1
|
Xie RX, Xing YX, Sun NZ. Advancing minimally invasive surgery for elderly colorectal cancer patients: Bridging evidence to practice. World J Gastrointest Surg 2025; 17:108152. [DOI: 10.4240/wjgs.v17.i6.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/23/2025] [Accepted: 05/15/2025] [Indexed: 05/30/2025] Open
Abstract
The recent study by Min et al provides evidence supporting laparoscopic radical resection of colorectal cancer (LRRCC) as a superior surgical approach for elderly patients. Their retrospective analysis of 104 patients demonstrated that LRRCC offers higher therapeutic efficacy, reduced postoperative complications, faster recovery, and attenuated systemic inflammatory responses compared to open surgery. While the study underscores the clinical advantages of minimally invasive techniques, it also highlights critical gaps, such as single-center design and limited long-term follow-up. This editorial contextualizes these findings within the broader literature, emphasizing the role of LRRCC in enhancing postoperative quality of life for elderly patients. We further discuss the implications of inflammatory biomarker modulation, advocate for multidisciplinary care models, and call for prospective trials to validate long-term outcomes.
Collapse
Affiliation(s)
- Ren-Xian Xie
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong Province, China
| | - Yi-Xuan Xing
- Department of Emergency, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Nian-Zhe Sun
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
2
|
Han L, Dong MM, Ding K, Sun QC, Zhang ZF, Liu H, Han Y, Cao JL. Association between serum chemokines levels and delayed neurocognitive recovery after non-cardiac surgery in elderly patients: a nested case-control study. Perioper Med (Lond) 2025; 14:41. [PMID: 40221774 PMCID: PMC11992795 DOI: 10.1186/s13741-025-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders encompass delayed neurocognitive recovery (dNCR). Emerging evidence suggests that chemokines play a crucial role in the pathogenesis of various cognitive impairment diseases. However, the association between chemokines and dNCR remains unclear. Therefore, we aimed to investigate the relationship between serum chemokine levels and dNCR in elderly patients undergoing non-cardiac surgery. METHODS A total of 144 patients undergoing elective major non-cardiac surgery were accessed in neuropsychological testing 1 day prior to and 1 week following the surgery. Blood samples were collected before the initiation of anesthesia and one hour following the cessation of anesthesia. We employed a retrospective nested case-control study design, utilizing one control per dNCR case. Matching criteria included age (± 5 years), duration of surgery (± 90 min), and baseline MMSE score (± 3). We compared the serum levels of CCL2, CCL5, CCL11, and CXCL8 between the matched dNCR and non-dNCR groups. RESULTS dNCR was observed in 31.25% (45 of 144) of the patients seven days post-surgery, resulting in a final matched sample size of 21 pairs. In the preoperative comparison, the serum concentration of CCL11 was significantly higher in the matched dNCR group compared to the matched non-dNCR group (P = 0.039). In the postoperative comparison, the CCL5 concentration was significantly lower in the dNCR than in the non-dNCR group (P = 0.030). When comparing the differences between postoperative and preoperative levels, the absolute change in CCL11 was significantly greater in the dNCR group compared to the non-dNCR group (P = 0.046). Additionally, the postoperative-to-preoperative ratios of CCL5 and CCL11 in the dNCR group were both significantly lower than those in the non-dNCR group (P = 0.046, P = 0.005). There were no significant differences in CCL2 or CXCL8 levels between the two matched groups. CONCLUSIONS Serum levels of CCL 5 and CCL 11 significantly decreased in elderly patients with dNCR following non-cardiac surgery, which may contribute to the identification of patients at high risk for dNCR. TRIAL REGISTRATION This study was registered on chictr.org.cn (ChiCTR1800014473, 16/01/2018).
Collapse
Affiliation(s)
- Liu Han
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Anesthesiology, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, No. 46 Heping Road, Yunlong District, Xuzhou City, Jiangsu Province, 221000, China
| | - Meng-Meng Dong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, NO.209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province, 221004, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Jiangsu Province, 221000, China
| | - Ke Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, NO.209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province, 221004, China
| | - Qing-Chun Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, NO.209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province, 221004, China
| | - Zhen-Feng Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, NO.209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province, 221004, China
| | - He Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, NO.209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province, 221004, China
- Department of Anesthesiology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine & Huzhou Central Hospital, Huzhou City, Zhejiang Province, 313003, China
| | - Yuan Han
- Department of Anesthesiology, Fudan University Eye Ear Nose and Throat Hospital, No. 83 Fenyang Road, Shanghai, 200031, China.
| | - Jun-Li Cao
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, NO.209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province, 221004, China.
| |
Collapse
|
3
|
Song JL, Ye Y, Hou P, Li Q, Lu B, Chen GY. Remimazolam vs. propofol for induction and maintenance of general anesthesia: A systematic review and meta-analysis of emergence agitation risk in surgical populations. J Clin Anesth 2025; 103:111815. [PMID: 40120546 DOI: 10.1016/j.jclinane.2025.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION The association between remimazolam and emergence agitation (EA) remains unclear. This meta-analysis aimed to compare the relative risk of developing EA when using remimazolam vs. propofol in induction and maintenance of general anesthesia. METHOD We searched PubMed, clinicaltrials.gov, Web of Science, Cochrane Library, and Embase databases to identify studies meeting the inclusion criteria. The primary outcome was the incidence of EA. Secondary outcomes included the incidence of postoperative delirium (POD) within 7 days after surgery, emergence time, extubation time, length of post-anesthesia care unit (PACU) stay, and adverse events. RESULTS A total of 19 randomized controlled trials with 3031 patients were included in the meta-analysis. There was no statistically significant difference in the incidence of EA (RR = 0.82; 95 % confidence interval [CI], 0.41-1.65; p = 0.585) between remimazolam and propofol. Likewise, there were no significant intergroup differences in POD incidence, extubation time, emergence time, or length of PACU stay. Remimazolam exhibited superior hemodynamic stability, with a significantly reduced incidence of postinduction hypotension and intraoperative hypotension compared with propofol, while maintaining comparable safety profiles in terms of postoperative nausea and vomiting (PONV), intraoperative awareness, and hypoxemia. Subgroup analysis revealed that without routine postoperative antagonist administration, remimazolam was associated with prolonged extubation and length of PACU stay relative to propofol. In contrast, following antagonizing with flumazenil, the extubation and emergence times of the remimazolam group were shorter than those of the propofol group, while comparable PACU discharge time was maintained. CONCLUSION The use of remimazolam for the induction and maintenance of general anesthesia does not lead to a higher occurrence of EA in adult patients undergoing surgery, relative to propofol. However, in patients with ASA III-IV, remimazolam may be linked to a greater risk of POD than propofol.
Collapse
Affiliation(s)
- Jian-Li Song
- Departments of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Yong Ye
- Departments of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Ping Hou
- Departments of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Qiang Li
- Departments of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Bin Lu
- Departments of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Guan-Yu Chen
- Departments of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Wu H, Song J, Hu Z, Li H, Zhou Q, Dai C, Gao Y, Ma W. Basic research on postoperative cognitive dysfunction in the past decade: a bibliometric analysis. Front Aging Neurosci 2025; 17:1529860. [PMID: 40177252 PMCID: PMC11962035 DOI: 10.3389/fnagi.2025.1529860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Objective Postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery that particularly affects elderly patients, and poses significant health risks. In recent years, there has been an increase in basic research on POCD, with a particular focus on its molecular mechanisms, which have become a prominent area of inquiry. However, no bibliometric analysis has been conducted in this field. This study aims to employ bibliometric methods to comprehensively summarize the current status and developmental trends of basic research on POCD, providing new ideas and strategies for future scientific investigations. Methods Relevant literature published between January 1, 2014, and October 30, 2024, was retrieved from the Web of Science Core Collection. Eligible articles were exported in plain text format. The annual output of published papers and data on authors, countries/institutions, journals, keywords, co-cited journals, and co-cited literature were analyzed and visualized using Microsoft Excel, VOSviewer, and CiteSpace software. Results A total of 479 papers from 13 countries were included, with a noticeable upward trend in publications over the past decade, particularly in the last 3 years. A total of 105 core authors published four or more papers, with Professor Zuozhiyi identified as the leading contributor. "The Journal of Neuroinflammation" emerged as the most prolific publication source, while Chinese scholars accounted for the highest number of contributions and Dutch scholars led in citations per article. The University of Virginia was the leading institution for publications. Analysis of research hotspots revealed "neuroinflammation," "surgery," "impairment," "memory," and "information" as frequently occurring keywords. Notably, "pyroptosis" was identified as a current research hotspot and "synaptic plasticity" as a rapidly emerging term. The top five cited journals were all ranked as Q1 journals, with "Anesthesiology" being the most cited. Within co-cited articles, the "hippocampal CA1 region" represented the largest cluster, and literature on "neuroinflammation" was a key reference in current discussions. Conclusion Over the past decade, basic research on POCD has steadily increased, particularly among Chinese scholars. Bibliometric analysis revealed that the molecular mechanisms underlying POCD are likely crucial focuses of current and future research. This field holds significant potential for further development.
