1
|
Jasim SA, Altalbawy FMA, Uthirapathy S, Bishoyi AK, Ballal S, Singh A, Devi A, Yumashev A, Mustafa YF, Abosaoda MK. Regulation of immune-mediated chemoresistance in cancer by lncRNAs: an in-depth review of signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04081-3. [PMID: 40202675 DOI: 10.1007/s00210-025-04081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Resistance to cancer therapies is increasingly recognized as being influenced by long non-coding RNAs (lncRNAs), which are pivotal in regulating cellular functions and gene expression. Elucidating the intricate relationship between lncRNAs and the mechanisms underlying drug resistance is critical for advancing effective therapeutic strategies. This study offers an in-depth review of the regulatory roles lncRNAs play in various signaling and immunological pathways implicated in cancer chemoresistance. lncRNA-mediated influence on drug resistance-related signaling pathways will be presented, including immune evasion mechanisms and other essential signaling cascades. Furthermore, the interplay between lncRNAs and the immune landscape will be dissected, illustrating their substantial impact on the development of chemoresistance. Overall, the potential of lncRNA-mediated signaling networks as a therapeutic strategy to combat cancer resistance has been highlighted. This review reiterates the fundamental role of lncRNAs in chemoresistance and proposes promising avenues for future research and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Mosco, Russia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Farajzadeh M, Fathi M, Jalali P, Mahmoudsalehi Kheshti A, Khodayari S, Hojjat-Farsangi M, Jadidi F. Long noncoding RNAs in acute myeloid leukemia: biomarkers, prognostic indicators, and treatment potential. Cancer Cell Int 2025; 25:131. [PMID: 40188050 PMCID: PMC11972515 DOI: 10.1186/s12935-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as significant modulators of gene expression and are essential for various biological functions, even though they don't appear to have the ability to encode proteins. Originally considered dark matter, lncRNAs have been recognized as being dysregulated and contributing to the onset, progression, and resistance to treatment of acute myeloid leukemia (AML). AML is a prevalent type of leukemia characterized by the disruption of myeloid cell differentiation, leading to an increased number of immature myeloid progenitor cells. Currently, the need for novel biomarkers and treatment targets to enhance therapeutic alternatives has led to a focus on lncRNAs as possible indicators for prognostic, therapeutic, and diagnostic systems in various human cancers, including AML. Recent research has recognized a limited set of lncRNAs as possible prognostic biomarkers or diagnoses in AML. This review evaluates the key research that highlights the significance of lncRNAs in AML and discusses their roles and impacts on the disease. Furthermore, we intend to underscore the importance of lncRNAs as new and trustworthy markers for the diagnosis, prediction, drug resistance, and targets for treatment in AML.
Collapse
Affiliation(s)
- Maryam Farajzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,, Tehran, Iran
| | | | - Shahla Khodayari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Liu L, Fang Y. The Role of Ovarian Granulosa Cells Related-ncRNAs in Ovarian Dysfunctions: Mechanism Research and Clinical Exploration. Reprod Sci 2025:10.1007/s43032-025-01854-2. [PMID: 40175717 DOI: 10.1007/s43032-025-01854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Ovarian dysfunctions, encompassing conditions such as polycystic ovary syndrome (PCOS), premature ovarian failure (POF), premature ovarian insufficiency (POI), and diminished ovarian reserve (DOR), are closely linked to disruptions in follicular development, often tied to granulosa cell (GC) abnormalities. Despite ongoing research, the precise mechanisms underlying these dysfunctions remain elusive. Increasing evidence highlights the pivotal role of non-coding RNAs (ncRNAs) in the pathogenesis of ovarian dysfunctions. As transcripts that do not encode proteins, ncRNAs are capable of regulating gene expression at various levels. They influence GCs by modulating key biological processes including proliferation, apoptosis, autophagy, cell cycle progression, steroidogenesis, mitochondrial function, inflammatory responses, and aging. Disruptions in GC development and function can lead to impaired follicular development, consequently contributing to ovarian dysfunctions. Thus, ncRNAs are likely integral to the regulatory mechanisms underlying these pathologies, exhibiting distinct expression patterns in affected individuals. This review delves into the regulatory roles of ncRNAs in GCs and their implications for ovarian dysfunctions (PCOS, POF, POI, DOR), offering insights into potential biomarkers for ovarian function assessment and novel therapeutic approaches for treating these conditions.
Collapse
Affiliation(s)
- Liuqing Liu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yanyan Fang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
4
|
Wang Y, Wang S, He H, Bai Y, Liu Z, Sabihi SS. Mechanisms of apoptosis-related non-coding RNAs in ovarian cancer: a narrative review. Apoptosis 2025; 30:553-578. [PMID: 39833637 DOI: 10.1007/s10495-024-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Ovarian cancer remains a major challenge in oncology due to its complex biology and late-stage diagnosis. Recent advances in molecular biology have highlighted the crucial role of non-coding RNAs (ncRNAs) in regulating apoptosis and cancer progression. NcRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have emerged as significant players in the molecular networks governing ovarian cancer. Despite these insights, the precise mechanisms by which ncRNAs influence ovarian cancer pathology are not fully understood. This complexity, combined with the heterogeneity of the disease and the development of treatment resistance, poses substantial obstacles to effective therapeutic development. Additionally, the lack of reliable early detection methods further complicates treatment strategies. This manuscript reviews the current state of research on ncRNAs in ovarian cancer, discusses the challenges in translating these findings into clinical applications, and outlines potential future directions. Emphasis is placed on the need for integrated approaches to unravel the intricate roles of ncRNAs, improve early detection, and develop personalized treatment strategies to address the diverse and evolving nature of ovarian cancer. While these findings provide valuable insights, it is crucial to recognize that many results are based on preclinical studies and require further validation to establish their clinical applicability.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Shirui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710038, China
| | - Haiyan He
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Yingying Bai
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Zhuo Liu
- Department of Obstetrics and Gynecology, Xi'an International Medical Center Hospital, Xi'an, 710038, China
| | - Sima-Sadat Sabihi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Chodurska B, Kunej T. Long non-coding RNAs in humans: Classification, genomic organization and function. Noncoding RNA Res 2025; 11:313-327. [PMID: 39967600 PMCID: PMC11833636 DOI: 10.1016/j.ncrna.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/20/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate numerous biological functions in animals. Despite recent advances in lncRNA research, their structural and functional annotation and classification remain an ongoing challenge. This review provides a comprehensive overview of human lncRNAs, highlighting their genomic organization, mode of action and role in physiological and pathological processes. Subgroups of lncRNA genes are discussed using representative examples and visualizations of genomic organization. The HUGO Gene Nomenclature Committee (HGNC) categorizes lncRNAs into nine subgroups: (1) microRNA non-coding host genes, (2) small nucleolar RNA non-coding host genes, (3) long intergenic non-protein coding RNAs (LINC), (4) antisense RNAs, (5) overlapping transcripts, (6) intronic transcripts, (7) divergent transcripts, (8) long non-coding RNAs with non-systematic symbols and (9) long non-coding RNAs with FAM root systems. Circular RNAs (circRNAs) are a separate class that shares some characteristics with lncRNAs and are divided into exonic, intronic and intronic-exonic types. LncRNAs act as molecular signals, decoys, scaffolds and sponges for microRNAs and often function as competing endogenous RNAs (ceRNAs). LncRNAs are involved in various physiological and pathological processes, such as cell differentiation, p53-mediated DNA damage response, glucose metabolism, inflammation and immune functions. They are associated with several diseases, including various types of neoplasms, Alzheimer's disease and autoimmune diseases. A clear classification system for lncRNA is essential for understanding their biological role and for facilitating practical applications in biomedical research. Future studies should focus on drug development and biomarker discovery. As important regulators of various biological processes, lncRNAs represent promising targets for innovative therapies.
Collapse
Affiliation(s)
- Barbara Chodurska
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Slovenia
- Medical University of Łódź, Faculty of Biomedical Sciences, Poland
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Slovenia
| |
Collapse
|
6
|
Shang R, Jin J, Wang Y. The Long Noncoding RNA DUXAP8 Facilitates the Malignant Progression of Colon Cancer via the microRNA-378a-3p/FOXQ1 Axis. Gut Liver 2025; 19:219-235. [PMID: 39563395 PMCID: PMC11907261 DOI: 10.5009/gnl240178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/21/2024] Open
Abstract
Background/Aims The long noncoding RNA DUXAP8 is a pivotal regulator in cancer pathogenesis, but the molecular mechanism underlying the role of DUXAP8 in colon cancer progression is underexplored. Methods In addition to bioinformatic analyses, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to assess DUXAP8, microRNA-378a-3p, FOXQ1 expression in colon cancer tissues, and clinical data were analyzed to determine the correlation between DUXAP8 expression and colon cancer patient outcomes. Nuclear/cytoplasmic RNA fractionation was utilized to analyze the subcellular distribution of DUXAP8. Dual-luciferase and RNA immunoprecipitation assays were performed to confirm the binding of DUXAP8/FOXQ1 and microRNA-378a-3p. After cell transfection, qRT-PCR was performed to evaluate the modulatory relationship of DUXAP8/microRNA-378a-3p/FOXQ1. Cell Counting Kit-8, MTT, scratch healing, and Transwell assays were performed to evaluate the impact of DUXAP8/microRNA-378a-3p/FOXQ1 expression on colon cancer cell functions. Results The results revealed that the expression of DUXAP8 and FOXQ1 was upregulated in colon cancer tissues, while the expression of microRNA-378a-3p was down-regulated. The increased DUXAP8 expression was positively correlated with lymph node metastasis and TNM stage. Dual-luciferase and RNA immunoprecipitation assays demonstrated that DUXAP8 was a sponge for microRNA-378a-3p and targeted the ability of microRNA-378a-3p to regulate FOXQ1. In addition, functional experiment results revealed that overexpressed DUXAP8 facilitated the growth and migratory ability of colon cancer cells. DUXAP8 also reversed the tumor-suppressive effect of microRNA-378a-3p. However, silencing FOXQ1 could reverse the cancer-promoting effects of high DUXAP8 expression. Conclusions DUXAP8 expression was significantly increased in colon cancer, which was associated with lymph node metastasis and unfavorable outcomes in colon cancer patients. DUXAP8 may hasten malignant progression of colon cancer cells through its effects on microRNA-378a-3p/FOXQ1.
