1
|
Sălcudean A, Bodo CR, Popovici RA, Cozma MM, Păcurar M, Crăciun RE, Crisan AI, Enatescu VR, Marinescu I, Cimpian DM, Nan AG, Sasu AB, Anculia RC, Strete EG. Neuroinflammation-A Crucial Factor in the Pathophysiology of Depression-A Comprehensive Review. Biomolecules 2025; 15:502. [PMID: 40305200 PMCID: PMC12024626 DOI: 10.3390/biom15040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Depression is a multifactorial psychiatric condition with complex pathophysiology, increasingly linked to neuroinflammatory processes. The present review explores the role of neuroinflammation in depression, focusing on glial cell activation, cytokine signaling, blood-brain barrier dysfunction, and disruptions in neurotransmitter systems. The article highlights how inflammatory mediators influence brain regions implicated in mood regulation, such as the hippocampus, amygdala, and prefrontal cortex. The review further discusses the involvement of the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the kynurenine pathway, providing mechanistic insights into how chronic inflammation may underlie emotional and cognitive symptoms of depression. The bidirectional relationship between inflammation and depressive symptoms is emphasized, along with the role of peripheral immune responses and systemic stress. By integrating molecular, cellular, and neuroendocrine perspectives, this review supports the growing field of immunopsychiatry and lays the foundation for novel diagnostic biomarkers and anti-inflammatory treatment approaches in depression. Further research in this field holds promise for developing more effective and personalized interventions for individuals suffering from depression.
Collapse
Affiliation(s)
- Andreea Sălcudean
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Cristina-Raluca Bodo
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Ramona-Amina Popovici
- Department of Management and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Bv., 300070 Timisoara, Romania
| | - Maria-Melania Cozma
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Mariana Păcurar
- Orthodontic Department, Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania;
| | | | - Andrada-Ioana Crisan
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Virgil-Radu Enatescu
- Department of Psychiatry, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Ileana Marinescu
- Discipline of Psychiatry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dora-Mihaela Cimpian
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Andreea-Georgiana Nan
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Andreea-Bianca Sasu
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Ramona-Camelia Anculia
- Discipline of Occupational Medicine, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timișoara, Romania;
| | - Elena-Gabriela Strete
- Department of Psychiatry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
3
|
Gajdošová L, Katrenčíková B, Borbélyová V, Muchová J. The Effect of Omega-3 Fatty Acid Supplementation and Exercise on Locomotor Activity, Exploratory Activity, and Anxiety-Like Behavior in Adult and Aged Rats. Physiol Res 2024; 73:461-480. [PMID: 39012176 PMCID: PMC11299774 DOI: 10.33549/physiolres.935245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/13/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is an inevitable and complex biological process that is associated with a gradual decline in physiological functions and a higher disease susceptibility. Omega-3 fatty acids, particularly docosahexaenoic acid, play a crucial role in maintaining brain health and their deficiency is linked to age-related cognitive decline. Combining omega-3-rich diets with exercise may enhance cognitive function more effectively, as both share overlapping neurobiological and physiological effects. This study aimed to evaluate the effect of exercise and omega-3 fatty acid (FA) supplementation in two different doses (160 mg/kg and 320 mg/kg) on anxiety-like behavior and cognitive abilities in both adult and aged rats. Male Wistar rats (4-5- and 23-24-month-old) were randomly divided into seven groups: 3-week control supplemented with placebo without exercise, low-dose omega-3 FAs, high-dose omega-3 FAs, 7-week control supplemented with placebo without exercise, exercise-only, low-dose omega-3 FAs with exercise, and high-dose omega-3 FAs with exercise. The administered oil contained omega-3 FAs with DHA:EPA in a ratio of 1.5:1. Our results indicate that aging negatively impacts the locomotor and exploratory activity of rats. In adult rats, a low dose of omega-3 FAs reduces locomotor activity when combined with exercise while high dose of omega-3 FAs reduces anxiety-like behavior and improves recognition memory when combined with exercise. The combination of omega-3 FAs and exercise had varying impacts on behavior, suggesting a need for further research in this area to fully understand their therapeutic efficacy in the context of cognitive changes associated with aging.