Collapse
Affiliation(s)
- Hongwei Wu
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Jiannan Song
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Zhanfei Hu
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Haibo Li
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Qi Zhou
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Congcong Dai
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| | - Yi Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - WanLi Ma
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng, China
| |
Collapse
|
5
|
Wang X, Yan Y, Liu Y, Xu C, Zhuang J, Wang Z. Preoperative continuation vs. discontinuation of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers on early cognitive function in elderly patients undergoing noncardiac surgery: a randomized controlled trial. Front Aging Neurosci 2025; 17:1542628. [PMID: 40166617 PMCID: PMC11955680 DOI: 10.3389/fnagi.2025.1542628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives To evaluate the effect of preoperative continuation vs. discontinuation of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) on early cognitive function in elderly patients undergoing noncardiac surgery. Methods This prospective randomized controlled study was performed at the Affiliated Hospital of Xuzhou Medical University. Elderly patients aged 65 years or older, scheduled for elective noncardiac surgery under general anesthesia, and receiving long-term ACEI/ARBs therapy were randomly assigned to either continue or discontinue ACEI/ARBs therapy on the morning of surgery. The primary outcome was postoperative early cognitive function, assessed via neuropsychological tests including Auditory Verbal Learning Test-Huashan (AVLT-H), Clock Drawing Test (CDT), Number Connection Test (NCT), and Digit Span Test (DST) preoperatively and on postoperative day 1 (POD1). Secondary outcomes included intraoperative hypotension, use of phenylephrine, intraoperative fluid administration, incidence of hypertension, and length of hospital stay. Results The NCT scores in the discontinued use of ACEI/ARBs group showed a significant decline on POD1 compared to baseline (p = 0.038). Both groups exhibited an increase in immediate recall scores from preoperative to POD1 (p = 0.003 and p = 0.002, respectively). The continued use of ACEI/ARBs group showed an increase in short-delayed recall (p = 0.007). However, there were no significant differences between the two groups (p > 0.05). The discontinued ACEI/ARB group had fewer episodes of intraoperative hypotension (p = 0.037) and lower requirements for phenylephrine (p = 0.016), despite a higher incidence of preoperative hypertension (p = 0.012). The continued use group received a larger volume of crystalloid fluids during surgery (p = 0.020). No significant differences were observed between the groups in the volume of colloid fluids administered (p > 0.05). There were no significant differences in postoperative hypertension or length of hospital stay between the groups (p > 0.05). Conclusion Preoperative continuation or discontinuation of ACEI/ARBs did not significantly affect early postoperative cognitive function in elderly patients.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanan Yan
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yurong Liu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chun Xu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingwen Zhuang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiping Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2025; 480:1343-1357. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
7
|
Suo Z, Xiao T, Qu Y, Zheng Y, Xu W, Zhou B, Yang J, Yu J, Zheng H, Ni C. Aged hippocampal single-cell atlas screening unveils disrupted neuroglial system in postoperative cognitive impairment. Aging Cell 2025; 24:e14406. [PMID: 39540334 PMCID: PMC11896209 DOI: 10.1111/acel.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glia-neuron interaction is a crucial feature in aged hippocampus during the occurrence of postoperative cognitive impairment. However, the regulatory effects of microglia, astrocytes, and oligodendrocytes in this glia-neuron interaction, the potential mechanisms and gene targets are still to be elucidated. Here, single-cell RNA sequencing was performed to detect the perioperative genomic expression characteristics of neuroglial system in the hippocampus of aged mice, and to investigate the potential cross-cellular mechanisms and valuable treatment options for glia-neuron interaction-related cognitive impairment. We found that postoperative neurons and glia cells exhibited protein dysmetabolism and mitochondrial electron misrouting. Impaired autophagy and circadian rhythm worsened microglia activation/neuroinflammation, and exacerbated these metabolic alterations. Reactive microglia also aggravated astrocyte and oligodendrocyte cytotoxicity through the PGD2/DP and complement pathways, altering glutamate level and synaptic function via the "tripartite synapses" model, and affecting neuronal myelination. Ligand-receptor communication also indicated these synaptic and axonal dysfunctions via enhanced MDK and PTN pathways. Additionally, we found that anesthetic dexmedetomidine hold therapeutic potential within the disrupted neuroglial system. It enhanced neuronal metabolic rebalance (Atf3-related) and reduced neuroinflammation from a multicellular perspective, therefore improving postoperative cognitive impairment. Together, our study proposes an aged hippocampal cell atlas and provides insights into the role of disrupted glia-neuron cycle in postoperative cognitive impairment. Our findings also elucidate the therapeutic potential and mechanism of dexmedetomidine intervention.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yinyin Qu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Yang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Jie Yu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Yang Y, Wang B, Jiang Y, Fu W. Tanshinone IIA mitigates postoperative cognitive dysfunction in aged rats by inhibiting hippocampal inflammation and ferroptosis: Role of Nrf2/SLC7A11/GPX4 axis activation. Neurotoxicology 2025; 107:62-73. [PMID: 39965709 DOI: 10.1016/j.neuro.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) is a common and debilitating complication in elderly patients following surgery, leading to increased morbidity and reduced quality of life. This study aims to investigate the neuroprotective effects of Tanshinone IIA, a lipophilic compound derived from Salvia miltiorrhiza, in an aged rat model of POCD, and explore its underlying molecular mechanisms. METHODS POCD model was established by a modified abdominal exploratory laparotomy. Rats were then intraperitoneally administered with Tanshinone IIA (10 mg/kg, 20 mg/kg, or 40 mg/kg) for 30 days. Cognitive functions were assessed using the morris water maze, novel object recognition test, and Y-maze test. Synaptic structures in the hippocampal CA1 region were examined by electron microscopy. Inflammatory and ferroptosis pathways were evaluated by measuring inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-4), nitric oxide synthase (iNOS) activity, lipid peroxidation products (malondialdehyde [MDA]; 4-hydroxy-2-nonenal [4-HNE]), Fe2 + levels, and antioxidant enzymes (superoxide dismutase [SOD], glutathione [GSH]) using ELISA and commercial kits. mRNA and proteins levels were quantified by real-time quantitative polymerase chain reaction and western blot analysis. RESULTS Tanshinone IIA significantly ameliorated cognitive deficits in aged POCD rats according to behavioral tests. It also restored synaptic ultrastructure in the hippocampal CA1 region and upregulated the expressions of synaptic proteins, including synapsin-1 and PSD-95. In addition, Tanshinone IIA effectively suppressed the hippocampal inflammatory pathway, as evidenced by the decreased levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), an increased level of the anti-inflammatory cytokine IL-4, and the upregulation of the iNOS/NO pathway in the hippocampus. Furthermore, Tanshinone IIA mitigated ferroptosis by reducing MDA and 4-HNE contents, lowering Fe2+ level, and enhancing SOD activity and GSH level. Notably, Tanshinone IIA activated the Nrf2/SLC7A11/GPX4 axis in the hippocampus of aged POCD rats. CONCLUSION These findings suggest that Tanshinone IIA exerts neuroprotective effects in an aged rat model of POCD by attenuating hippocampal inflammation and ferroptosis, primarily through the activation of the Nrf2/SLC7A11/GPX4 axis.
Collapse
Affiliation(s)
- Yan Yang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yichen Jiang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Wan Fu
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
9
|
Zhang L, Li J, Li C, Wu Y, Liu S, Li Q, Qi S. Role of Microglial Mitophagy in Alleviating Postoperative Cognitive Dysfunction: a Mechanistic Study. Mol Neurobiol 2025; 62:2376-2395. [PMID: 39110392 DOI: 10.1007/s12035-024-04405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/28/2024] [Indexed: 01/04/2025]
Abstract
Postoperative cognitive dysfunction (POCD), a common complication following anesthesia and surgery, is influenced by hippocampal neuroinflammation and microglial activation. Mitophagy, a process regulating inflammatory responses by limiting the accumulation of damaged mitochondria, plays a significant role. This study aimed to determine whether regulating microglial mitophagy and the cGAS-STING pathway could alleviate cognitive decline after surgery. Exploratory laparotomy was performed to establish a POCD model using mice. Western blotting, immunofluorescence staining, transmission electron microscopy, and mt-Keima assays were used to examine microglial mitophagy and the cGAS-STING pathway. Quantitative polymerase chain reaction (qPCR) was used to detect inflammatory mediators and cytosolic mitochondrial DNA (mtDNA) levels in BV2 cells. Exploratory laparotomy triggered mitophagy and enhanced the cGAS-STING pathway in mice hippocampi. Pharmacological treatment reduced microglial activation, neuroinflammation, and cognitive impairment after surgery. Mitophagy suppressed the cGAS-STING pathway in mice hippocampi. In vitro, microglia-induced inflammation was mediated by mitophagy and the cGAS-STING pathway. Small interfering RNA (siRNA) of PINK1 hindered mitophagy activation and facilitated the cytosolic release of mtDNA, resulting in the initiation of the cGAS-STING pathway and innate immune response. Microglial mitophagy inhibited inflammatory responses via the mtDNA-cGAS-STING pathway inducing microglial mitophagy and inhibiting the mtDNA-cGAS-STING pathway may be an effective therapeutic approach for patients with POCD.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Jiaying Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Chenglong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Yujin Wu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Shuai Liu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Qi Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
10
|
Dow CT, Kidess Z. Proposing Bromo-epi-androsterone (BEA) for perioperative neurocognitive disorders with Interleukin-6 as a druggable target. J Clin Anesth 2025; 101:111736. [PMID: 39746239 DOI: 10.1016/j.jclinane.2024.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Cognitive impairment following surgery is a significant complication, affecting multiple neurocognitive domains. The term "perioperative neurocognitive disorders" (PND) is recommended to encompass this entity. Individuals who develop PND are typically older and have increases in serum and brain pro-inflammatory cytokines notwithstanding the type of surgery undergone. Surgical trauma induces production of small biomolecules, damage-associated molecular patterns (DAMP), particularly the DAMP known as high molecular group box 1 protein (HMGB1). Mechanistically, peripheral surgical trauma promotes pro-inflammatory cytokines that stimulate central nervous system (CNS) inflammation by disrupting the blood-brain barrier (BBB) causing functional neuronal disruption that leads to PND. PND is strongly linked to elevations in serum and CNS pro-inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα); these cytokines cause further release of HMGB1 creating a positive feedback loop that amplifies the inflammatory response. The cytokine IL-6 is necessary and sufficient for PND. Dehydroepiandrosterone (DHEA) is a principal component of the steroid metabolome and is involved in immune homeostasis. DHEA has been shown to suppress expression of several pro-inflammatory cytokines by regulation of the NF-kB pathway. Bromo-epi-androsterone (BEA) is a potent synthetic analog of DHEA; unlike DHEA, it is non-androgenic, non-anabolic and is an effective modulator of immune dysregulation. In a randomized, placebo-controlled clinical trial, BEA effected significant and sustained decreases in IL-1β, TNFα and IL-6. This article presents BEA as a potential candidate for clinical trials targeting PND and further suggests the use of BEA in elective total hip arthroplasty as a well-documented surgical entity relevant to the management of PND.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin-Madison, 9431 Wisconsin Institutes for, Medical Research (WIMR), 1111 Highland Avenue, Madison, WI 53705, United States of America.
| | - Zade Kidess
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, United States of America.
| |
Collapse
|
11
|
Chen Z, Zuo Z, Zhang Y, Shan G, Zhang L, Gong M, Ye Y, Ma Y, Jin Y. Bibliometric Analysis of Neuroinflammation and Postoperative Cognitive Dysfunction. Brain Behav 2025; 15:e70271. [PMID: 39789906 PMCID: PMC11726684 DOI: 10.1002/brb3.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The occurrence and development of postoperative cognitive dysfunction (POCD) are closely linked to neuroinflammation. This bibliometric analysis aims to provide novel insights into the research trajectory, key research topics, and potential future development trends in the field of neuroinflammation-induced POCD. METHODS The Web of Science Core Collection (WoSCC) database was searched to identify publications from 2012 to 2023 on neuroinflammation-induced POCD. Bibliometric analysis, involving both statistical and visual analyses, was conducted using CiteSpace, VOSviewer, and the R software. RESULTS Research on neuroinflammation-induced POCD has exhibited an increasing trend over the past 12 years. China had the highest number of publications, Nanjing Medical University had the most collaboration with other institutions, Zhiyi Zuo was the most published author, and the Journal of Neuroinflammation served as the primary publication in the field of neuroinflammation-induced POCD. The most frequent keyword was POCD. Keyword clustering analysis indicated that the predominant cluster is dexmedetomidine. Burst detection revealed that postoperative delirium (POD), perioperative neurocognitive disorders (PND), apoptosis, and epigenetic modifications were the future research trends. CONCLUSIONS Our analysis identified the following key research areas associated with neuroinflammation-induced POCD: anesthesia, surgery, dexmedetomidine, NLRP3 inflammasome, and mechanism of neuroinflammation-induced POCD. The potential future research topics comprise POD, PND, apoptosis, and epigenetic modifications.
Collapse
Affiliation(s)
- Zheping Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain‐Like Intelligence, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiPeople's Republic of China
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Zhenxiang Zuo
- Department of Gastroenterology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Yizheng Zhang
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Guoliang Shan
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Le Zhang
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Moxuan Gong
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Yuyang Ye
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Yufeng Ma
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Yanwu Jin
- Department of Anesthesiology, the Second Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| |
Collapse
|
12
|
Wu X, Wu Y, Tang F, Wang Y, Li C, Wu S, Wang G, Zhang J. Foxq1 activates CB2R with oleamide to alleviate POCD. Brain Pathol 2025; 35:e13289. [PMID: 39046224 PMCID: PMC11669408 DOI: 10.1111/bpa.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a major concern, particularly among older adults. This study used social isolation (ISO) and multiomics analyses in aged mice to investigate potential mechanisms underlying POCD development. Aged mice were divided into two groups: ISO and paired housing (PH). Oleamide and the cannabinoid receptor type 2 (CB2R) antagonist AM630 were administered intraperitoneally, while Foxq1 adeno-associated viral (AAV) vector was injected directly into the hippocampus. Intramedullary tibial surgeries were subsequently performed to establish the POCD models. Behavioral tests comprising the Y-maze, open field test, and novel object recognition were conducted 2 days after surgery. Hippocampal and serum inflammatory cytokines were assessed. Following surgery, ISO mice demonstrated intensified cognitive impairments and escalated inflammatory markers. Integrative transcriptomic and metabolomic analysis revealed elevated oleamide concentrations in the hippocampus and serum of PH mice, with associative investigations indicating a close relationship between the Foxq1 gene and oleamide levels. While oleamide administration and Foxq1 gene overexpression substantially ameliorated postoperative cognitive performance and systemic inflammation in mice, CB2R antagonist AM630 impeded these enhancements. The Foxq1 gene and oleamide may be crucial in alleviating POCD. While potentially acting through CB2R-mediated pathways, these factors may modulate neuroinflammation and attenuate proinflammatory cytokine levels within the hippocampus, substantially improving cognitive performance postsurgery. This study lays the groundwork for future research into therapeutic approaches targeting the Foxq1-oleamide-CB2R axis, with the ultimate goal of preventing or mitigating POCD.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fudong Tang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Chenxi Li
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Su Wu
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Guangzhi Wang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| |
Collapse
|
13
|
Tsuji‐Hosokawa A, Tsuchiya I, Shimizu K, Terao M, Yasuhara M, Miyamoto N, Kikuchi S, Ogawa Y, Nakamura K, Matsubara Y, Takada S. Genetically humanized phenylketonuria mouse model as a testing tool for human genome editing in fertilized eggs. J Inherit Metab Dis 2025; 48:e12803. [PMID: 39380247 PMCID: PMC11729594 DOI: 10.1002/jimd.12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Targeted genome editing has made significant advancements; however, safety and ethical issues have not been fully elucidated, resulting in strict control of the technique. We tested genome editing tools on gametes from a genetically humanized mouse model using a phenylketonuria (PKU) mouse model to gain insights into genome editing in human embryos. The human PKU mouse model PahhR111X mice was generated. The junctional region between exon 3 and intron 3 of Pah was replaced with a 120 bp corresponding human PAH sequence, including the pathogenic common variant c.331C > T in PahhR111X mice. PahhR111X mice successfully recapitulated the PKU phenotype and showed cognitive dysfunction and depressive-like behavior, which are observed in human patients with PKU. Genome editing was applied to fertilized eggs of PahhR111X mice utilizing sgRNA that targets the human sequence. Mice with the corrected allele exhibited normal serum phenylalanine levels. Through genome editing, we validated the utility of sgRNA. The genetically humanized mouse model suggested that germ-line genome editing of the pathogenic variant may be feasible for monogenic disorders by revealing the recovery of the phenotype; however, there are remaining issues with the tool, including its efficiency and accuracy. This genome editing protocol using a genetically humanized mouse model will provide insights for improving current issues and contribute to the establishment of heritable human genome editing protocols.