Collapse
Affiliation(s)
- Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jianqin Jin
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuecheng Wang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
7
|
Cortellesi E, Savini I, Veneziano M, Gambacurta A, Catani MV, Gasperi V. Decoding the Epigenome of Breast Cancer. Int J Mol Sci 2025; 26:2605. [PMID: 40141248 PMCID: PMC11942310 DOI: 10.3390/ijms26062605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications-particularly DNA methylation, histone modifications, and the influence of non-coding RNAs-in the initiation, progression, and prognosis of the disease. Epigenetic alterations drive crucial processes, including gene expression regulation, cell differentiation, and tumor microenvironment interactions, contributing to tumorigenesis and metastatic potential. Notably, aberrations in DNA methylation patterns, including global hypomethylation and hypermethylation of CpG islands, have been associated with distinct BC subtypes, with implications for early detection and risk assessment. Furthermore, histone modifications, such as acetylation and methylation, affect cancer cell plasticity and aggressiveness by profoundly influencing chromatin dynamics and gene transcription. Finally, non-coding RNAs contribute by modulating epigenetic machinery and gene expression. Despite advances in our knowledge, clinical application of epigenetic therapies in BC is still challenging, often yielding limited efficacy when used alone. However, combining epi-drugs with established treatments shows promise for enhancing therapeutic outcomes. This review underscores the importance of integrating epigenetic insights into personalized BC treatment strategies, emphasizing the potential of epigenetic biomarkers for improving diagnosis, prognosis, and therapeutic response in affected patients.
Collapse
Affiliation(s)
- Elisa Cortellesi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Matteo Veneziano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| |
Collapse
|
8
|
Zhang L, Wang R, Nan Y, Kong L. Molecular regulators of alcoholic liver disease: a comprehensive analysis of microRNAs and long non-coding RNAs. Front Med (Lausanne) 2025; 12:1482089. [PMID: 40130250 PMCID: PMC11931045 DOI: 10.3389/fmed.2025.1482089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Many biomolecules and signaling pathways are involved in the development of alcoholic liver disease (ALD). The molecular mechanisms of ALD are not fully understood and there is no effective treatment. Numerous studies have demonstrated the critical role of non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), in ALD. miRNAs play an important regulatory role in the pathogenesis of ALD by controlling critical biological processes such as inflammation, oxidative stress, lipid metabolism, apoptosis and fibrosis. Among them, miR-155, miR-223 and miR-34a play a central role in these processes and influence the pathological process of ALD. In addition, lncRNAs are involved in regulating liver injury and repair by interacting with miRNAs to form a complex regulatory network. These findings help to elucidate the molecular mechanisms of ALD and provide a scientific basis for the development of new diagnostic markers and therapeutic targets. In this article, we review the roles and mechanisms of LncRNAs and miRNAs in ALD and their potential use as diagnostic markers and therapeutic targets.
Collapse
|
9
|
Flores-García LC, García-Castillo V, Pérez-Toledo E, Trujano-Camacho S, Millán-Catalán O, Pérez-Yepez EA, Coronel-Hernández J, Rodríguez-Dorantes M, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Participation in Glycolysis and Glutaminolysis Through Lactate and Glutamate Production in Colorectal Cancer. Cells 2025; 14:388. [PMID: 40072116 PMCID: PMC11898799 DOI: 10.3390/cells14050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis. Our results demonstrated the regulatory effect of HOTAIR on the expression of glycolysis and glutaminolysis enzymes in colorectal cancer cells. Specifically, through the overexpression and inhibition of HOTAIR, we determined its influence on the expression of the enzymes PFKFB4, PGK1, LDHA, SLC1A5, GLUD1, and GOT1, which had a direct impact on lactate and glutamate production. These findings indicate that HOTAIR plays a significant role in producing "oncometabolites" essential to maintaining the bioenergetics and biomass necessary for tumor cell survival by regulating glycolysis and glutaminolysis.
Collapse
Affiliation(s)
- Laura Cecilia Flores-García
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Verónica García-Castillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Eduardo Pérez-Toledo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Oliver Millán-Catalán
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Eloy Andrés Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Jossimar Coronel-Hernández
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico;
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| |
Collapse
|
10
|
Sivan S, Vijayakumar G, Pillai IC. Non-coding RNAs mediating the regulation of genes and signaling pathways in aortic valve calcification. Gene 2025; 936:149117. [PMID: 39580125 DOI: 10.1016/j.gene.2024.149117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Silpa Sivan
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Gayathri Vijayakumar
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Indulekha Cl Pillai
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India.
| |
Collapse
|
11
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2025; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
12
|
Liu J, Li X, Yang P, He Y, Hong W, Feng Y, Ye Z. LIN28A-dependent lncRNA NEAT1 aggravates sepsis-induced acute respiratory distress syndrome through destabilizing ACE2 mRNA by RNA methylation. J Transl Med 2025; 23:15. [PMID: 39762837 PMCID: PMC11702040 DOI: 10.1186/s12967-024-06032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS. However, the precise mechanisms underlying sepsis-induced ARDS remain unclear. METHODS Here RNA methylation was detected by methylated RNA immunoprecipitation (MeRIP), RNA stability was determined by RNA decay assay while RNA antisense purification (RAP) was used to identify RNA-protein interaction. Besides, co-immunoprecipitation (Co-IP) was utilized to detect protein-protein interaction. Moreover, mice were injected with lipopolysaccharide (LPS) to establish sepsis-induced ARDS model in vivo. RESULTS This study revealed that long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) aggravated lung injury through suppressing angiotensin-converting enzyme 2 (ACE2) in sepsis-induced ARDS models in vitro and in vivo. Mechanistically, NEAT1 declined ACE2 mRNA stability through heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) in lipopolysaccharide (LPS)-treated alveolar type II epithelial cells (AT-II cells). Besides, NEAT1 destabilized ACE2 mRNA depending on RNA methylation by forming methylated NEAT1/hnRNPA2B1/ACE2 mRNA complex in LPS-treated AT-II cells. Moreover, lin-28 homolog A (LIN28A) improved NEAT1 stability whereas insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) augmented NEAT1 destabilization by associating with LIN28A to disrupt the combination of LIN28A and NEAT1 in LPS-treated AT-II cells. Nevertheless, hnRNPA2B1 increased NEAT1 stability by blocking the interaction between LIN28A and IGF2BP3 in LPS-treated AT-II cells. CONCLUSIONS These findings uncover mechanisms of sepsis-triggering ARDS and provide promising therapeutic targets for sepsis-induced ARDS.
Collapse
Affiliation(s)
- Jun Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Peng Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yufeng He
- Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Weilong Hong
- Emergency Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yawei Feng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Zhiqiang Ye
- Emergency Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
13
|
Pain P, Tripathi A, Pillai PP. Involvement of PDGFR-integrin interactions in the regulation of anoikis resistance in glioblastoma progression. Cell Biol Int 2025; 49:3-15. [PMID: 39523497 DOI: 10.1002/cbin.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
The interactions between platelet-derived growth factor/PDGF receptor and integrin signaling are crucial for cells to respond to extracellular stimuli. Integrin interactions with PDGFR within the lipid rafts activate downstream cellular signaling pathways that regulate cell proliferation, cell migration, cell differentiation, and cell death processes. The mechanisms underlying PDGFR activation mediated receptor internalization, interactions with other cell-surface receptors, particularly extracellular matrix receptors, integrins, and how these cellular mechanisms switch on anchorage-independent cell survival, leading to anoikis resistance are discussed. The role of regulatory molecules such as noncoding RNAs, that can modulate several molecular and cellular processes, including autophagy, in the acquisition of anoikis resistance is also discussed. Overall, the review provides a new perspective on a complex interplay of regulatory cellular machineries involving autophagy, noncoding RNAs and cellular mechanisms of PDGFR activation, PDGFR-integrin interactions, and involvement of lipids rafts in the acquisition of anoikis resistance that regulates glioblastoma progression along with potential future strategies to develop novel therapeutics for glioblastoma multiforme.
