1
|
He Y, Lee J, Kim J, Brodie MA, Mitri G, van Schooten KS, Lovell NH, Lord SR, Okubo Y. Virtual obstacle-avoidance training using daily-life obstacles with physical feedback in older people: A cross-over trial. Arch Gerontol Geriatr 2025; 135:105866. [PMID: 40318297 DOI: 10.1016/j.archger.2025.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
Failures in avoiding environmental hazards can lead to falls. We developed a virtual reality (VR) obstacle-avoidance training system that provides physical feedback upon foot contact with a virtual obstacle. This study aimed to assess whether physical feedback reduces obstacle collisions in older adults within a VR environment. Fifty-six participants (mean age 72.3 ± 5.4 (SD) years) wore an immersive VR head-mounted display and safety harness and walked on a split-belt treadmill in two 8-minute conditions performed in random order. They walked on a virtual suburban footpath, collecting virtual apples and avoiding slip-and-trip obstacles. In the perturbation condition (VR+P), foot-obstacle collisions were accompanied by immediate physical feedback via treadmill belt accelerations/decelerations. In the non-perturbation condition (VR-only), no physical feedback was provided. Obstacle collision rates and subjective acceptability were assessed. In the VR+P condition, participants had fewer obstacle collisions (0.63 versus 0.75), fewer trailing foot collisions (0.57 versus 0.68) and a greater margin of stability compared with the VR-only condition (p < 0.05). Participants reported significantly higher levels of anxiety and greater task difficulty for the VR+P condition (p < 0.05). Motion sickness was rarely reported, and enjoyment ratings were high, with no significant differences between the conditions. In summary, physical feedback reduced obstacle collisions and increased gait stability. The low levels of motion sickness and anxiety and high levels of enjoyment reported suggest that VR obstacle avoidance training is highly acceptable to older people. Future research is required to determine the generalisation of improved motor skills to real-world scenarios.
Collapse
Affiliation(s)
- Yixuan He
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia; School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Jamie Lee
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia; School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Juno Kim
- Ageing Futures Institute, University of New South Wales, Sydney, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| | - Matthew A Brodie
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - George Mitri
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Kimberley S van Schooten
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia; School of Population Health, University of New South Wales, Sydney, NSW, Australia; Ageing Futures Institute, University of New South Wales, Sydney, NSW, Australia
| | - Nigel H Lovell
- Ageing Futures Institute, University of New South Wales, Sydney, NSW, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia; Tyree Institute of Health Engineering (IHealthE), University of New South Wales, Sydney, NSW, Australia
| | - Stephen R Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia; School of Population Health, University of New South Wales, Sydney, NSW, Australia; Ageing Futures Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yoshiro Okubo
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia; School of Population Health, University of New South Wales, Sydney, NSW, Australia; Ageing Futures Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
De Vleeschhauwer J, Nackaerts E, D'Cruz N, Zhang Y, Janssens L, Vandenberghe W, Gilat M, Nieuwboer A. The effects of task-specific home-based touchscreen training in people with Parkinson's disease: a pilot randomized controlled trial. J Neurol 2025; 272:328. [PMID: 40204991 DOI: 10.1007/s00415-025-13065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Manual dexterity deficits impair the ability to effectively use touchscreen devices in people with Parkinson's disease (PD). OBJECTIVE To examine the effects and feasibility of a home-based, unsupervised tablet-task training on task-specific performance in a randomized controlled trial and to determine which individuals are likely to benefit. METHODS Thirty-four PD patients were randomized and included into an experimental training (EXP, N = 16) and passive control group (CTL, N = 18). The EXP practiced a Swipe-Slide Pattern (SSP) task on a tablet (5x/week for 2 weeks) as fast and accurately as possible in single and dual task conditions. Performance on the SSP and an untrained mobile phone task (MPT) were tested before and after two weeks of training and after four weeks follow-up. SSP-Time (primary outcome), SSP-Accuracy (% correct) and MPT-Time were recorded. Linear mixed models were used to assess training effects. RESULTS The home-based task-specific training program significantly improved the SSP-Time immediately after training (p < 0.001, d = 0.917) and at follow-up (p = 0.006, d = 0.663), and showed excellent compliance rates (average 98%). No transfer occurred to the untrained MPT. Worse baseline SSP-performance and older age were significantly associated with short- and long-term gains (p < 0.010). CONCLUSION Home-based, unsupervised touchscreen training is feasible and effective to improve movement time of the trained task, albeit without transfer to an untrained task. The heterogeneity and variability of the effects underscore the importance of personalizing rehabilitation programs in PD, according to baseline performance. Future studies should investigate a wider range of transfer tasks and clinical determinants that could impact the training response. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ : NTC05696197, retrospectively registered on January 13, 2023.
Collapse
Affiliation(s)
- Joni De Vleeschhauwer
- Department of Rehabilitation Sciences, KU Leuven, Research Group for Neurorehabilitation (eNRGy), Tervuursevest 101, B- 3001, Leuven, Belgium.
| | - Evelien Nackaerts
- Department of Rehabilitation Sciences, KU Leuven, Research Group for Neurorehabilitation (eNRGy), Tervuursevest 101, B- 3001, Leuven, Belgium
| | - Nicholas D'Cruz
- Department of Rehabilitation Sciences, KU Leuven, Research Group for Neurorehabilitation (eNRGy), Tervuursevest 101, B- 3001, Leuven, Belgium
| | - Yifeng Zhang
- Group T Campus, Electrical Engineering Technology (ESAT), KU Leuven, Leuven, Belgium
| | - Luc Janssens
- Group T Campus, Electrical Engineering Technology (ESAT), KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Laboratory for Parkinson Research, Leuven, Belgium
| | - Moran Gilat
- Department of Rehabilitation Sciences, KU Leuven, Research Group for Neurorehabilitation (eNRGy), Tervuursevest 101, B- 3001, Leuven, Belgium
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Research Group for Neurorehabilitation (eNRGy), Tervuursevest 101, B- 3001, Leuven, Belgium
| |
Collapse
|
3
|
Kim S, Lee HS, Kim H, Kim DH, Chang WH. Additional Effects of Facilitatory Cerebellar Repetitive Transcranial Magnetic Stimulation on Inhibitory Repetitive Transcranial Magnetic Stimulation over the Unaffected Contralesional Primary Motor Cortex for Motor Recovery in Subacute Ischemic Stroke Patients. J Clin Med 2025; 14:2315. [PMID: 40217765 PMCID: PMC11989958 DOI: 10.3390/jcm14072315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Cerebellum might be one of the targets of repetitive transcranial magnetic stimulation (rTMS) for motor recovery in stroke patients. The aim of this study was to investigate the enhancing effects of rTMS over the cerebellum on inhibitory rTMS for motor recovery in patients with subacute ischemic stroke. Methods: Twenty-three patients with subacute ischemic stroke were recruited into this single-blind randomized, controlled study with a blinded observer. The Cr-Cbll group received Cr-Cbll rTMS consisting of continuous theta burst stimulation over the contralesional primary motor cortex (M1), a shoulder mobilization exercise, and high-frequency rTMS over the contralesional cerebellum. The Cr-sham group received sham rTMS over the cerebellum instead of high-frequency rTMS. All participants received ten daily sessions for 2 weeks. The Fugl-Meyer Assessment (FMA) was measured before, immediately after, and 2 months after the intervention. Results: A total of 20 participants (10 in the Cr-Cbll group and 10 in the Cr-sham group) who completed the two-week intervention were included in the intention-to-treat analysis. There was no significant difference in general and clinical characteristics between the two groups at baseline. Total and upper extremity scores of FMA showed a significant interaction between time and group (p < 0.05). Each improvement of upper extremity score of FMA immediately and 2 months after the intervention was significantly higher in the Cr-Cbll group than in the Cr-sham group (p < 0.05). Conclusions: These results demonstrated that rTMS over the cerebellum could have additional effects on inhibitory rTMS over contralesional M1 for improving upper extremity motor function in patients with subacute ischemic stroke.
Collapse
Affiliation(s)
- Sungwon Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.K.); (H.S.L.); (H.K.); (D.H.K.)
| | - Ho Seok Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.K.); (H.S.L.); (H.K.); (D.H.K.)
| | - Heegoo Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.K.); (H.S.L.); (H.K.); (D.H.K.)
| | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.K.); (H.S.L.); (H.K.); (D.H.K.)
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.K.); (H.S.L.); (H.K.); (D.H.K.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
4
|
Nicolas J, King BR, Lévesque D, Lazzouni L, Leroux G, Wang D, Grossman N, Swinnen SP, Doyon J, Carrier J, Albouy G. Unraveling the neurophysiological correlates of phase-specific enhancement of motor memory consolidation via slow-wave closed-loop targeted memory reactivation. Nat Commun 2025; 16:2644. [PMID: 40102385 PMCID: PMC11920436 DOI: 10.1038/s41467-025-57602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Memory consolidation can be enhanced during sleep using targeted memory reactivation (TMR) and closed-loop (CL) acoustic stimulation on the up-phase of slow oscillations (SOs). Here, we test whether applying TMR at specific phases of the SOs (up vs. down vs. no reactivation) can influence the behavioral and neural correlates of motor memory consolidation in healthy young adults. Results show that up- (as compared to down-) state cueing results in greater performance improvement. Sleep electrophysiological data indicate that up- (as compared to down-) stimulated SOs exhibits higher amplitude and greater peak-nested sigma power. Task-related functional magnetic resonance images reveal that up-state cueing strengthens activity in - and segregation of - striato-motor and hippocampal networks; and that these modulations are related to the beneficial effect of TMR on sleep features and performance. Overall, these findings highlight the potential of CL-TMR to induce phase-specific modulations of motor performance, sleep oscillations and brain responses during motor memory consolidation.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, 69500, Bron, France
- LBI-KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - David Lévesque
- Center for Advanced Research in Sleep Medicine, Montreal, QC, Canada
| | - Latifa Lazzouni
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gaëlle Leroux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, 69500, Bron, France
| | - David Wang
- Elemind Technologies Inc Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Grossman
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.
- LBI-KU Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Omurtag A, Sunderland C, Mansfield NJ, Zakeri Z. EEG connectivity and BDNF correlates of fast motor learning in laparoscopic surgery. Sci Rep 2025; 15:7399. [PMID: 40032953 DOI: 10.1038/s41598-025-89261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
This paper investigates the neural mechanisms underlying the early phase of motor learning in laparoscopic surgery training, using electroencephalography (EEG), brain-derived neurotrophic factor (BDNF) concentrations and subjective cognitive load recorded from n = 31 novice participants during laparoscopy training. Functional connectivity was quantified using inter-site phase clustering (ISPC) and subjective cognitive load was assessed using NASA-TLX scores. The study identified frequency-dependent connectivity patterns correlated with motor learning and BDNF expression. Gains in performance were associated with beta connectivity, particularly within prefrontal cortex and between visual and frontal areas, during task execution (r = - 0.73), and were predicted by delta connectivity during the initial rest episode (r = 0.83). The study also found correlations between connectivity and BDNF, with distinct topographic patterns emphasizing left temporal and visuo-frontal links. By highlighting the shifts in functional connectivity during early motor learning associated with learning, and linking them to brain plasticity mediated by BDNF, the multimodal findings could inform the development of more effective training methods and tailored interventions involving practice and feedback.