Collapse
Affiliation(s)
- Atsumi Tsuji‐Hosokawa
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Iku Tsuchiya
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of NCCHD, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kie Shimizu
- Department of PharmacologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Miho Terao
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Mito Yasuhara
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of NCCHD, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Natsuho Miyamoto
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Saki Kikuchi
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Yuya Ogawa
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of NCCHD, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kazuaki Nakamura
- Department of PharmacologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Yoichi Matsubara
- National Center for Child Health and DevelopmentSetagayaTokyoJapan
| | - Shuji Takada
- Department of Systems BioMedicineNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
14
|
Wu H, Tian S, Ma H, Zhou W, Feng S, Meng L, Ou J, Xu F, Zhang Z. Effects of Remimazolam on Intraoperative Frontal Alpha Band Power Spectrum Density and Postoperative Cognitive Function in Older Adults Undergoing Lower Extremity Fractures Surgeries: A Randomized Controlled Trial. Clin Interv Aging 2024; 19:2195-2205. [PMID: 39764357 PMCID: PMC11700878 DOI: 10.2147/cia.s496437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose Low density of electroencephalogram alpha band power was reported to be associated with perioperative cognitive dysfunction. Few studies have conducted to explore the effects of remimazolam on intraoperative frontal alpha band power spectrum density in older adults. Here, we aimed to explore the impact of remimazolam on intraoperative frontal brain wave alpha band activity and postoperative cognitive function in older adults undergoing lower extremity fractures surgeries. Methods Patients undergoing elective general anesthesia for lower extremity fracture surgery were randomly allocated to remimazolam group (Group R) and midazolam group (Group M). Group R was induced with remimazolam bolus 0.1 mg/kg followed by a maintenance dose of 0.1 mg·kg-1·h-1 for general anesthesia. Group M was induced with midazolam 0.05 mg/kg followed by normal saline maintenance of 0.1 mL·kg-1·h-1. The rest anesthesia protocol was the same for both groups. Electroencephalogram data was recorded before anesthesia induction till the end of surgery. Cognitive function was assessed preoperatively, and at the first, third, fifth, and seventh day postoperatively. Results Compared with Group M, Group R had significantly higher intraoperative power spectral density of the frontal alpha band (P < 0.001), and significantly lower incidence of postoperative cognitive dysfunction at T8 and T9 (P = 0.031 and P = 0.017, respectively). Conclusion Remimazolam can increase frontal brain wave alpha band power spectrum density and improve postoperative cognitive function in older adults undergoing lower extremity fractures surgeries.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Shunping Tian
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Hongxia Ma
- Department of Anesthesiology, The Second People’s Hospital of Lianyungang, Lianyungang, 222023, People’s Republic of China
| | - Wei Zhou
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Shantian Feng
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Lijun Meng
- Intensive Care Unit, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Jinlei Ou
- Intensive Care Unit, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Fei Xu
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Zhuan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, People’s Republic of China
| |
Collapse
|
15
|
Yin Z, Leonard AK, Porto CM, Xie Z, Silveira S, Culley DJ, Butovsky O, Crosby G. Microglia in the aged brain develop a hypoactive molecular phenotype after surgery. J Neuroinflammation 2024; 21:323. [PMID: 39696348 DOI: 10.1186/s12974-024-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Microglia, the resident immune cells of the brain, play a crucial role in maintaining homeostasis in the central nervous system (CNS). However, they can also contribute to neurodegeneration through their pro-inflammatory properties and phagocytic functions. Acute post-operative cognitive deficits have been associated with inflammation, and microglia have been implicated primarily based on morphological changes. We investigated the impact of surgery on the microglial transcriptome to test the hypothesis that surgery produces an age-dependent pro-inflammatory phenotype in these cells. METHODS Three-to-five and 20-to-22-month-old C57BL/6 mice were anesthetized with isoflurane for an abdominal laparotomy, followed by sacrifice either 6 or 48 h post-surgery. Age-matched controls were exposed to carrier gas. Cytokine concentrations in plasma and brain tissue were evaluated using enzyme-linked immunosorbent assays (ELISA). Iba1+ cell density and morphology were determined by immunohistochemistry. Microglia from both surgically treated mice and age-matched controls were isolated by a well-established fluorescence-activated cell sorting (FACS) protocol. The microglial transcriptome was then analyzed using quantitative polymerase chain reaction (qPCR) and RNA sequencing (RNAseq). RESULTS Surgery induced an elevation in plasma cytokines in both age groups. Notably, increased CCL2 was observed in the brain post-surgery, with a greater change in old compared to young mice. Age, rather than the surgical procedure, increased Iba1 immunoreactivity and the number of Iba1+ cells in the hippocampus. Both qPCR and RNAseq analysis demonstrated suppression of neuroinflammation at 6 h after surgery in microglia isolated from aged mice. A comparative analysis of differentially expressed genes (DEGs) with previously published neurodegenerative microglia phenotype (MGnD), also referred to disease-associated microglia (DAM), revealed that surgery upregulates genes typically downregulated in the context of neurodegenerative diseases. These surgery-induced changes resolved by 48 h post-surgery and only a few DEGs were detected at that time point, indicating that the hypoactive phenotype of microglia is transient. CONCLUSIONS While anesthesia and surgery induce pro-inflammatory changes in the plasma and brain of mice, microglia adopt a homeostatic molecular phenotype following surgery. This effect seems to be more pronounced in aged mice and is transient. These results challenge the prevailing assumption that surgery activates microglia in the aged brain.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Anna K Leonard
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carl M Porto
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | | | - Deborah J Culley
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Crosby
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Zhong C, Wang C, Li W, Li W, Chen X, Guo J, Feng Y, Wu X. A derivative of honokiol HM568 has an anti-neuroinflammatory effect in Parkinson's disease. Chem Biol Interact 2024; 403:111212. [PMID: 39241940 DOI: 10.1016/j.cbi.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Parkinson's disease (PD) is the fastest growing neurodegenerative disease in the world at present. Neuroinflammation plays an important role in Parkinson's disease. In our study, we initially screened magnolol/honokiol derivatives synthesized by our group for their potential anti-neuroinflammatory properties. This was done using LPS-activated BV-2 microglial cell and MPP + -induced PC-12 cell models. Most of derivatives had increased anti-inflammatory activities and decreased toxicities compared to raw materials. Then, compounds were scored with inflammatory factors IL-1β, TNF-α and IL-6 by molecular docking in silico. Our studies revealed the strongest binding compound HM568 which binds with honokiol and metformin. Furthermore, HM568 showed no acute toxicity in mice through acute toxicity. And it is stable under high temperature, high humidity and strong light irradiation. Combining cell experiments and computer results, HM568 was considered for further in vivo pharmacological validations. Intraperitoneal injection administration of MPTP into C57BL/6 mice was utilized as Parkinson's animal model. Results showed that administration of HM568 for 14 days in MPTP-PD mice led to a significant alleviation in weight loss and movement disorders. Further HM568 could significantly down-regulate the expression levels of inflammatory factors IL-1β, IL-6 and TNF-α in brain tissue of the mouse model, reduce the level of caspase-3 and the ratio of Bcl-2/Bax, and up-regulate the level of transforming factor TGF-β, thus producing anti-apoptosis and anti-neuroinflammatory effects on neuronal cells. In terms of pathological features, HM568 could reduce the infiltration of neuronal cells and alleviate the development of lesions, promote the transformation of microglia from M1 negative phenotype to M2 type, and reverse the reduction of TH-positive immune cells in mouse neurons induced by MPTP. The administration of HM568 could reduce the abnormal accumulation of α-syn, and thus produce neuroprotective effect on MPTP-PD mice. Cell experiments, molecular docking and animal experiments thus depict HM568 as a promising agent to delay neuronal degeneration in PD, and its mechanism is related to anti-neuroinflammation.
Collapse
Affiliation(s)
- Changfeng Zhong
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Changmei Wang
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Wei Li
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Wenyuan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Xuemei Chen
- Criminal Science and Technology Research Institute of Huizhou Public Security Bureau, Huizhou, 516000, PR China
| | - Jieqing Guo
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Yifan Feng
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China.
| | - Xia Wu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China.
| |
Collapse
|
17
|
Chai D, Jiang H, Liu H. The impact of maternal anti-inflammatory drugs on surgical anesthesia-induced neuroinflammation and cognitive impairment in offspring mice. Front Cell Neurosci 2024; 18:1481630. [PMID: 39440002 PMCID: PMC11493650 DOI: 10.3389/fncel.2024.1481630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background The impact of maternal surgery combined with general anesthesia on neuroinflammation and the development of learning and memory impairment in offspring remains unclear. This study utilized a pathogen-free laparotomy model to investigate these changes during the second trimester, as well as their response to anti-inflammatory therapy. Methods C57BL/6 pregnant mice at the 14.5-day embryo stage (E 14.5) were either exposed to sevoflurane anesthesia alone or underwent laparotomy procedure. The neuroinflammatory response was evaluated at 7, 14, 21, and 28 days postnatal (P7, P14, P21, P28). Tau phosphorylation and cognitive ability were assessed at P28 and P30, respectively. The impact of perioperative administration of ibuprofen (60 mg/kg) on these aforementioned changes was subsequently evaluated. Results In the laparotomy group, levels of inflammatory factors (IL-4, IL-8, IL-17A, TGF-β, M-CSF, CCL2) in the brains of offspring mice, including the cerebral cortex and hippocampus, remained consistently elevated from P7 to P28. At P14, while the majority of inflammatory cytokine has no statistical difference, there was still a significant reactivation of inflammatory cytokines observed in the frontal cortex and hippocampus at P28. Furthermore, abnormal phosphorylation of tau and deficits in learning and memory were observed at P28 and P30. Administration of perioperative ibuprofen led to improvements in cognitive performance, reduction of systemic inflammation, and inhibiting abnormal phosphorylation of tau in the frontal cortex and hippocampus. Conclusion Our findings indicate that cognitive dysfunction is correlated with elevated levels of inflammatory cytokines and tau phosphorylation. Cognitive impairment and tau phosphorylation after laparotomy can persist at least until P28. Anti-inflammatory medications have been shown to enhance cognitive function by rapidly reducing inflammation in the brain, while also impacting neurological changes. This discovery may have implications for the development of treatment strategies aimed at managing cognitive impairment in post-operative patients.