Collapse
Affiliation(s)
- L Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
4
|
Mendelski GQ, Furini CRG, Stefani GP, Botton LP, Baptista RR. Enhancing long-term memory through strength training: An experimental study in adult and middle-aged rats. Behav Brain Res 2024; 456:114697. [PMID: 37793439 DOI: 10.1016/j.bbr.2023.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/09/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The study aimed to explore the impact of strength training on long-term memory in adult and middle-aged rodents, specifically male Wistar rats aged 9 and 20 months. These rats were divided into two groups: one sedentary (SED) and the other trained (ST) for a period of 12 weeks. The strength training involved squatting exercises using adapted equipment, while the sedentary group maintained their regular, non-exercised routine. Behavioral tasks assessing mobility, anxiety, and multiple facets of memory, such as object recognition memory (ORM), social recognition memory (SRM), and object location memory (OLM), were conducted post-training. The findings were promising, revealing a generally beneficial impact of strength training on memory tasks across both age groups. Specifically, the ORM tasks showed facilitated and improved learning in both adult and middle-aged rats that underwent training. In contrast, OLM displayed only a facilitatory effect in both age groups, meaning that while the trained rats learned the task, they did not outperform the sedentary group. For SRM, a facilitatory effect was observed only in the adult group. In addition to the cognitive benefits, strength training was found to have an anxiolytic effect in the 9-month-old rats and positively affected body mass and adipose tissue composition. Notably, the study correlated the strength gains from the training with improved performance in memory tasks. These outcomes provide crucial insights into the potential of exercise-based interventions to bolster cognitive health and mitigate age-related cognitive decline.
Collapse
Affiliation(s)
- Gabriela Quines Mendelski
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Cristiane Regina Guerino Furini
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Brazil; Laboratory of Cognition and Neurobiology of Memory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | | | | | - Rafael Reimann Baptista
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Brazil; School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Kaimal A, Hooversmith JM, Cherry AD, Garrity JT, Al Mansi MH, Martin NM, Buechter H, Holmes PV, MohanKumar PS, MohanKumar SMJ. Prenatal exposure to bisphenol A and/or diethylhexyl phthalate alters stress responses in rat offspring in a sex- and dose-dependent manner. FRONTIERS IN TOXICOLOGY 2023; 5:1264238. [PMID: 38152552 PMCID: PMC10751317 DOI: 10.3389/ftox.2023.1264238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Background: Prenatal exposures to endocrine disrupting chemicals (EDCs) are correlated with adverse behavioral outcomes, but the effects of combinations of these chemicals are unclear. The aim of this study was to determine the dose-dependent effects of prenatal exposure to EDCs on male and female behavior. Methods: Pregnant Sprague-Dawley rats were orally dosed with vehicle, bisphenol A (BPA) (5 μg/kg body weight (BW)/day), low-dose (LD) diethylhexyl phthalate (DEHP) (5 μg/kg BW/day), high-dose (HD) DEHP (7.5 mg/kg BW/day), a combination of BPA and LD-DEHP (B + D (LD)), or a combination of BPA and HD-DEHP (B + D (HD)) on gestational days 6-21. Adult offspring were subjected to the Open Field Test (OFT), Elevated Plus Maze (EPM), and Shock Probe Defensive Burying test (SPDB) in adulthood. Body, adrenal gland, and pituitary gland weights were collected at sacrifice. Corticosterone (CORT) was measured in the serum. Results: Female EDC-exposed offspring showed anxiolytic effects in the OFT, while male offspring were unaffected. DEHP (HD) male offspring demonstrated a feminization of behavior in the EPM. Most EDC-exposed male offspring buried less in the SPDB, while their female counterparts showed reduced shock reactivity, indicating sex-specific maladaptive alterations in defensive behaviors. Additionally, DEHP (LD) males and females and B + D (LD) females displayed increased immobility in this test. DEHP (LD) alone and in combination with BPA led to lower adrenal gland weights, but only in male offspring. Finally, females treated with a mixture of B + D (HD) had elevated CORT levels. Conclusion: Prenatal exposure to BPA, DEHP, or a mixture of the two, affects behavior, CORT levels, and adrenal gland weights in a sex- and dose-dependent manner.