Collapse
|
6
|
Florio TM. Emergent Aspects of the Integration of Sensory and Motor Functions. Brain Sci 2025; 15:162. [PMID: 40002495 PMCID: PMC11853489 DOI: 10.3390/brainsci15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This article delves into the intricate mechanisms underlying sensory integration in the executive control of movement, encompassing ideomotor activity, predictive capabilities, and motor control systems. It examines the interplay between motor and sensory functions, highlighting the role of the cortical and subcortical regions of the central nervous system in enhancing environmental interaction. The acquisition of motor skills, procedural memory, and the representation of actions in the brain are discussed emphasizing the significance of mental imagery and training in motor function. The development of this aspect of sensorimotor integration control can help to advance our understanding of the interactions between executive motor control, cortical mechanisms, and consciousness. Bridging theoretical insights with practical applications, it sets the stage for future innovations in clinical rehabilitation, assistive technology, and education. The ongoing exploration of these domains promises to uncover new pathways for enhancing human capability and well-being.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
7
|
Rossi Sebastiano D, Muscio C, Duran D, Bonfoco D, Dotta S, Anversa P, Pellencin E, Tiraboschi P, Visani E. Crochet increases attention through a requiring motor skill learning. Sci Rep 2025; 15:4141. [PMID: 39900664 PMCID: PMC11790931 DOI: 10.1038/s41598-025-88777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
In this study, we compared the effects promoted by a brief single session of crochet in a group of skilled knitters (CRO) and a control group (CRT) on the Attentional Network Test (ANT) and the whole brain Functional Connectivity (FC) revealed by Magnetoencephalography (MEG). Data revealed that crochet determined a significant effect (before, T0, vs after, T1, the crochet session) on reaction times (for all cue and stimulus types), improving alertness and orienting networks (but not executive control) only in the CRO group. Data of FC are coherent with the behavioural ones. We observed that the Betweenness Centrality maximum (BCmax) index in the beta band significantly increased, and global FC in the alpha band significantly increased at T1 for the CRO group but not for the CTR group. Increased global BCmax in the beta band after the crochet activity correlated with better performance (reduced reaction times), suggesting that the brain has become more efficiently integrated, thus increasing the information exchange between different brain areas. Decreased global FC in the alpha band may reflect a transition from a quiet, global rest to a condition of increased alertness and readiness to stimuli. Finally, we discuss the hypothesis that these results could be the reinforcement of connections between motor and attentional networks promoted by learning the complex motor skills of crochet.
Collapse
Affiliation(s)
- Davide Rossi Sebastiano
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| | - Cristina Muscio
- Azienda Socio-Sanitaria Territoriale- Bergamo Ovest, 24047, Bergamo, Italy
| | - Dunja Duran
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Deborah Bonfoco
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Sara Dotta
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Paola Anversa
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Elisa Pellencin
- Unit of Neurology V and Neuropathology, Fondazione-IRCCS-Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Pietro Tiraboschi
- Unit of Neurology V and Neuropathology, Fondazione-IRCCS-Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Elisa Visani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| |
Collapse
|
8
|
Delion T, Jacquemont T, Daghsen L, Valabregue R, Beanato E, Hummel F, Moulton E, Zavanone C, Dupont S, Gallea C, Rosso C. Resting-State Cortico-Cerebellar Connectivity Correlates with Post-Stroke Motor Recovery - A Prospective Functional MRI Study. CEREBELLUM (LONDON, ENGLAND) 2025; 24:28. [PMID: 39786475 DOI: 10.1007/s12311-024-01783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Cerebellar functional and structural connectivity are likely related to motor function after stroke. Less is known about motor recovery, which is defined as a gain of function between two time points, and about the involvement of the cerebellum. Fifteen patients who were hospitalized between 2018 and 2020 for a first cerebral ischemic event with persistent upper limb deficits were assessed by resting-state functional MRI (rsfMRI) and clinical motor score measurements at 3, 9 and 15 weeks after stroke. Age- and sex-matched healthy subjects (n = 15) were assessed once. The objectives were (1) to study whether the level of connectivity between the contralesional cerebellum (lobules IV-V-VI and lobule VIII) and the ipsilesional motor regions on rsfMRI is predictive of motor recovery and (2) to compare these connectivities with those of healthy subjects. Upper limb motor recovery was positively correlated with functional connectivity between contralesional cerebellar lobule VIII and the ipsilesional supplementary motor area (SMA). The greater the connectivity between these regions, the better the motor recovery. In patients, the corticocerebellar network between lobule IV-V-VI and the ipsilesional M1 and SMA showed weaker synchronization at rest than in healthy subjects. Cortico-cortical connectivity was not associated with recovery. Resting-state functional connectivity, including contralesional cerebellar lobule VIII, could be a tool for studying and predicting recovery in stroke patients. Our study highlights the role of the cerebellum in motor recovery after stroke, enabling us to consider new therapeutic targets in neuromodulation.
Collapse
Affiliation(s)
- Timo Delion
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France
- STARE Team, iCRIN, Institut du Cerveau, ICM, Paris, France
| | - Thomas Jacquemont
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France
- STARE Team, iCRIN, Institut du Cerveau, ICM, Paris, France
| | - Lina Daghsen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France
- STARE Team, iCRIN, Institut du Cerveau, ICM, Paris, France
| | | | - Elena Beanato
- Neuro-X Institute and Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Friedhelm Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, 1951, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, 1202, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, 1202, Switzerland
| | - Eric Moulton
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France
| | - Chiara Zavanone
- STARE Team, iCRIN, Institut du Cerveau, ICM, Paris, France
- APHP-Service de Soins de Suite et Rééducation, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sophie Dupont
- STARE Team, iCRIN, Institut du Cerveau, ICM, Paris, France
- APHP-Service de Soins de Suite et Rééducation, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cécile Gallea
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France
| | - Charlotte Rosso
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France.
- STARE Team, iCRIN, Institut du Cerveau, ICM, Paris, France.
- APHP-Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
9
|
Van Overwalle F, Heleven E, Haihambo N, Li M, Ma Q, Pu M, Baeken C, Deroost N, Baetens K. Mentalizing About Dynamic Social Action Sequences Is Supported by the Cerebellum, Basal Ganglia, and Neocortex: A Meta-Analysis of Activation and Connectivity. Hum Brain Mapp 2024; 45:e70098. [PMID: 39688325 PMCID: PMC11651214 DOI: 10.1002/hbm.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
The posterior cerebellum and anterior basal ganglia are critical subcortical structures for learning and identifying dynamic action sequences, in concert with the neocortex. The present analysis investigates the role of action sequences during social mentalizing, termed here dynamic or sequential social mentalizing. Although the role of the cerebellum in dynamic social mentalizing was extensively investigated during the last decade, the basal ganglia were long ignored. We conducted an activation likelihood estimation coordinate-based meta-analysis of sequential social mentalizing tasks (with 485 participants in 17 studies). These tasks required participants to make social mentalizing inferences ranging from low-level goals to high-level beliefs and traits, while either memorizing, generating or predicting temporal sequences of the social actions involved (i.e., social sequencing condition), or not (i.e., social non-sequencing control condition), or did so for nonsocial objects (i.e., nonsocial sequencing control condition). The tasks also occasionally included inconsistencies in social behavior. Results revealed that the cerebellum exhibited a preference for social, sequencing, and inconsistent information, while the basal ganglia showed a preference for sequencing and inconsistency, without a general preference for social input. Meta-analytic connectivity analysis further showed evidence of coactivation between mentalizing areas of the cerebellum, basal ganglia and cerebral neocortex. The present work underscores the role of subcortical structures in social mentalizing about dynamic action sequences.
Collapse
Affiliation(s)
| | - Elien Heleven
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Naem Haihambo
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Meijia Li
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Qianying Ma
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Min Pu
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Chris Baeken
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Natacha Deroost
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| | - Kris Baetens
- Vrije Universiteit Brussel and Center for NeuroscienceBrusselBelgium
| |
Collapse
|
10
|
Firouzi M, Baetens K, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. The cerebellum is involved in implicit motor sequence learning. Front Neurosci 2024; 18:1433867. [PMID: 39712223 PMCID: PMC11659296 DOI: 10.3389/fnins.2024.1433867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Background Implicit motor sequence learning (IMSL) is a cognitive function that allows us to execute multiple movements in a specific sequential order and plays a crucial role in our daily functional activities. Although the role of the basal ganglia network in IMSL is well-established, the exact involvement of the cerebellar network is less clear. Aim Here, we aimed to address this issue by investigating the effects of cerebellar transcranial direct-current stimulation (tDCS) on IMSL. Methods In this sham-controlled, crossover study in 45 healthy young adults, we used mixed-effects models to analyze sequence-specific (primary outcome) and general learning effects (secondary outcome) in the acquisition (during tDCS), short- (five minutes post-tDCS) and long-term consolidation (one week post-tDCS) phases of IMSL, as measured by the serial reaction time (SRT) task. Results Analyses based on response times (RTs) revealed that anodal tDCS over the cerebellum significantly increased sequence-specific learning during acquisition, compared to sham (anodal: M = 38.24 ms, sham: M = 26.78 ms, p = 0.032); did not affect general learning; and significantly slowed overall RTs (anodal: M = 362.03 ms, sham: M = 356.37 ms, p = 0.049). Accuracy-based analyses revealed that anodal tDCS reduced the probability of correct responses occurring in random trials versus sequential trials by 1.17%, p = 0.009, whereas sham tDCS had no effect, p = 0.999. Conclusion Our finding of enhanced sequence-specific learning, but not general learning, suggests that the cerebellar network not only plays a role in error correction processes, but also serves a sequence-specific function within the integrated motor learning network that connects the basal ganglia and cerebellum.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
11
|
Mizes KGC, Lindsey J, Escola GS, Ölveczky BP. The role of motor cortex in motor sequence execution depends on demands for flexibility. Nat Neurosci 2024; 27:2466-2475. [PMID: 39496797 DOI: 10.1038/s41593-024-01792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/18/2024] [Indexed: 11/06/2024]
Abstract
The role of the motor cortex in executing motor sequences is widely debated, with studies supporting disparate views. Here we probe the degree to which the motor cortex's engagement depends on task demands, specifically whether its role differs for highly practiced, or 'automatic', sequences versus flexible sequences informed by external cues. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues. Lesioning motor cortex showed that it is necessary for flexible cue-driven motor sequences but dispensable for single automatic behaviors trained in isolation. However, when an automatic motor sequence was practiced alongside the flexible task, it became motor cortex dependent, suggesting that an automatic motor sequence fails to consolidate subcortically when the same sequence is produced also in a flexible context. A simple neural network model recapitulated these results and offered a circuit-level explanation. Our results critically delineate the role of the motor cortex in motor sequence execution, describing the conditions under which it is engaged and the functions it fulfills, thus reconciling seemingly conflicting views about motor cortex's role in motor sequence generation.
Collapse
Affiliation(s)
- Kevin G C Mizes
- Program in Biophysics, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Jack Lindsey
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York City, NY, USA
| | - G Sean Escola
- Department of Psychiatry, Columbia University, New York City, NY, USA.