Collapse
|
18
|
Peng Y, Wei X, Sun L, Wang K, Zhou J. Electroacupuncture and Transcutaneous Electrical Acupoint Stimulation for Perioperative Neurocognitive Disorder in Older Patients Undergoing Cardiac Surgery: Protocol for Systematic Review and Meta-Analysis. JMIR Res Protoc 2024; 13:e55996. [PMID: 39208417 PMCID: PMC11393506 DOI: 10.2196/55996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Perioperative neurocognitive disorder (PND) is a critical concern for older patients undergoing cardiac surgery, impacting cognitive function and quality of life. Electroacupuncture and transcutaneous electrical acupoint stimulation (TEAS) hold promise for mitigating PND. This protocol outlines a systematic review and meta-analysis to thoroughly assess the efficacy of electroacupuncture and TEAS in older patients undergoing cardiac surgery with PND, providing up-to-date evidence for PND prevention and treatment. OBJECTIVE This study aimed to thoroughly assess the efficacy of electroacupuncture and TEAS in older patients undergoing cardiac surgery with PND, providing up-to-date evidence for PND prevention and treatment. METHODS A comprehensive and systematic approach will be used to identify eligible studies from a diverse range of electronic databases, including 9 major sources such as PubMed (NLM) and Cochrane (Wiley), as well as 2 clinical trial registration websites. These studies will focus on investigating the effects of electroacupuncture and TEAS on PND in older patients undergoing cardiac surgery. The study selection will adhere to the criteria outlined in the patient, intervention, comparison, outcome, and studies (PICOS) format. Data extraction will be carried out by 2 independent researchers (YP and LS), using established tools to evaluate the risk of bias. The primary outcome will be PND incidence, with secondary outcomes including Mini Mental State Examination scores, neuron-specific enolase, S100β, interleukin-1β, interleukin-6, tumor necrosis factor-α, time to first flatus, first defecation, bowel sound recovery, and hospitalization duration to be selectively reported. Adverse events linked to acupuncture, such as bleeding, needle site pain, and local reactions, rather than serious adverse events, will also be considered. Meta-analysis will be performed using appropriate statistical methods to assess the overall effect of electroacupuncture and TEAS on PND prevention, treatment, or other relevant outcomes. The Cochrane Collaboration Risk of Bias tool will be used for assessment, and data synthesis will be executed using the RevMan 5.4 software (Cochrane). RESULTS We plan to summarize the eligible studies through the use of a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart. The findings will be showcased in the form of a summary table of evidence. Figures and forest plots will be used to illustrate the outcomes of the meta-analysis. CONCLUSIONS The impacts of electroacupuncture and TEAS interventions on PND in older patients undergoing cardiac surgery have not yet been established. This protocol addresses a critical gap by thoroughly assessing electroacupuncture and TEAS for PND in older patients undergoing cardiac surgery, enhancing understanding of nonpharmacological interventions, and guiding future research and clinical practices in this field. Its strength lies in rigorous methodology, including comprehensive search strategies, independent review processes, and thorough assessments of the risk of bias. TRIAL REGISTRATION PROSPERO CRD42023411927; https://tinyurl.com/39xdz6jb. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/55996.
Collapse
Affiliation(s)
- Yanbin Peng
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuqiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linxi Sun
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Office of National Clinical Research Base of TCM, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Zhou
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Office of National Clinical Research Base of TCM, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Wang S, Zhao J, Wang C, Yao Y, Song Z, Li L, Jiang J. miR-206-3p Targets Brain-Derived Neurotrophic Factor and Affects Postoperative Cognitive Function in Aged Mice. Neurochem Res 2024; 49:2005-2020. [PMID: 38814357 DOI: 10.1007/s11064-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Postoperative cognitive dysfunction (POCD) occurs after surgery and severely impairs patients' quality of life. Finding POCD-associated variables can aid in its diagnosis and prognostication. POCD is associated with noncoding RNAs, such as microRNAs (miRNAs), involved in metabolic function, immune response alteration, and cognitive ability impairment; however, the underlying mechanisms remain unclear. The aim of this study was to investigate hub miRNAs (i.e., miRNAs that have an important regulatory role in diseases) regulating postoperative cognitive function and the associated mechanisms. Hub miRNAs were identified by bioinformatics, and their expression in mouse hippocampus tissues was determined using real-time quantitative polymerase chain reaction. Hub miRNAs were overexpressed or knocked down in cell and animal models to test their effects on neuroinflammation and postoperative cognitive function. Six differentially expressed hub miRNAs were identified. miR-206-3p was the only broadly conserved miRNA, and it was used in follow-up studies and animal experiments. Its inhibitors reduced the release of proinflammatory cytokines in BV-2 microglia by regulating its target gene, brain-derived neurotrophic factor (BDNF), and the downstream signaling pathways. miR-206-3p inhibition suppressed microglial activation in the hippocampi of mice and improved learning and cognitive decline. Therefore, miR-206-3p significantly affects POCD, implying its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shentong Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jia Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengran Wang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuhan Yao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhiyao Song
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
20
|
Wu WF, Chen C, Lin JT, Jiao XH, Dong W, Wan J, Liu Q, Qiu YK, Sun A, Liu YQ, Jin CH, Huang H, Zheng H, Zhou CH, Wu YQ. Impaired synaptic plasticity and decreased glutamatergic neuron excitability induced by SIRT1/BDNF downregulation in the hippocampal CA1 region are involved in postoperative cognitive dysfunction. Cell Mol Biol Lett 2024; 29:79. [PMID: 38783169 PMCID: PMC11112897 DOI: 10.1186/s11658-024-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.
Collapse
Affiliation(s)
- Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ao Sun
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Qi Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chun-Hui Jin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - He Huang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
21
|
Dai HY, Zhang ZX, Tan C, Xian X, Ji D, Yang J, Sun J, Yao H. Propionic acid ameliorates cognitive function through immunomodulatory effects on Th17 cells in perioperative neurocognitive disorders. Heliyon 2024; 10:e28817. [PMID: 38699705 PMCID: PMC11063405 DOI: 10.1016/j.heliyon.2024.e28817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Background Elderly patients undergoing surgery are prone to cognitive decline known as perioperative neurocognitive disorders (PND). Several studies have shown that the microglial activation and the decrease of short-chain fatty acids (SCFAs) in gut induced by surgery may be related to the pathogenesis of PND. The purpose of this study was to determine whether microglia and short-chain fatty acids were involved in cognitive dysfunction in aged rats. Methods Male wild-type Wistar rats aged 11-12 months were randomly divided into control group (Ctrl: Veh group), propionic acid group (Ctrl: PA group), exploratory laparotomy group (LP: Veh group) and propionic acid + exploratory laparotomy group (LP: PA group) according to whether exploratory laparotomy (LP) or PA pretreatment for 21 days was performed. The motor ability of the rats was evaluated by open field test on postoperative day 3 (POD3), and then the cognitive function was evaluated by Y-maze test and fear conditioning test. The expression of IL-1β, IL-6, RORγt and IL-17A mRNA in hippocampus was detected by RT-qPCR, the expression of IL-17A and IL-17RA in hippocampus was detected by Western blot, and the activation of microglia was detected by immunofluorescence. Results The PND rat model was successfully established by laparotomy. Compared with Ctrl: Veh group, the body weight of LP: Veh group decreased, the percentage of spontaneous alternations in Y maze decreased (P < 0.001), and the percentage of freezing time in contextual fear test decreased (P < 0.001). Surgery triggers neuroinflammation, manifested as the elevated levels of the inflammatory cytokines IL-1β (P < 0.001) and IL-6 (P < 0.001), the increased expression of the transcription factor RORγt (P = 0.0181, POD1; P = 0.0073, POD5)and major inflammatory cytokines IL-17A (P = 0.0215, POD1; P = 0.0071, POD5), and the increased average fluorescence intensity of Iba1 (P < 0.001, POD1; P < 0.001, POD5). After PA preconditioning, the recovery of rats in LP: PA group was faster than that in LP: Veh group as the body weight lost on POD1 (P = 0.0148) was close to the baseline level on POD5 (P = 0.1846), and they performed better in behavioral tests. The levels of IL-1β (P < 0.001) and IL-6 (P = 0.0035) inflammatory factors in hippocampus decreased on POD1 and the average fluorescence intensity of Iba1 decreased (P = 0.0024, POD1; P < 0.001, POD5), representing the neuroinflammation was significantly improved. Besides, the levels of RORγt mRNA (P = 0.0231, POD1; P = 0.0251, POD5) and IL-17A mRNA (P = 0.0208, POD1; P = 0.0071, POD5) in hippocampus as well as the expression of IL-17A (P = 0.0057, POD1; P < 0.001, POD5) and IL-17RA (P = 0.0388) decreased. Conclusion PA pretreatment results in reduced postoperative neuroinflammation and improved cognitive function, potentially attributed to the regulatory effects of PA on Th17-mediated immune responses.
Collapse
Affiliation(s)
- Hong-yu Dai
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ze-xin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Tan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Xian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Ji
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Wen P, Luo P, Yang M, Huang J, Long Y, Liu L, Xu P. Knowledge mapping and research trends on perioperative neurocognitive disorder from 1990 to 2022: a bibliometric analysis. Ann Med Surg (Lond) 2024; 86:2058-2066. [PMID: 38576958 PMCID: PMC10990356 DOI: 10.1097/ms9.0000000000001872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Perioperative neurocognitive disorder (PND) has attracted consistently increasing attention worldwide. However, there are few bibliometric studies that systematically evaluate this field. This study aimed to visualize the knowledge structure and research trends in PND through bibliometrics to help understand the future development of basic and clinical research. Methods Literature related to PND in Web of Science and PubMed from 1990 to 2022 were collected through keywords retrospectively. Additionally, the source information, citation information, etc. of these publications were extracted. Finally, bibliometric analysis was performed by visualization software and statistical software. Results There were 2837 articles and reviews in total. An exponential rise in PND-related publications was observed. China had the most publication, followed by the US and Germany. The institution with the most output and citations was Harvard University (149 papers, 8966 citations). The most prominent author was Marcantonio Edward R with 66 publications and 5721 citations. The journal with the highest productivity for PND research was Frontiers in Aging Neuroscience followed by Anesthesia and Analgesia. Keywords were identified as six topics, including postoperative delirium, postoperative neurocognitive disorder, cardiac surgery, anaesthesia, orthopedic surgery, and dementia. According to keyword analysis, the most recent popular keywords in PND research were prevention, older patients, emergence delirium, orthopedic surgery, and dexmedetomidine. Conclusions Publications on PND are increasing at an alarming rate from 1990 to 2022. Current research and future trends will concentrate on the prevention and treatment of PND, as well as PND associated with orthopedic surgery in older adults.
Collapse
Affiliation(s)
| | - Pan Luo
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | | | - Jingyuan Huang
- Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Shaanxi
| | - Yunfei Long
- Department of Neurology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Liu
- Departments of Joint Surgery
| | - Peng Xu
- Departments of Joint Surgery
| |
Collapse
|
23
|
Zhao W, Zou W. Effects of electroacupuncture on postoperative cognitive dysfunction and its underlying mechanisms: a literature review of rodent studies. Front Aging Neurosci 2024; 16:1384075. [PMID: 38596595 PMCID: PMC11002135 DOI: 10.3389/fnagi.2024.1384075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
With the aging of the population, the health of the elderly has become increasingly important. Postoperative cognitive dysfunction (POCD) is a common neurological complication in elderly patients following general anesthesia or surgery. It is characterized by cognitive decline that may persist for weeks, months, or even longer. Electroacupuncture (EA), a novel therapy that combines physical nerve stimulation with acupuncture treatment from traditional Chinese medicine, holds potential as a therapeutic intervention for preventing and treating POCD, particularly in elderly patients. Although the beneficial effects of EA on POCD have been explored in preclinical and clinical studies, the reliability of EA is limited by methodological shortcomings, and the underlying mechanisms remain largely unexplored. Therefore, we have synthesized existing evidence and proposed potential biological mechanisms underlying the effects of EA on neuroinflammation, oxidative stress, autophagy, the microbiota-gut-brain axis, and epigenetic modification. This review summarizes recent advances in EA and POCD, provides a theoretical foundation, explores potential molecular mechanisms for the prevention and treatment of POCD, and offers a basis for conducting relevant clinical trials.