Collapse
Affiliation(s)
- Amrita Kaimal
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| | - Jessica M. Hooversmith
- Behavioral Neuropharmacology Laboratory, University of Georgia, Athens, GA, United States
| | - Ariana D. Cherry
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Jillian T. Garrity
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Maryam H. Al Mansi
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Nicholas M. Martin
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Hannah Buechter
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Philip V. Holmes
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
- Behavioral Neuropharmacology Laboratory, University of Georgia, Athens, GA, United States
| | - Puliyur S. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| | - Sheba M. J. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Gan SKE, Wong SWY, Jiao PD. Religiosity, Theism, Perceived Social Support, Resilience, and Well-Being of University Undergraduate Students in Singapore during the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3620. [PMID: 36834313 PMCID: PMC9959174 DOI: 10.3390/ijerph20043620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic infection control measures severely impacted mental well-being, allowing insight into possible protective parameters. With religion playing a role during challenging times, this study investigated theism and religiosity on the mental well-being of university students during the COVID19 pandemic and how social support and resilience can mediate this effect. One hundred eighty-five university students between 17 and 42 years old responded to online surveys on their theism, religious affiliations, religiosity, well-being, perceived support, and resilience. Pearson's correlations and single and sequential mediation analyses showed that theism did not significantly predict well-being (r = 0.049), but religiosity mediated the relationship (r = 0.432, effect size = 0.187). Sequential mediation analysis showed that resilience did not mediate the relationship between religiosity and well-being, but perceived social support significantly positively mediated religiosity and well-being with an effect size of 0.079. The findings reveal that factors, such as religiosity and social support could thus aid in the mental well-being of future challenging times such as the pandemic.
Collapse
Affiliation(s)
- Samuel Ken-En Gan
- Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325015, China
- Department of Psychology, James Cook University, Singapore 387380, Singapore
- Antibody & Product Development Lab, APD SKEG Pte Ltd., Singapore 439444, Singapore
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325015, China
| | - Sibyl Weang-Yi Wong
- Department of Psychology, James Cook University, Singapore 387380, Singapore
| | - Peng-De Jiao
- Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325015, China
- Antibody & Product Development Lab, APD SKEG Pte Ltd., Singapore 439444, Singapore
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325015, China
| |
Collapse
|
7
|
Zhai X, Zhou D, Han Y, Han MH, Zhang H. Noradrenergic modulation of stress resilience. Pharmacol Res 2023; 187:106598. [PMID: 36481260 DOI: 10.1016/j.phrs.2022.106598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
8
|
Nowacka-Chmielewska M, Grabowska K, Grabowski M, Meybohm P, Burek M, Małecki A. Running from Stress: Neurobiological Mechanisms of Exercise-Induced Stress Resilience. Int J Mol Sci 2022; 23:13348. [PMID: 36362131 PMCID: PMC9654650 DOI: 10.3390/ijms232113348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 08/12/2023] Open
Abstract
Chronic stress, even stress of a moderate intensity related to daily life, is widely acknowledged to be a predisposing or precipitating factor in neuropsychiatric diseases. There is a clear relationship between disturbances induced by stressful stimuli, especially long-lasting stimuli, and cognitive deficits in rodent models of affective disorders. Regular physical activity has a positive effect on the central nervous system (CNS) functions, contributes to an improvement in mood and of cognitive abilities (including memory and learning), and is correlated with an increase in the expression of the neurotrophic factors and markers of synaptic plasticity as well as a reduction in the inflammatory factors. Studies published so far show that the energy challenge caused by physical exercise can affect the CNS by improving cellular bioenergetics, stimulating the processes responsible for the removal of damaged organelles and molecules, and attenuating inflammation processes. Regular physical activity brings another important benefit: increased stress robustness. The evidence from animal studies is that a sedentary lifestyle is associated with stress vulnerability, whereas a physically active lifestyle is associated with stress resilience. Here, we have performed a comprehensive PubMed Search Strategy for accomplishing an exhaustive literature review. In this review, we discuss the findings from experimental studies on the molecular and neurobiological mechanisms underlying the impact of exercise on brain resilience. A thorough understanding of the mechanisms underlying the neuroprotective potential of preconditioning exercise and of the role of exercise in stress resilience, among other things, may open further options for prevention and therapy in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| | - Konstancja Grabowska
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Mateusz Grabowski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
9
|
Involvement of Scratch2 in GalR1-mediated depression-like behaviors in the rat ventral periaqueductal gray. Proc Natl Acad Sci U S A 2021; 118:1922586118. [PMID: 34108238 DOI: 10.1073/pnas.1922586118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.