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Valle-Bautista R, Olivera-Acevedo M, Horta-Brussolo VR, Díaz NF, Ávila-González D, Molina-Hernández A. From songbird to humans: The multifaceted roles of FOXP2 in speech and motor learning. Neurosci Biobehav Rev 2024; 167:105936. [PMID: 39510218 DOI: 10.1016/j.neubiorev.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Motor learning involves a complex network of brain structures and is crucial for tasks like speech. The cerebral cortex, subcortical nuclei, and cerebellum are involved in motor learning and vocalization. Vocal learning has been demonstrated across species. However, it is a task that should be further studied and reevaluated, particularly in species considered non-vocal learners, to potentially uncover new insights. FOXP2, a transcription factor, has been implicated in speech learning and execution. Several variants have been involved in speech and cognitive impairments; the most studied is the R553H, found in the KE family, where more than half of the members show verbal dyspraxia. Brain FOXP2 expression shows consistent patterns across species in regions associated with motor learning and execution. Animal models expressing mutated FOXP2 showed impaired motor learning and vocalization. Genes regulated by FOXP2 are related to neural differentiation, connectivity, and synaptic plasticity, indicating its role in brain development and function. This review explores the intricate relationship between FOXP2, motor learning, and speech in an anatomical and functional context.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Monserrath Olivera-Acevedo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Instituto Tecnológico de Monterrey Campus Ciudad de México, Escuela de Medicina y Ciencias de la Salud, Colombia
| | - Victoria Regina Horta-Brussolo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV-IPN, Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Daniela Ávila-González
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico.
| |
Collapse
|
13
|
Sugata H, Iwane F, Hayward W, Azzollini V, Dash D, Salamanca-Giron RF, Bönstrup M, Buch ER, Cohen LG. Cingulate and striatal hubs are linked to early skill learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624544. [PMID: 39803559 PMCID: PMC11722315 DOI: 10.1101/2024.11.20.624544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Early skill learning develops in the context of activity changes in distributed cortico-subcortical regions. Here, we investigated network hubs-centers of information integration and transmission-within the brain network supporting early skill learning. We recorded magnetoencephalographic (MEG) brain activity in healthy human subjects who learned a moderately difficult sequence skill with their non-dominant left hand. We then computed network hub strength by summing top 10% functional connectivity over 86 parcellated brain regions (AAL3 atlas) and five brain oscillatory frequency bands (alpha, low-, high-beta, low- and high-gamma). Virtually all skill gains developed during rest intervals of early learning (micro-offline gains). MEG hub strength in the alpha band (8-13Hz) in bilateral anterior cingulate (ACC) and caudate and in the low-beta band (13-16Hz) in bilateral caudate and right putamen correlated with micro-offline gains. These regions linked strongly with the hippocampus, parahippocampal cortex, and lingual and fusiform gyri. Thus, alpha and low-beta brain oscillatory activity in cingulate and striatal regions appear to contribute as hubs of information integration and transmission during early skill learning.
Collapse
Affiliation(s)
- Hisato Sugata
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
- Equal Contribution
- Lead Contact
| | - Fumiaki Iwane
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Equal Contribution
| | - William Hayward
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Valentina Azzollini
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Debadatta Dash
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | | | - Marlene Bönstrup
- Department of Neurology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Lead Contact
| |
Collapse
|
14
|
Muehlberg C, Goerg S, Rullmann M, Hesse S, Sabri O, Wawrzyniak M, Classen J, Fricke C, Rumpf JJ. Motor learning is modulated by dopamine availability in the sensorimotor putamen. Brain Commun 2024; 6:fcae409. [PMID: 39584157 PMCID: PMC11582004 DOI: 10.1093/braincomms/fcae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Successful motor skill acquisition requires the dynamic interaction of multiple brain regions, with the striatum playing a critical role in this network. Animal studies suggest that dopaminergic mechanisms are involved in the regulation of motor learning-associated striatal plasticity. In humans, however, the contribution of nigrostriatal dopaminergic transmission to motor learning remains elusive beyond its well-characterized role in initiation and fluent execution of movements. In this prospective observational study, we investigated motor sequence learning in individuals who had undergone 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography for the differential diagnosis of Parkinson's disease (n = 41) and age-matched healthy controls (n = 20). We found that striatal dopamine transporter depletion exhibited distinct spatial patterns that were associated with impairments in motor sequence learning and the manifestation of Parkinsonian motor symptoms, respectively. Specifically, significant associations between striatal dopamine transporter depletion and impairments in motor sequence learning were confined to posterior putaminal regions, whereas significant associations of striatal dopamine transporter depletion with Parkinsonian motor symptom severity showed a widespread spatial pattern across the entire striatal volume with an anterior maximum. Normative functional connectivity analysis revealed that both behavioural domains shared largely overlapping connectivity patterns with the basal ganglia and supplementary motor area. However, apart from connectivity with more posterior parts of the supplementary motor area, significant functional connectivity with primary motor cortical areas was only present for striatal dopamine transporter availability-related modulation of online motor learning. Our findings indicate that striatal dopaminergic signalling plays a specific role in motor sequence learning beyond its influence on mere motor execution, implicating learning-related sensorimotor striatum recruitment and cortico-striatal plasticity as dopamine-dependent mechanisms.
Collapse
Affiliation(s)
- Christoph Muehlberg
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Sophia Goerg
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Max Wawrzyniak
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Baena D, Gabitov E, Ray LB, Doyon J, Fogel SM. Motor learning promotes regionally-specific spindle-slow wave coupled cerebral memory reactivation. Commun Biol 2024; 7:1492. [PMID: 39533111 PMCID: PMC11557691 DOI: 10.1038/s42003-024-07197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning. Utilizing simultaneous EEG-fMRI during sleep, our findings revealed that memory reactivation occured time-locked to coupled SW-SP complexes, and specifically in areas critical for motor sequence learning. Notably, these reactivations were confined to the hemisphere actively involved in learning the task. This regional specificity highlights a precise and targeted neural mechanism, underscoring the crucial role of SW-SP coupling. In addition, we observed double-dissociation whereby primary sensory areas were recruited time-locked to uncoupled spindles; suggesting a role for uncoupled spindles in sleep maintenance. These findings advance our understanding the functional significance of SW-SP coupling for enhancing memory in a regionally-specific manner, that is functionally dissociable from uncoupled spindles.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stuart M Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada.
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain & Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Yewbrey R, Kornysheva K. The Hippocampus Preorders Movements for Skilled Action Sequences. J Neurosci 2024; 44:e0832242024. [PMID: 39317474 PMCID: PMC11551893 DOI: 10.1523/jneurosci.0832-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Plasticity in the subcortical motor basal ganglia-thalamo-cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including a brain region traditionally associated with declarative memory-the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset (N = 24; 14 females) collected after participants learnt to produce four finger press sequences entirely from memory with high movement and timing accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic, and cerebellar regions, in particular during sequence execution, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings suggest that the hippocampus preorders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements that require flexible retrieval. These findings challenge the traditional taxonomy of episodic and procedural memory and carry implications for the rehabilitation of individuals with neurodegenerative disorders.
Collapse
Affiliation(s)
- Rhys Yewbrey
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Bangor Imaging Unit, Bangor University, Bangor LL57 2AS, United Kingdom
| | - Katja Kornysheva
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Bangor Imaging Unit, Bangor University, Bangor LL57 2AS, United Kingdom
| |
Collapse
|
17
|
Rubino C, Andrushko JW, Rinat S, Harrison AT, Boyd LA. Oculomotor functional connectivity associated with motor sequence learning. Cereb Cortex 2024; 34:bhae434. [PMID: 39514340 PMCID: PMC11546180 DOI: 10.1093/cercor/bhae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Acquisition of learned motor sequences involves saccades directed toward the goal to gather visual information prior to reaching. While goal-directed actions involve both eye and hand movements, the role of brain areas controlling saccades during motor sequence learning is still unclear. This study aimed to determine whether resting-state functional connectivity of oculomotor regions is associated with behavioral changes resulting from motor sequence learning. We investigated connectivity between oculomotor control regions and candidate regions involved in oculomotor control and motor sequence learning. Twenty adults had brain scans before 3 days of motor task practice and after a 24-hour retention test, which was used to assess sequence-specific learning. During testing, both saccades and reaches were tracked. Stronger connectivity in multiple oculomotor regions prior to motor task practice correlated with greater sequence-specific learning for both saccades and reaches. A more negative connectivity change involving oculomotor regions from pre- to post-training correlated with greater sequence-specific learning for both saccades and reaches. Overall, oculomotor functional connectivity was associated with the magnitude of behavioral change resulting from motor sequence learning, providing insight into the function of the oculomotor system during motor sequence learning.
Collapse
Affiliation(s)
- Cristina Rubino
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Justin W Andrushko
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shie Rinat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Adam T Harrison
- Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia 29208, United States
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
18
|
Noohi F, Kosik EL, Veziris C, Perry DC, Rosen HJ, Kramer JH, Miller BL, Holley SR, Seeley WW, Sturm VE. Structural neuroanatomy of human facial behaviors. Soc Cogn Affect Neurosci 2024; 19:nsae064. [PMID: 39308147 PMCID: PMC11492553 DOI: 10.1093/scan/nsae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/23/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
The human face plays a central role in emotions and social communication. The emotional and somatic motor networks generate facial behaviors, but whether facial behaviors have representations in the structural anatomy of the human brain is unknown. We coded 16 facial behaviors in 55 healthy older adults who viewed five videos that elicited emotions and examined whether individual differences in facial behavior were related to regional variation in gray matter volume. Voxel-based morphometry analyses revealed that greater emotional facial behavior during the disgust trial (i.e. greater brow furrowing and eye tightening as well as nose wrinkling and upper lip raising) and the amusement trial (i.e. greater smiling and eye tightening) was associated with larger gray matter volume in midcingulate cortex, supplementary motor area, and precentral gyrus, areas spanning both the emotional and somatic motor networks. When measured across trials, however, these facial behaviors (and others) only related to gray matter volume in the precentral gyrus, a somatic motor network hub. These findings suggest that the emotional and somatic motor networks store structural representations of facial behavior and that the midcingulate cortex is critical for generating the predictable movements in the face that arise during emotions.
Collapse
Affiliation(s)
- Fate Noohi
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Eena L Kosik
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Christina Veziris
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - David C Perry
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Joel H Kramer
- Department of Neurology, University of California, San Francisco, CA 94158, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, CA 94158, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
| | - Sarah R Holley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
- Department of Psychology, San Francisco State University, San Francisco, CA 94132, United States
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Virginia E Sturm
- Department of Neurology, University of California, San Francisco, CA 94158, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
| |
Collapse
|
19
|
Jin X, Chen S, Qi Y, Zhou Q, Wang J, Wang Y, Zhou C. Differential Resting-State Brain Characteristics of Skeleton Athletes and Non-Athletes: A Preliminary Resting-State fMRI Study. Brain Sci 2024; 14:1016. [PMID: 39452029 PMCID: PMC11506713 DOI: 10.3390/brainsci14101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background: This study investigates the resting-state brain characteristics of skeleton athletes compared to healthy age-matched non-athletes, using resting-state fMRI to investigate long-term skeleton-training-related changes in the brain. (2) Methods: Eleven skeleton athletes and twenty-three matched novices with no prior experience with skeleton were recruited. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity analyses were explored to investigate resting-state functional magnetic resonance imaging (rs-fMRI) data, aiming to elucidate differences in resting-state brain function between the two groups. (3) Results: Compared to the control group, skeleton athletes exhibited significantly higher ALFF in the left fusiform, left inferior temporal gyrus, right inferior frontal gyrus, left middle temporal gyrus, left and right insula, left Rolandic operculum, left inferior frontal gyrus, and left superior temporal gyrus. Skeleton athletes exhibit stronger functional connectivity in brain regions associated with cognitive and motor control (superior frontal gyrus, insula), as well as those related to reward learning (putamen), visual processing (precuneus), spatial cognition (inferior parietal), and emotional processing (amygdala), during resting-state brain function. (4) Conclusions: The study contributes to understanding how motor training history shapes skeleton athletes' brains, which have distinct neural characteristics compared to the control population, indicating potential adaptations in brain function related to their specialized training and expertise in the sport.
