group, the I/R group treated with TLR2 antibody, and the I/R group treated with N,N-dimethylsphingosine. Focal cerebral I/R was induced by middle cerebral artery occlusion. Double-labeling immunofluorescence was used to observe the protein expression of TLR2 and Sphk1 in the ischemic brain tissue. Quantitative polymerase chain reaction was performed to determine the mRNA levels of TLR2 and Sphkl in ischemic brain tissue. Enzyme-linked immunosorbent assay was carried out to detect the protein contents of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-17 and IL-23 in ischemic brain tissue. The results revealed that I/R upregulated TLR2 and Sphk1 expression in microglial cells, and the inhibition of either TLR2 or Sphk1 inhibited the expression of the pro-inflammatory cytokines, IL-1β, TNF-α, IL-17 and IL-23. Notably, the inhibition of TLR2 activity also decreased Sphk1 expression. These results thus indicate that the activation of microglial cells, via a TLR2→Sphk1→pro-inflammatory cytokine (IL-1β, TNF-α, IL-17 and IL-23) pathway, may participate in I/R injury.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhaoming Ding
- Department of Thyroid Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shengjie Xu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
18
|
Liu G, Wang Q, Shi Y, Peng X, Liu H, Peng Y, He L. Resveratrol Attenuates Adriamycin-Induced Focal Segmental Glomerulosclerosis through C3aR/C5aR- Sphingosine Kinase 1 Pathway. Pharmacology 2017; 100:253-260. [DOI: 10.1159/000479525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
Background/Aim: Focal segmental glomerulosclerosis (FSGS) typically presents with nephrotic range proteinuria, which could eventually develop into end-stage renal disease. Resveratrol (RSV) is a natural polyphenol compound, which has been reported to suppress inflammatory response and renal interstitial fibrosis. This study is aimed at evaluating the renoprotective effect of RSV treatment on adriamycin-induced FSGS. Methods: In Balb/c mice, adriamycin nephropathy was induced by adriamycin (10 mg/kg body weight, diluted in normal saline) via a tail vein on day 0. Then the mice were treated with RSV (40 mg/kg body weight) once daily by oral gavage, again starting on the day of adriamycin injection and continued for 6 weeks. At 6 weeks, the mice were sacrificed; kidneys and blood samples were collected for further analysis. Results: When treated with adriamycin, the expressions of C3aR, C5aR, sphingosine kinase 1 (Sphk1), and soluble urokinase-type plasminogen activator receptor (suPAR) were upregulated, while RSV treatment could inhibit the expressions of C3aR, C5aR, Sphk1, and suPAR, eventually leading to anti-inflammatory and anti-fibrosis conditions. Conclusion: RSV attenuates adriamycin-induced FSGS through C3aR/C5aR-Sphk1 pathway.
Collapse
|
19
|
Arish M, Alaidarous M, Ali R, Akhter Y, Rub A. Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies. J Recept Signal Transduct Res 2017; 37:437-446. [PMID: 28758826 DOI: 10.1080/10799893.2017.1358282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases.
Collapse
Affiliation(s)
- Mohd Arish
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Mohammed Alaidarous
- b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| | - Rahat Ali
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Yusuf Akhter
- c Centre for Computational Biology & Bioinformatics, School of Life Sciences , Central University of Himachal Pradesh , Shahpur, Kangra , India
| | - Abdur Rub
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India.,b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| |
Collapse
|
20
|
Abstract
Lipidomics is the identification and quantitation of changes in the lipidome of a cell, tissue, organ or biofluid in health and disease using high resolution mass spectrometry. Lipidome of a particular organism has relevance to the disease manifestation as it reflects the metabolic changes which can be a consequence of the disease. Hence these changes in the molecules can be considered as potential markers for screening and early detection of the disease. Biological fluids as blood/serum/plasma, urine, saliva, tear and cerebrospinal fluid, due to their accessibility, offer ease of collection with minimal or no discomfort to the patient and provide a ready footprint of the metabolic changes occurring during disease. This review provides a brief introduction to lipidomics and its role in understanding the metabolic changes in health and disease followed by discussion on the chemical diversity of the lipid species and their biological role, mammalian lipids and their metabolism and role of lipids in pathogens and the immune response before dwelling further into importance of studying lipidome in various biological fluids. The challenges in performing a lipidomic analysis at the experimental and data analysis stages are discussed.
Collapse
Affiliation(s)
- Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Health City, # 258/A, Bommasandra, Hosur Road, Bangalore, 560 099, India
| | - Krishnatej Nishtala
- GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Health City, # 258/A, Bommasandra, Hosur Road, Bangalore, 560 099, India.
| |
Collapse
|
21
|
Chi A, Shen Z, Zhu W, Sun Y, Kang Y, Guo F. Characterization of a protein-bound polysaccharide from Herba Epimedii and its metabolic mechanism in chronic fatigue syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:241-251. [PMID: 28359851 DOI: 10.1016/j.jep.2017.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Herba Epimedii is one of the famous Traditional Chinese Medicines used to treat the chronic fatigue syndrome (CFS). The polysaccharides are the main active components in H. epimedii. The aim of this study is to discover the therapeutic effect and metabolic mechanism of H. epimedii polysaccharides against CFS. METHODS The polysaccharide conjugates named HEP2-a were isolated from the leaves of H. epimedii using a water extraction method, and the general physicochemical properties of HEP2-a were analysed. In addition, a CFS rat model was established, and then, urinary metabonomic studies were performed using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in combination with multivariate statistical analysis. RESULTS The physicochemical properties revealed that HEP2-a had an average molecular weight of 13.6×104Da and consisted of mannose (4.41%), rhamnose (5.43%), glucose (31.26%), galactose (27.07%), arabinose (23.43%), and galacturonic acid (8.40%). The amino acids in HEP2-a include glutamate, cysteine, leucine, tyrosine, lysine, and histidine. Molecular morphology studies revealed many highly curled spherical particles with diameters of 5-10µm in solids and 100-200nm for particles in water. Five metabolites in the HEP2-a group were oppositely and significantly changed compared to the CFS model group. CONCLUSION Two metabolic pathways were identified as significant metabolic pathways involved with HEP2-a. The therapeutic effects of HEP2-a on CFS were partially due to the restoration of these disturbed pathways.