Collapse
|
10
|
Borodovitsyna O, Duffy BC, Pickering AE, Chandler DJ. Anatomically and functionally distinct locus coeruleus efferents mediate opposing effects on anxiety-like behavior. Neurobiol Stress 2020; 13:100284. [PMID: 33344735 PMCID: PMC7739179 DOI: 10.1016/j.ynstr.2020.100284] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
The locus coeruleus (LC) is a critical node in the stress response, and its activation has been shown to promote hypervigilance and anxiety-like behavior. This noradrenergic nucleus has historically been considered homogeneous with highly divergent neurons that operate en masse to collectively affect central nervous system function and behavioral state. However, in recent years, LC has been identified as a heterogeneous structure whose neurons innervate discrete terminal fields and contribute to distinct aspects of behavior. We have previously shown that in late adolescent male rats, an acute traumatic stressor, simultaneous physical restraint and exposure to predator odor, preferentially induces c-Fos expression in a subset of dorsal LC neurons and persistently increases anxiety-like behavior. To investigate how these neurons respond to and contribute to the behavioral response to stress, we used a combination of retrograde tracing, whole-cell patch clamp electrophysiology, and chemogenetics. Here we show that LC neurons innervating the central nucleus of the amygdala (CeA) and medial prefrontal cortex (mPFC) undergo distinct electrophysiological changes in response to stressor exposure and have opposing roles in mediating anxiety-like behavior. While neurons innervating CeA become more excitable in response to stress and promote anxiety-like behavior, those innervating mPFC become less excitable and appear to promote exploration. These findings show that LC neurons innervating distinct terminal fields have unique physiological responses to particular stimuli. Furthermore, these observations advance the understanding of the LC as a complex and heterogeneous structure whose neurons maintain unique roles in various forms of behavior. Locus coeruleus-central amygdala projections are hyperactive one week after stress. Locus coeruleus-prefrontal cortex projections are hypoactive one week after stress. Chemogenetic manipulation of each pathway distinctly affects anxiety-like behavior.
Collapse
Key Words
- AHP, afterhyperpolarization
- Anxiety-like behavior
- CRF, corticotropin releasing factor
- CeA, central nucleus of the amygdala
- Central nucleus of amygdala
- EPM, elevated plus maze
- LC, locus coeruleus
- Locus coeruleus
- Medial prefrontal cortex
- NE, norepinephrine
- OFT, open field test
- PBS, phosphate buffered saline
- Stress
- TMT, 2,4,5-trimethylthiazole
- aCSF, artificial cerebrospinal fluid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Olga Borodovitsyna
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Brenna C Duffy
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS81TD, UK
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| |
Collapse
|
11
|
Yu M, Fang P, Wang H, Shen G, Zhang Z, Tang Z. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications. Peptides 2020; 134:170404. [PMID: 32898581 DOI: 10.1016/j.peptides.2020.170404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a distal spontaneous pain, caused by lesion of sensory neurons and accompanied by depression and anxiety frequently, which reduce life quality of patients and increase society expenditure. To date, antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants are addressed as first-line therapy to DPNP, alone or jointly. It is urgently necessary to develop novel agents to treat DPNP and its complications. Evidences indicate that neuropeptide galanin can regulate multiple physiologic and pathophysiological processes. Pain, depression and anxiety may upregulate galanin expression. In return, galanin can modulate depression, anxiety, pain threshold and pain behaviors. This article provides a new insight into regulative effects of galanin and its subtype receptors on antidepressant, antianxiety and against DPNP. Through activating GALR1, galanin reinforces depression-like and anxiogenic-like behaviors, but exerts antinociceptive roles. While via activating GALR2, galanin is referred to as anti-depressive and anti-anxiotropic compounds, and at low and high concentration facilitates and inhibits nociceptor activity, respectively. The mechanism of the galanin roles is relative to increase in K+ currents and decrease in Ca2+ currents, as well as neurotrophic and neuroprotective roles. These data are helpful to develop novel drugs to treat DPNP and its complications.