Collapse
Affiliation(s)
- Xinhong Jin
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (S.C.); (Y.Q.); (Q.Z.); (J.W.); (Y.W.)
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai 200438, China
| | - Shuying Chen
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (S.C.); (Y.Q.); (Q.Z.); (J.W.); (Y.W.)
| | - Yapeng Qi
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (S.C.); (Y.Q.); (Q.Z.); (J.W.); (Y.W.)
| | - Qichen Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (S.C.); (Y.Q.); (Q.Z.); (J.W.); (Y.W.)
| | - Jian Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (S.C.); (Y.Q.); (Q.Z.); (J.W.); (Y.W.)
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (S.C.); (Y.Q.); (Q.Z.); (J.W.); (Y.W.)
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai 200438, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (S.C.); (Y.Q.); (Q.Z.); (J.W.); (Y.W.)
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai 200438, China
| |
Collapse
|
20
|
Bianco KM, Fuelscher I, Lum JAG, Singh M, Barhoun P, Silk TJ, Caeyenberghs K, Williams J, Enticott PG, Mukherjee M, Kumar G, Waugh J, Hyde C. Procedural learning is associated with microstructure of basal ganglia-cerebellar circuitry in children. Brain Cogn 2024; 180:106204. [PMID: 39053201 DOI: 10.1016/j.bandc.2024.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (Mage = 10.00 ± 2.31, 10 female) completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the 'rebound effect' from the SRT task - a measure of PL proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level, a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual differences in childhood PL.
Collapse
Affiliation(s)
- Kaila M Bianco
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mervyn Singh
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mugdha Mukherjee
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gayatri Kumar
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jessica Waugh
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
21
|
Zavecz Z, Janacsek K, Simor P, Cohen MX, Nemeth D. Similarity of brain activity patterns during learning and subsequent resting state predicts memory consolidation. Cortex 2024; 179:168-190. [PMID: 39197408 DOI: 10.1016/j.cortex.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Spontaneous reactivation of brain activity from learning to a subsequent off-line period has been implicated as a neural mechanism underlying memory consolidation. However, similarities in brain activity may also emerge as a result of individual, trait-like characteristics. Here, we introduced a novel approach for analyzing continuous electroencephalography (EEG) data to investigate learning-induced changes as well as trait-like characteristics in brain activity underlying memory consolidation. Thirty-one healthy young adults performed a learning task, and their performance was retested after a short (∼1 h) delay. Consolidation of two distinct types of information (serial-order and probability) embedded in the task were tested to reveal similarities in functional networks that uniquely predict the changes in the respective memory performance. EEG was recorded during learning and pre- and post-learning rest periods. To investigate brain activity associated with consolidation, we quantified similarities in EEG functional connectivity between learning and pre-learning rest (baseline similarity) and learning and post-learning rest (post-learning similarity). While comparable patterns of these two could indicate trait-like similarities, changes from baseline to post-learning similarity could indicate learning-induced changes, possibly spontaneous reactivation. Higher learning-induced changes in alpha frequency connectivity (8.5-9.5 Hz) were associated with better consolidation of serial-order information, particularly for long-range connections across central and parietal sites. The consolidation of probability information was associated with learning-induced changes in delta frequency connectivity (2.5-3 Hz) specifically for more local, short-range connections. Furthermore, there was a substantial overlap between the baseline and post-learning similarities and their associations with consolidation performance, suggesting robust (trait-like) differences in functional connectivity networks underlying memory processes.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, London, United Kingdom.
| | - Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Michael X Cohen
- Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France; NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Department of Education and Psychology, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Mottaz A, Savic B, Allaman L, Guggisberg AG. Neural correlates of motor learning: Network communication versus local oscillations. Netw Neurosci 2024; 8:714-733. [PMID: 39355447 PMCID: PMC11340994 DOI: 10.1162/netn_a_00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/18/2024] [Indexed: 10/03/2024] Open
Abstract
Learning new motor skills through training, also termed motor learning, is central for everyday life. Current training strategies recommend intensive task-repetitions aimed at inducing local activation of motor areas, associated with changes in oscillation amplitudes ("event-related power") during training. More recently, another neural mechanism was suggested to influence motor learning: modulation of functional connectivity (FC), that is, how much spatially separated brain regions communicate with each other before and during training. The goal of the present study was to compare the impact of these two neural processing types on motor learning. We measured EEG before, during, and after a finger-tapping task (FTT) in 20 healthy subjects. The results showed that training gain, long-term expertise (i.e., average motor performance), and consolidation were all predicted by whole-brain alpha- and beta-band FC at motor areas, striatum, and mediotemporal lobe (MTL). Local power changes during training did not predict any dependent variable. Thus, network dynamics seem more crucial than local activity for motor sequence learning, and training techniques should attempt to facilitate network interactions rather than local cortical activation.
Collapse
Affiliation(s)
- Anaïs Mottaz
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- SIB Text Mining Group, Swiss Institute of Bioinformatics, Carouge, Switzerland
- BiTeM Group, Information Sciences, HES-SO/HEG, Carouge, Switzerland
| | - Branislav Savic
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Leslie Allaman
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
| | - Adrian G. Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
23
|
Lanir-Azaria S, Chishinski R, Tauman R, Nir Y, Giladi N. Sleep improves accuracy, but not speed, of generalized motor learning in young and older adults and in individuals with Parkinson's disease. Front Behav Neurosci 2024; 18:1466696. [PMID: 39390986 PMCID: PMC11464313 DOI: 10.3389/fnbeh.2024.1466696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
An essential aspect of motor learning is generalizing procedural knowledge to facilitate skill acquisition across diverse conditions. Here, we examined the development of generalized motor learning during initial practice-dependent learning, and how distinct components of learning are consolidated over longer timescales during wakefulness or sleep. In the first experiment, a group of young healthy volunteers engaged in a novel motor sequence task over 36 h in a two-arm experimental design (either morning-evening-morning, or evening-morning-evening) aimed at controlling for circadian confounders. The findings unveiled an immediate, rapid generalization of sequential learning, accompanied by an additional long-timescale performance gain. Sleep modulated accuracy, but not speed, above and beyond equivalent wake intervals. To further elucidate the role of sleep across ages and under neurodegenerative disorders, a second experiment utilized the same task in a group of early-stage, drug-naïve individuals with Parkinson's disease and in healthy individuals of comparable age. Participants with Parkinson's disease exhibited comparable performance to their healthy age-matched group with the exception of reduced performance in recalling motor sequences, revealing a disease-related cognitive shortfall. In line with the results found in young subjects, both groups exhibited improved accuracy, but not speed, following a night of sleep. This result emphasizes the role of sleep in skill acquisition and provides a potential framework for deeper investigation of the intricate relationship between sleep, aging, Parkinson's disease, and motor learning.
Collapse
Affiliation(s)
- Saar Lanir-Azaria
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | - Riva Tauman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yuval Nir
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Damme KSF, Han YC, Han Z, Reber PJ, Mittal VA. Motor precision deficits in clinical high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1427-1435. [PMID: 37458819 PMCID: PMC10792107 DOI: 10.1007/s00406-023-01645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
Motor deficits appear prior to psychosis onset, provide insight into vulnerability as well as mechanisms that give rise to emerging illness, and are predictive of conversion. However, to date, the extant literature has often targeted a complex abnormality (e.g., gesture dysfunction, dyskinesia), or a single fundamental domain (e.g., accuracy) but rarely provided critical information about several of the individual components that make up more complex behaviors (or deficits). This preliminary study applies a novel implicit motor task to assess domains of motor accuracy, speed, recognition, and precision in individuals at clinical high risk for psychosis (CHR-p). Sixty participants (29 CHR-p; 31 healthy volunteers) completed clinical symptom interviews and a novel Serial Interception Sequence Learning (SISL) task that assessed implicit motor sequence accuracy, speed, precision, and explicit sequence recognition. These metrics were examined in multilevel models that enabled the examination of overall effects and changes in motor domains over blocks of trials and by positive/negative symptom severity. Implicit motor sequence accuracy, speed, and explicit sequence recognition were not detected as impacted in CHR-p. When compared to healthy controls, individuals at CHR-p were less precise in motor responses both overall (d = 0.91) and particularly in early blocks which normalized over later blocks. Within the CHR-p group, these effects were related to positive symptom levels (t = - 2.22, p = 0.036), such that individuals with higher symptom levels did not improve in motor precision over time (r's = 0.01-0.05, p's > 0.54). CHR-p individuals showed preliminary evidence of motor precision deficits but no other motor domain deficits, particularly in early performance that normalized with practice.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA.
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA.
| | - Y Catherine Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Ziyan Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Paul J Reber
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
25
|
Subramanian SK, Morgan RT, Rasmusson C, Shepherd KM, Li CL. Genetic polymorphisms and post-stroke upper limb motor improvement - A systematic review and meta-analysis. J Cent Nerv Syst Dis 2024; 16:11795735241266601. [PMID: 39049838 PMCID: PMC11268047 DOI: 10.1177/11795735241266601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Post-stroke upper limb (UL) motor improvement is associated with adaptive neuroplasticity and motor learning. Both intervention-related (including provision of intensive, variable, and task-specific practice) and individual-specific factors (including the presence of genetic polymorphisms) influence improvement. In individuals with stroke, most commonly, polymorphisms are found in Brain Derived Neurotrophic Factor (BDNF), Apolipoprotein (APOE) and Catechol-O-Methyltransferase (COMT). These involve a replacement of cystine by arginine (APOEε4) or valines by 1 or 2 methionines (BDNF:val66met, met66met; COMT:val158met; met158met). However, the implications of these polymorphisms on post-stroke UL motor improvement specifically have not yet been elucidated. Objective Examine the influence of genetic polymorphism on post-stroke UL motor improvement. Design Systematic Review and Meta-Analysis. Methods We conducted a systematic search of the literature published in English language. The modified Downs and Black checklist helped assess study quality. We compared change in UL motor impairment and activity scores between individuals with and without the polymorphisms. Meta-analyses helped assess change in motor impairment (Fugl Meyer Assessment) scores based upon a minimum of 2 studies/time point. Effect sizes (ES) were quantified based upon the Rehabilitation Treatment Specification System as follows: small (0.08-0.18), medium (0.19 -0.40) and large (≥0.41). Results We retrieved 10 (4 good and 6 fair quality) studies. Compared to those with BDNF val66met and met66met polymorphism, meta-analyses revealed lower motor impairment (large ES) in those without the polymorphism at intervention completion (0.5, 95% CI: 0.11-0.88) and at retention (0.58, 95% CI:0.06-1.11). The presence of CoMT val158met or met158met polymorphism had similar results, with lower impairment (large ES ≥1.5) and higher activity scores (large ES ranging from 0.5-0.76) in those without the polymorphism. Presence of APOEε4 form did not influence UL motor improvement. Conclusion Polymorphisms with the presence of 1 or 2 met alleles in BDNF and COMT negatively influence UL motor improvement. Registration https://osf.io/wk9cf/.