Collapse
Affiliation(s)
- Aiping Chi
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhimei Shen
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China
| | - Wenfei Zhu
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China
| | - Yuliang Sun
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China
| | - Yijiang Kang
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China
| | - Fei Guo
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
22
|
Detection of Urine Metabolites in a Rat Model of Chronic Fatigue Syndrome before and after Exercise. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8182020. [PMID: 28421200 PMCID: PMC5380834 DOI: 10.1155/2017/8182020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/05/2017] [Indexed: 12/12/2022]
Abstract
Purpose. The aim of the present study was to elucidate the metabolic mechanisms associated with chronic fatigue syndrome (CFS) via an analysis of urine metabolites prior to and following exercise in a rat model. Methods. A rat model of CFS was established using restraint-stress, forced exercise, and crowded and noisy environments over a period of 4 weeks. Behavioral experiments were conducted in order to evaluate the model. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS) in combination with multivariate statistical analysis before and after exercise. Results. A total of 20 metabolites were detected in CFS rats before and after exercise. Three metabolic pathways (TCA cycle; alanine, aspartate, and glutamate metabolism; steroid hormone biosynthesis) were significantly impacted before and after exercise, while sphingolipid metabolism alone exhibited significant alterations after exercise only. Conclusion. In addition to metabolic disturbances involving some energy substances, alterations in steroid hormone biosynthesis and sphingolipid metabolism were detected in CFS rats. Sphingosine and 21-hydroxypregnenolone may be key biomarkers of CFS, potentially offering evidence in support of immune dysfunction and hypothalamic-pituitary-adrenal (HPA) axis hypoactivity in patients with CFS.
Collapse
|
23
|
Lei YC, Lu CL, Chen L, Ge K, Yang LL, Li W, Wu YH. C5a/C5aR pathway is essential for up-regulating SphK1 expression through p38-MAPK activation in acute liver failure. World J Gastroenterol 2016; 22:10148-10157. [PMID: 28028363 PMCID: PMC5155174 DOI: 10.3748/wjg.v22.i46.10148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/08/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of the complement 5a (C5a)/C5a receptor (C5aR) pathway in the pathogenesis of acute liver failure (ALF) in a mouse model. METHODS BALB/c mice were randomly assigned to different groups, and intraperitoneal injections of lipopolysaccharide (LPS)/D-galactosamine (D-GalN) (600 mg/kg and 10 μg/kg) were used to induce ALF. The Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) levels, at different time points within a 1-wk period, were detected with a biochemistry analyzer. Pathological examination of liver tissue was performed 36 h after ALF induction. Serum complement 5 (C5), C5a, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, high-mobility group protein B1 (HMGB1) and sphingosine-1-phosphate levels were detected by enzyme-linked immunosorbant assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of C5aR, sphingosine kinase 1 (SphK1), p38-MAPK and p-p38-MAPK in liver tissue, peripheral blood mononuclear cells (PBMCs) and peritoneal exudative macrophages (PEMs) of mice or RAW 264.7 cells was analyzed by western blotting. C5aR mRNA levels were detected by quantitative real-time PCR. RESULTS Activation of C5 and up-regulation of C5aR were observed in liver tissue and PBMCs of mice with ALF. Blockade of C5aR with a C5aR antagonist (C5aRa C5aRa) significantly reduced the levels of serum ALT, inflammatory cytokines (TNF-α, IL-1β and IL-6) and HMGB1, as well as the liver tissue damage, but increased the survival rates (P < 0.01 for all). Blockade of C5aR decreased SphK1 expression in both liver tissue and PBMCs significantly at 0.5 h after ALF induction. C5aRa pretreatment significantly down-regulated the phosphorylation of p38-MAPK in liver tissues of ALF mice and C5a stimulated PEMs or RAW 264.7 cells. Moreover, inhibition of p38-MAPK activity with SB203580 reduced SphK1 protein production significantly in PEMs after C5a stimulation. CONCLUSION The C5a/C5aR pathway is essential for up-regulating SphK1 expression through p38 MAPK activation in ALF in mice, which provides a potential immunotherapeutic strategy for ALF in patients.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Complement C5a/metabolism
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Galactosamine/toxicity
- HMGB1 Protein/metabolism
- Interleukin-1beta/metabolism
- Interleukin-6/metabolism
- Kaplan-Meier Estimate
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/toxicity
- Liver/metabolism
- Liver/pathology
- Liver Failure, Acute/chemically induced
- Liver Failure, Acute/metabolism
- Liver Failure, Acute/pathology
- Lysophospholipids/metabolism
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred BALB C
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- RNA, Messenger/metabolism
- Random Allocation
- Real-Time Polymerase Chain Reaction
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
|
24
|
Lei YC, Yang LL, Li W, Luo P, Zheng PF. Inhibition of sphingosine kinase 1 ameliorates acute liver failure by reducing high-mobility group box 1 cytoplasmic translocation in liver cells. World J Gastroenterol 2016. [PMID: 26676341 DOI: 10.3748/wjg.v21.i46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the therapeutic potential of sphingosine kinase 1 (Sphk1) inhibition and its underlying mechanism in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver failure (ALF). METHODS Balb/c mice were randomly assigned to different groups, with ALF induced by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). The Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multi-parametric analyzer. Serum high-mobility group box 1 (HMGB1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and sphingosine-1-phosphate were detected by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after acute liver injury induction were assessed by hematoxylin and eosin staining. HMGB1 expression in hepatocytes and cytoplasmic translocation were detected by immunohistochemistry. Expression of Sphk1 in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. RESULTS The expression of Sphk1 in liver tissue and PBMCs was upregulated in GalN/LPS-induced ALF. Upregulated Sphk1 expression in liver tissue was mainly caused by Kupffer cells, the resident macrophages of the liver. The survival rates of mice in the N,N-dimethylsphingosine (DMS, a specific inhibitor of SphK1) treatment group were significantly higher than that of the control group (P < 0.001). DMS treatment significantly decreased the levels of serum ALT and AST at 6, 12, and 24 h compared with that of the control group (P < 0.01 for all). Serum HMGB1 levels at 6, 12, and 24 h, as well as serum TNF-α, IL-6, and IL-1β levels at 12 h, were significantly lower in the DMS treatment group than in the control group (P < 0.01 for all). Furthermore, hepatic inflammation, necrosis, and HMGB1 cytoplasm translocation in liver cells were significantly decreased in the DMS treatment group compared to the control group (43.72% ± 5.51% vs 3.57% ± 0.83%, χ(2) = 12.81, P < 0.01). CONCLUSION Inhibition of SphK1 ameliorates ALF by reducing HMGB1 cytoplasmic translocation in liver cells, and so might be a potential therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Yan-Chang Lei