Collapse
Affiliation(s)
- Pampa Pain
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
14
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Alnefaie GO. A review of the complex interplay between chemoresistance and lncRNAs in lung cancer. J Transl Med 2024; 22:1109. [PMID: 39639388 PMCID: PMC11619437 DOI: 10.1186/s12967-024-05877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Lung Cancer (LC) is characterized by chemoresistance, which poses a significant clinical challenge and results in a poor prognosis for patients. Long non-coding RNAs (lncRNAs) have recently gained recognition as crucial mediators of chemoresistance in LC. Through the regulation of key cellular processes, these molecules play important roles in the progression of LC and response to therapy. The mechanisms by which lncRNAs affect chemoresistance include the modulation of gene expression, chromatin structure, microRNA interactions, and signaling pathways. Exosomes have emerged as key mediators of lncRNA-driven chemoresistance, facilitating the transfer of resistance-associated lncRNAs between cancer cells and contributing to tumor development. Consequently, exosomal lncRNAs may serve as biomarkers and therapeutic targets for the treatment of LC. Therapeutic strategies targeting lncRNAs offer novel approaches to circumvent chemoresistance. Different approaches, including RNA interference (RNAi) and antisense oligonucleotides (ASOs), are available to degrade lncRNAs or alter their function. ASO-based therapies are effective at reducing lncRNA expression levels, increasing chemotherapy sensitivity, and improving clinical outcomes. The use of these strategies can facilitate the development of targeted interventions designed to disrupt lncRNA-mediated mechanisms of chemoresistance. An important aspect of this review is the discussion of the complex relationship between lncRNAs and drug resistance in LC, particularly through exosomal pathways, and the development of innovative therapeutic strategies to enhance drug efficacy by targeting lncRNAs. The development of new pathways and interventions for treating LC holds promise in overcoming this resistance.
Collapse
Affiliation(s)
- Ghaliah Obaid Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
16
|
Shi H, Wang P, Wang J, Chen L, Qin Y, Lv J. Global lncRNA expression signature in pre-metastatic lung and their regulatory effects in pulmonary metastasis. Front Immunol 2024; 15:1506561. [PMID: 39676873 PMCID: PMC11638156 DOI: 10.3389/fimmu.2024.1506561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Background Lung metastasis has garnered significant attention due to its prevalent occurrence. Pre-metastatic niche (PMN) establishment is a critical prerequisite for the onset of lung metastasis. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play pivotal roles in the metastatic cascade to the lungs. However, the relationship between lncRNA expression profiles and the formation of PMN remains uncharacterized. This study aims to explore the expression profiles and potential roles of lncRNAs in the context of pre-metastatic lung microenvironment. Methods RNA sequencing was utilized to elucidate the lncRNA landscape in pre-metastatic lung of murine models. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to infer the prospective functions of the differentially expressed lncRNAs. Among these, lncRNA Gm5144-202 in alveolar macrophages (AMs) was further scrutinized for its role in driving M2 macrophage polarization, facilitating the formation of PMN, and orchestrating the apoptosis, proliferation, and migration of tumor cells in vitro. Results A total of 232 lncRNAs exhibited differential expression in pre-metastatic murine lungs compared to normal controls, predominantly enriching pathways such as PI3K-Akt signaling, calcium signaling, neuroactive ligand-receptor interaction, and NF-κB signaling. Notably, lncRNA Gm5144-202 exhibited the most pronounced difference, with elevated level in alveolar macrophages (AMs) during the pre-metastatic phase. Silencing of lncRNA Gm5144-202 impeded the polarization of M2-like macrophages, suppressed the expression of factors critical for the formation of the PMN, and inhibited tumor cell invasion. Conclusions Our research delineated the lncRNA expression profiles in pre-metastatic pulmonary tissues and identified, for the first time, the pivotal role of lncRNA Gm5144-202 in modulating M2 macrophage polarization and tumor cell invasiveness. Consequently, targeting lncRNA Gm5144-202 holds substantial promise for translational applications aimed at mitigating pulmonary metastasis.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Peng Wang
- Clinical Laboratory, Rizhao Center for Disease Control and Prevention, Rizhao, Shandong, China
| | - Jiaan Wang
- Blood Transfusion Department, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
17
|
Li R, Chen Y, Pan R, Hu S, Zhao S, Tian J, Zhao J. Single-Cell Multiplexed Signal Amplification Strategy Based on Catalytic Hairpin Self-Assembly and CRISPR/Cas12a for Exploring the Relationship between lncRNA HOTAIR and miRNA-122 in Individual Hepatocytes. Anal Chem 2024; 96:18096-18103. [PMID: 39473038 DOI: 10.1021/acs.analchem.4c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The long noncoding RNA (lncRNA) HOTAIR has been shown to act as an oncogene in a variety of cancers, including hepatocellular carcinoma (HCC). MicroRNA-122 (miR-122) is a key liver-specific miRNA that is frequently inhibited in HCC and is associated with poor prognosis. However, a potential relationship between HOTAIR and miR-122 in individual hepatocytes has not been explored. To this end, we propose here an intracellular catalytic hairpin self-assembly-CRISPR/Cas12a tandem multiplexed signal amplification strategy for the simultaneous quantification of HOTAIR and miRNA-122 in a single hepatocyte. We applied this method to analyze both normal HL-7702 liver cells and HepG2 HCC cells, and found that HL-7702 cells contained large amounts of miRNA-122, while the content of miRNA-122 in HepG2 cells was low. However, the level of HOTAIR in HepG2 cells was much higher than that in HL-7702 cells, confirming the overexpression of HOTAIR in HCC cells. We achieved the simultaneous absolute quantification of HOTAIR and miRNA-122 in single cells, providing an important method to study the relationships between these two RNA molecules in individual cells.
Collapse
Affiliation(s)
- Ruiyan Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuhai Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Rongxiang Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jianniao Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
18
|
Wade H, Pan K, Zhang B, Zheng W, Su Q. Mechanistic role of long non-coding RNAs in the pathogenesis of metabolic dysfunction-associated steatotic liver disease and fibrosis. EGASTROENTEROLOGY 2024; 2:e100115. [PMID: 39872125 PMCID: PMC11729351 DOI: 10.1136/egastro-2024-100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma. In the liver, long non-coding RNAs (lncRNAs) target multiple metabolic pathways in hepatocytes, HSCs, and Kupffer cells at different stages of MASLD and liver fibrosis. In this study, we overview recent findings on the potential role of lncRNAs in the pathogenesis of MASLD and liver fibrosis via modulation of de novo lipid synthesis, fatty acid β-oxidation, lipotoxicity, oxidative stress, metabolic inflammation, mammalian target of rapamycin signalling, apoptosis, ubiquitination and fibrogenesis. We critically assess the literature reports that investigate the complex interplay between lncRNA, microRNA and key mediators in liver injury, in both human participants and animal models of MASLD and liver fibrosis. We also highlight the therapeutic potential of lncRNAs in chronic liver diseases.
Collapse
Affiliation(s)
- Henry Wade
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Kaichao Pan
- Endocrinology Group, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Bingrui Zhang
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Qiaozhu Su
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
19
|
Wang D, Li R, Liu Q, Deng C, Zhou Q, Wen W, Chai L. Study on the expression of lncRNA PRKCA-AS1 in oral squamous cell carcinoma. Transl Cancer Res 2024; 13:5202-5213. [PMID: 39525033 PMCID: PMC11543052 DOI: 10.21037/tcr-24-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most malignant tumors in the oral and maxillofacial region, with a poor prognosis. Previous studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in tumor development by regulating the biological behavior of various cancer cells. The aim of this study is to explore the role and potential mechanisms of lncRNA PRKCA-AS1 in OSCC. METHODS Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of lncRNA PRKCA-AS1 in OSCC tissues and cell lines. Cell proliferation, migration and invasion were conducted to assess the biological functions of OSCC cell lines. RESULTS The expression of lncRNA PRKCA-AS1 in OSCC tissues was higher compared to that of adjacent non-cancerous tissues, and its expression level was associated with the depth of tumor infiltration, lymph node metastasis, and tumor node metastasis (TNM) staging. Compared to the control group of normal human oral keratinocytes (HOK), the expression of lncRNA PRKCA-AS1 was also elevated in OSCC cell lines. Knockdown of lncRNA PRKCA-AS1 significantly affected the proliferation, migration, and invasion ability of OSCC cells. However, when lncRNA PRKCA-AS1 was further overexpressed, changes in cell proliferation and migration ability did not show statistical differences. CONCLUSIONS LncRNA PRKCA-AS1 is highly expressed in OSCC, and its expression level is positively correlated with the depth of tumor infiltration, lymph node metastasis, and TNM staging. LncRNA PRKCA-AS1 is involved in regulating the proliferation, migration, and invasion of OSCC cells.