Collapse
Affiliation(s)
- Wenbo Zhao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Jing Z, Han Y, Li Y, Zeng R, Wu J, Wang Y, Jiang P. Effect of subanesthetic dose of esketamine on postoperative pain in elderly patients undergoing laparoscopic gastrointestinal tumor Surgery:A prospective, double-blind, randomized controlled trial. Heliyon 2024; 10:e27593. [PMID: 38495154 PMCID: PMC10943442 DOI: 10.1016/j.heliyon.2024.e27593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose Postoperative pain is prevalent and severe complication in elderly surgical patients. Multiple studies propose that a small dose of esketamine administered intraoperatively can alleviate postoperative pain and curtail opioid usage. We aimed to evaluate the impact of esketamine on postoperative acute pain among elderly patients with gastrointestinal tumors. Patients and methods This is a prospective, parallel-group, randomized controlled trial. Ninety patients aged 60 and above, undergoing resection of gastrointestinal tumors, were randomly assigned to two groups: esketamine group (Group S, a single dose of 0.25 mg/kg and 0.1 mg/kg/h infusion) and control group (Group C, saline). Visual Analogue Scale (VAS) pain scores were the primary outcome. Remifentanil consumption, instances of rescue analgesia, delirium, sleep quality, postoperative recovery quality, serum levels of inflammatory cytokines, and adverse events within 72 h post-surgery were secondary outcomes, respectively. Results Data of 87 of 99 eligible patients were analyzed. VAS scores at rest in Group S were lower than those in Group C at 6 h [1.2 (0.6, 1.6) vs 1.6 (1.0, 2.0), P = 0.003], 12 h [1.4 (1.0, 2.0) vs 2.0 (1.5, 2.0), P < 0.001], and 24 h [1.8 (1.3, 2.0) vs 2.2 (1.6, 2.6), P < 0.001] postoperatively. At 6 h post-surgery, VAS score during coughing was lower in Group S than Group C [2.0 (2.0, 2.3) vs 2.0 (2.0, 3.0), P = 0.009]. The instances of rescue analgesia were fewer in group S compared to group C (P = 0.007). Furthermore, the esketamine group showed improved sleep quality and QoR-15 score (P < 0.05) postoperatively. Conclusion Intravenous administration of esketamine as an adjunct to general anesthesia can decrease the intensity of pain for 24 h without additional adverse effects after laparoscopic gastrointestinal tumor surgery.
Collapse
Affiliation(s)
- Zhaojun Jing
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Han
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Li
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rui Zeng
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jin Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yiting Wang
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Jiang
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
25
|
Ren L, Liang H, Zhu L, Yang X, Zhang H, Sun N, Huang D, Feng J, Wu Y, Xiong L, Ke X, Li M, Zhang A. Dietary Restriction Improves Perioperative Neurocognitive Disorders by Inhibiting Neuroinflammation and Gut Microbial Dysbiosis. Neuroscience 2024; 540:48-67. [PMID: 38272300 DOI: 10.1016/j.neuroscience.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/31/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Anesthesia/surgery have been identified as potential factors contributing to perioperative neurocognitive disorders, with a notably heightened risk observed in aging populations. One of the primary drivers of this impairment is believed to be neuroinflammation, specifically inflammation of hippocampal microglia. Dietary restriction has demonstrated a favorable impact on cognitive impairment across various disorders, primarily by quelling neuroinflammation. However, the precise influence of dietary restriction on perioperative neurocognitive disorders remains to be definitively ascertained. This investigation aims to explore the effects of dietary restriction on perioperative neurocognitive disorders and propose innovative therapeutic strategies for their management. The model of perioperative neurocognitive disorder was induced through exploratory laparotomy under isoflurane anesthesia. Cognitive performance was evaluated using the open field test, Barnes maze test, and fear conditioning test. The enzyme-linked immunosorbent assay (ELISA) was employed to quantify concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in both serum and hippocampal samples. The Western blot technique was utilized to assess expression levels of hippocampal PSD 95, Synaptophysin, TLR4, MyD88, and NF-kB p65. Microglial polarization was gauged using a combination of reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence labeling techniques. We conducted 16S rRNA sequencing to investigate the impact of dietary restriction on the intestinal flora of aged mice following anesthesia/surgery. Our findings indicate that dietary restrictions have the potential to ameliorate anesthesia/surgery-induced cognitive dysfunction. This effect is achieved through the modulation of gut microbiota, suppression of inflammatory responses in hippocampal microglia, and facilitation of neuronal repair and regeneration.
Collapse
Affiliation(s)
- Lulu Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | | | - Li Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiao Yang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Hong Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Nianyi Sun
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jing Feng
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yufeng Wu
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
26
|
Zhu M, Long S, Tao Y, Zhang Z, Zhou Z, Wang X, Chen W. The P38MAPK/ATF2 signaling pathway is involved in PND in mice. Exp Brain Res 2024; 242:109-121. [PMID: 37973625 PMCID: PMC10786957 DOI: 10.1007/s00221-023-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Accumulating evidence indicates that microglia-mediated neuroinflammation in the hippocampus contributes to the development of perioperative neurocognitive disorder (PND). P38MAPK, a point of convergence for different signaling processes involved in inflammation, can be activated by various stresses. This study aims to investigate the role of the P38MAPK/ATF2 signaling pathway in the development of PND in mice. Aged C57BL/6 mice were subjected to tibial fracture surgery under isoflurane anesthesia to establish a PND animal model. The open field test was used to evaluate the locomotor activity of the mice. Neurocognitive function was assessed with the Morris water maze (MWM) and fear conditioning test (FCT) on postoperative days 1, 3 and 7. The mice exhibited cognitive impairment accompanied by increased expression of proinflammatory factors (IL-1β, TNF-α), proapoptotic molecules (caspase-3, bax) and microglial activation in the hippocampus 1, 3 and 7 days after surgery. Treatment with SB239063 (a P38MAPK inhibitor) decreased the expression of proinflammatory factors, proapoptotic molecules and Iba-1 in the CA1 region of the hippocampus. The number of surviving neurons was significantly increased. Inhibition of the P38MAPK/ATF2 signaling pathway attenuates hippocampal neuroinflammation and neuronal apoptosis in aged mice with PND, thus improving the perioperative cognitive function of the mice.
Collapse
Affiliation(s)
- Mengjiao Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Nanjing Road, Wuhan, 430030, Hubei Province, China
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Si Long
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, Guangdong Province, China
| | - Yizhi Tao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhifa Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Xueren Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China.
| | - Wei Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
27
|
Oberman K, van Leeuwen BL, Nabben M, Villafranca JE, Schoemaker RG. J147 affects cognition and anxiety after surgery in Zucker rats. Physiol Behav 2024; 273:114413. [PMID: 37989448 DOI: 10.1016/j.physbeh.2023.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Vulnerable patients are at risk for neuroinflammation-mediated post-operative complications, including depression (POD) and cognitive dysfunction (POCD). Zucker rats, expressing multiple risk factors for post-operative complications in humans, may provide a clinically relevant model to study pathophysiology and explore potential interventions. J147, a newly developed anti-dementia drug, was shown to prevent POCD in young healthy rats, and improved early post-surgical recovery in Zucker rats. Aim of the present study was to investigate POCD and the therapeutic potential of J147 in male Zucker rats. Risk factors in the Zucker rat strain were evaluated by comparison with lean littermates. Zucker rats were subjected to major abdominal surgery. Acute J147 treatment was provided by a single iv injection (10 mg/kg) at the start of surgery, while chronic J147 treatment was provided in the food (aimed at 30 mg/kg/day), starting one week before surgery and up to end of protocol. Effects on behavior were assessed, and plasma, urine and brain tissue were collected and processed for immunohistochemistry and molecular analyses. Indeed, Zucker rats displayed increased risk factors for POCD, including obesity, high plasma triglycerides, low grade systemic inflammation, impaired spatial learning and decreased neurogenesis. Surgery in Zucker rats reduced exploration and increased anxiety in the Open Field test, impaired short-term spatial memory, induced a shift in circadian rhythm and increased plasma neutrophil gelatinase-associated lipocalin (NGAL), microglia activity in the CA1 and blood brain barrier leakage. Chronic, but not acute J147 treatment reduced anxiety in the Open Field test and protected against the spatial memory decline. Moreover, chronic J147 increased glucose sensitivity. Acute J147 treatment improved long-term spatial memory and reversed the circadian rhythm shift. No anti-inflammatory effects were seen for J147. Although Zucker rats displayed risk factors, surgery did not induce extensive POCD. However, increased anxiety may indicate POD. Treatment with J147 showed positive effects on behavioral and metabolic parameters, but did not affect (neuro)inflammation. The mixed effect of acute and chronic treatment may suggest a combination for optimal treatment.
Collapse
Affiliation(s)
- K Oberman
- Department of Molecular Neurobiology, GELIFES, University of Groningen, the Netherlands.
| | - B L van Leeuwen
- Department of Surgery, University Medical Center Groningen, the Netherlands
| | - M Nabben
- Departments of Genetics & Cell Biology and Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Villafranca
- Abrexa Pharmaceuticals Inc., San Diego, United States of America
| | - R G Schoemaker
- Department of Molecular Neurobiology, GELIFES, University of Groningen, the Netherlands; University Medical Center Groningen, the Netherlands
| |
Collapse
|
28
|
Zhang S, Liu C, Sun J, Li Y, Lu J, Xiong X, Hu L, Zhao H, Zhou H. Bridging the Gap: Investigating the Link between Inflammasomes and Postoperative Cognitive Dysfunction. Aging Dis 2023; 14:1981-2002. [PMID: 37450925 PMCID: PMC10676784 DOI: 10.14336/ad.2023.0501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a cluster of cognitive problems that may arise after surgery. POCD symptoms include memory loss, focus inattention, and communication difficulties. Inflammasomes, intracellular multiprotein complexes that control inflammation, may have a significant role in the development of POCD. It has been postulated that the NLRP3 inflammasome promotes cognitive impairment by triggering the inflammatory response in the brain. Nevertheless, there are many gaps in the current literature to understand the underlying pathophysiological mechanisms and develop future therapy. This review article underlines the limits of our current knowledge about the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome and POCD. We first discuss inflammasomes and their types, structures, and functions, then summarize recent evidence of the NLRP3 inflammasome's involvement in POCD. Next, we propose a hypothesis that suggests the involvement of inflammasomes in multiple organs, including local surgical sites, blood circulation, and other peripheral organs, leading to systemic inflammation and subsequent neuronal dysfunction in the brain, resulting in POCD. Research directions are then discussed, including analyses of inflammasomes in more clinical POCD animal models and clinical trials, studies of inflammasome types that are involved in POCD, and investigations into whether inflammasomes occur at the surgical site, in circulating blood, and in peripheral organs. Finally, we discuss the potential benefits of using new technologies and approaches to study inflammasomes in POCD. A thorough investigation of inflammasomes in POCD might substantially affect clinical practice.