- Yan-Chang Lei, Department of Infectious Diseases, Zhejiang Hospital, Hangzhou 310013, Zhejiang Province, China
| | - Ling-Ling Yang
- Yan-Chang Lei, Department of Infectious Diseases, Zhejiang Hospital, Hangzhou 310013, Zhejiang Province, China
| | - Wen Li
- Yan-Chang Lei, Department of Infectious Diseases, Zhejiang Hospital, Hangzhou 310013, Zhejiang Province, China
| | - Pan Luo
- Yan-Chang Lei, Department of Infectious Diseases, Zhejiang Hospital, Hangzhou 310013, Zhejiang Province, China
| | - Pei-Fen Zheng
- Yan-Chang Lei, Department of Infectious Diseases, Zhejiang Hospital, Hangzhou 310013, Zhejiang Province, China
| |
Collapse
|
25
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
26
|
Anbazhagan AN, Priyamvada S, Alakkam A, Kumar A, Borthakur A, Saksena S, Gill RK, Alrefai WA, Dudeja PK. Transcriptional modulation of SLC26A3 (DRA) by sphingosine-1-phosphate. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1028-35. [PMID: 27079615 PMCID: PMC4935485 DOI: 10.1152/ajpgi.00308.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/12/2016] [Indexed: 01/31/2023]
Abstract
SLC26A3 or Downregulated in adenoma (DRA) is the major Cl(-)/HCO3 (-) exchanger involved in electroneutral NaCl absorption in the mammalian intestine. Alterations in DRA function and expression have been implicated in diarrheal diseases associated with inflammation or infection. Therefore, agents that upregulate DRA activity may serve as potential antidiarrheals. In this regard, sphingosine-1-phosphate (S1P), a member of the bioactive sphingolipid family, has been shown to modulate various cellular processes including improvement of intestinal barrier function. However, the role of S1P in modulating intestinal chloride absorption by regulating DRA is not known. Therefore, the present studies were designed to examine the direct effects of S1P on apical Cl(-)/HCO3 (-) exchange activity and DRA expression. S1P significantly increased Cl(-)/HCO3 (-) exchange activity and also significantly increased DRA mRNA and protein expression. Increased DRA mRNA by S1P was accompanied by enhanced DRA promoter activity, indicating involvement of transcriptional mechanisms. The specific S1P receptor subtype-2 (S1PR2) antagonist JTE-013 blocked the stimulatory effects of S1P on DRA promoter activity, indicating the involvement of S1PR2 S1P-mediated increase in DRA promoter activity involved PI3K/Akt pathway. Progressive deletions of the DRA promoter indicated that the putative S1P-responsive elements are present in the -790/-398 region of the DRA promoter. Furthermore, results obtained from electrophoretic mobility shift assay showed that S1P stimulated DRA promoter activity via increased binding of Ying-Yang1 (YY1) in the S1P-responsive region. In conclusion, transcriptional modulation of DRA expression and function in response to S1P through a PI3/Akt pathway represents a novel role of S1P as a potential proabsorptive agent.
Collapse
Affiliation(s)
- Arivarasu N. Anbazhagan
- 2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- 2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anas Alakkam
- 2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- 2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alip Borthakur
- 2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Seema Saksena
- 1Jesse Brown VA Medical Center, Research Service, Chicago, Illinois; and ,2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ravinder K. Gill
- 2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Waddah A. Alrefai
- 1Jesse Brown VA Medical Center, Research Service, Chicago, Illinois; and ,2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K. Dudeja
- 1Jesse Brown VA Medical Center, Research Service, Chicago, Illinois; and ,2Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Klatt S, Stangl H, Kunath J, Lowin T, Pongratz G, Straub RH. Peripheral elimination of the sympathetic nervous system stimulates immunocyte retention in lymph nodes and ameliorates collagen type II arthritis. Brain Behav Immun 2016; 54:201-210. [PMID: 26872423 DOI: 10.1016/j.bbi.2016.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES In collagen type II-induced arthritis (CIA), early activation of the sympathetic nervous system (SNS) is proinflammatory. Here, we wanted to find new target organs contributing to proinflammatory SNS effects. In addition, we wanted to clarify the importance of SNS-modulated immunocyte migration. METHODS A new technique termed spatial energy expenditure configuration (SEEC) was developed to demonstrate bodily areas of high energy demand (to find new targets). We studied homing of labeled cells in vivo, lymphocyte expression of CCR7, supernatant concentration of CCL21, and serum levels of sphingosine-1-phosphate (S1P) in sympathectomized control/arthritic animals. RESULTS During the course of arthritis, SEEC identified an early marked increase of energy expenditure in draining lymph nodes and spleen (nowhere else!). Although early sympathectomy ameliorated later disease, early sympathectomy increased energy consumption, organ weight, and cell numbers in arthritic secondary lymphoid organs, possibly a sign of lymphocyte retention (also in controls). Elimination of the SNS retained lymph node cells, elevated expression of CCR7 on lymph node cells, and increased CCL21. Serum levels of S1P, an important factor for lymphocyte egress, were higher in arthritic than control animals. Sympathectomy decreased S1P levels in arthritic animals to control levels. Transfer of retained immune cells from draining lymph nodes of sympathectomized donors to sympathectomized recipients markedly increased arthritis severity over weeks. CONCLUSIONS By using the SEEC technique, we identified draining lymph nodes and spleen as major target organs of the SNS. The data show that the SNS increases egress of lymphocytes from draining lymph nodes to stimulate arthritic inflammation.