Collapse
Affiliation(s)
- Sandeep K. Subramanian
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Neurosciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Riley T. Morgan
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carl Rasmusson
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kayla M. Shepherd
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carol L. Li
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy VA Hospital, South Texas Veterans Health Administration, Polytrauma Rehabilitation Center, San Antonio, TX, USA
| |
Collapse
|
26
|
Lee HS, Kim S, Kim H, Baik SM, Kim DH, Chang WH. No Additional Effects of Sequential Facilitatory Cerebral and Cerebellar rTMS in Subacute Stroke Patients. J Pers Med 2024; 14:687. [PMID: 39063941 PMCID: PMC11278256 DOI: 10.3390/jpm14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to investigate the additional effects of cerebellar rTMS on the motor recovery of facilitatory rTMS over affected primary motor cortex (M1) in subacute stroke patients. Twenty-eight subacute stroke patients were recruited in this single-blind, randomized, controlled trial. The Cr-Cbll group received Cr-Cbll rTMS stimulation consisting of high-frequency rTMS over affected M1 (10 min), motor training (10 min), and high-frequency rTMS over contralesional Cbll (10 min). The Cr-sham group received sham rTMS instead of high-frequency rTMS over the cerebellum. Ten daily sessions were performed for 2 weeks. A Fugl-Meyer Assessment (FMA) was measured before (T0), immediately after (T1), and 2 months after the intervention (T2). A total of 20 participants (10 in the Cr-Cbll group and 10 in the Cr-sham group) completed the intervention. There was no significant difference in clinical characteristics between the two groups at T0. FMA was significantly improved after the intervention in both Cr-Cbll and Cr-sham groups (p < 0.05). However, there was no significant interaction in FMA between time and group. In conclusion, these results could not demonstrate that rTMS over the contralesional cerebellum has additional effects to facilitatory rTMS over the affected M1 for improving motor function in subacute stroke patients.
Collapse
Affiliation(s)
- Ho Seok Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sungwon Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Heegoo Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seung-min Baik
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
27
|
Liu W, Ye S, Cao Y, Li Y, Gao Y, Zhao M, Wang Y, Yun B, Luo L, Zheng C, Jia X. Brain local stability and network flexibility of table tennis players: a 7T MRI study. Cereb Cortex 2024; 34:bhae264. [PMID: 38937078 DOI: 10.1093/cercor/bhae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Table tennis players have adaptive visual and sensorimotor networks, which are the key brain regions to acquire environmental information and generate motor output. This study examined 20 table tennis players and 21 control subjects through ultrahigh field 7 Tesla magnetic resonance imaging. First, we measured percentage amplitude of fluctuation across five different frequency bands and found that table tennis players had significantly lower percentage amplitude of fluctuation values than control subjects in 18 brain regions, suggesting enhanced stability of spontaneous brain fluctuation amplitudes in visual and sensorimotor networks. Functional connectional analyses revealed increased static functional connectivity between two sensorimotor nodes and other frontal-parietal regions among table tennis players. Additionally, these players displayed enhanced dynamic functional connectivity coupled with reduced static connectivity between five nodes processing visual and sensory information input, and other large-scale cross-regional areas. These findings highlight that table tennis players undergo neural adaptability through a dual mechanism, characterized by global stability in spontaneous brain fluctuation amplitudes and heightened flexibility in visual sensory networks. Our study offers novel insights into the mechanisms of neural adaptability in athletes, providing a foundation for future efforts to enhance cognitive functions in diverse populations, such as athletes, older adults, and individuals with cognitive impairments.
Collapse
Affiliation(s)
- Wenming Liu
- Department of Sport Science, College of Education, Zhejiang University, 310029 Hangzhou, China
| | - Shuqin Ye
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yuting Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yuyang Li
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, 321000 Jinhua, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, 154007 Jiamusi, China
| | - Bing Yun
- Department of Public Physical and Art Education, Zhejiang University, 310029 Hangzhou, China
| | - Le Luo
- Hangzhou Wuyunshan Hospital, 310018 Hangzhou, China
| | - Chanying Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
| |
Collapse
|
28
|
Kóbor A, Janacsek K, Hermann P, Zavecz Z, Varga V, Csépe V, Vidnyánszky Z, Kovács G, Nemeth D. Finding Pattern in the Noise: Persistent Implicit Statistical Knowledge Impacts the Processing of Unpredictable Stimuli. J Cogn Neurosci 2024; 36:1239-1264. [PMID: 38683699 DOI: 10.1162/jocn_a_02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Humans can extract statistical regularities of the environment to predict upcoming events. Previous research recognized that implicitly acquired statistical knowledge remained persistent and continued to influence behavior even when the regularities were no longer present in the environment. Here, in an fMRI experiment, we investigated how the persistence of statistical knowledge is represented in the brain. Participants (n = 32) completed a visual, four-choice, RT task consisting of statistical regularities. Two types of blocks constantly alternated with one another throughout the task: predictable statistical regularities in one block type and unpredictable ones in the other. Participants were unaware of the statistical regularities and their changing distribution across the blocks. Yet, they acquired the statistical regularities and showed significant statistical knowledge at the behavioral level not only in the predictable blocks but also in the unpredictable ones, albeit to a smaller extent. Brain activity in a range of cortical and subcortical areas, including early visual cortex, the insula, the right inferior frontal gyrus, and the right globus pallidus/putamen contributed to the acquisition of statistical regularities. The right insula, inferior frontal gyrus, and hippocampus as well as the bilateral angular gyrus seemed to play a role in maintaining this statistical knowledge. The results altogether suggest that statistical knowledge could be exploited in a relevant, predictable context as well as transmitted to and retrieved in an irrelevant context without a predictable structure.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | - Karolina Janacsek
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, United Kingdom
- ELTE Eötvös Loránd University, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Vera Varga
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Dezso Nemeth
- INSERM, CRNL U1028 UMR5292, France
- ELTE Eötvös Loránd University & HUN-REN Research Centre for Natural Sciences, Hungary
- University of Atlántico Medio, Spain
| |
Collapse
|
29
|
Manes JL, Bullock L, Meier AM, Turner RS, Richardson RM, Guenther FH. A neurocomputational view of the effects of Parkinson's disease on speech production. Front Hum Neurosci 2024; 18:1383714. [PMID: 38812472 PMCID: PMC11133703 DOI: 10.3389/fnhum.2024.1383714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this article is to review the scientific literature concerning speech in Parkinson's disease (PD) with reference to the DIVA/GODIVA neurocomputational modeling framework. Within this theoretical view, the basal ganglia (BG) contribute to several different aspects of speech motor learning and execution. First, the BG are posited to play a role in the initiation and scaling of speech movements. Within the DIVA/GODIVA framework, initiation and scaling are carried out by initiation map nodes in the supplementary motor area acting in concert with the BG. Reduced support of the initiation map from the BG in PD would result in reduced movement intensity as well as susceptibility to early termination of movement. A second proposed role concerns the learning of common speech sequences, such as phoneme sequences comprising words; this view receives support from the animal literature as well as studies identifying speech sequence learning deficits in PD. Third, the BG may play a role in the temporary buffering and sequencing of longer speech utterances such as phrases during conversational speech. Although the literature does not support a critical role for the BG in representing sequence order (since incorrectly ordered speech is not characteristic of PD), the BG are posited to contribute to the scaling of individual movements in the sequence, including increasing movement intensity for emphatic stress on key words. Therapeutic interventions for PD have inconsistent effects on speech. In contrast to dopaminergic treatments, which typically either leave speech unchanged or lead to minor improvements, deep brain stimulation (DBS) can degrade speech in some cases and improve it in others. However, cases of degradation may be due to unintended stimulation of efferent motor projections to the speech articulators. Findings of spared speech after bilateral pallidotomy appear to indicate that any role played by the BG in adult speech must be supplementary rather than mandatory, with the sequential order of well-learned sequences apparently represented elsewhere (e.g., in cortico-cortical projections).
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Latané Bullock
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andrew M. Meier
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Frank H. Guenther
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
30
|
Borders JC, Lowell ER, Huber JE, Quinn L, Michelle S Troche. A Preliminary Study of Voluntary Cough Motor Performance and Learning With Skill Training and Biofeedback. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1299-1323. [PMID: 38557139 DOI: 10.1044/2024_jslhr-23-00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE Sensorimotor cough skill training (CST) has been shown to improve cough strength, as well as facilitate changes during training (i.e., motor performance) and generalization to untrained tasks (i.e., motor learning). However, there is a gap in our understanding of the effects of voluntary CST (without sensory stimuli) on motor performance and learning. Furthermore, the contribution of physiologic factors, such as lung volume, a driver of cough strength in healthy adults, and treatment-specific factors, such as biofeedback, remains unexamined. METHOD Twenty individuals with Parkinson's disease (PD) completed pre- and post-CST single voluntary, sequential voluntary, and reflex cough testing. Participants were randomized to biofeedback or no biofeedback groups. They completed one CST session involving 25 trials of voluntary coughs, with the treatment target set 25% above baseline peak flow. Participants were instructed to "cough hard" to exceed the target. In the biofeedback group, participants received direct visualization of the target line in real time. RESULTS Cough peak flow showed positive improvements in motor performance (β = .02; 95% credible interval [CI]: 0.01, 0.03) and learning (β = .26; 95% CI: 0.03, 0.47). Changes in lung volume from pre- to post-CST did not predict treatment response. No differences in treatment response were detected between the biofeedback groups. CONCLUSIONS A single session of voluntary CST improved voluntary cough motor performance and learning. Although lung volume increased during CST, changes to lung volume did not predict treatment response. These findings demonstrate the potential of voluntary CST to improve motor performance and motor learning among individuals with PD and cough dysfunction. SUPPLEMENTAL MATERIAL AND OPEN SCIENCE FORM https://doi.org/10.23641/asha.25447444.
Collapse
Affiliation(s)
- James C Borders
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY
| | - Emilie R Lowell
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY
| | - Jessica E Huber
- Motor Speech Laboratory, Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Lori Quinn
- Neurorehabilitation Research Laboratory, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY
| | - Michelle S Troche
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY
| |
Collapse
|
31
|
Ullman MT, Clark GM, Pullman MY, Lovelett JT, Pierpont EI, Jiang X, Turkeltaub PE. The neuroanatomy of developmental language disorder: a systematic review and meta-analysis. Nat Hum Behav 2024; 8:962-975. [PMID: 38491094 DOI: 10.1038/s41562-024-01843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Developmental language disorder (DLD) is a common neurodevelopmental disorder with adverse impacts that continue into adulthood. However, its neural bases remain unclear. Here we address this gap by systematically identifying and quantitatively synthesizing neuroanatomical studies of DLD using co-localization likelihood estimation, a recently developed neuroanatomical meta-analytic technique. Analyses of structural brain data (22 peer-reviewed papers, 577 participants) revealed highly consistent anomalies only in the basal ganglia (100% of participant groups in which this structure was examined, weighted by group sample sizes; 99.8% permutation-based likelihood the anomaly clustering was not due to chance). These anomalies were localized specifically to the anterior neostriatum (again 100% weighted proportion and 99.8% likelihood). As expected given the task dependence of activation, functional neuroimaging data (11 peer-reviewed papers, 414 participants) yielded less consistency, though anomalies again occurred primarily in the basal ganglia (79.0% and 95.1%). Multiple sensitivity analyses indicated that the patterns were robust. The meta-analyses elucidate the neuroanatomical signature of DLD, and implicate the basal ganglia in particular. The findings support the procedural circuit deficit hypothesis of DLD, have basic research and translational implications for the disorder, and advance our understanding of the neuroanatomy of language.
Collapse
Affiliation(s)
- Michael T Ullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA.