Collapse
Affiliation(s)
- Siyu Zhang
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jintao Sun
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Yang Li
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Hongmei Zhou
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| |
Collapse
|
29
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
30
|
Li X, Wang H, Zhang Q, Sun X, Zhang M, Wang G. Inhibition of adult hippocampal neurogenesis induced by postoperative CD8 + T-cell infiltration is associated with cognitive decline later following surgery in adult mice. J Neuroinflammation 2023; 20:227. [PMID: 37798730 PMCID: PMC10557222 DOI: 10.1186/s12974-023-02910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Some patients show persistent cognitive decline for weeks, months or even years after surgery, which seriously affects their long-term prognosis and quality of life. However, most previous basic studies have focused mainly on the mechanisms of early postoperative cognitive decline, whereas cognitive decline in the longer term after surgery is less well-understood. The subgranular zone of the dentate gyrus exhibits life-long neurogenesis, supporting hippocampus-dependent learning and memory. MAIN TEXT The aim of this study was to investigate whether adult hippocampal neurogenesis (AHN) involves in cognitive decline later following surgery and to further explore the roles of CD8 + T lymphocytes infiltrating the hippocampal parenchyma after surgery in this pathological process. Cognitive function was examined in adult mice that underwent laparotomy combined with partial hepatectomy, and the results showed that cognitive decline persisted in mice who underwent surgery during the first postoperative month, even though there was a trend toward continuous improvement over time. Significantly decreased numbers of DCX + cells, BrdU + cells, and BrdU + /DCX + cells were observed on day 8 after surgery, and a significantly decreased number of NeuN + /BrdU + cells was observed on day 28 after surgery, which indicated inhibition of AHN. After surgery, T lymphocytes, the majority of which were CD8 + T cells, infiltrated the hippocampus and secreted Interferon-γ (IFN-γ). Depletion of CD8 + T cells could inhibit the increase of IFN-γ synthesis, improve hippocampal neurogenesis, and improve postoperative cognitive function. Hippocampal microinjection of IFN-γ neutralizing antibody or adeno-associated virus to knock down IFN-γ receptor 1 (IFNGR1) could also partially attenuate the inhibition of AHN and improve postoperative cognitive function. CONCLUSIONS These results demonstrate that postoperative infiltration of CD8 + T cells into the hippocampus and subsequent secretion of IFN-γ contribute to the inhibition of AHN and cognitive decline later following surgery.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hong Wang
- Department of Nephrology, Tai' an Central Hospital, Taian, 271000, Shandong, China
| | - Qidi Zhang
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaobin Sun
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
31
|
Deniz MN, Sezer E, Tetik A, Ulukaya S. Evaluation of the brain cellular damage during liver transplantations. Niger J Clin Pract 2023; 26:1063-1068. [PMID: 37635597 DOI: 10.4103/njcp.njcp_332_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background Neuroinflammation in patients undergoing major surgery can lead to neuronal damage, and neuronal damage can be detected through the measurement of biochemical markers of brain damage. S100 beta (S100 β), neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP) levels are considered good biomarkers to detect brain damage that emerged with neurotoxicity. Aim To evaluate neuronal damage during liver transplantations. Materials and Methods After approval of the ethics committee and patient consents, preoperative and postoperative cognitive functions of 33 patients undergoing liver transplantation were measured using the Mini Mental State Examination (MMSE), whereas simultaneous neuronal damage was evaluated through the measurement of S100β, NSE, and GFAP levels. Results There was no statistically significant difference between preoperative and postoperative MMSE. There was a statistically significant decrease in postoperative GFAP (P < 0.05) and a statistically significant increase in NSE (P < 0.05) compared to preoperative values. The decrease in S100β (P > 0.05) level was statistically insignificant. Conclusions Neuroprotective approaches in anesthesia protocol protect patients from brain damage during liver transplantation and prevent the development of postoperative cognitive dysfunction. Since the significant increase in NSE levels during liver transplantations was deemed to have been associated with causes other than neuronal damage, NSE should not be evaluated as a marker of brain damage in these operations.
Collapse
Affiliation(s)
- M N Deniz
- Department of Anesthesiology and Reanimation, Ege University School of Medicine, Izmir, Turkey
| | - E Sezer
- Department of Medical Biochemistry, Ege University School of Medicine, Izmir, Turkey
| | - A Tetik
- Department of Anesthesiology and Reanimation, Ege University School of Medicine, Izmir, Turkey
| | - S Ulukaya
- Department of Anesthesiology and Reanimation, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
32
|
Yao Y, Lin D, Chen Y, Liu L, Wu Y, Zheng X. Fluoxetine alleviates postoperative cognitive dysfunction by attenuating TLR4/MyD88/NF-κB signaling pathway activation in aged mice. Inflamm Res 2023:10.1007/s00011-023-01738-8. [PMID: 37188940 DOI: 10.1007/s00011-023-01738-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE AND DESIGN Postoperative cognitive dysfunction (POCD) is a common complication following surgery among elderly patients. Emerging evidence demonstrates that neuroinflammation plays a pivotal role in the pathogenesis of POCD. This study tested the hypothesis that fluoxetine can protect against POCD by suppressing hippocampal neuroinflammation through attenuating TLR4/MyD88/NF-κB signaling pathway activation. SUBJECTS Aged C57BL/6 J male mice (18 months old) were studied. TREATMENT Aged mice were intraperitoneally injected with fluoxetine (10 mg/kg) or saline for seven days before splenectomy. In addition, aged mice received an intracerebroventricular injection of a TLR4 agonist or saline seven days before splenectomy in the rescue experiment. METHODS On postoperative days 1, 3, and 7, we assessed hippocampus-dependent memory, microglial activation status, proinflammatory cytokine levels, protein levels related to the TLR4/MyD88/NF-κB signaling pathway, and hippocampal neural apoptosis in our aged mouse model. RESULTS Splenectomy induced a decline in spatial cognition, paralleled by parameters indicating exacerbation of hippocampal neuroinflammation. Fluoxetine pretreatment partially restored the deteriorated cognitive function, downregulated proinflammatory cytokine levels, restrained microglial activation, alleviated neural apoptosis, and suppressed the increase in TLR4, MyD88, and p-NF-κB p65 in microglia. Intracerebroventricular injection of LPS (1 μg, 0.5 μg/μL) before surgery weakened the effect of fluoxetine. CONCLUSION Fluoxetine pretreatment suppressed hippocampal neuroinflammation and mitigated POCD by inhibiting microglial TLR4/MyD88/NF-κB pathway activation in aged mice.
Collapse
Affiliation(s)
- Yusheng Yao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, China
| | - Daoyi Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
| | - Yuzhi Chen
- Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Linwei Liu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
| | - Yushang Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China.
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
33
|
Tóth K, Oroszi T, Nyakas C, van der Zee EA, Schoemaker RG. Whole-body vibration as a passive alternative to exercise after myocardial damage in middle-aged female rats: Effects on the heart, the brain, and behavior. Front Aging Neurosci 2023; 15:1034474. [PMID: 36960421 PMCID: PMC10028093 DOI: 10.3389/fnagi.2023.1034474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Background Females with cardiovascular disease seem more vulnerable to develop concomitant mental problems, such as depression and cognitive decline. Although exercise is shown beneficial in cardiovascular disease as well as in mental functions, these patients may be incapable or unmotivated to perform exercise. Whole body vibration (WBV) could provide a passive alternative to exercise. Aim of the present study was to compare WBV to exercise after isoproterenol (ISO)-induced myocardial damage in female rats, regarding effects on heart, brain and behavior. Methods One week after ISO (70 mg/kg s.c., on 2 consecutive days) or saline injections, 12 months old female rats were assigned to WBV (10 minutes daily), treadmill running (30 minutes daily) or pseudo intervention for 5 weeks. During the last 10 days, behavioral tests were performed regarding depressive-like behavior, cognitive function, and motor performance. Rats were sacrificed, brains and hearts were dissected for (immuno)histochemistry. Results Significant ISO-induced cardiac collagen deposition (0.67 ± 0.10 vs 0.18 ± 0.03%) was absent after running (0.45 ± 0.26 vs 0.46 ± 0.08%), but not after WBV (0.83 ± 0.12 vs 0.41 ± 0.05%). However, WBV as well as running significantly reduced hippocampal (CA3) collagen content in ISO-treated rats. Significant regional differences in hippocampal microglia activity and brain derived neurotrophic factor (BDNF) expression were observed. Significant ISO-induced CA1 microglia activation was reduced after WBV as well as running, while opposite effects were observed in the CA3; significant reduction after ISO that was restored by WBV and running. Both WBV and running reversed the ISO-induced increased BDNF expression in the CA1, Dentate gyrus and Hilus, but not in the CA3 area. Whereas running had no significant effect on behavior in the ISO-treated rats, WBV may be associated with short-term spatial memory in the novel location recognition test. Conclusion Although the female rats did not show the anticipated depressive-like behavior or cognitive decline after ISO, our data indicated regional effects on neuroinflammation and BDNF expression in the hippocampus, that were merely normalized by both WBV and exercise. Therefore, apart from the potential concern about the lack of cardiac collagen reduction, WBV may provide a relevant alternative for physical exercise.
Collapse
Affiliation(s)
- Kata Tóth
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Tamás Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Behavioral Physiology Research Laboratory, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Eddy A. van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Regien G. Schoemaker
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Regien G. Schoemaker
| |
Collapse
|
34
|
Kim JH, Ra JH, Kang H, Park SD, Shim JJ, Lee JL. Lactobacillus paracasei HP7 with Portulaca oleracea Linn. Alleviates Scopolamine-Induced Cognitive Decline via Regulation of Neurotrophic Factor and Inflammation Signals in Mice. Prev Nutr Food Sci 2022; 27:414-422. [PMID: 36721752 PMCID: PMC9843713 DOI: 10.3746/pnf.2022.27.4.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 01/03/2023] Open
Abstract
People often experience cognitive deterioration of various degrees, from early-stage mild cognitive impairment to severe cognitive decline. Cognitive deterioration is related to many diseases and studied to alleviated inflammation reaction or oxidative stress. In the present study, the levels of various memory-related proteins: brain-derived neurotrophic factor (BDNF), amyloid beta (Aβ) 42, Aβ40, interleukin-6 and tumor necrosis factor-alpha were measured. Among Lactobacillus paracasei HP7 (HP7), Portulaca oleracea Linn. (PO) and HP7 together with PO (HP7A), the HP7A group had the best effect on increasing BDNF expression and suppressing Aβ40 expression. Also, we measured the protective effect on scopolamine-induced cognitive decline in mice. In the acquisition test, the HP7A group most reliably relieved cognitive decline from days 2 to 5 of scopolamine injection. When the probe test was performed on the day 6 of scopolamine injection, the HP7A group had the shortest escape latency. Based on the results of the Morris water maze tasks, we suggest that HP7A is most useful for ameliorating cognitive decline. It is suggested that the HP7A ameliorating scopolamine-induced cognitive decline via the increase of BDNF expression and the suppression of Aβ40 expression.
Collapse
Affiliation(s)
- Ji Hyun Kim
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | - Je Hyeon Ra
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | - Heerim Kang
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | | | | | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea,
Correspondence to Jung-Lyoul Lee, E-mail:
| |
Collapse
|
35
|
Zhang J, Liu Y, Li H, Hu Y, Yu S, Liu Q, Chen Y. Stellate Ganglion Block Improves Postoperative Cognitive Dysfunction in aged rats by SIRT1-mediated White Matter Lesion Repair. Neurochem Res 2022; 47:3838-3853. [DOI: 10.1007/s11064-022-03800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 12/04/2022]
|
36
|
Whole body vibration, an alternative for exercise to improve recovery from surgery? Brain Behav Immun Health 2022; 26:100521. [PMID: 36203743 PMCID: PMC9531049 DOI: 10.1016/j.bbih.2022.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
Although exercise is usually associated with beneficial effects on physical and mental health, patients recovering from surgery may be hampered to perform active exercise. Whole body vibration (WBV) is suggested a passive alternative for physical training. Aim of the present study was to explore the therapeutic potential of WBV compared to physical exercise during early post-surgery recovery. Male three months old Wistar rats underwent major abdominal surgery. Starting the day after surgery, rats were subjected to either daily WBV or exercise (treadmill running) for 15 consecutive days. Control rats underwent pseudo treatment. During the first week after surgery, effects of interventions were obtained from continuous recording of hemodynamic parameters, body temperature and activity (via an implanted transducer). Behavioral tests were performed during the second post-surgical week to evaluate anxiety-like behavior, short and long-term memory functions, cognitive flexibility and motor performance. Animals were sacrificed 15 days after surgery and brain tissue was collected for analysis of hippocampal neuroinflammation and neurogenesis. Surgery significantly impacted all parameters measured during the first post-surgery week, irrespective of the type of surgery. Effect on cognitive performance was limited to cognitive flexibility; both WBV and exercise prevented the surgery-induced decline. Exercise, but not WBV increased anxiety-like behavior and grip strength. WBV as well as exercise prevented the surgery-induced declined neurogenesis, but surgery-associated hippocampal neuroinflammation was not affected. Our results indicated that active exercise and WBV share similar therapeutic potentials in the prevention of surgery induced decline in cognitive flexibility and hippocampal neurogenesis. In contrast to exercise, WBV did not increase anxiety-like behavior. Since neither intervention affected hippocampal neuroinflammation, other mechanisms and/or brain areas may be involved in the behavioral effects. Taken together, we conclude that WBV may provide a relevant alternative to active exercise during the early stage of post-operative recovery. Both whole body vibration (WBV) and running exercise restored the reduced cognitive flexibility caused by surgery. WBV as well as active exercise prevented surgery-induced declined neurogenesis. Active exercise, but not WBV, induced anxiety-like behavior after surgery. Neither WBV nor active exercise affected surgery-induced neuroinflammation. Neither WBV nor active exercise influenced hemodynamic recovery from surgery.