Collapse
Affiliation(s)
- Susanne Klatt
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Hubert Stangl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Julia Kunath
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Georg Pongratz
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany.
| |
Collapse
|
28
|
Rittirsch D, Schoenborn V, Lindig S, Wanner E, Sprengel K, Günkel S, Schaarschmidt B, Märsmann S, Simmen HP, Cinelli P, Bauer M, Claus RA, Wanner GA. Improvement of prognostic performance in severely injured patients by integrated clinico-transcriptomics: a translational approach. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:414. [PMID: 26607226 PMCID: PMC4660831 DOI: 10.1186/s13054-015-1127-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023]
Abstract
Introduction Severe trauma triggers a systemic inflammatory response that contributes to secondary complications, such as nosocomial infections, sepsis or multi-organ failure. The present study was aimed to identify markers predicting complications and an adverse outcome of severely injured patients by an integrated clinico-transcriptomic approach. Methods In a prospective study, RNA samples from circulating leukocytes from severely injured patients (injury severity score ≥ 17 points; n = 104) admitted to a Level I Trauma Center were analyzed for dynamic changes in gene expression over a period of 21 days by quantitative RT-PCR. Transcriptomic candidates were selected based on whole genome screening of a representative discovery set (n = 10 patients) or known mechanisms of the immune response, including mediators of inflammation (IL-8, IL-10, TNF-α, MIF, C5, CD59, SPHK1), danger signaling (HMGB1, TLR2, CD14, IL-33, IL-1RL1), and components of the heme degradation pathway (HP, CD163, HMOX1, BLVRA, BLVRB). Clinical markers comprised standard physiological and laboratory parameters and scoring systems routinely determined in trauma patients. Results Leukocytes, thrombocytes and the expression of sphingosine kinase-1 (SPHK1), complement C5, and haptoglobin (HP) have been identified as markers with the best performance. Leukocytes showed a biphasic course with peaks on day 0 and day 11 after trauma, and patients with sepsis exhibited significantly higher leukocyte levels. Thrombocyte numbers showed a typical profile with initial thrombopenia and robust thrombocytosis in week 3 after trauma, ranging 2- to 3-fold above the upper normal value. ‘Relative thrombocytopenia’ was associated with multi-organ dysfunction, the development of sepsis, and mortality, the latter of which could be predicted within 3 days prior to the time point of death. SPHK1 expression at the day of admission indicated mortality with excellent performance. C5-expression on day 1 after trauma correlated with an increased risk for the development of nosocomial infections during the later course, while HP was found to be a marker for the development of sepsis. Conclusions The combination of clinical and transcriptomic markers improves the prognostic performance and may represent a useful tool for individual risk stratification in trauma patients. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1127-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Rittirsch
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Veit Schoenborn
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Sandro Lindig
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Elisabeth Wanner
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Kai Sprengel
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Sebastian Günkel
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Barbara Schaarschmidt
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Sonja Märsmann
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Hans-Peter Simmen
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Paolo Cinelli
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Ralf A Claus
- Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Guido A Wanner
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| |
Collapse
|
29
|
Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. J Chromatogr A 2015; 1428:16-38. [PMID: 26275862 DOI: 10.1016/j.chroma.2015.07.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
Collapse
Affiliation(s)
- Núria Canela
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pol Herrero
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Sílvia Mariné
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pedro Nadal
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Maria Rosa Ras
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | | | - Lluís Arola
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain.
| |
Collapse
|
30
|
Stone ML, Sharma AK, Zhao Y, Charles EJ, Huerter ME, Johnston WF, Kron IL, Lynch KR, Laubach VE. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1245-52. [PMID: 25910934 DOI: 10.1152/ajplung.00302.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/22/2015] [Indexed: 11/22/2022] Open
Abstract
Outcomes for lung transplantation are the worst of any solid organ, and ischemia-reperfusion injury (IRI) limits both short- and long-term outcomes. Presently no therapeutic agents are available to prevent IRI. Sphingosine 1-phosphate (S1P) modulates immune function through binding to a set of G protein-coupled receptors (S1PR1-5). Although S1P has been shown to attenuate lung IRI, the S1P receptors responsible for protection have not been defined. The present study tests the hypothesis that protection from lung IRI is primarily mediated through S1PR1 activation. Mice were treated with either vehicle, FTY720 (a nonselective S1P receptor agonist), or VPC01091 (a selective S1PR1 agonist and S1PR3 antagonist) before left lung IR. Function, vascular permeability, cytokine expression, neutrophil infiltration, and myeloperoxidase levels were measured in lungs. After IR, both FTY720 and VPC01091 significantly improved lung function (reduced pulmonary artery pressure and increased pulmonary compliance) vs. vehicle control. In addition, FTY720 and VPC01091 significantly reduced vascular permeability, expression of proinflammatory cytokines (IL-6, IL-17, IL-12/IL-23 p40, CC chemokine ligand-2, and TNF-α), myeloperoxidase levels, and neutrophil infiltration compared with control. No significant differences were observed between VPC01091 and FTY720 treatment groups. VPC01091 did not significantly affect elevated invariant natural killer T cell infiltration after IR, and administration of an S1PR1 antagonist reversed VPC01091-mediated protection after IR. In conclusion, VPC01091 and FTY720 provide comparable protection from lung injury and dysfunction after IR. These findings suggest that S1P-mediated protection from IRI is mediated by S1PR1 activation, independent of S1PR3, and that selective S1PR1 agonists may provide a novel therapeutic strategy to prevent lung IRI.