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Mariel Y Pullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA
- Mount Sinai Beth Israel, New York, NY, USA
| | - Jarrett T Lovelett
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth I Pierpont
- Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Xiong Jiang
- Department of Neuroscience, Georgetown University, Washington DC, USA
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University, Washington DC, USA
- Research Division, MedStar National Rehabilitation Network, Washington DC, USA
| |
Collapse
|
32
|
Korte JA, Weakley A, Fernandez KD, Joiner WM, Fan AP. Neural Underpinnings of Learning in Dementia Populations: A Review of Motor Learning Studies Combined with Neuroimaging. J Cogn Neurosci 2024; 36:734-755. [PMID: 38285732 PMCID: PMC11934338 DOI: 10.1162/jocn_a_02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The intent of this review article is to serve as an overview of current research regarding the neural characteristics of motor learning in Alzheimer disease (AD) as well as prodromal phases of AD: at-risk populations, and mild cognitive impairment. This review seeks to provide a cognitive framework to compare various motor tasks. We will highlight the neural characteristics related to cognitive domains that, through imaging, display functional or structural changes because of AD progression. In turn, this motivates the use of motor learning paradigms as possible screening techniques for AD and will build upon our current understanding of learning abilities in AD populations.
Collapse
Affiliation(s)
- Jessica A. Korte
- Department of Biomedical Engineering, University of California, Davis
| | - Alyssa Weakley
- Department of Neurology, University of California, Davis
| | | | - Wilsaan M. Joiner
- Department of Biomedical Engineering, University of California, Davis
- Department of Neurology, University of California, Davis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Audrey P. Fan
- Department of Biomedical Engineering, University of California, Davis
- Department of Neurology, University of California, Davis
| |
Collapse
|
33
|
Worschech F, Passarotto E, Losch H, Oku T, Lee A, Altenmüller E. What Does It Take to Play the Piano? Cognito-Motor Functions Underlying Motor Learning in Older Adults. Brain Sci 2024; 14:405. [PMID: 38672054 PMCID: PMC11048694 DOI: 10.3390/brainsci14040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The acquisition of skills, such as learning to play a musical instrument, involves various phases that make specific demands on the learner. Knowledge of the cognitive and motor contributions during learning phases can be helpful in developing effective and targeted interventions for healthy aging. Eighty-six healthy older participants underwent an extensive cognitive, motoric, and musical test battery. Within one session, one piano-related and one music-independent movement sequence were both learned. We tested the associations between skill performance and cognito-motor abilities with Bayesian mixed models accounting for individual learning rates. Results showed that performance was positively associated with all cognito-motor abilities. Learning a piano-related task was characterized by relatively strong initial associations between performance and abilities. These associations then weakened considerably before increasing exponentially from the second trial onwards, approaching a plateau. Similar performance-ability relationships were detected in the course of learning a music-unrelated motor task. Positive performance-ability associations emphasize the potential of learning new skills to produce positive cognitive and motor transfer effects. Consistent high-performance tasks that demand maximum effort from the participants could be very effective. However, interventions should be sufficiently long so that the transfer potential can be fully exploited.
Collapse
Affiliation(s)
- Florian Worschech
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| | - Edoardo Passarotto
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Hannah Losch
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Institute for Music Education Research, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
| | - Takanori Oku
- NeuroPiano Institute, Kyoto 600-8086, Japan
- College of Engineering and Design, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - André Lee
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
- Department of Neurology, Klinikum Rechts der Isar Technische Universität München, 80333 Munich, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| |
Collapse
|
34
|
Pedraza F, Farkas BC, Vékony T, Haesebaert F, Phelipon R, Mihalecz I, Janacsek K, Anders R, Tillmann B, Plancher G, Németh D. Evidence for a competitive relationship between executive functions and statistical learning. NPJ SCIENCE OF LEARNING 2024; 9:30. [PMID: 38609413 PMCID: PMC11014972 DOI: 10.1038/s41539-024-00243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The ability of the brain to extract patterns from the environment and predict future events, known as statistical learning, has been proposed to interact in a competitive manner with prefrontal lobe-related networks and their characteristic cognitive or executive functions. However, it remains unclear whether these cognitive functions also possess a competitive relationship with implicit statistical learning across individuals and at the level of latent executive function components. In order to address this currently unknown aspect, we investigated, in two independent experiments (NStudy1 = 186, NStudy2 = 157), the relationship between implicit statistical learning, measured by the Alternating Serial Reaction Time task, and executive functions, measured by multiple neuropsychological tests. In both studies, a modest, but consistent negative correlation between implicit statistical learning and most executive function measures was observed. Factor analysis further revealed that a factor representing verbal fluency and complex working memory seemed to drive these negative correlations. Thus, the antagonistic relationship between implicit statistical learning and executive functions might specifically be mediated by the updating component of executive functions or/and long-term memory access.
Collapse
Affiliation(s)
- Felipe Pedraza
- Laboratoire d'Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, Bron, France
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Bence C Farkas
- Institut du Psychotraumatisme de l'Enfant et de l'Adolescent, Conseil Départemental Yvelines et Hauts-de-Seine et Centre Hospitalier des Versailles, 78000, Versailles, France
- UVSQ, Inserm, Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Saclay, 78000, Versailles, France
- LNC2, Département d'études Cognitives, École Normale Supérieure, INSERM, PSL Research University, 75005, Paris, France
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France.
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain.
| | - Frederic Haesebaert
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Romane Phelipon
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Imola Mihalecz
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
| | - Karolina Janacsek
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, London, SE10 9LS, UK
- Institute of Psychology, ELTE Eötvös Loránd University, Kazinczy u. 23-27, H-1075, Budapest, Hungary
| | - Royce Anders
- EPSYLON Laboratory, Department of Psychology, University Paul Valéry Montpellier 3, F34000, Montpellier, France
| | - Barbara Tillmann
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France
- Laboratory for Research on Learning and Development, LEAD - CNRS UMR5022, Université de Bourgogne, Dijon, France
| | - Gaën Plancher
- Laboratoire d'Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, Bron, France
- Institut Universitaire de France (IUF), Paris, France
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1, CRNL U1028 UMR5292, 95 Boulevard Pinel, F-69500, Bron, France.
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain.
- BML-NAP Research Group, ELTE Eötvös Loránd University & HUN-REN Research Centre for Natural Sciences, Damjanich utca 41, H-1072, Budapest, Hungary.
| |
Collapse
|
35
|
Sánchez-Silverio V, Abuín-Porras V, Pedersini P, Villafañe JH, Leigheb M, Rodríguez-Costa I. Analysis of Motor Learning Principles Applied in Tasks or Motor Skills Trained by Stroke Patients. TOPICS IN GERIATRIC REHABILITATION 2024; 40:133-138. [DOI: 10.1097/tgr.0000000000000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Objective:
To analyze the principles applied to promote and evaluate motor learning in tasks or motor skills trained by stroke patients.
Methods:
Articles were included if they used motor learning principles in tasks or motor skills trained by stroke patients.
Results:
Twelve studies were included in this review. Quality was good for the included studies. Articles used motor learning principle based on practice (N = 12), repetitive training (N = 9), and feedback (N = 5).
Conclusions:
There are different motor learning principles to promote and evaluate motor learning in stroke patients. These findings could guide clinicians during training of tasks or motor skills.
Collapse
|
36
|
Cesari V, D’Aversa S, Piarulli A, Melfi F, Gemignani A, Menicucci D. Sense of Agency and Skills Learning in Virtual-Mediated Environment: A Systematic Review. Brain Sci 2024; 14:350. [PMID: 38672002 PMCID: PMC11048251 DOI: 10.3390/brainsci14040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Agency is central to remote actions, and it may enhance skills learning due to a partial overlap between brain structures and networks, the promotion of confidence towards a telemanipulator, and the feeling of congruence of the motor choice to the motor plan. We systematically reviewed studies aiming to verify the role of agency in improving learning. Fifteen studies were selected from MEDLINE and Scopus®. When a mismatch is introduced between observed and performed actions, the decrease in agency and learning is proportional to the intensity of the mismatch, which is due to greater interference with the motor programming. Thanks to multisensory integration, agency and learning benefit both from sensory and performance feedback and from the timing of feedback based on control at the goal level or the perceptual-motor level. This work constitutes a bedrock for professional teleoperation settings (e.g., robotic surgery), with particular reference to the role of agency in performing complex tasks with remote control.
Collapse
Affiliation(s)
- Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (S.D.); (A.P.); (F.M.); (A.G.)
| | - Sveva D’Aversa
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (S.D.); (A.P.); (F.M.); (A.G.)
| | - Andrea Piarulli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (S.D.); (A.P.); (F.M.); (A.G.)
| | - Franca Melfi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (S.D.); (A.P.); (F.M.); (A.G.)
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (S.D.); (A.P.); (F.M.); (A.G.)
- Clinical Psychology Branch, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (S.D.); (A.P.); (F.M.); (A.G.)
| |
Collapse
|
37
|
Dyck S, Klaes C. Training-related changes in neural beta oscillations associated with implicit and explicit motor sequence learning. Sci Rep 2024; 14:6781. [PMID: 38514711 PMCID: PMC10958048 DOI: 10.1038/s41598-024-57285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
Many motor actions we perform have a sequential nature while learning a motor sequence involves both implicit and explicit processes. In this work, we developed a task design where participants concurrently learn an implicit and an explicit motor sequence across five training sessions, with EEG recordings at sessions 1 and 5. This intra-subject approach allowed us to study training-induced behavioral and neural changes specific to the explicit and implicit components. Based on previous reports of beta power modulations in sensorimotor networks related to sequence learning, we focused our analysis on beta oscillations at motor-cortical sites. On a behavioral level, substantial performance gains were evident early in learning in the explicit condition, plus slower performance gains across training sessions in both explicit and implicit sequence learning. Consistent with the behavioral trends, we observed a training-related increase in beta power in both sequence learning conditions, while the explicit condition displayed stronger beta power suppression during early learning. The initially stronger beta suppression and subsequent increase in beta power specific to the explicit component, correlated with enhanced behavioral performance, possibly reflecting higher cortical excitability. Our study suggests an involvement of motor-cortical beta oscillations in the explicit component of motor sequence learning.