Collapse
Affiliation(s)
- Mei Yu
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Penghua Fang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Wang
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Guiqin Shen
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zongxiang Tang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
12
|
Chronic Environmental or Genetic Elevation of Galanin in Noradrenergic Neurons Confers Stress Resilience in Mice. J Neurosci 2020; 40:7464-7474. [PMID: 32868458 DOI: 10.1523/jneurosci.0973-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
The neuropeptide galanin has been implicated in stress-related neuropsychiatric disorders in humans and rodent models. While pharmacological treatments for these disorders are ineffective for many individuals, physical activity is beneficial for stress-related symptoms. Galanin is highly expressed in the noradrenergic system, particularly the locus coeruleus (LC), which is dysregulated in stress-related disorders and activated by exercise. Galanin expression is elevated in the LC by chronic exercise, and blockade of galanin transmission attenuates exercise-induced stress resilience. However, most research on this topic has been done in rats, so it is unclear whether the relationship between exercise and galanin is species specific. Moreover, use of intracerebroventricular (ICV) galanin receptor antagonists in prior studies precluded defining a causal role for LC-derived galanin specifically. Therefore, the goals of this study were twofold. First, we investigated whether physical activity (chronic wheel running) increases stress resilience and galanin expression in the LC of male and female mice. Next, we used transgenic mice that overexpress galanin in noradrenergic neurons (Gal OX) to determine how chronically elevated noradrenergic-derived galanin, alone, alters anxiogenic-like responses to stress. We found that three weeks of ad libitum access to a running wheel in their home cage increased galanin mRNA in the LC of mice, which was correlated with and conferred resilience to stress. The effects of exercise were phenocopied by galanin overexpression in noradrenergic neurons, and Gal OX mice were resistant to the anxiogenic effect of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.SIGNIFICANCE STATEMENT Understanding the neurobiological mechanisms underlying behavioral responses to stress is necessary to improve treatments for stress-related neuropsychiatric disorders. Increased physical activity is associated with stress resilience in humans, but the neurobiological mechanisms underlying this effect are not clear. Here, we investigate a potential causal mechanism of this effect driven by the neuropeptide galanin from the main noradrenergic nucleus, the locus coeruleus (LC). We show that chronic voluntary wheel running in mice increases stress resilience and increases galanin expression in the LC. Furthermore, we show that genetic overexpression of galanin in noradrenergic neurons causes resilience to a stressor and the anxiogenic effects of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.
Collapse
|
13
|
Wang R, Tian H, Guo D, Tian Q, Yao T, Kong X. Impacts of exercise intervention on various diseases in rats. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:211-227. [PMID: 32444146 PMCID: PMC7242221 DOI: 10.1016/j.jshs.2019.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/06/2019] [Accepted: 09/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exercise is considered as an important intervention for treatment and prevention of several diseases, such as osteoarthritis, obesity, hypertension, and Alzheimer's disease. This review summarizes decadal exercise intervention studies with various rat models across 6 major systems to provide a better understanding of the mechanisms behind the effects that exercise brought. METHODS PubMed was utilized as the data source. To collect research articles, we used the following terms to create the search: (exercise [Title] OR physical activity [Title] OR training [Title]) AND (rats [Title/Abstract] OR rat [Title/Abstract] OR rattus [Title/Abstract]). To best cover targeted studies, publication dates were limited to "within 11 years." The exercise intervention methods used for different diseases were sorted according to the mode, frequency, and intensity of exercise. RESULTS The collected articles were categorized into studies related to 6 systems or disease types: motor system (17 articles), metabolic system (110 articles), cardiocerebral vascular system (171 articles), nervous system (71 articles), urinary system (2 articles), and cancer (21 articles). Our review found that, for different diseases, exercise intervention mostly had a positive effect. However, the most powerful effect was achieved by using a specific mode of exercise that addressed the characteristics of the disease. CONCLUSION As a model animal, rats not only provide a convenient resource for studying human diseases but also provide the possibility for exploring the molecular mechanisms of exercise intervention on diseases. This review also aims to provide exercise intervention frameworks and optimal exercise dose recommendations for further human exercise intervention research.