Collapse
Affiliation(s)
- Matthew L Stone
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Mary E Huerter
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - William F Johnston
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| |
Collapse
|
31
|
Zhang T, Yan T, Du J, Wang S, Yang H. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chem Biol Interact 2014; 233:46-55. [PMID: 25557508 DOI: 10.1016/j.cbi.2014.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/07/2014] [Accepted: 12/14/2014] [Indexed: 11/17/2022]
Abstract
Sepsis is a cluster of heterogeneous syndromes associated with progressive endotoxemic developments, ultimately leading to damage of multiple organs, including the heart. This study is to investigate the effects of apigenin on heart injury in lipopolysaccharide-induced endotoxemic rat model. Normal Wistar rats were randomly divided into four groups: control group, LPS group (15 mg/kg), LPS plus apigenin groups with different apigenin doses (50 mg/kg, 100 mg/kg). Serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) were measured after the rats were sacrificed. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax and Bcl-2 in heart were measured by Western blot. In vitro, we evaluated the protective effect of apigenin on rat embryonic heart-derived myogenic cell line H9c2 induced by LPS. Apigenin decreased serum levels of CK-MB, LDH, TNF-α, IL-6, IL-1β. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax in heart were found inhibited and Bcl-2 increased in the apigenin groups in vivo. In addition, apigenin inhibited intracellular calcium, the MAPK pathway and SphK1/S1P signaling pathway in vitro. Apigenin exerts pronounced cardioprotection in rats subjected to LPS likely through suppressing myocardial apoptosis and inflammation by inhibiting the SphK1/S1P signaling pathway.
Collapse
Affiliation(s)
- Tianzhu Zhang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianhua Yan
- China Pharmaceutical University, Nanjing 210009, China.
| | - Juan Du
- School of Life Science, Peking University, Beijing 100871, China
| | - Shumin Wang
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Huilin Yang
- School of Life Science, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Pyszko J, Strosznajder JB. Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. Mol Neurobiol 2014; 50:38-48. [PMID: 24399507 DOI: 10.1007/s12035-013-8622-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/15/2013] [Indexed: 12/21/2022]
Abstract
Sphingosine kinases (Sphk1/2) are crucial enzymes in regulation of the biostat between sphingosine-1-phosphate (S1P) and ceramide and play an important role in the pathogenesis/pathomechanism of Alzheimer's disease (AD). These enzymes synthesise S1P, which regulates neurotransmission, synaptic function and neuron cell proliferation, by activating five G protein-coupled receptors (S1P1-5). However, S1P synthesised by Sphk2 could be involved in amyloid β (Aβ) release by stimulation of Aβ precursor protein degradation. The significance of this bioactive sphingolipid in the pathogenesis of Parkinson's disease (PD) is unknown. The aim of our study was to investigate the expression level of Sphk1 and its role in human dopaminergic neuronal cell (SH-SY5Y) viability under oxidative stress, evoked by 1-methyl-4-phenylpyridinium (MPP+). Moreover, the mechanism of S1P action on the death signalling pathway in these experimental conditions was evaluated. Our study indicated marked downregulation of Sphk1 expression in this cellular PD model. Inhibition of Sphk1 decreased SH-SY5Y cell viability and concomitantly enhanced the reactive oxygen species (ROS) level. It was found that exogenous S1P (1 μM) exerted the neuroprotective effect by activation of Sphk1 and S1P1 receptor gene expression. Moreover, S1P downregulated Bax and harakiri, death protein 5 (Hrk/DP5) expression and enhanced cell viability in MPP+-treated cells. The neuroprotective mechanism of S1P is mainly dependent on S1P1 receptor signalling, which was indicated by using specific agonists and antagonists of S1P1 receptor. The results show that S1P and S1P1 receptor agonists protected a significant population of neuronal cells against death.
Collapse
Affiliation(s)
- Joanna Pyszko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
33
|
Maruotti N, Cantatore FP, Ribatti D. Putative effects of potentially anti-angiogenic drugs in rheumatic diseases. Eur J Clin Pharmacol 2013; 70:135-40. [PMID: 24196651 DOI: 10.1007/s00228-013-1605-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/15/2013] [Indexed: 11/27/2022]
Abstract
A role for angiogenesis has been described in several rheumatic diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, systemic sclerosis, systemic lupus erythematosus, vasculitides, and osteoarthritis, leading to the possibility that angiogenesis inhibition may be an additional useful therapeutic arm. While the role of anti-angiogenic therapy in rheumatoid arthritis has received attention, it is conceivable that the inhibition of pathological angiogenesis may also be a useful therapeutical approach in other rheumatic diseases. Numerous compounds, such as, for example, various interleukins, antibodies directed against angiogenic factors, peptides, estrogen metabolites, disease-modifying anti-rheumatic drugs, have been found to have anti-angiogenic properties. However, additional research is needed to obtain a clear understanding of the pathogenic mechanism of angiogenesis and the potential applications of anti-angiogenic therapy in rheumatic diseases.
Collapse
Affiliation(s)
- Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| | | | | |
Collapse
|
34
|
Assi E, Cazzato D, De Palma C, Perrotta C, Clementi E, Cervia D. Sphingolipids and brain resident macrophages in neuroinflammation: an emerging aspect of nervous system pathology. Clin Dev Immunol 2013; 2013:309302. [PMID: 24078816 PMCID: PMC3775448 DOI: 10.1155/2013/309302] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/01/2013] [Indexed: 12/25/2022]
Abstract
Sphingolipid metabolism is deeply regulated along the differentiation and development of the central nervous system (CNS), and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system. Microglia are resident macrophages of the CNS involved in general maintenance of neural environment. Modulations in microglia phenotypes may contribute to pathogenic forms of inflammation. Since defects in macrophage/microglia activity contribute to neurodegenerative diseases, it will be essential to systematically identify the components of the microglial cell response that contribute to disease progression. In such complex processes, the sphingolipid systems have recently emerged to play important roles, thus appearing as a key new player in CNS disorders. This review provides a rationale for harnessing the sphingolipid metabolic pathway as a potential target against neuroinflammation.