Collapse
Affiliation(s)
- Dongyong Wang
- Oral Disease Research Center, School of Stomatology, Binjiang Campus, Wannan Medical College, Wuhu, China
| | - Rui Li
- Oral Disease Research Center, School of Stomatology, Binjiang Campus, Wannan Medical College, Wuhu, China
- Anhui Province Engineering Research Center for Dental Materials and Application, Wuhu, China
| | - Qian Liu
- Oral Disease Research Center, School of Stomatology, Binjiang Campus, Wannan Medical College, Wuhu, China
| | - Chao Deng
- Oral Disease Research Center, School of Stomatology, Binjiang Campus, Wannan Medical College, Wuhu, China
- Anhui Province Engineering Research Center for Dental Materials and Application, Wuhu, China
| | - Qiong Zhou
- Oral Disease Research Center, School of Stomatology, Binjiang Campus, Wannan Medical College, Wuhu, China
| | - Wenjie Wen
- Oral Disease Research Center, School of Stomatology, Binjiang Campus, Wannan Medical College, Wuhu, China
- Anhui Province Engineering Research Center for Dental Materials and Application, Wuhu, China
| | - Lin Chai
- Oral Disease Research Center, School of Stomatology, Binjiang Campus, Wannan Medical College, Wuhu, China
- Anhui Province Engineering Research Center for Dental Materials and Application, Wuhu, China
| |
Collapse
|
20
|
Kubaski Benevides AP, Marin AM, Wosniaki DK, Oliveira RN, Koerich GM, Kusma BN, Munhoz EC, Zanette DL, Aoki MN. Expression of HOTAIR and PTGS2 as potential biomarkers in chronic myeloid leukemia patients in Brazil. Front Oncol 2024; 14:1443346. [PMID: 39450252 PMCID: PMC11499243 DOI: 10.3389/fonc.2024.1443346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm in which all the patients has the translocation (9;22) that generates de BCR::ABL1 tyrosine kinase. Despite this disease possessing a good biomarker (BCR::ABL1 transcripts level) for diagnosis and prognosis, many studies has been performed to investigate other molecules, such as the long noncoding RNAs (lncRNAs) and mRNAs, as potential biomarkers with the aim of predicting a change in BCR::ABL1 levels and as an associated biomarker. A RNAseq was performed comparing 6 CML patients with high BCR::ABL1 expression with 6 healthy control individuals, comprising the investigation cohort to investigate these molecules. To validate the results obtained by RNAseq, samples of 87 CML patients and 42 healthy controls were used in the validation cohort by RT-qPCR assays. The results showed lower expression of HOTAIR and PTGS2 in CML patients. The HOTAIR expression is inversely associated with BCR::ABL1 expression in imatinib-treated CML patients, and to PTGS2 showing that CML patients with high BCR::ABL1 expression showed reduced PTGS2 expression.
Collapse
Affiliation(s)
- Ana Paula Kubaski Benevides
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Denise K. Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Rafaela Noga Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Gabriela Marino Koerich
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Bianca Nichele Kusma
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| |
Collapse
|
21
|
Wei Y, Hu X, Yuan S, Zhao Y, Zhu C, Guo M, Cui H. Identification of plasma exosomal lncRNA as a biomarker for early diagnosis of gastric cancer. Front Genet 2024; 15:1425591. [PMID: 39440243 PMCID: PMC11493672 DOI: 10.3389/fgene.2024.1425591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background There were about 1,090,000 gastric cancer (GC) cases in 2020 in China. The incidence and mortality rates ranked the fifth and third among all kinds of cancers in China. Early diagnosis plays an important role in the treatment and prognosis of gastric cancer. In recent years, noninvasive diagnosis, especially plasma exosome lncRNAs, has become a promissing biomarkers with high specificity and sensitivity for early diagnosis of cancers. Methods In this study, plasma exosomes of patients with early gastric cancer were extracted efficiently by affinity membrane separation technology, including affinity adsorption, elution, affinity membrane regeneration and other steps. After identified by electron microscopy observation, particle size analysis and Western blot verification, the lncRNAs in the exosomes were extracted and were analysized by high-throughput RNA sequencing (RNA-Seq). The differentially expressed lncRNAs were verified by RT-qPCR in 93 patients with early gastric cancer and 49 normal controls. Results Electron microscopy, particle size analysis and Western blot showed that exosomes were successfully isolated from plasma. RNA-Seq results show that 76 lncRNAs were upregulated and 260 lncRNAs were downregulated in plasma exosomes of early gastric cancer patients compared with normal controls. RT-qPCR analysis indicated that a total of 6 lncRNAs were significantly and differentially expressed in gastric cancer patients compared to normal controls, with 2 (lncmstrg. 1319590, Lncmstrg. 2312697) highly expressed and 4 lowly expressed (lncmstr-g.1004024.1, lncmstrg. 2441832.8, lncmstrg. 315376.1, lncmstrg.907985.2,) (p < 0.05). The survival curve analysis indicated that lncmstrg.2441832.8 and lncmstrg.2312697 had higher sensitivity and specificity for the diagnosis of gastric cancer, respectively and AUC curve areas were 0.6211 and 0.631, p < 0.05, respectively, which were greater than the traditional clinical detection indexes CEA (0.61) and AFP (0.57). When combined lncmstrg.2441832.8 and lncmstrg.2312697 in gastric cancer diagnosis, AUC curve area reached 0.73, which was greater than CA199 (0.71). Conclusion Lncmstrg.2441832.8 and lncmstrg.2312697 may be a potential and promissing biomarkers for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Ye Wei
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuai Yuan
- Yangzhou center for disease control and prevention, Yangzhou, China
| | - Yue Zhao
- Department of Medical Affaires, Yangzhou Maternity and Child Health Hospital, Yangzhou, China
| | - Chunhui Zhu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Hengmi Cui
- College of Medicine, Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
23
|
Wan M, Liu Y, Li D, Snyder R, Elkin L, Day C, Rodriguez J, Grunseich C, Mahley R, Watts J, Cheung V. The enhancer RNA, AANCR, regulates APOE expression in astrocytes and microglia. Nucleic Acids Res 2024; 52:10235-10254. [PMID: 39162226 PMCID: PMC11417409 DOI: 10.1093/nar/gkae696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Enhancers, critical regulatory elements within the human genome, are often transcribed into enhancer RNAs. The dysregulation of enhancers leads to diseases collectively termed enhanceropathies. While it is known that enhancers play a role in diseases by regulating gene expression, the specific mechanisms by which individual enhancers cause diseases are not well understood. Studies of individual enhancers are needed to fill this gap. This study delves into the role of APOE-activating noncoding RNA, AANCR, in the central nervous system, elucidating its function as a genetic modifier in Alzheimer's Disease. We employed RNA interference, RNaseH-mediated degradation, and single-molecule RNA fluorescence in situ hybridization to demonstrate that mere transcription of AANCR is insufficient; rather, its transcripts are crucial for promoting APOE expression. Our findings revealed that AANCR is induced by ATM-mediated ERK phosphorylation and subsequent AP-1 transcription factor activation. Once activated, AANCR enhances APOE expression, which in turn imparts an inflammatory phenotype to astrocytes. These findings demonstrate that AANCR is a key enhancer RNA in some cell types within the nervous system, pivotal for regulating APOE expression and influencing inflammatory responses, underscoring its potential as a therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ma Wan
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yaojuan Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dongjun Li
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan J Snyder
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lillian B Elkin
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher R Day
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joseph Rodriguez
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pathology and Medicine, University of California, San Francisco, CA, USA
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivian G Cheung
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
25
|
Xu W, Sang S, Wang J, Guo S, Zhang X, Zhou H, Chen Y. Identification of telomere-related lncRNAs and immunological analysis in ovarian cancer. Front Immunol 2024; 15:1452946. [PMID: 39355254 PMCID: PMC11442270 DOI: 10.3389/fimmu.2024.1452946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background Ovarian cancer (OC) is a global malignancy characterized by metastatic invasiveness and recurrence. Long non-coding RNAs (lncRNAs) and Telomeres are closely connected with several cancers, but their potential as practical prognostic markers in OC is less well-defined. Methods Relevant mRNA and clinical data for OC were sourced from The Cancer Genome Atlas (TCGA) database. The telomere-related lncRNAs (TRLs) prognostic model was established by univariate/LASSO/multivariate regression analyses. The effectiveness of the TRLs model was evaluated and measured via the nomogram. Additionally, immune infiltration, tumor mutational load (TMB), and drug sensitivity were evaluated. We validated the expression levels of prognostic genes. Subsequently, PTPRD-AS1 knockdown was utilized to perform the CCK8 assay, colony formation assay, transwell assay, and wound healing assay of CAOV3 cells. Results A six-TRLs prognostic model (PTPRD-AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1, FAM27E3, and AC018647.3) was established, which can effectively predict patient survival rates and was successfully validated using external datasets. According to the nomogram, the model could effectively predict prognosis. Furthermore, we detected the levels of regulatory T cells and M2 macrophages were comparatively higher in the high-risk TRLs group, but the levels of activated CD8 T cells and monocytes were the opposite. Finally, the low-risk group was more sensitive to anti-cancer drugs. The mRNA levels of PTPRD-AS1, SPAG5-AS1, FAM27E3, and AC018647.3 were significantly over-expressed in OC cell lines (SKOV3, A2780, CAOV3) in comparison to normal IOSE-80 cells. AC074286.1 were over-expressed in A2780 and CAOV3 cells and CHRM3-AS2 only in A2780 cells. PTPRD-AS1 knockdown decreased the proliferation, cloning, and migration of CAOV3 cells. Conclusion Our study identified potential biomarkers for the six-TRLs model related to the prognosis of OC.