Collapse
Affiliation(s)
- Ruwen Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Dandan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Qianqian Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Xingxing Kong
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Liśkiewicz A, Przybyła M, Wojakowska A, Marczak Ł, Bogus K, Nowacka-Chmielewska M, Liśkiewicz D, Małecki A, Barski J, Lewin-Kowalik J, Toborek M. Physical activity reduces anxiety and regulates brain fatty acid synthesis. Mol Brain 2020; 13:62. [PMID: 32303271 PMCID: PMC7165435 DOI: 10.1186/s13041-020-00592-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
Physical activity impacts brain functions, but the direct mechanisms of this effect are not fully recognized or understood. Among multidimensional changes induced by physical activity, brain fatty acids (FA) appear to play an important role; however, the knowledge in this area is particularly scarce. Here we performed global metabolomics profiling of the hippocampus and the frontal cortex (FC) in a model of voluntary running in mice. Examined brain structures responded differentially to physical activity. Specifically, the markers of the tricarboxylic acid (TCA) cycle were downregulated in the FC, whereas glycolysis was enhanced in the hippocampus. Physical activity stimulated production of myristic, palmitic and stearic FA; i.e., the primary end products of de novo lipogenesis in the brain, which was accompanied by increased expression of hippocampal fatty acid synthase (FASN), suggesting stimulation of lipid synthesis. The changes in the brain fatty acid profile were associated with reduced anxiety level in the running mice. Overall, the study examines exercise-related metabolic changes in the brain and links them to behavioral outcomes.
Collapse
Affiliation(s)
- Arkadiusz Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72a, 40-065, Katowice, Poland. .,Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, Katowice, 40-752, Poland.
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72a, 40-065, Katowice, Poland.,Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, Katowice, 40-752, Poland
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72a, 40-065, Katowice, Poland.,Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, Katowice, 40-752, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72a, 40-065, Katowice, Poland.,Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, Katowice, 40-752, Poland
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72a, 40-065, Katowice, Poland
| | - Jarosław Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, Katowice, 40-752, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, Katowice, 40-752, Poland
| | - Michal Toborek
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72a, 40-065, Katowice, Poland. .,Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
15
|
Tillage RP, Sciolino NR, Plummer NW, Lustberg D, Liles LC, Hsiang M, Powell JM, Smith KG, Jensen P, Weinshenker D. Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors. Brain Struct Funct 2020; 225:785-803. [PMID: 32065256 DOI: 10.1007/s00429-020-02035-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (GalcKO-Dbh). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of GalcKO-Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. GalcKO-Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, GalcKO-Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.
Collapse
Affiliation(s)
- Rachel P Tillage
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - Natale R Sciolino
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Daniel Lustberg
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - Madeline Hsiang
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jeanne M Powell
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kathleen G Smith
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Caliskan H, Akat F, Omercioglu G, Bastug G, Ficicilar H, Bastug M. Aerobic exercise has an anxiolytic effect on streptozotocin‑induced diabetic rats. Acta Neurobiol Exp (Wars) 2020; 80:245-255. [PMID: 32990283 DOI: 10.21307/ane-2020-022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2024]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia and impaired insulin secretion or action. Psychological comorbidities, such as depression and anxiety, are more common in people with diabetes. Exercise results in anxiolytic effects, as demonstrated in numerous studies. This study aims to evaluate potential anxiolytic effects of aerobic exercise in streptozotocin (STZ)‑induced diabetes. Male Wistar albino rats (n=40) were randomly divided into four groups of control, exercise, diabetes, and diabetes + exercise. Diabetes was induced with a single i.p. injection of STZ. The incremental load test was applied to exercise groups to determine maximal exercise capacity. Rats exercised on a treadmill at 70% of their maximal capacity for 45 min, five days per week for 12 weeks. On the day after the last exercise session the open field test and elevated plus maze test were carried out. Diabetes caused an increase in anxiety level, reflected in stretch‑attend posture, self‑grooming behaviors, and freezing time, with no significant changes for other behavioral parameters. Training normalized diabetes‑induced deteriorations and also induced a significant anxiolytic effect both on diabetic and non‑diabetic rats. This effect was observed for all behavioral parameters. The results of the open field test and elevated plus maze were consistent. The current results demonstrated a slight increase in anxiety with diabetes and a prominent anxiolytic effect of aerobic exercise. Considering the conflicting results in exercise‑anxiety studies, this study hig hlights the importance of individually designed exercise protocols.