Collapse
Affiliation(s)
- Susanne Dyck
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| | - Christian Klaes
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- Neurosurgery, University hospital Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
38
|
Liu W, Cheng X, Rao J, Yu J, Lin Z, Wang Y, Wang L, Li D, Liu L, Gao R. Motor imagery therapy improved upper limb motor function in stroke patients with hemiplegia by increasing functional connectivity of sensorimotor and cognitive networks. Front Hum Neurosci 2024; 18:1295859. [PMID: 38439937 PMCID: PMC10910033 DOI: 10.3389/fnhum.2024.1295859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Background Motor imagery therapy (MIT) showed positive effects on upper limbs motor function. However, the mechanism by which MIT improves upper limb motor function is not fully understood. Therefore, our purpose was to investigate the changes in functional connectivity (FC) within and outside the sensorimotor network (SMN) induced by MIT associated with improvement in upper limb motor function in stroke patients. Methods A total of 26 hemiplegic stroke patients were randomly divided into MIT (n = 13) and control (n = 13) groups. Fugl-Meyer Assessment Upper Extremity Scale (FMA-UL), Modified Barthel Index (MBI) and resting-state functional magnetic resonance imaging (rs-fMRI) were evaluated in the two groups before treatment and 4 weeks after treatment. The efficacy of MIT on motor function improvement in stroke patients with hemiplegia was evaluated by comparing the FMA-UL and MBI scores before and after treatment in the two groups. Furthermore, the FC within the SMN and between the SMN and the whole brain was measured and compared before and after different treatment methods in stroke patients. The correlation analysis between the improvement of upper limbs motor function and changes in FC within the SMN and between the SMN and the whole brain was examined. Results The FCs between ipsilesional primary motor cortex (M1.I) and contralateral supplementary motor area (SMA.C), M1.I and ipsilesional SMA (SMA.I), and SMA.C and contralateral dorsolateral premotor cortex (DLPM.C) significantly increased in the control group but decreased in the MIT group; while the FC between SMA.C and contralateral primary somatosensory cortex (S1.C) significantly increased in the control group but showed no significant difference in the MIT group. The FCs between M1.I and the ipsilesional hippocampal gyrus and ipsilesional middle frontal gyrus significantly decreased in the control group but increased in the MIT group; while the FC in the contralateral anterior cingulate cortex significantly increased in the MIT group but there was no significant difference in the control group. The results of the correlation analysis showed that the differences in abnormal intra-FCs within the SMN negatively correlated with the differences in FMA and MBI, and the difference in abnormal inter-FCs of the SMN positively correlated with the differences in FMA and MBI. Conclusions MIT can improve upper limb motor function and daily activities of stroke patients, and the improvement effect of conventional rehabilitation therapy (CRT) combined with MIT is significantly higher than that of CRT alone. CRT may improve the upper limb motor function of stroke patients with hemiplegia mainly through the functional reorganization between SMN, while MIT may mainly increase the interaction between SMN and other brain networks.
Collapse
Affiliation(s)
- Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Cheng
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawen Yu
- Department of Rehabilitation, Changzhou Ruihong Hospital, Changzhou, China
| | - Zhiqiang Lin
- Graduate Department, Nanjing Sports Institute, Nanjing, China
| | - Yao Wang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lulu Wang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Danhui Li
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Run Gao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Olszewska AM, Gaca M, Droździel D, Widlarz A, Herman AM, Marchewka A. Understanding functional brain reorganization for naturalistic piano playing in novice pianists. J Neurosci Res 2024; 102:e25312. [PMID: 38400578 DOI: 10.1002/jnr.25312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Learning to play the piano is a unique complex task, integrating multiple sensory modalities and higher order cognitive functions. Longitudinal neuroimaging studies on adult novice musicians show training-related functional changes in music perception tasks. The reorganization of brain activity while actually playing an instrument was studied only on a very short time frame of a single fMRI session, and longer interventions have not yet been performed. Thus, our aim was to investigate the dynamic complexity of functional brain reorganization while playing the piano within the first half year of musical training. We scanned 24 novice keyboard learners (female, 18-23 years old) using fMRI while they played increasingly complex musical pieces after 1, 6, 13, and 26 weeks of training. Playing music evoked responses bilaterally in the auditory, inferior frontal, and supplementary motor areas, and the left sensorimotor cortex. The effect of training over time, however, invoked widespread changes encompassing the right sensorimotor cortex, cerebellum, superior parietal cortex, anterior insula and hippocampus, among others. As the training progressed, the activation of these regions decreased while playing music. Post hoc analysis revealed region-specific time-courses for independent auditory and motor regions of interest. These results suggest that while the primary sensory, motor, and frontal regions are associated with playing music, the training decreases the involvement of higher order cognitive control and integrative regions, and basal ganglia. Moreover, training might affect distinct brain regions in different ways, providing evidence in favor of the dynamic nature of brain plasticity.
Collapse
Affiliation(s)
- Alicja M Olszewska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Widlarz
- Department of Choir Conducting and Singing, Music Education and Rhythmics, The Chopin University of Music, Warsaw, Poland
| | - Aleksandra M Herman
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
40
|
Zhang X, Feng Y, Chen Z, Long J. Altered functional connectivity in the hippocampal and striatal systems after motor sequence learning consolidation in medial temporal lobe epilepsy individuals. J Neurophysiol 2024; 131:294-303. [PMID: 38230870 DOI: 10.1152/jn.00376.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Both the hippocampal and striatal systems participate in motor sequence learning (MSL) in healthy subjects, and the prominent role of the hippocampal system in sleep-related consolidation has been demonstrated. However, some pathological states may change the functional dominance between these two systems in MSL consolidation. To better understand the functional performance within these two systems under the pathological condition of hippocampal impairment, we compared the functional differences after consolidation between patients with left medial temporal lobe epilepsy (LmTLE) and healthy control subjects (HCs). We assessed participants' performance on the finger-tapping task (FTT) during acquisition (on day 1) and after consolidation during sleep (on day 2). All participants underwent an MRI scan (T1 and resting state) before each FTT. We found that the LmTLE group showed performance deficits in offline consolidation compared to the HC group. The LmTLE group exhibited structural changes, such as decreased gray matter volume (GMV) in the left hippocampus and increased GMV in the right putamen (striatum). Our results also revealed that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the HC group, it was only evident in the striatum-related functional loop in the LmTLE group. Our findings indicated that LmTLE patients may rely more on the striatal system for offline consolidation because of structural impairments in the hippocampus. Additionally, this compensatory mechanism may not fully substitute for the role of the impaired hippocampus itself.NEW & NOTEWORTHY Motor sequence learning (MSL) relies on both the hippocampal and striatal systems, but whether functional performance is altered after MSL consolidation when the hippocampus is impaired remains unknown. Our results indicated that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the healthy control (HC) group, it was only evident in the striatum-related functional loop in the left medial temporal lobe epilepsy (LmTLE) group.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yanyun Feng
- Department of Radiology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Pazhou Lab, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2024; 102:e25311. [PMID: 38400585 DOI: 10.1002/jnr.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
42
|
Erlacher D, Schmid D, Zahno S, Schredl M. Changing Sleep Architecture through Motor Learning: Influences of a Trampoline Session on REM Sleep Parameters. Life (Basel) 2024; 14:203. [PMID: 38398711 PMCID: PMC10890242 DOI: 10.3390/life14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Previous research has shown that learning procedural tasks enhances REM sleep the following night. Here, we investigate whether complex motor learning affects sleep architecture. An experiment in which twenty-two subjects either learned a motor task (trampolining) or engaged in a control task (ergometer) was carried out in a balanced within-group design. After an initial laboratory adaptation night, two experimental nights were consecutive. The results indicate that learning a motor task had an effect on REM sleep parameters and, therefore, support the hypothesis that learning a procedural skill is related to an increase in REM sleep parameters. However, the statistical effect on REM sleep is smaller than found in previous studies. One might speculate that the motor learning was not intense enough compared to other studies. For sports practice, the results suggest that REM sleep, which is particularly rich in the morning, plays an important role in motor memory consolidation. Thus, this phase should not be interrupted after complex motor skill learning sessions. In future studies, other motor tasks should be applied.
Collapse
Affiliation(s)
- Daniel Erlacher
- Institute of Sport Science, University of Bern, CH-3012 Bern, Switzerland; (D.S.); (S.Z.)
| | - Daniel Schmid
- Institute of Sport Science, University of Bern, CH-3012 Bern, Switzerland; (D.S.); (S.Z.)
| | - Stephan Zahno
- Institute of Sport Science, University of Bern, CH-3012 Bern, Switzerland; (D.S.); (S.Z.)
| | - Michael Schredl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany;
| |
Collapse
|
43
|
Pauly L, Pauly C, Hansen M, Schröder VE, Rauschenberger A, Leist AK, Krüger R. Retrograde procedural memory is impaired in people with Parkinson's disease with freezing of gait. Front Aging Neurosci 2024; 15:1296323. [PMID: 38249718 PMCID: PMC10797621 DOI: 10.3389/fnagi.2023.1296323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024] Open
Abstract
Background Freezing of gait (FOG), is associated with impairment of different cognitive functions. Previous studies hypothesized that FOG may be due to a loss of automaticity. Research question To explore whether FOG is associated with impairment in cognitive functions, focusing on retrograde procedural memory, the memory responsible for the automatic, implicit stored procedures that have been acquired in earlier life stages. Methods In this cross-sectional, case-control study, 288 people with typical Parkinson's disease (PD) from the Luxembourg Parkinson's Study were assigned to Freezers (FOG+) and non-Freezers (FOG-) based on the MDS-UPDRS 2.13 (self-reported FOG episodes) and 3.11 (FOG evaluated by clinicians during gait assessment). Both groups were matched on age, sex and disease duration. Global cognition (MoCA), retrograde procedural memory and visuo-constructive abilities (CUPRO), psychomotor speed and mental flexibility (TMT) were assessed. Furthermore, we repeated our analyses by additionally controlling for depression (BDI-I). Results Besides lower global cognition (MoCA; p = 0.007) and mental flexibility (TMT-B and Delta-TMT; p < 0.001), FOG+ showed a lower performance in retrograde procedural memory (CUPRO-IS1; p < 0.001) compared to FOG-. After controlling additionally for depression, our main outcome variable CUPRO-IS1 remained significantly lower in FOG+ (p = 0.010). Conclusion Our findings demonstrated that besides lower global cognition and mental flexibility scores, FOG+ showed lower performance in retrograde procedural memory compared to matched FOG-control patients, even when accounting for factors such as age, sex, disease duration or depression. Significance In the context of limited treatment options, especially for non-invasive therapeutic approaches, these insights on procedural memory and FOG may lead to new hypotheses on FOG etiology and consequently the development of new treatment options.
Collapse
Affiliation(s)
- Laure Pauly
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Claire Pauly
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Maxime Hansen
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Valerie E. Schröder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Armin Rauschenberger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anja K. Leist
- Department of Social Sciences, Institute for Research on Socio-Economic Inequality, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| |
Collapse
|
44
|
Li X, Jin M, Zhang N, Hongman W, Fu L, Qi Q. Neural correlates of fine motor grasping skills: Longitudinal insights into motor cortex activation using fNIRS. Brain Behav 2024; 14:e3383. [PMID: 38376039 PMCID: PMC10784192 DOI: 10.1002/brb3.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Motor learning is essential for performing specific tasks and progresses through distinct stages, including the rapid learning phase (initial skill acquisition), the consolidation phase (skill refinement), and the stable performance phase (skill mastery and maintenance). Understanding the cortical activation dynamics during these stages can guide targeted rehabilitation interventions. METHODS In this longitudinal randomized controlled trial, functional near-infrared spectroscopy was used to explore the temporal dynamics of cortical activation in hand-related motor learning. Thirty-one healthy right-handed individuals were randomly assigned to perform either easy or intricate motor tasks with their non-dominant hand over 10 days. We conducted 10 monitoring sessions to track cortical activation in the right hemisphere (according to lateralization principles, the primary hemisphere for motor control) and evaluated motor proficiency concurrently. RESULTS The study delineated three stages of nondominant hand motor learning: rapid learning (days 1 and 2), consolidation (days 3-7), and stable performance (days 8-10). There was a power-law enhancement of motor skills correlated with learning progression. Sustained activation was observed in the supplementary motor area (SMA) and parietal lobe (PL), whereas activation in the right primary motor cortex (M1R) and dorsolateral prefrontal cortex (PFCR) decreased. These cortical activation patterns exhibited a high correlation with the augmentation of motor proficiency. CONCLUSIONS The findings suggest that early rehabilitation interventions, such as transcranial magnetic stimulation and transcranial direct current stimulation (tDCS), could be optimally directed at M1 and PFC in the initial stages. In contrast, SMA and PL can be targeted throughout the motor learning process. This research illuminates the path for developing tailored motor rehabilitation interventions based on specific stages of motor learning. NEW AND NOTEWORTHY In an innovative approach, our study uniquely combines a longitudinal design with the robustness of generalized estimating equations (GEEs). With the synergy of functional near-infrared spectroscopy (fNIRS) and the Minnesota Manual Dexterity Test (MMDT) paradigm, we precisely trace the evolution of neural resources during complex, real-world fine-motor task learning. Centering on right-handed participants using their nondominant hand magnifies the intricacies of right hemisphere spatial motor processing. We unravel the brain's dynamic response throughout motor learning stages and its potent link to motor skill enhancement. Significantly, our data point toward the early-phase rehabilitation potential of TMS and transcranial direct current stimulation on the M1 and PFC regions. Concurrently, SMA and PL appear poised to benefit from ongoing interventions during the entire learning curve. Our findings carve a path for refined motor rehabilitation strategies, underscoring the importance of timely noninvasive brain stimulation treatments.