Collapse
|
37
|
Zhang D, Shen Y, Chen Z, Guo Y, Gao Z, Huang J, Lu X. Emotion recognition dysfunction after anesthesia and cardiac surgery. Front Psychol 2022; 13:1001493. [PMID: 36467133 PMCID: PMC9709145 DOI: 10.3389/fpsyg.2022.1001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Cognitive dysfunction after anesthesia and surgery has long been recognized. Recently, researchers provided empirical evidence for social cognition dysfunction (SCD) after anesthesia and surgery. In the present study, we concentrated on the deficits in emotion recognition, one of the most important clinical perspectives in SCD, in patients who underwent cardiac surgery. Biological motion (BM) was considered as the stimulus of interest, and patients' abilities of BM emotion perception and action perception before and after anesthesia and surgery were examined. In total, 60 adult patients (40-72 years old) completed the BM recognition task, which required them to label the types of actions and emotions of perceived BM. The results showed that while action perception remained intact after cardiac surgery, 18.3% of patients exhibited deficits in emotion perception, further confirming the existence of SCD after anesthesia and surgery.
Collapse
Affiliation(s)
- Delin Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Zhiyun Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yang Guo
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Zaifeng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Jian Huang
- Department of Data and Information, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiqian Lu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Travica N, Aslam H, O'Neil A, Lane MM, Berk M, Gamage E, Walder K, Liu ZS, Segasby T, Marx W. Brain derived neurotrophic factor in perioperative neurocognitive disorders: Current evidence and future directions. Neurobiol Learn Mem 2022; 193:107656. [DOI: 10.1016/j.nlm.2022.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
39
|
Lu B, Yuan H, Mo L, Sun D, Liu R, Zhou H, Zhai X, Wang R, Chen J, Meng B. Effects of different types of non-cardiac surgical trauma on hippocampus-dependent memory and neuroinflammation. Front Behav Neurosci 2022; 16:950093. [PMID: 36035019 PMCID: PMC9399929 DOI: 10.3389/fnbeh.2022.950093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Older individuals have been reported to suffer from cognitive disorders after surgery. Various types of surgical trauma have been used to establish postoperative cognitive dysfunction (POCD) animal models in preclinical studies. However, few comparative analyses of these animal models were conducted. Methods Tibial surgery, abdominal surgery, and extended abdominal surgery were performed on aged ICR mice to establish POCD models. Behavioral tests included open field, novel object recognition, fear conditioning, and Morris water maze tests. The Z-score methodology was adopted to obtain a comprehensive and integrated memory performance profile. The changes in hippocampal neuroinflammation were analyzed by ELISA, PCR, and immunofluorescence. Results In this study, we found that each type of non-cardiac surgical trauma has a different effects on locomotor activity. Tibial and extended abdominal surgeries led to more significant cognitive impairment than abdominal surgery. Inflammatory cytokines peaked on postoperative day 1 and decreased to control levels on days 3 and 7. Hippocampal neuroinflammation indicators between the three surgery types on postoperative day 1 had no statistical differences. Conclusion Overall, the type and intensity of non-cardiac surgical trauma can affect cognitive behavioral outcomes and central inflammation. The shortcomings and emerging issues of POCD animal research methods need to be further studied and solved.
Collapse
Affiliation(s)
- Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Lan Mo
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Daofan Sun
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Rongjun Liu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Han Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Ruichun Wang
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junping Chen,
| | - Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Bo Meng,
| |
Collapse
|
40
|
Neuroprotective Effect of Dexmedetomidine against Postoperative Cognitive Decline via NLRP3 Inflammasome Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158806. [PMID: 35955939 PMCID: PMC9369249 DOI: 10.3390/ijms23158806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Dexmedetomidine (Dex), widely used as a sedative in surgical procedures and intensive care units, induces sympatholytic, anxiolytic, analgesic, and sedative effects. Postoperative cognitive dysfunction (POCD) is routinely observed in postoperative care following surgery and general anesthesia. The NLRP3 inflammasome complex plays a critical role in innate immune response by detecting pathogenic microorganisms and activating pro-inflammatory cytokines. Although there are numerous protective effects of Dex among the neurological diseases, specific mechanisms including NLRP3 inflammasome-mediated neuroinflammation via oxidative stress response in a POCD model are not fully understood. Here, we investigated whether Dex exhibits neurocognitive effects through the NLRP3 inflammasome signaling in a POCD mouse model using a neurobehavioral test and ELISA analysis. We also confirmed the level of oxidative stress-related response in the in vitro system in the POCD model. Furthermore, we evaluated the NLRP3 inflammasome complex by immunoprecipitation analysis. In summary, the results of the present study indicated that Dex showed a neuroprotective effect in the POCD model by reducing oxidative stress response through NLRP3 inflammasome-mediated neuroinflammation.
Collapse
|
41
|
Tóth K, Oroszi T, van der Zee EA, Nyakas C, Schoemaker RG. Sex dimorphism in isoproterenol-induced cardiac damage associated neuroinflammation and behavior in old rats. Front Aging Neurosci 2022; 14:854811. [PMID: 35936761 PMCID: PMC9354817 DOI: 10.3389/fnagi.2022.854811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute cardiac damage can be induced by isoproterenol injections in animals. The associated inflammatory response could be reflected in the brain as neuroinflammation, with potential consequences for brain function and behavior. Although cardiac responses are reported age and sex-related, for neuroinflammation and brain function this is virtually unknown. Therefore, cardiac damage and its consequences for neuroinflammation, brain function and behavior were compared in aged male and female rats. Wistar rats of 24 months of age were treated with isoproterenol (ISO, twice s.c.) or saline. Four weeks after injections, exploratory behavior and short-term memory were tested. Then, rats were sacrificed. Hearts were collected to measure cardiac damage. Brain tissue was collected to obtain measures of neuroinflammation and brain function. In male-, but not in female rats, ISO induced significant cardiac damage. Accordingly, mortality was higher in males than in females. Baseline hippocampal microglia activity was lower in females, while ISO induced neuroinflammation in both sexes, Hippocampal brain-derived neurotrophic factor expression appeared lower in females, without effects of ISO. In the open field test, ISO-treated males, but not females, displayed anxiety-like behavior. No effects of ISO were observed on short-term memory in either sex. In conclusion, sex dimorphism in effects of ISO was observed for cardiac damage and open field behavior. However, these effects could not be related to differences in hippocampal neuroinflammation or neuronal function.
Collapse
Affiliation(s)
- Kata Tóth
- Department of Neurobiology, Faculty of Science and Engineering, GELIFES, University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Tamás Oroszi
- Department of Neurobiology, Faculty of Science and Engineering, GELIFES, University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Eddy A. van der Zee
- Department of Neurobiology, Faculty of Science and Engineering, GELIFES, University of Groningen, Groningen, Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Behavioral Physiology Research Laboratory, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Regien G. Schoemaker
- Department of Neurobiology, Faculty of Science and Engineering, GELIFES, University of Groningen, Groningen, Netherlands
- Department of Mobility, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Regien G. Schoemaker,
| |
Collapse
|
42
|
Chen B, Qin G, Xiao J, Deng X, Lin A, Liu H. Transient neuroinflammation following surgery contributes to long-lasting cognitive decline in elderly rats via dysfunction of synaptic NMDA receptor. J Neuroinflammation 2022; 19:181. [PMID: 35831873 PMCID: PMC9281167 DOI: 10.1186/s12974-022-02528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022] Open
Abstract
Background Perioperative neurocognitive disorders (PNDs) are considered the most common postoperative complication in geriatric patients. However, its pathogenesis is not fully understood. Surgery-triggered neuroinflammation is a major contributor to the development of PNDs. Neuroinflammation can influence N-methyl-D-aspartate receptor (NMDAR) expression or function which is closely associated with cognition. We, therefore, hypothesized that the persistent changes in NMDAR expression or function induced by transient neuroinflammation after surgery were involved in the development of PNDs. Methods Eighteen-month-old male Sprague–Dawley rats were subjected to abdominal surgery with sevoflurane anesthesia to establish the PNDs animal model. Then, we determined the transient neuroinflammation by detecting the protein levels of proinflammatory cytokines and microglia activation using ELISA, western blot, immunohistochemistry, and microglial morphological analysis from postoperative days 1–20. Persistent changes in NMDAR expression were determined by detecting the protein levels of NMDAR subunits from postoperative days 1–59. Subsequently, the dysfunction of synaptic NMDAR was evaluated by detecting the structural plasticity of dendritic spine using Golgi staining. Pull-down assay and western blot were used to detect the protein levels of Rac1-GTP, phosphor-cofilin, and Arp3, which contribute to the regulation of the structural plasticity of dendritic spine. Finally, glycyrrhizin, an anti-inflammatory agent, was administered to further explore the role of synaptic NMDAR dysfunction induced by transient neuroinflammation in the neuropathogenesis of PNDs. Results We showed that transient neuroinflammation induced by surgery caused sustained downregulation of synaptic NR2A and NR2B subunits in the dorsal hippocampus and led to a selective long-term spatial memory deficit. Meanwhile, the detrimental effect of neuroinflammation on the function of synaptic NMDARs was shown by the impaired structural plasticity of dendritic spines and decreased activity of the Rac1 signaling pathways during learning. Furthermore, anti-inflammatory treatment reversed the downregulation and hypofunction of synaptic NR2A and NR2B and subsequently rescued the long-term spatial memory deficit. Conclusions Our results identify sustained synaptic NR2A and NR2B downregulation and hypofunction induced by transient neuroinflammation following surgery as important contributors to the development of PNDs in elderly rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02528-5.
Collapse
Affiliation(s)
- Bo Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Guangcheng Qin
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Xiaoyuan Deng
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Aolei Lin
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
43
|
Chen J, Ding Q, Jiao X, Wang B, Sun Z, Zhang Y, Zhao J. Dexmedetomidine attenuates hippocampal neuroinflammation in postoperative neurocognitive disorders by inhibiting microRNA-329-3p and activating the CREB1/IL1RA axis. Psychopharmacology (Berl) 2022; 239:2171-2186. [PMID: 35412062 DOI: 10.1007/s00213-022-06091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Due to its anti-inflammatory effect, dexmedetomidine (DEX) can confer neuroprotection in postoperative neurocognitive disorders (NCD). Here, the mechanism responsible for this effect of DEX is rarely ascertained. OBJECTIVES Our research was implemented to figure out mechanism governing the protection of DEX against hippocampal neuroinflammation in postoperative NCD. METHODS Exploratory laparotomy was applied for generating a postoperative NCD mouse model before bilateral hippocampal injection with microRNA (miR)-329-3p-agomir and intraperitoneal injection with DEX. Cognitive function of mice was evaluated by water maze test and fear conditioning test. Immunofluorescence was performed to assess microglial activation in hippocampus. After cell transfection and DEX treatment, mouse microglial cells (BV-2) were stimulated by lipopolysaccharide (LPS). IL-1β, IL-6, and TNF-α levels and the number of phagocytes were assessed by ELISA and flow cytometry. Dual-luciferase reporter assay was adopted to assess the relationship between miR-329-3p and CREB1. RESULTS miR-329-3p expression was reduced in the postoperative NCD mice after DEX treatment. DEX treatment or miR-329-3p downregulation caused attenuated cognitive dysfunction and microglia activation as well as reduced IL-1β, IL-6, and TNF-α levels in the hippocampus of the postoperative NCD mice. Mechanistically, miR-329-3p inversely targeted CREB1 that activated IL1RA in LPS-induced BV-2 cells. DEX treatment, miR-329-3p inhibition, or CREB1 or IL1RA upregulation curtailed the release of proinflammatory proteins and the number of phagocytes in LPS-induced BV-2 cells. CONCLUSIONS Collectively, our data provided the novel insight of the neuroprotective mechanism of DEX in postoperative NCD pertaining to the miR-329-3p/CREB1/IL1RA axis.