Collapse
Affiliation(s)
- Weina Xu
- Department of TCM, Zhoujiadu Community Health Service of Shanghai Pudong New Area, Shanghai, China
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Wang
- Department of TCM, Zhoujiadu Community Health Service of Shanghai Pudong New Area, Shanghai, China
| | - Shanshan Guo
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Zhang
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijia Chen
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Sarkar S, Moitra P, Bera S, Bhattacharya S. Antisense Oligonucleotide Embedded Context Responsive Nanoparticles Derived from Synthetic Ionizable Lipids for lncRNA Targeted Therapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45871-45887. [PMID: 39163516 DOI: 10.1021/acsami.4c04893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The long noncoding RNAs (lncRNA) are primarily associated with several essential gene regulations but are also connected to cancer metabolism and progression. HOTAIR and MALAT1 are two such lncRNAs that are detected in malignancies of various origins and are responsible for the poor prognosis of cancer patients. Due to these factors, the lncRNAs have emerged as prime targets for the development of anticancer therapeutics. However, nonviral delivery of lncRNA-targeted antisense oligonucleotides (ASOs) still remains a critical challenge while maintaining their structural and functional integrity. Herein, we have designed and synthesized a new series of ionizable lipids with variations in their head groups to prepare lipid nanoparticle (LNP) formulation along with cholesterol-based twin cationic lipid and amphiphilic zwitterionic lipid. The context responsiveness of these formulations in delivering the ASOs has been thoroughly investigated by various bioanalytical techniques, and an optimum formulation has been identified. The LNPs are utilized to deliver the ASOs targeting HOTAIR lncRNA in human cancer cell lines and MALAT1 lncRNA in mouse models. This study thus standardizes an advanced nanomaterial system for nonviral gene delivery that has been validated by a considerable reduction in the target lncRNA level under in vitro and a significant reduction in tumor volume under in vivo settings.
Collapse
Affiliation(s)
- Sourav Sarkar
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur, Odisha 760003, India
| | - Sayan Bera
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati (IISER Tirupati), Srinivasapuram, Yerpedu Mandal, Tirupati District, Andhra Pradesh 517619, India
| |
Collapse
|
27
|
Allan MF, Aruda J, Plung JS, Grote SL, des Taillades YJM, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. RESEARCH SQUARE 2024:rs.3.rs-4814547. [PMID: 39149495 PMCID: PMC11326378 DOI: 10.21203/rs.3.rs-4814547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
Affiliation(s)
- Matthew F. Allan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Justin Aruda
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Jesse S. Plung
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Scott L. Grote
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | | | - Albéric A. de Lajarte
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| |
Collapse
|
28
|
Allan MF, Aruda J, Plung JS, Grote SL, Martin des Taillades YJ, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591762. [PMID: 38746332 PMCID: PMC11092567 DOI: 10.1101/2024.04.29.591762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
|
29
|
Xu H, Yang Z, Hu W, Zhou X, Zhang Z, Zhang X. CSPG4P12 polymorphism served as a susceptibility marker for esophageal cancer in Chinese population. BMC Cancer 2024; 24:729. [PMID: 38877481 PMCID: PMC11177360 DOI: 10.1186/s12885-024-12475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Chondroitin sulfate proteoglycan 4 pseudogene 12 (CSPG4P12) has been implicated in the pathogenesis of various cancers. This study aimed to evaluate the association of the CSPG4P12 polymorphism with esophageal squamous cell carcinoma (ESCA) risk and to explore the biological impact of CSPG4P12 expression on ESCA cell behavior. METHODS A case-control study was conducted involving 480 ESCA patients and 480 healthy controls to assess the association between the rs8040855 polymorphism and ESCA risk. The CSPG4P12 rs8040855 genotype was identified using the TaqMan-MGB probe method. Logistic regression model was used to evaluate the association of CSPG4P12 SNP with the risk of ESCA by calculating the odds ratios (OR) and 95% confidence intervals (95%CI ). The effects of CSPG4P12 overexpression on cell proliferation, migration, and invasion were examined in ESCA cell lines. Co-expressed genes were identified via the CBioportal database, with pathway enrichment analyzed using SangerBox. The binding score of CSPG4P12 to P53 was calculated using RNA protein interaction prediction (RPISeq). Additionally, Western Blot analysis was performed to investigate the impact of CSPG4P12 overexpression on the P53/PI3K/AKT signaling pathway. RESULTS The presence of at least one rs8040855 G allele was associated with a reduced susceptibility to ESCA compared to the CC genotype (OR = 0.51, 95%CI = 0.28-0.93, P = 0.03). Stratification analysis revealed that the CSPG4P12 rs8040855 C allele significantly decreased the risk of ESCA among younger individuals (≤ 57 years) and non-drinkers (OR = 0.31, 95%CI = 0.12-0.77, P = 0.01; OR = 0.42, 95%CI=0.20-0.87, P = 0.02, respectively). CSPG4P12 expression was found to be downregulated in ESCA tissues compared to adjacent normal tissues. Overexpression of CSPG4P12 in ESCA cells inhibited their proliferation, migration, and invasion capabilities. Furthermore, Western Blot analysis indicated that CSPG4P12 overexpression led to a reduction in PI3K and p-AKT protein expression levels. P53 silencing rescues the inhibitory effect of CSPG4P12 on p-AKT. CONCLUSION The CSPG4P12 rs8040855 variant is associated with reduced ESCA risk and the overexpression of CSPG4P12 inhibited the migration and invasion of ESCA cells by P53/PI3K/AKT pathway. These findings suggest that CSPG4P12 may serve as a novel biomarker for ESCA susceptibility and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenqian Hu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xianlei Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital , North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China.
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
30
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
31
|
Cantile M, Belli V, Scognamiglio G, Martorana A, De Pietro G, Tracey M, Budillon A. The role of HOTAIR in the modulation of resistance to anticancer therapy. Front Mol Biosci 2024; 11:1414651. [PMID: 38887279 PMCID: PMC11181001 DOI: 10.3389/fmolb.2024.1414651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Leading anti-tumour therapeutic strategies typically involve surgery and radiotherapy for locally advanced (non-metastatic) cancers, while hormone therapy, chemotherapy, and molecular targeted therapy are the current treatment options for metastatic cancer. Despite the initially high sensitivity rate to anticancer therapies, a large number of patients develop resistance, leading to a poor prognosis. The mechanisms related to drug resistance are highly complex, and long non-coding RNAs appear to play a crucial role in these processes. Among these, the lncRNA homeobox transcript antisense intergenic RNA (HOTAIR), widely implicated in cancer initiation and progression, likewise plays a significant role in anticancer drug resistance. It can modulate cell activities such as proliferation, apoptosis, hypoxia, autophagy, as well as epithelial-mesenchymal transition, thereby contributing to the development of resistant tumour cells. In this manuscript, we describe different mechanisms of antitumor drug resistance in which HOTAIR is involved and suggest its potential as a therapeutic predictive biomarker for the management of cancer patients.
Collapse
Affiliation(s)
- Monica Cantile
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Valentina Belli
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giosuè Scognamiglio
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Anna Martorana
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giovanna De Pietro
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Maura Tracey
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
32
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
33
|
Suwardjo S, Permana KG, Aryandono T, Heriyanto DS, Anwar SL. Long-Noncoding-RNA HOTAIR Upregulation is Associated with Poor Breast Cancer Outcome: A Systematic Review and Meta Analysis. Asian Pac J Cancer Prev 2024; 25:1169-1182. [PMID: 38679975 PMCID: PMC11162707 DOI: 10.31557/apjcp.2024.25.4.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women worldwide with significant disproportionate mortality rates in developing countries. Although clinical management of breast cancer has been immensely improved, refinement in the prognostic and recurrent markers is still needed. Long non-coding RNAs (lncRNA) HOTAIR has recently been associated with poor outcome and is potentially used as a prognostic marker in breast cancer. METHODS We comprehensively reviewed studies evaluating lncRNA HOTAIR in association with overall and disease-free survivals in breast cancers. Systematic searches were performed in Pubmed, ProQuest, ScienceDirect, Scopus, Google Scholar, Semantic Scholar, Springer, Nature, Sage Journals, and Wiley databases using combination keywords "long non-coding RNA," "lncRNA," "HOX transcript antisense RNA," "HOTAIR," "breast can-cer," "carcinoma mammae," "prognosis," and "survival." Risk of bias score was used to assess quality of studies, I2 test was conducted to assess heterogeneity. Meta-analysis was performed to compare HOTAIR expression with breast cancer survival rates using STATA v.17 software. RESULTS Of the total 1,504 screened studies, seven studies were included in the meta-analysis involving 533 patients. High expression of HOTAIR was associated with poor survival rates (pooled HR: 1.69; 95%CI: 1.11-2.59; p=0.015), shorter overall survival (OS) (pooled HR: 1.33; 95%CI: 0.78-2.26; p=0.455), poor disease-free survival (DFS) (pooled HR: 2.40; 95%CI: 1.63-3.53; p<0.001), poor distant metastatic-free survival (MFS) (HR: 1.75; 95%CI: 1.13-2.71; p=0.012). In addition, overexpression of HOTAIR was associated with positive lymph node infiltration (pooled OR: 2.38; 95%CI: 0.53-10.69; p=0.26) and ductal type cancer (pooled OR: 3.27; 95%CI: 1.15-9.30; p=0.03). CONCLUSION Upregulation of lncRNA HOTAIR is associated with worse DFS aand MFS that can potentially be used as a prognostic marker in breast cancer patients.