Collapse
Affiliation(s)
- Emma Assi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Denise Cazzato
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
- E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
| | - Davide Cervia
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
35
|
Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, Kobayashi M, Hirofuji T, Hirata M, Maeda K. Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone 2013; 55:315-24. [PMID: 23612487 DOI: 10.1016/j.bone.2013.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a well-known signaling sphingolipid and bioactive lipid mediator. Recently, it was reported that S1P inhibits osteoclast differentiation and bone resorption. On the other hand, S1P effects on osteoblasts and bone formation are little known. In this study, we investigated the effects of S1P on osteoblasts, using two osteoblast-like cell lines, SaOS-2 and MC3T3-E1. S1P activated phosphatidylinositol 3-kinase (PI3K)/Akt signaling, leading to the inhibition of glycogen synthase kinase-3β and the nuclear translocation of β-catenin, followed by the increase of the transcriptional activity by β-catenin/T-cell factor complex formation in both SaOS-2 cells and MC3T3-E1 cells. The inhibitors of PI3K and Akt suppressed S1P-induced nuclear localization of β-catenin. We further investigated the effects of PI3K/Akt signaling on the Wnt/β-catenin signaling pathway, since β-catenin takes a central role in this signaling pathway. Both inhibitors for PI3K and Akt suppressed the nuclear localization of β-catenin and T-cell factor transcriptional activity induced by Wnt-3a. S1P increased the amount of osteoprotegerin at both mRNA and protein levels, and increased the activity of alkaline phosphatase, leading to the mineralization. These findings suggest that S1P activates the PI3K/Akt signaling pathway leading to the promotion of nuclear translocation of β-catenin in osteoblast-like cells, resulting in the upregulation of osteoptotegerin and osteoblast differentiation markers including alkaline phosphatase, probably relating to the inhibition of osteoclast formation and the mineralization, respectively.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lufrano M, Jacob A, Zhou M, Wang P. Sphingosine kinase‑1 mediates endotoxemia‑induced hyperinflammation in aged animals. Mol Med Rep 2013; 8:645-9. [PMID: 23817990 PMCID: PMC3776707 DOI: 10.3892/mmr.2013.1562] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a serious issue in the geriatric population due to its association with high mortality rates in the elderly. The increase in mortality in the elderly correlates with inflammation. We have previously demonstrated that the inflammatory response is exacerbated in a rodent endotoxemia model of sepsis in aged rats compared with young rats. However, the molecular mediators associated with this hyperinflammatory response in aged rats have not been completely determined. Sphingosine kinase-1 (Sphk-1), an enzyme present in neutrophils and macrophages, regulates proinflammatory responses associated with endotoxemia and sepsis. To determine whether Sphk-1 is a molecular mediator associated with the observed hyperinflammatory response in aging, Sphk-1 mRNA expression was examined in hepatic tissues of young and aged rats subjected to endotoxemia. A significant increase in Sphk-1 mRNA was observed in endotoxemic aged rats compared with young rats. This increase was correlated with a significant increase in TNF-α mRNA levels in the liver. CD14 is a receptor component for lipopolysaccharide (LPS) and therefore, CD14 mRNA expression in hepatic tissues of endotoxemic young and aged rats was examined. Of note, CD14 mRNA was significantly upregulated in endotoxemic aged rats. Sphk-1 mRNA expression was significantly elevated in LPS-treated Kupffer cells and this increase correlated with an increase in CD14 mRNA expression. Results of the present study indicated that increased Sphk-1 expression in the liver in response to endotoxemia mediates the hyperinflammatory state observed in aged animals.
Collapse
Affiliation(s)
- Maria Lufrano
- Laboratory of Surgical Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | |
Collapse
|
37
|
Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol Sci 2013; 34:110-8. [DOI: 10.1016/j.tips.2012.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
|
38
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
39
|
Abstract
Dysfunctional intracellular signaling involving deregulated activation of the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and "cross-talk" between JAK/STAT and the stress-activated protein kinase/mitogen-activated protein kinase (SAPK/MAPK) and Phosphatidylinositide-3-Kinase/AKT/mammalian Target of Rapamycin (PI-3K/AKT/mTOR) pathways play a critical role in rheumatoid arthritis. This is exemplified by immune-mediated chronic inflammation, up-regulated matrix metalloproteinase gene expression, induction of articular chondrocyte apoptosis and "apoptosis-resistance" in rheumatoid synovial tissue. An important consideration in the development of novel therapeutics for rheumatoid arthritis will be the extent to which inhibiting these signal transduction pathways will sufficiently suppress immune cell-mediated inflammation to produce a lasting clinical remission and halt the progression of rheumatoid arthritis pathology. In that regard, the majority of the evidence accumulated over the past decade indicated that merely suppressing pro-inflammatory cytokine-mediated JAK/ STAT, SAPK/MAPK or PI-3K/AKT/mTOR activation in RA patients may be necessary but not sufficient to result in clinical improvement. Thus, targeting aberrant enzyme activities of spleen tyrosine kinase, sphingosine kinases-1, -2, transforming growth factor β-activated kinase-1, bone marrow kinase, and nuclear factor-κB-inducing kinase for intervention may also have to be considered.