Collapse
Affiliation(s)
- Jinquan Chen
- Anesthesia Operation Center, The First Peoples Hospital of Xianyang, Xianyang, 712000, People's Republic of China
| | - Qian Ding
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Xiangxue Jiao
- Anesthesia Operation Center, The First Peoples Hospital of Xianyang, Xianyang, 712000, People's Republic of China
| | - Binrong Wang
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Zhenzhong Sun
- Department of Anesthesiology, Guangdong Armed Police Corps Hospital, Guangzhou, 510507, People's Republic of China
| | - Yutao Zhang
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China
| | - Juan Zhao
- Anesthesia Operation Center, Xi´an International Medical Center Hospital, No. 777, Xitai Road, 710100, Xi´an, People's Republic of China.
| |
Collapse
|
44
|
sVCAM1 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Mice by Inducing Microglial Activation Through the VLA-4 Receptor. Mol Neurobiol 2022; 59:5485-5503. [PMID: 35727436 DOI: 10.1007/s12035-022-02924-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a severe postsurgical complication, but its underlying mechanisms remain unclear. Neuroinflammation mediated by microglial activation plays a major role in POCD pathophysiology. Upregulation of vascular cell adhesion molecule 1 (VCAM1) on brain endothelial cells is closely correlated with microglial activation in the mouse hippocampus. However, the role of VCAM1 upregulation in microglial activation remains unknown. Soluble VCAM1 (sVCAM1) activates the very late antigen-4 (VLA-4) receptor under inflammatory conditions. Therefore, we hypothesized that sVCAM1 which is shed from VCAM1 contributes to POCD by triggering hippocampal microglial activation through the VLA-4 receptor. We found that VCAM1 and sVCAM1 expression in the mouse hippocampus was upregulated after surgery, and the upregulation was accompanied by hippocampal microglial activation. sVCAM1 levels in mouse and human serum were increased after surgery. Anti-VCAM1 treatment inhibited microglial activation, proinflammatory cytokine production, VLA-4 expression and P38 mitogen-associated protein kinase (MAPK) pathway activation and attenuated hippocampal-dependent cognitive dysfunction. In vitro, recombinant sVCAM1 promoted M1 polarization in BV2 cells, increased VLA-4 expression and activated the P38 MAPK pathway. These effects were reversed by VLA-4 receptor blockade. Anti-VLA-4 treatment ameliorated hippocampal-dependent cognitive dysfunction after surgery by inhibiting microglial activation, proinflammatory cytokine production and P38 pathway activation. In conclusion, increased sVCAM1 in the hippocampus is involved in microglial activation and cognitive dysfunction induced by surgery. Inhibiting the sVCAM1-VLA-4 interaction in microglia may be a therapeutic strategy for POCD.
Collapse
|
45
|
The effects of exercise training on heart, brain and behavior, in the isoproterenol-induced cardiac infarct model in middle-aged female rats. Sci Rep 2022; 12:10095. [PMID: 35710575 PMCID: PMC9203707 DOI: 10.1038/s41598-022-14168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
Women with cardiovascular disease may be more susceptible to concomitant mental health problems, such as depression and cognitive decline. Exercise training has beneficial effects on the cardiovascular system as well as on mental functions. Aim of the present study was to study the effects of exercise training on heart, brain and behavior in the isoproterenol (ISO) model in middle-aged female rats. Twelve months old female Wistar rats were submitted to ISO injections (70 mg/kg s.c., on two consecutive days) or received saline. One week later, rats were assigned to either exercise training (treadmill running) or control handling for five weeks. During the last 7 days, tests were performed regarding depressive-like behavior and cognitive function. Then, rats were sacrificed and heart and brains were dissected for (immuno)histochemistry. ISO-induced cardiac effects were eminent from cardiac fibrosis and declined cardiac function. Exercise training reversed cardiac damage and partly restored ISO-induced cardiac dysfunction. However, ISO treatment could not be associated with neuroinflammation, nor impaired hippocampal neurogenesis or neuronal function. Accordingly, no cognitive impairment or depressive-like behavior were observed. Actually, hippocampal microglia hyper-ramification was observed after ISO. Exercise left neuroinflammation and behavior merely unaltered, and even reduced neuronal function. Our data indicated that the cardiac damage after ISO in middle-aged female rats, and the subsequent beneficial effects of five weeks exercise training on the heart, were not reflected in changes in the brain nor in altered behavior.
Collapse
|
46
|
Wang J, Xin Y, Chu T, Liu C, Xu A. Dexmedetomidine attenuates perioperative neurocognitive disorders by suppressing hippocampal neuroinflammation and HMGB1/RAGE/NF-κB signaling pathway. Biomed Pharmacother 2022; 150:113006. [PMID: 35486975 DOI: 10.1016/j.biopha.2022.113006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Surgical trauma can induce an inflammatory response in the central nervous system. Neuroinflammation is a crucial pathological mechanism of perioperative neurocognitive disorders (PND). Dexmedetomidine (Dex) is an alpha (α)-2 adrenoceptor agonist that is widely used in the perioperative period. Previous studies have shown that Dex has neuroprotection in various nerve injury models, but its role in PND remains unclear. Our study aimed to observe the neuroprotective effect of Dex pretreatment on postoperative cognitive change and explore the effects of hippocampal neuroinflammation, microglial polarization and HMGB1/RAGE/NF-κB signaling pathway involved in Dex on PND in rats. Rats were pretreated with Dex alone or in combination with yohimbine (α-2 adrenoceptor antagonist) before surgery. Behavioral tests results showed that Dex ameliorated surgery-induced cognitive impairment in rats. Nissl, immunohistochemistry and TUNEL-NeuN staining results indicated that Dex reduced hippocampus damage and neuronal apoptosis caused by surgery. Dex preconditioning reduced the expression of the proinflammatory cytokines IL-1β, TNF-α and IL-6 in hippocampus. Immunohistochemical and immunofluorescence results showed that Dex preconditioning inhibited the activation of glial cells induced by surgery. Western blot analysis showed that Dex preconditioning downregulated the expression of M1 phenotype markers (CD86 and iNOS), HMGB1, RAGE and nuclear NF-κB and upregulated the expression of M2 phenotype markers (Arginase 1 and CD206) and cytoplasmic NF-κB. Yohimbine could inhibit the neuroprotective effect of Dex. These results indicated that Dex pretreatment could improve postoperative short-term cognitive impairment, and the neuroprotective mechanism may involve the suppression of hippocampal neuroinflammation, regulation of M1/M2 polarization, and inhibition of HMGB1/RAGE/NF-κB signal transduction.
Collapse
Affiliation(s)
- Jinxu Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Chu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aijun Xu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
Dexmedetomidine Mitigates Microglial Activation Associated with Postoperative Cognitive Dysfunction by Modulating the MicroRNA-103a-3p/VAMP1 Axis. Neural Plast 2022; 2022:1353778. [PMID: 35494481 PMCID: PMC9042642 DOI: 10.1155/2022/1353778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Surgery-induced microglial activation is critical in mediating postoperative cognitive dysfunction (POCD) in elderly patients, where the important protective effect of dexmedetomidine has been indicated. However, the mechanisms of action of dexmedetomidine during the neuroinflammatory response that underlies POCD remain largely unknown. We found that lipopolysaccharide (LPS) induced substantial inflammatory responses in primary and BV2 microglial cells. The screening of differentially expressed miRNAs revealed that miR-103a-3p was downregulated in these cell culture models. Overexpression of miR-103a-3p mimics and inhibitors suppressed and enhanced the release of inflammatory factors, respectively. VAMP1 expression was upregulated in LPS-treated primary and BV-2 microglial cells, and it was validated as a downstream target of miR-103-3p. VAMP1-knockdown significantly inhibited the LPS-induced inflammatory response. Dexmedetomidine treatment markedly inhibited LPS-induced inflammation and the expression of VAMP1, and miR-103a-3p expression reversed this inhibition. Moreover, dexmedetomidine mitigated microglial activation and the associated inflammatory response in a rat model of surgical trauma that mimicked POCD. In this model, dexmedetomidine reversed miR-103a-3p and VAMP1 expression; this effect was abolished by miR-103a-3p overexpression. Taken together, the data show that miR-103a-3p/VAMP1 is critical for surgery-induced microglial activation of POCD.
Collapse
|
48
|
Jiang W, Liu F, Li H, Wang K, Cao X, Xu X, Zhou Y, Zou J, Zhang X, Cui X. TREM2 ameliorates anesthesia and surgery-induced cognitive impairment by regulating mitophagy and NLRP3 inflammasome in aged C57/BL6 mice. Neurotoxicology 2022; 90:216-227. [PMID: 35447280 DOI: 10.1016/j.neuro.2022.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a major postoperative complication. Triggering receptor expressed on myeloid cells 2 (TREM2) exerts a neuroprotective function against neuro-inflammatory responses. The present study investigated the role of TREM2 in anesthesia and surgery-induced cognitive impairment and the potential related mechanism. Our results revealed that TREM2 was downregulated, coupled with activation of the NLRP3 inflammasome and subsequent IL-1β expression on postoperative day 3. A corresponding decline in PSD-95 and BDNF was found at the same time point. The key regulator of mitophagy PINK1 and Parkin protein levels were significantly decreased following surgery and anesthesia. TREM2 overexpression partially reversed postoperative cognitive impairment and enhanced PSD-95 and BDNF expression. TREM2 overexpression also improved mitophagy function and inhibited activation of the NLRP3 inflammasome and associated production of IL-1β. Our findings demonstrate that TREM2 rescues anesthesia and surgery-induced spatial learning and memory impairment and neuro-inflammation in aged C57/BL6 mice, which may be at least partially mediated through the activation of mitophagy and subsequent inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongqing Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kexin Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuezhao Cao
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaohan Xu
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongjian Zhou
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Zou
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Zhang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
49
|
Chu JMT, Abulimiti A, Wong BSH, Zhao GD, Xiong SH, Zhao MM, Wang Y, Chen Y, Wang J, Zhang Y, Chang RCC, Yu H, Wong GTC. Sigesbeckia orientalis L. Derived Active Fraction Ameliorates Perioperative Neurocognitive Disorders Through Alleviating Hippocampal Neuroinflammation. Front Pharmacol 2022; 13:846631. [PMID: 35370714 PMCID: PMC8969099 DOI: 10.3389/fphar.2022.846631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
Neuroinflammation is closely related to the pathogenesis of perioperative neurocognitive disorders (PNDs), which is characterized by the activation of microglia, inflammatory pathways and the release of inflammatory mediators. Sigesbeckia orientalis L. (SO) is a traditional Chinese medicine which demonstrates anti-inflammatory activities in different models. In this study, we aim to isolate the active fraction from the extract of SO with higher anti-inflammatory potential and confirm if the selected fraction exerts neuroprotection against the development of PND in an animal model. Moreover, the components in the selected fraction would be determined by UPLC-PDA analysis. Three fractions were prepared by column chromatography packed with three different macroporous resins. Anti-inflammatory activities of prepared fractions were accessed in microglial BV2 cultures by nitric oxide release, gene expression of inflammatory cytokines and activation of inflammatory JNK and NF-kB pathway molecules. Our results demonstrated that the fraction prepared from D101 macroporous resin (D101 fraction) exhibited a more potent anti-neuroinflammatory effect. The neuroprotective effect of D101 fraction was further examined in postoperative mice. Our results showed that surgery-induced cognitive dysfunction was attenuated by the D101 fraction treatment. This fraction also reduced microglial activation, inflammatory cytokines and inhibiting JNK and NF-kB pathway molecules in the hippocampus. In addition, surgery induced dendritic spine loss while D101 fraction ameliorated the spine loss in the hippocampus. For safety concerns, anti-thrombotic effect was examined by tail bleeding assay and no significant change of the bleeding pattern was found. UPLC-PDA analysis indicated that flavonoids (rutin, isochlorogenic acid A, isochlorogenic acid C) and terpenoid (darutoside) were the most important components in the D101 fraction. Our results support a therapeutic, as well as the translational potential for D101 fraction in ameliorating postoperative neuroinflammation and subsequent PND in the clinical setting without increasing bleeding tendencies.
Collapse
Affiliation(s)
- John Man Tak Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amina Abulimiti
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Brian Shing Hei Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, The University of Macau, Taipa, China
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, The University of Macau, Taipa, China
| | - Ming Ming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, The University of Macau, Taipa, China
| | - Yingyi Wang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying Chen
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiaqi Wang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Zhang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, The University of Macau, Taipa, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|