Collapse
Affiliation(s)
- Suwardjo Suwardjo
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Kavi Gilang Permana
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Teguh Aryandono
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Didik Setyo Heriyanto
- Department of Pathological Anatomy, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Sumadi Lukman Anwar
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| |
Collapse
|
34
|
Qi J, Wu W, Chen J, Han X, Hao Z, Han Y, Xu Y, Lai J, Chen J. Development and validation of a novel prognostic lncRNA signature based on the APOBEC3 family genes in gastric cancer. Heliyon 2024; 10:e28307. [PMID: 38560679 PMCID: PMC10979227 DOI: 10.1016/j.heliyon.2024.e28307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Gastric Cancer (GC) refers to a prevalent malignant cancer accompanied by a weak prognosis. The APOBEC3 family genes and lncRNAs are linked with cancer progression. Nevertheless, there is still a scarcity of data concerning the prognostic value of APOBEC3-related lncRNAs in GC. Methods We extracted the data from GC samples, including transcriptome as well as clinical data, obtained from the TCGA database. Then, we screened for lncRNAs that were correlated with the APOBEC3 family genes and constructed an APOBEC3-related lncRNA prognostic signature (LPS) by utilizing univariate Cox and lasso regression analysis. Furthermore, we validated our constructed signature and evaluated it thoroughly, including analysis of its function, immunity, mutations, and clinical applications via multiple methods, including Metascape, GSEA, and analyses including TIC and TME, immune checkpoints, CNV and SNPs, Kaplan-Meier survival curves, nomogram, decision tree and drug prediction analysis. Finally, we overexpressed LINC01094 to evaluate the impacts on the proliferation as well as migration with regards to KATO-2 cells. Results We selected eight lncRNAs for our APOBEC3-related LPS, which is demonstrated as a valuable tool in predicting the individual GC patients' prognosis. Subsequently, we segregated the samples into subgroups of high-as well as low-risk relying on the risk score with regards to APOBEC3-related LPS. By performing functional analysis, we have shown that immune-as well as tumor-related pathways were enriched in high- and low-risk GC patients. Furthermore, immune analysis revealed a robust correlation between the APOBEC3-related LPS and immunity. We found that immune checkpoints were significantly associated with the APOBEC3-related LPS and were greatly exhibited in GC tumor and high-risk samples. Mutational analysis suggested that the mutational rate was greater in low-risk samples. Furthermore, we predicted small molecular drugs displayed greater sensitivity in patients categorized as high-risk. Moreover, the immune response was also better in high-risk patients. Of these drugs, dasatinib was significant in both methods and might be considered a potential novel drug for treating high-risk GC patients. Finally, we found that LINC01094 has the potential to enhance the migration, proliferation as well as inhibit apoptosis of KATO-2 in GC cells. And Dasatinib has an inhibitory effect on the migration as well as proliferation in GC cells. Conclusion We created a novel APOBEC3-related LPS in predicting the prognosis with regards to individual GC patients. Importantly, this APOBEC3-related LPS was closely associated with immunity and might guide clinical treatment.
Collapse
Affiliation(s)
- Jia Qi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Wenxuan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xiaying Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Zhixing Hao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yaxuan Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yewei Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jun Lai
- Department of Cardiology Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Jian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
35
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
36
|
Wu Z, Jiang S, Chen Y. Non-coding RNA and Drug resistance in cholangiocarcinoma. Noncoding RNA Res 2024; 9:194-202. [PMID: 38125756 PMCID: PMC10730441 DOI: 10.1016/j.ncrna.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer with a dismal prognosis and limited resectability. Chemotherapy has demonstrated tremendous benefits for patients with advanced and inoperable cancer, but drug resistance poses a significant obstacle. Despite recent progress in cancer therapy, the mechanisms driving drug resistance are multifaceted and not completely comprehended. Non-coding RNA refers to RNA molecules that are endogenous and do not code for proteins. Particularly microRNAs, long non-coding RNAs, circular RNAs, are widely acknowledged to be involved in cancer initiation, proliferation, and metastasis. Recently, evidences suggests that abnormal expression of non-coding RNAs contributes to resistance to different type of cancer therapies in cholangiocarcinoma. This occurs via the rewiring of signaling pathways including the reduction of anticancer drugs, apoptosis, interaction between cholangiocarcinoma and tumor-infiltrating immune cells, and cancer stemness. Thus, our review aims to demonstrate the potential of targeting non-coding RNA to override drug resistance and summarize the molecular mechanisms of how non-coding RNA contributes to drug resistance in cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhaowei Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Shiming Jiang
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Yong Chen
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| |
Collapse
|
37
|
Wu N, Chen J, Lin T, Zhong Z, Li M, Yu Y, Guo J, Yu W. Identification of AP002498.1 and LINC01871 as prognostic biomarkers and therapeutic targets for distant metastasis of colorectal adenocarcinoma. Cancer Med 2024; 13:e6823. [PMID: 38083905 PMCID: PMC10807603 DOI: 10.1002/cam4.6823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Increasing evidence suggests that lncRNA (Long non-coding RNA, lncRNA)-mediated ceRNA (competing endogenous RNA, ceRNA) networks are involved in the occurrence and progression of colorectal cancer (CRC). However, the roles of the lncRNA-miRNA-mRNA ceRNA network in distant metastasis of CRC are still unclear. METHODS In this study, we constructed a specific ceRNA network to identify potential biomarkers and therapeutic targets for distant metastasis of CRC. Specifically, RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to screen for differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) related to metastasis. After validation and selection by qRT-PCR and univariate and multivariate analysis of the metastasis- and prognosis-related lncRNAs, the regulated microRNAs (miRNAs) and coexpressed mRNAs were used to construct a ceRNA network for distant metastasis of CRC. RESULTS Two key distant metastasis-related DElncRNAs, AP002498.1 and LINC01871, were identified by univariate and multivariate analysis in combination with analyses of clinical data and expression levels. Furthermore, lncRNA-associated ceRNA subnetworks were constructed from the predicted miRNAs and 13 coexpressed DEmRNAs (SERPINA1, ITLN1, REG4, L1TD1, IGFALS, MUC5B, CIITA, CXCL9, CXCL10, GBP4, GNLY, IDO1, and NOS2). The AP002498.1- and LINC01871-associated ceRNA subnetworks regulated the expression of the target genes SERPINA1 and MUC5B and GNLY, respectively, through the associated miRNAs. CONCLUSION The DElncRNA AP002498.1 and the LINC01871/miR-4644 and miR-185-5p/GNLY axes were identified as being closely associated with distant metastasis and could represent independent prognostic biomarkers or therapeutic targets in colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Jingyi Chen
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Zhaohui Zhong
- Department of General SurgeryPeking University People's HospitalBeijingChina
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Yimeng Yu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Jingzhu Guo
- Department of PediatricPeking University People's HospitalBeijingChina
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| |
Collapse
|
38
|
Chen Z, Wang Q, Liu J, Wang W, Yuan W, Liu Y, Sun Z, Wang C. Effects of extracellular vesicle-derived noncoding RNAs on pre-metastatic niche and tumor progression. Genes Dis 2024; 11:176-188. [PMID: 37588211 PMCID: PMC10425748 DOI: 10.1016/j.gendis.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
A pre-metastatic niche (PMN) is a protective microenvironment that facilitates the colonization of disseminating tumor cells in future metastatic organs. Extracellular vesicles (EVs) play a role in intercellular communication by delivering cargoes, such as noncoding RNAs (ncRNAs). The pivotal role of extracellular vesicle-derived noncoding RNAs (EV-ncRNAs) in the PMN has attracted increasing attention. In this review, we summarized the effects of EV-ncRNAs on the PMN in terms of immunosuppression, vascular permeability and angiogenesis, inflammation, metabolic reprogramming, and fibroblast alterations. In particular, we provided a comprehensive overview of the effects of EV-ncRNAs on the PMN in different cancers. Finally, we discussed the promising clinical applications of EV-ncRNAs, including their potential as diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengzeng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
39
|
Salido-Guadarrama I, Romero-Cordoba SL, Rueda-Zarazua B. Multi-Omics Mining of lncRNAs with Biological and Clinical Relevance in Cancer. Int J Mol Sci 2023; 24:16600. [PMID: 38068923 PMCID: PMC10706612 DOI: 10.3390/ijms242316600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we provide a general overview of the current panorama of mining strategies for multi-omics data to investigate lncRNAs with an actual or potential role as biological markers in cancer. Several multi-omics studies focusing on lncRNAs have been performed in the past with varying scopes. Nevertheless, many questions remain regarding the pragmatic application of different molecular technologies and bioinformatics algorithms for mining multi-omics data. Here, we attempt to address some of the less discussed aspects of the practical applications using different study designs for incorporating bioinformatics and statistical analyses of multi-omics data. Finally, we discuss the potential improvements and new paradigms aimed at unraveling the role and utility of lncRNAs in cancer and their potential use as molecular markers for cancer diagnosis and outcome prediction.