Collapse
Affiliation(s)
- Charles J Malemud
- Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
40
|
Sphingolipids: a potential molecular approach to treat allergic inflammation. J Allergy (Cairo) 2012; 2012:154174. [PMID: 23316248 PMCID: PMC3536436 DOI: 10.1155/2012/154174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 01/02/2023] Open
Abstract
Allergic inflammation is an immune response to foreign antigens, which begins within minutes of exposure to the allergen followed by a late phase leading to chronic inflammation. Prolonged allergic inflammation manifests in diseases such as urticaria and rhino-conjunctivitis, as well as chronic asthma and life-threatening anaphylaxis. The prevalence of allergic diseases is profound with 25% of the worldwide population affected and a rising trend across all ages, gender, and racial groups. The identification and avoidance of allergens can manage this disease, but this is not always possible with triggers being common foods, prevalent air-borne particles and only extremely low levels of allergen exposure required for sensitization. Patients who are sensitive to multiple allergens require prophylactic and symptomatic treatments. Current treatments are often suboptimal and associated with adverse effects, such as the interruption of cognition, sleep cycles, and endocrine homeostasis, all of which affect quality of life and are a financial burden to society. Clearly, a better therapeutic approach for allergic diseases is required. Herein, we review the current knowledge of allergic inflammation and discuss the role of sphingolipids as potential targets to regulate inflammatory development in vivo and in humans. We also discuss the benefits and risks of using sphingolipid inhibitors.
Collapse
|
41
|
Abstract
OBJECTIVE To investigate the role of sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) signaling in inflammatory response in severe acute pancreatitis (SAP). BACKGROUND SAP is an acute inflammatory process of the pancreas, which may lead to systemic inflammatory response syndrome and multiorgan dysfunction syndrome. SphK1 and its product S1P have been implicated in inflammatory response and various immune cell functions. However, the potential role for SphK1/S1P in inflammatory response in SAP is still unclear. METHODS Twenty-two patients with SAP were enrolled in this study. SphK1 expression on peripheral neutrophils, monocytes, and lymphocytes was evaluated by flow cytometry. SphK enzymatic activity in neutrophils and lymphocytes was measured using a radiometric assay. The expression of S1P1 and S1P3 mRNA was determined by reverse transcriptase-polymerase chain reaction (RT-PCR). The serum levels of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1β), and IL-6 were measured by ELISA. RESULTS The expression of SphK1 and SphK activity were markedly increased in peripheral immune cells in the early stage of SAP and then reduced in the restoration stage in the patients. Moreover, we found that the level of S1P3 mRNA in peripheral neutrophils and lymphocytes of SAP patients was significantly elevated in the early stage as compared with the healthy volunteers, and it reduced in the restoration period. SphK1 expression on human peripheral neutrophils, monocytes, and CD4(+) T lymphocytes were positively correlated with the APACHE (Acute Physiological and Chronic Health Evaluation) II scores in patients with SAP. The levels of serum proinflammatory cytokines including TNF-α, IL-1β, and IL-6 showed similar shifts with intracellular SphK1 expression in SAP patients. CONCLUSIONS The authors identified a link between the SphK1 expression on peripheral immune cells and the severity of SAP. Observations showed a possible immunomodulating role for SphK1/S1P signaling in inflammatory response in SAP, suggesting that regulation of SphK1/S1P pathway may represent novel targets in the treatment of SAP.
Collapse
|
42
|
The Reduction of Allograft Arteriosclerosis in Intestinal Transplant Is Associated With Sphingosine Kinase 1/Sphingosine-1-Phosphate Signaling After Fish Oil Treatment. Transplantation 2012; 93:989-96. [DOI: 10.1097/tp.0b013e31824d709d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Grin’kina NM, Karnabi EE, Damania D, Wadgaonkar S, Muslimov IA, Wadgaonkar R. Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One 2012; 7:e36475. [PMID: 22615770 PMCID: PMC3355156 DOI: 10.1371/journal.pone.0036475] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 04/09/2012] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of inflammation in the central nervous system (CNS), which contributes to numerous neurodegenerative diseases and results in encephalopathy and neuroinflammation, is poorly understood. Sphingolipid metabolism plays a crucial role in maintaining cellular processes in the CNS, and thus mediates the various pathological consequences of inflammation. For a better understanding of the role of sphingosine kinase activation during neuroinflammation, we developed a bacterial lipopolysaccharide (LPS)-induced brain injury model. The onset of the inflammatory response was observed beginning 4 hours after intracerebral injection of LPS into the lateral ventricles of the brain. A comparison of established neuroinflammatory parameters such as white matter rarefactions, development of cytotoxic edema, astrogliosis, loss of oligodendrocytes, and major cytokines levels in wild type and knockout mice suggested that the neuroinflammatory response in SphK1-/- mice was significantly upregulated. At 6 hours after intracerebroventricular injection of LPS in SphK1-/- mice, the immunoreactivity of the microglia markers and astrocyte marker glial fibrillary acidic protein (GFAP) were significantly increased, while the oligodendrocyte marker O4 was decreased compared to WT mice. Furthermore, western blotting data showed increased levels of GFAP. These results suggest that SphK1 activation is involved in the regulation of LPS induced brain injury. RESEARCH HIGHLIGHTS: • Lipopolysaccharide (LPS) intracerebral injection induces severe neuroinflammation. • Sphingosine kinase 1 deletion worsens the effect of the LPS. • Overexpression of SphK1 might be a potential new treatment approach to neuroinflammation.