Collapse
Affiliation(s)
- Xiaoli Li
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Minxia Jin
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Nan Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Wei Hongman
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - LianHui Fu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Qi Qi
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| |
Collapse
|
45
|
Di Rienzo F, Debarnot U, Daligault S, Delpuech C, Doyon J, Guillot A. Brain plasticity underlying sleep-dependent motor consolidation after motor imagery. Cereb Cortex 2023; 33:11431-11445. [PMID: 37814365 DOI: 10.1093/cercor/bhad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Motor imagery can, similarly to physical practice, improve motor performance through experience-based plasticity. Using magnetoencephalography, we investigated changes in brain activity associated with offline consolidation of motor sequence learning through physical practice or motor imagery. After an initial training session with either physical practice or motor imagery, participants underwent overnight consolidation. As control condition, participants underwent wake-related consolidation after training with motor imagery. Behavioral analyses revealed that overnight consolidation of motor learning through motor imagery outperformed wake-related consolidation (95% CI [0.02, 0.07], P < 0.001, RP2 = 0.05). As regions of interest, we selected the generators of event-related synchronization/desynchronization of alpha (8-12 Hz) and beta (15-30 Hz) oscillations, which predicted the level of performance on the motor sequence. This yielded a primary sensorimotor-premotor network for alpha oscillations and a cortico-cerebellar network for beta oscillations. The alpha network exhibited increased neural desynchronization after overnight consolidation compared to wake-related consolidation. By contrast, the beta network exhibited an increase in neural synchronization after wake-related consolidation compared to overnight consolidation. We provide the first evidence of parallel brain plasticity underlying behavioral changes associated with sleep-dependent consolidation of motor skill learning through motor imagery and physical practice.
Collapse
Affiliation(s)
- Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Ursula Debarnot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| | | | - Claude Delpuech
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, Bron 69677, France
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| |
Collapse
|
46
|
Sakai K, Kawasaki T, Ikeda Y, Tanabe J, Matsumoto A, Amimoto K. Differences in the early stages of motor learning between visual-motor illusion and action observation. Sci Rep 2023; 13:20054. [PMID: 37973996 PMCID: PMC10654675 DOI: 10.1038/s41598-023-47435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
The visual-motor illusion (VMI) induces a kinesthetic illusion by watching one's physically-moving video while the body is at rest. It remains unclear whether the early stages (immediately to one hour later) of motor learning are promoted by VMI. This study investigated whether VMI changes the early stages of motor learning in healthy individuals. Thirty-six participants were randomly assigned to two groups: the VMI or action observation condition. Each condition was performed with the left hand for 20 min. The VMI condition induced a kinesthetic illusion by watching one's ball-rotation task video. The action observation condition involved watching the same video as the VMI condition but did not induce a kinesthetic illusion. The ball-rotation task and brain activity during the task were measured pre, post1 (immediately), and post2 (after 1 h) in both conditions, and brain activity was measured using functional near-infrared spectroscopy. The rate of the ball-rotation task improved significantly at post1 and post2 in the VMI condition than in the action observation condition. VMI condition lowers left dorsolateral prefrontal cortex and right premotor area activity from post1 to pre compared to the action observation condition. In conclusion, VMI effectively aids early stages of motor learning in healthy individuals.
Collapse
Affiliation(s)
- Katsuya Sakai
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo, Japan.
| | - Tsubasa Kawasaki
- Department of Physical Therapy, School of Health Sciences, Tokyo International University, Saitama, Japan
| | - Yumi Ikeda
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Junpei Tanabe
- Department Physical Therapy, Hiroshima Cosmopolitan University, Hiroshima, Japan
| | - Akari Matsumoto
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kazu Amimoto
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo, Japan
- Department of Rehabilitation, Sendai Seiyo Gakuin University, Sendai, Japan
| |
Collapse
|
47
|
Firouzi M, Baetens K, Saeys M, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. Differential effects of conventional and high-definition transcranial direct-current stimulation of the motor cortex on implicit motor sequence learning. Eur J Neurosci 2023; 58:4181-4194. [PMID: 37864365 DOI: 10.1111/ejn.16173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Conventional transcranial direct-current stimulation (tDCS) delivered to the primary motor cortex (M1) has been shown to enhance implicit motor sequence learning (IMSL). Conventional tDCS targets M1 but also the motor association cortices (MAC), making the precise contribution of these areas to IMSL presently unclear. We aimed to address this issue by comparing conventional tDCS of M1 and MAC to 4 * 1 high-definition (HD) tDCS, which more focally targets M1. In this mixed-factorial, sham-controlled, crossover study in 89 healthy young adults, we used mixed-effects models to analyse sequence-specific and general learning effects in the acquisition and short- and long-term consolidation phases of IMSL, as measured by the serial reaction time task. Conventional tDCS did not influence general learning, improved sequence-specific learning during acquisition (anodal: M = 42.64 ms, sham: M = 32.87 ms, p = .041), and seemingly deteriorated it at long-term consolidation (anodal: M = 75.37 ms, sham: M = 86.63 ms, p = .019). HD tDCS did not influence general learning, slowed performance specifically in sequential blocks across all learning phases (all p's < .050), and consequently deteriorated sequence-specific learning during acquisition (anodal: M = 24.13 ms, sham: M = 35.67 ms, p = .014) and long-term consolidation (anodal: M = 60.03 ms, sham: M = 75.01 ms, p = .002). Our findings indicate that the observed superior conventional tDCS effects on IMSL are possibly attributable to a generalized stimulation of M1 and/or adjacent MAC, rather than M1 alone. Alternatively, the differential effects can be attributed to cathodal inhibition of other cortical areas involved in IMSL by the 4 * 1 HD tDCS return electrodes, and/or more variable electric field strengths induced by HD tDCS, compared with conventional tDCS.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Manon Saeys
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Jette, Belgium
- Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
48
|
Meier AM, Guenther FH. Neurocomputational modeling of speech motor development. JOURNAL OF CHILD LANGUAGE 2023; 50:1318-1335. [PMID: 37337871 PMCID: PMC10615680 DOI: 10.1017/s0305000923000260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
This review describes a computational approach for modeling the development of speech motor control in infants. We address the development of two levels of control: articulation of individual speech sounds (defined here as phonemes, syllables, or words for which there is an optimized motor program) and production of sound sequences such as phrases or sentences. We describe the DIVA model of speech motor control and its application to the problem of learning individual sounds in the infant's native language. Then we describe the GODIVA model, an extension of DIVA, and how chunking of frequently produced phoneme sequences is implemented within it.
Collapse
Affiliation(s)
- Andrew M Meier
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA02215
| | - Frank H Guenther
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA02215
- Department of Biomedical Engineering, Boston University, Boston, MA02215
| |
Collapse
|
49
|
Cristini J, Kraft VS, De Las Heras B, Rodrigues L, Parwanta Z, Hermsdörfer J, Steib S, Roig M. Differential effects of acute cardiovascular exercise on explicit and implicit motor memory: The moderating effects of fitness level. Neurobiol Learn Mem 2023; 205:107846. [PMID: 37865261 DOI: 10.1016/j.nlm.2023.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
A single bout of cardiovascular exercise (CE) performed after practice can facilitate the consolidation of motor memory. However, the effect is variable and may be modulated by different factors such as the motor task's or participant's characteristics and level of awareness during encoding (implicit vs explicit learning). This study examines the effects of acute CE on the consolidation of motor sequences learned explicitly and implicitly, exploring the potential moderating effect of fitness level and awareness. Fifty-six healthy adults (24.1 ± 3.3 years, 32 female) were recruited. After practicing with either the implicit or explicit variant of the Serial Reaction Time Task (SRTT), participants either performed a bout of 16 min of vigorous CE or rested for the same amount of time. Consolidation was quantified as the change in SRTT performance from the end of practice to a 24 h retention test. Fitness level (V̇O2peak) was determined through a graded exercise test. Awareness (implicit vs explicit learning) was operationalized using a free recall test conducted immediately after retention. Our primary analysis indicated that CE had no statistically significant effects on consolidation, regardless of the SRTT's variant utilized during practice. However, an exploratory analysis, classifying participants based on the level of awareness gained during motor practice, showed that CE negatively influenced consolidation in unfit participants who explicitly acquired the motor sequence. Our findings indicate that fitness level and awareness in sequence acquisition can modulate the interaction between CE and motor memory consolidation. These factors should be taken into account when assessing the effects of CE on motor memory.
Collapse
Affiliation(s)
- J Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - V S Kraft
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - B De Las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - L Rodrigues
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Z Parwanta
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - J Hermsdörfer
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - S Steib
- Department of Exercise, Training and Active Aging, Institute of Sport and Sport Science, University of Heidelberg, Heidelberg, Germany
| | - M Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Swainson A, Woodward KM, Boca M, Rolinski M, Collard P, Cerminara NL, Apps R, Whone AL, Gilchrist ID. Slower rates of prism adaptation but intact aftereffects in patients with early to mid-stage Parkinson's disease. Neuropsychologia 2023; 189:108681. [PMID: 37709193 DOI: 10.1016/j.neuropsychologia.2023.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
There is currently mixed evidence on the effect of Parkinson's disease on motor adaptation. Some studies report that patients display adaptation comparable to age-matched controls, while others report a complete inability to adapt to novel sensory perturbations. Here, early to mid-stage Parkinson's patients were recruited to perform a prism adaptation task. When compared to controls, patients showed slower rates of initial adaptation but intact aftereffects. These results support the suggestion that patients with early to mid-stage Parkinson's disease display intact adaptation driven by sensory prediction errors, as shown by the intact aftereffect. But impaired facilitation of performance through cognitive strategies informed by task error, as shown by the impaired initial adaptation. These results support recent studies that suggest that patients with Parkinson's disease retain the ability to perform visuomotor adaptation, but display altered use of cognitive strategies to aid performance and generalises these previous findings to the classical prism adaptation task.
Collapse
Affiliation(s)
- Alex Swainson
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, BS8 1TD, United Kingdom.
| | - Kathryn M Woodward
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, United Kingdom
| | - Mihaela Boca
- Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5FN, United Kingdom
| | - Michal Rolinski
- Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5FN, United Kingdom
| | - Philip Collard
- University of Bristol, School of Psychological Science, Bristol, BS8 1TU, United Kingdom
| | - Nadia L Cerminara
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, BS8 1TD, United Kingdom
| | - Richard Apps
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, BS8 1TD, United Kingdom
| | - Alan L Whone
- Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5FN, United Kingdom
| | - Iain D Gilchrist
- University of Bristol, School of Psychological Science, Bristol, BS8 1TU, United Kingdom
| |
Collapse
|