Collapse
Affiliation(s)
- Ivan Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Sandra L. Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bertha Rueda-Zarazua
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
40
|
Anber N, Tarabay MM, Elmougy R, Abdel-Dayem MA, Elbendary EY. Association of HOTAIR gene rs920778 (C > T) and rs4759314 (A > G) polymorphism with breast cancer in Egyptian women. Mol Biol Rep 2023; 50:9153-9163. [PMID: 37776415 PMCID: PMC10635973 DOI: 10.1007/s11033-023-08725-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/31/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Hox transcript antisense RNA (HOTAIR) is considered an oncogene associated with the initiation and progression of many malignancies. Previous studies have examined the connection between HOTAIR SNPs rs4759314 and rs920778 for breast cancer (BC), getting variable results in multiple ethnicities. Therefore, this study was designed to evaluate the connection between these two SNPs and disease vulnerability, clinic-laboratory, and hormonal parameters, featuring status associations with the BC risk in an Egyptian woman sample. METHODS AND RESULTS In this case-control study, DNA was taken from the blood of 100 BC patients and 100 unrelated healthy Egyptian females. The characterization of rs4759314 was genotyped using the T-ARMS-PCR method and rs920778 using the SNP-RFLP technique for all participants. The frequency of the rs4759314 A > G variation revealed a statistically significant increase in BC risk with dominant (p = 0.013, OR = 1.592, 95% Cl = 1.105-2.293), co-dominant (p = 0.006, OR = 2.314, 95%Cl = 1.278-4.191) and overdominant (p = 0.002, OR = 2.571, 95% Cl = 1.430-4.624) genetic models. On the other hand, the rs920778 C > T polymorphism was not significantly associated with BC. ER/PR positivity with HER2 negativity was significantly associated with the AA genotype compared to the AG genotype. Otherwise, no significant associations between the two SNPs and clinical stage or hormonal features could be found. In conclusion, the rs4759314 A > G SNP in the HOTAIR gene is strongly associated with BC, which might warrant its determination among affected families for prevention and early treatment.
Collapse
Affiliation(s)
- Nahla Anber
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Rehab Elmougy
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Marwa Ahmed Abdel-Dayem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Horus University, New Damietta City, Egypt
| | - Ehab Yones Elbendary
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Zhou Q, Xiong J, Gao Y, Yi R, Xu Y, Chen Q, Wang L, Chen Y. Mitochondria-related lncRNAs: predicting prognosis, tumor microenvironment and treatment response in lung adenocarcinoma. Funct Integr Genomics 2023; 23:323. [PMID: 37864709 PMCID: PMC10590301 DOI: 10.1007/s10142-023-01245-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
Lung cancer is the most common type of malignant tumor that affects people in China and even across the globe, as it exhibits the highest rates of morbidity and mortality. Lung adenocarcinoma (LUAD) is a type of lung cancer with a very high incidence. The purpose of this study was to identify potential biomarkers that could be used to forecast the prognosis and improve the existing therapy options for treating LUAD. Clinical and RNA sequencing data of LUAD patients were retrieved from the TCGA database, while the mitochondria-associated gene sets were acquired from the MITOMAP database. Thereafter, Pearson correlation analysis was carried out to screen mitochondria-associated lncRNAs. Furthermore, univariate Cox and Lasso regression analyses were used for the initial screening of the target lncRNAs for prognostic lncRNAs before they could be incorporated into a multivariate Cox Hazard ratio model. Then, the clinical data, concordance index, Kaplan-Meier (K-M) curves, and the clinically-relevant subjects that were approved by the Characteristic Curves (ROC) were employed for assessing the model's predictive value. Additionally, the differences in immune-related functions and biological pathway enrichment between high- and low-risk LUAD groups were examined. Nomograms were developed to anticipate the OS rates of the patients within 1-, 3-, and 5 years, and the differences in drug sensitivity and immunological checkpoints were compared. In this study, 2175 mitochondria-associated lncRNAs were screened. Univariate, multivariate, and Lasso Cox regression analyses were carried out to select 13 lncRNAs with an independent prognostic significance, and a prognostic model was developed. The OS analysis of the established prognostic prediction model revealed significant variations between the high- and low-risk patients. The AUC-ROC values after 1, 3, and 5 years were seen to be 0.746, 0.692, and 0.726, respectively. The results suggested that the prognostic model riskscore could be used as an independent prognostic factor that differed from the other clinical characteristics. After analyzing the findings of the study, it was noted that both the risk groups showed significant differences in their immune functioning, immunological checkpoint genes, and drug sensitivity. The prognosis of patients with LUAD could be accurately and independently predicted using a risk prediction model that included 13 mitochondria-associated lncRNAs.
Collapse
Affiliation(s)
- Qianhui Zhou
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Jiali Xiong
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Yan Gao
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Rong Yi
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Yuzhu Xu
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Quefei Chen
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Lin Wang
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Ying Chen
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
42
|
Lu Z, Xu J, Cao B, Jin C. Long non-coding RNA SOX21-AS1: A potential tumor oncogene in human cancers. Pathol Res Pract 2023; 249:154774. [PMID: 37633003 DOI: 10.1016/j.prp.2023.154774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Emerging data have proposed that the aberrant level of long noncoding RNAs (lncRNA) is related to the onset and progression of cancer. Among them, lncRNA SOX21-AS1 was shown to upregulate and seem to be a novel oncogene in various cancer, including ovarian cancer, lung cancer, breast cancer, pancreatic cancer, osteosarcoma, and melanoma. Available data indicated that SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) mostly acts as a competing endogenous RNA (ceRNA) to inhibit the level of its target microRNAs (miRNAs), leading to upregulation of their targets. In addition, SOX21-AS1 is engaged in various signaling pathways like transforming growth factor-β (TGF-β) signaling, Wnt signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Moreover, this lncRNA was revealed to be correlated with the clinicopathological features of affected patients. SOX21-AS1 was also proved to enhance the resistance of ovarian cancer cells to cisplatin chemotherapy. SOX21-AS1 is markedly associated with poor prognosis and low survival of patients, proposing that it may be a prognostic and diagnostic biomarker in cancer. Overexpression of SOX21-AS1 is related to various cancer-related pathways, like epithelial mesenchymal transition (EMT), invasion, migration, apoptosis, and cell cycle arrest. In this work, we aimed to discuss the biogenesis, function, and underlying molecular mechanism of SOX21-AS1 in cancer progression as well as its potential as a prognostic and diagnostic biomarker in human cancers.
Collapse
Affiliation(s)
- Zhengyu Lu
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Jin Xu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Binhao Cao
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Chongqiang Jin
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China.
| |
Collapse
|
43
|
Liu L, Liu J, Lyu Q, Huang J, Chen Y, Feng C, Liu Y, Chen F, Wang Z. Disulfidptosis-associated LncRNAs index predicts prognosis and chemotherapy drugs sensitivity in cervical cancer. Sci Rep 2023; 13:12470. [PMID: 37528124 PMCID: PMC10394072 DOI: 10.1038/s41598-023-39669-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
Disulfidptosis is a newly discovered form of cell death. Not yet clearly classified as programmed cell death or accidental cell death. This study aimed to create a novel disulfidptosis-related lncRNA index (DLI) that can be used to predict survival and chemotherapy drugs sensitivity in patients with cervical cancer. First of all, we found lncRNAs associated with disulfidptosis between cervical cancer tissues and normal tissues. By LASSO-Cox analysis, overlapping lncRNAs were then used to construct lncRNA index associated with disulfidptosis, which can be served to predict the prognosis of patients with CC, especially the chemotherapy drugs sensitivity. ROC curves and PCA based on DLI and clinical signatures were developed and demonstrated to have good predictive potential. In addition, differences in immune cell subset infiltration and differences in immune checkpoint expression between high-DLI and low-DLI groups were analyzed, and we investigated the relationship between the DLI and tumor mutation burden (TMB). In summary, we constructed a lncRNA prediction index associated with disulfidptosis. This has important clinical implications, including improving the predictive value of cervical cancer patients and providing a biomarker for cervical cancer guiding individualized treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Gynecology, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, No.1 Baojian Road, Shunde District, Foshan, 528300, Guangdong, China
| | - Jun Liu
- Department of Obstetrics, Pingxiang Maternal and Child Health Hospital, Pingxiang, 337000, Jiangxi, China
| | - Qianbao Lyu
- Department of Gynecology, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, No.1 Baojian Road, Shunde District, Foshan, 528300, Guangdong, China
| | - Jinzhi Huang
- Department of Gynecology, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, No.1 Baojian Road, Shunde District, Foshan, 528300, Guangdong, China
| | - Yuanfeng Chen
- Department of Gynecology, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, No.1 Baojian Road, Shunde District, Foshan, 528300, Guangdong, China
| | - Cuiyi Feng
- Department of Gynecology, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, No.1 Baojian Road, Shunde District, Foshan, 528300, Guangdong, China
| | - Yaoyao Liu
- Geneplus-Beijing Institute, Beijing, 10000, China
| | - Fukun Chen
- Geneplus-Beijing Institute, Beijing, 10000, China
| | - Zhouyan Wang
- Department of Gynecology, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, No.1 Baojian Road, Shunde District, Foshan, 528300, Guangdong, China.