Collapse
Affiliation(s)
- Natalia M. Grin’kina
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| | - Eddy E. Karnabi
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| | - Dushyant Damania
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Sunil Wadgaonkar
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| | - Ilham A. Muslimov
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Raj Wadgaonkar
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
44
|
Santulli P, Marcellin L, Noël JC, Borghese B, Fayt I, Vaiman D, Chapron C, Méhats C. Sphingosine pathway deregulation in endometriotic tissues. Fertil Steril 2012; 97:904-11. [DOI: 10.1016/j.fertnstert.2011.12.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 01/11/2023]
|
45
|
Bassoy EY, Baran Y. Bioactive sphingolipids in docetaxel-induced apoptosis in human prostate cancer cells. Biomed Pharmacother 2012; 66:103-10. [DOI: 10.1016/j.biopha.2011.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/31/2011] [Indexed: 11/25/2022] Open
|
46
|
Lan T, Liu W, Xie X, Xu S, Huang K, Peng J, Shen X, Liu P, Wang L, Xia P, Huang H. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. Mol Endocrinol 2011; 25:2094-105. [PMID: 21998146 DOI: 10.1210/me.2011-0095] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Doyle T, Chen Z, Obeid LM, Salvemini D. Sphingosine-1-phosphate acting via the S1P₁ receptor is a downstream signaling pathway in ceramide-induced hyperalgesia. Neurosci Lett 2011; 499:4-8. [PMID: 21605625 PMCID: PMC3119782 DOI: 10.1016/j.neulet.2011.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 04/22/2011] [Accepted: 05/06/2011] [Indexed: 11/28/2022]
Abstract
Ceramide is a potent pro-inflammatory sphingolipid recently shown to exert potent hyperalgesic responses in rats. Once generated, ceramide is converted by sphingosine kinase (SphK) 1 and/or 2 to one of its active metabolite sphingosine-1-phosphate (S1P), which in turn signals through G-protein coupled S1P receptors. The objectives of this paper were to define whether ceramide-induced hyperalgesia is driven by S1P. Our results show that intraplantar injection of ceramide in rats led to a time-dependent development of thermal hyperalgesia that was associated with an increase in tumor necrosis factor-α (TNF-α) in paw tissues. The development of hyperalgesia was significantly attenuated by a soluble TNF receptor I. TNF-α is known to activate SphK1, thus S1P production, and our results demonstrate that, the development of hyperalgesia was attenuated in a dose-dependent fashion by a well characterized inhibitor of SphK1 and SphK2 (SK-I) and by a murine monoclonal anti-S1P antibody (LT1002). LT1017, the isotype-matched control monoclonal antibody for LT1002, had no effect. Our results further demonstrate that S1P contributes to the development of hyperalgesia via the S1P receptor 1 subtype (S1PR(1)), since responses were blocked by a well characterized S1PR(1) antagonist, W146, but not by its inactive enantiomer, W140. Collectively, these results provide mechanistic evidence implicating the S1P-to-S1PR(1) pathway as a downstream signaling pathway in ceramide-induced hyperalgesia. Targeting S1P may be a novel therapeutic approach in pain management.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Zhoumou Chen
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Lina M. Obeid
- Ralph H. Johnson Veterans Affairs Medical Center and Department of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC 29425, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| |
Collapse
|
48
|
Schröder M, Richter C, Juan MHS, Maltusch K, Giegold O, Quintini G, Pfeilschifter JM, Huwiler A, Radeke HH. The sphingosine kinase 1 and S1P1 axis specifically counteracts LPS-induced IL-12p70 production in immune cells of the spleen. Mol Immunol 2011; 48:1139-48. [DOI: 10.1016/j.molimm.2011.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 01/29/2023]
|
49
|
Ulrych T, Böhm A, Polzin A, Daum G, Nüsing RM, Geisslinger G, Hohlfeld T, Schrör K, Rauch BH. Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. J Thromb Haemost 2011; 9:790-8. [PMID: 21251196 DOI: 10.1111/j.1538-7836.2011.04194.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets release the immune-modulating lipid sphingosine-1-phosphate (S1P). However, the mechanisms of platelet S1P secretion are not fully understood. OBJECTIVES The present study investigates the function of thromboxane (TX) for platelet S1P secretion during platelet activation and the consequences for monocyte chemotaxis. METHODS S1P was detected using thin-layer chromatography in [(3)H]sphingosine-labeled platelets and by mass spectrometry. Monocyte migration was measured in modified Boyden chamber chemotaxis assays. RESULTS Release of S1P from platelets was stimulated with protease-activated receptor-1-activating peptide (PAR-1-AP, 100 μM). Acetylsalicylic acid (ASA) and two structurally unrelated reversible cyclooxygenase inhibitors diclofenac and ibuprofen suppressed S1P release. Oral ASA (500-mg single dose or 100 mg over 3 days) attenuated S1P release from platelets in healthy human volunteers ex vivo. This was paralleled by inhibition of TX formation. S1P release was increased by the TX receptor (TP) agonist U-46619, and inhibited by the TP antagonist ramatroban and by inhibitors of ABC-transport. Furthermore, thrombin-induced release of S1P was attenuated in platelets from TP-deficient mice. Supernatants from PAR-1-AP-stimulated human platelets increased the chemotactic capacity of human peripheral monocytes in a S1P-dependent manner via S1P receptors-1 and -3. These effects were inhibited by ASA-pretreatment of platelets. CONCLUSIONS TX synthesis and TP activation mediate S1P release after thrombin receptor activation. Inhibition of this pathway may contribute to the anti-inflammatory actions of ASA, for example by affecting activity of monocytes at sites of vascular injury.
Collapse
Affiliation(s)
- T Ulrych
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Sphingolipids are amphiphatic molecules ubiquitously expressed in all eukaryotic cell membranes. Initially characterized as structural components of cell membranes, sphingolipids have emerged as sources of important signalling molecules over the past decade. Sphingolipid metabolites, such as ceramide and S1P (sphingosine 1-phosphate), have been demonstrated to have roles as potent bioactive messengers involved in cell differentiation, proliferation, apoptosis, migration and angiogenesis. The importance of SphK (sphingosine kinase) and S1P in inflammation has been demonstrated extensively. The prevalence of asthma is increasing in many developed nations. Consequently, there is an urgent need for the development of new agents for the treatment of asthma, especially for patients who respond poorly to conventional therapy. Recent studies have demonstrated the important role of SphK and S1P in the development of asthma by regulating pro-inflammatory responses. These novel pathways represent exciting potential therapeutic targets in the treatment of asthma and are described in the present review.
Collapse
|