- Department of Pharmacy, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, Guangdong, China.
| |
Collapse
|
44
|
Han SH, Ko JY, Kang ES, Park JH, Yoo KH. Long non-coding RNAs: key regulators of liver and kidney fibrogenesis. BMB Rep 2023; 56:374-384. [PMID: 37357534 PMCID: PMC10390290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Fibrosis is a pathological condition that is characterized by an abnormal buildup of extracellular matrix (ECM) components, such as collagen, in tissues. This condition affects various organs of the body, including the liver and kidney. Early diagnosis and treatment of fibrosis are crucial, as it is a progressive and irreversible process in both organs. While there are certain similarities in the fibrosis process between the liver and kidney, there are also significant differences that must be identified to determine molecular diagnostic markers and potential therapeutic targets. Long non-coding RNAs (lncRNAs), a class of RNA molecules that do not code for proteins, are increasingly recognized as playing significant roles in gene expression regulation. Emerging evidence suggests that specific lncRNAs are involved in fibrosis development and progression by modulating signaling pathways, such as the TGF-β/Smad pathway and the β-catenin pathway. Thus, identifying the precise lncRNAs involved in fibrosis could lead to novel therapeutic approaches for fibrotic diseases. In this review, we summarize lncRNAs related to fibrosis in the liver and kidney, and propose their potential as therapeutic targets based on their functions. [BMB Reports 2023; 56(7): 374-384].
Collapse
Affiliation(s)
- Su-hyang Han
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women
| | - Je Yeong Ko
- Molecular Medicine Lab, Department of Biological Sciences, Sookmyung Women
| | - Eun Seo Kang
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women
| | - Jong Hoon Park
- Molecular Medicine Lab, Department of Biological Sciences, Sookmyung Women
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women
- Research Institute of Women
| |
Collapse
|
45
|
Petrone I, dos Santos EC, Binato R, Abdelhay E. Epigenetic Alterations in DCIS Progression: What Can lncRNAs Teach Us? Int J Mol Sci 2023; 24:8733. [PMID: 37240077 PMCID: PMC10218364 DOI: 10.3390/ijms24108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Some transcripts that are not translated into proteins can be encoded by the mammalian genome. Long noncoding RNAs (lncRNAs) are noncoding RNAs that can function as decoys, scaffolds, and enhancer RNAs and can regulate other molecules, including microRNAs. Therefore, it is essential that we obtain a better understanding of the regulatory mechanisms of lncRNAs. In cancer, lncRNAs function through several mechanisms, including important biological pathways, and the abnormal expression of lncRNAs contributes to breast cancer (BC) initiation and progression. BC is the most common type of cancer among women worldwide and has a high mortality rate. Genetic and epigenetic alterations that can be regulated by lncRNAs may be related to early events of BC progression. Ductal carcinoma in situ (DCIS) is a noninvasive BC that is considered an important preinvasive BC early event because it can progress to invasive BC. Therefore, the identification of predictive biomarkers of DCIS-invasive BC progression has become increasingly important in an attempt to optimize the treatment and quality of life of patients. In this context, this review will address the current knowledge about the role of lncRNAs in DCIS and their potential contribution to the progression of DCIS to invasive BC.
Collapse
Affiliation(s)
- Igor Petrone
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Everton Cruz dos Santos
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Renata Binato
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Eliana Abdelhay
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (I.P.); (E.C.d.S.); (R.B.)
- Stricto Sensu Graduate Program in Oncology, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| |
Collapse
|
46
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:1115. [PMID: 37190024 PMCID: PMC10137190 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR—Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR—Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
47
|
Raju GSR, Pavitra E, Bandaru SS, Varaprasad GL, Nagaraju GP, Malla RR, Huh YS, Han YK. HOTAIR: a potential metastatic, drug-resistant and prognostic regulator of breast cancer. Mol Cancer 2023; 22:65. [PMID: 36997931 PMCID: PMC10061914 DOI: 10.1186/s12943-023-01765-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is an oncogenic non-coding RNA whose expression is strongly correlated with the tumor grade and prognosis of a variety of carcinomas including breast cancer (BC). HOTAIR regulates various target genes via sponging and epigenetic mechanisms and controls various oncogenic cellular and signaling mechanisms including metastasis and drug resistance. In BC cells, HOTAIR expression is regulated by a variety of transcriptional and epigenetic mechanisms. In this review, we describe the regulatory mechanisms that govern HOTAIR expression during cancer development and explore how HOTAIR drives BC development, metastasis, and drug resistance. In the final section of this review, we focus on the role of HOTAIR in BC management, therapeutic treatment, and prognosis, highlighting its potential therapeutic applications.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Ganji Lakshmi Varaprasad
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
48
|
McGregor LA, Zhu B, Goetz AM, Sczepanski JT. Thymine DNA Glycosylase is an RNA-Binding Protein with High Selectivity for G-Rich Sequences. J Biol Chem 2023; 299:104590. [PMID: 36889585 PMCID: PMC10124917 DOI: 10.1016/j.jbc.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships is poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Baiyu Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Allison M Goetz
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | | |
Collapse
|
49
|
Lu D, Liao J, Cheng H, Ma Q, Wu F, Xie F, He Y. Construction and systematic evaluation of a machine learning-based cuproptosis-related lncRNA score signature to predict the response to immunotherapy in hepatocellular carcinoma. Front Immunol 2023; 14:1097075. [PMID: 36761763 PMCID: PMC9905126 DOI: 10.3389/fimmu.2023.1097075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a common malignant cancer with a poor prognosis. Cuproptosis and associated lncRNAs are connected with cancer progression. However, the information on the prognostic value of cuproptosis-related lncRNAs is still limited in HCC. Methods We isolated the transcriptome and clinical information of HCC from TCGA and ICGC databases. Ten cuproptosis-related genes were obtained and related lncRNAs were correlated by Pearson's correlation. By performing lasso regression, we created a cuproptosis-related lncRNA prognostic model based on the cuproptosis-related lncRNA score (CLS). Comprehensive analyses were performed, including the fields of function, immunity, mutation and clinical application, by various R packages. Results Ten cuproptosis-related genes were selected, and 13 correlated prognostic lncRNAs were collected for model construction. CLS was positively or negatively correlated with cancer-related pathways. In addition, cell cycle and immune related pathways were enriched. By performing tumor microenvironment (TME) analysis, we determined that T-cells were activated. High CLS had more tumor characteristics and may lead to higher invasiveness and treatment resistance. Three genes (TP53, CSMD1 and RB1) were found in high CLS samples with more mutational frequency. More amplification and deletion were detected in high CLS samples. In clinical application, a CLS-based nomogram was constructed. 5-Fluorouracil, gemcitabine and doxorubicin had better sensitivity in patients with high CLS. However, patients with low CLS had better immunotherapeutic sensitivity. Conclusion We created a prognostic CLS signature by machine learning, and we comprehensively analyzed the signature in the fields of function, immunity, mutation and clinical application.
Collapse
Affiliation(s)
- Dingyu Lu
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Jian Liao
- Intensive care Unit, Deyang People’s Hospital, Deyang, China
| | - Hao Cheng
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Qian Ma
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Fei Wu
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Fei Xie
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Yingying He
- Oncology Department, Deyang People’s Hospital, Deyang, China
| |
Collapse
|
50
|
Mangiavacchi A, Morelli G, Orlando V. Behind the scenes: How RNA orchestrates the epigenetic regulation of gene expression. Front Cell Dev Biol 2023; 11:1123975. [PMID: 36760365 PMCID: PMC9905133 DOI: 10.3389/fcell.2023.1123975] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Non-coding DNA accounts for approximately 98.5% of the human genome. Once labeled as "junk DNA", this portion of the genome has undergone a progressive re-evaluation and it is now clear that some of its transcriptional products, belonging to the non-coding RNAs (ncRNAs), are key players in cell regulatory networks. A growing body of evidence demonstrates the crucial impact of regulatory ncRNAs on mammalian gene expression. Here, we focus on the defined relationship between chromatin-interacting RNAs, particularly long non-coding RNA (lncRNA), enhancer RNA (eRNA), non-coding natural antisense transcript (ncNAT), and circular RNA (circRNA) and epigenome, a common ground where both protein and RNA species converge to regulate cellular functions. Through several examples, this review provides an overview of the variety of targets, interactors, and mechanisms involved in the RNA-mediated modulation of loci-specific epigenetic states, a fundamental evolutive strategy to orchestrate mammalian gene expression in a timely and reversible manner. We will discuss how RNA-mediated epigenetic regulation impacts development and tissue homeostasis and how its alteration contributes to the onset and progression of many different human diseases, particularly cancer.
Collapse
|