Collapse
Affiliation(s)
- Hasan Caliskan
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
- Balikesir University, Faculty of Medicine, Department of Physiology, Balikesir, Turkey
| | - Firat Akat
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey,
| | - Goktug Omercioglu
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Gulbahar Bastug
- Ankara University, Vocational School of Health Services, Ankara, Turkey
| | - Hakan Ficicilar
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Metin Bastug
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| |
Collapse
|
17
|
Keszler G, Molnár Z, Rónai Z, Sasvári-Székely M, Székely A, Kótyuk E. Association between anxiety and non-coding genetic variants of the galanin neuropeptide. PLoS One 2019; 14:e0226228. [PMID: 31881033 PMCID: PMC6934320 DOI: 10.1371/journal.pone.0226228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Galanin, an inhibitory neuropeptide and cotransmitter has long been known to co-localize with noradrenaline and serotonin in the central nervous system. Several human studies demonstrated altered galanin expression levels in major depressive disorder and anxiety. Pharmacological modulation of galanin signaling and transgenic strategies provide further proof for the involvement of the galanin system in the pathophysiology of mood disorders. Little is known, however, on the dynamic regulation of galanin expression at the transcriptional level. The aim of the present study was to seek genetic association of non-coding single nucleotide variations in the galanin gene with anxiety and depression. Methods Six single nucleotide polymorphisms (SNP) occurring either in the regulatory 5’ or 3’ flanking regions or within intronic sequences of the galanin gene have been genotyped with a high-throughput TaqMan OpenArray qPCR system in 526 healthy students (40% males). Depression and anxiety scores were obtained by filling in the Hospital Anxiety and Depression Scale (HADS) questionnaire. Data were analyzed by ANCOVA and Bonferroni correction was applied for multiple testing. Linkage disequilibrium (LD) analysis was used to map two haploblocks in the analyzed region. Results and conclusions A single-locus and a haplotype genetic association proved to be statistically significant. In single-marker analysis, the T allele of the rs1042577 SNP within the 3’ untranslated region of the galanin gene associated with greater levels of anxiety (HADS scores were 7.05±4.0 vs 6.15±.15; p = 0.000407). Haplotype analysis revealed an association of the rs948854 C_rs4432027_C allele combination with anxiety [F(1,1046) = 4.140, p = 0.042141, η2 = 0.004, power = 0.529]. Neither of these associations turned out to be gender-specific. These promoter polymorphisms are supposed to participate in epigenetic regulation of galanin expression by creating potentially methylatable CpG dinucleotides. The functional importance of the rs1042577_T allele remains to be elucidated.
Collapse
Affiliation(s)
- Gergely Keszler
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Molnár
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Székely
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Kótyuk
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
18
|
Ronca AE, Moyer EL, Talyansky Y, Lowe M, Padmanabhan S, Choi S, Gong C, Cadena SM, Stodieck L, Globus RK. Behavior of mice aboard the International Space Station. Sci Rep 2019; 9:4717. [PMID: 30976012 PMCID: PMC6459880 DOI: 10.1038/s41598-019-40789-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Interest in space habitation has grown dramatically with planning underway for the first human transit to Mars. Despite a robust history of domestic and international spaceflight research, understanding behavioral adaptation to the space environment for extended durations is scant. Here we report the first detailed behavioral analysis of mice flown in the NASA Rodent Habitat on the International Space Station (ISS). Following 4-day transit from Earth to ISS, video images were acquired on orbit from 16- and 32-week-old female mice. Spaceflown mice engaged in a full range of species-typical behaviors. Physical activity was greater in younger flight mice as compared to identically-housed ground controls, and followed the circadian cycle. Within 7-10 days after launch, younger (but not older), mice began to exhibit distinctive circling or 'race-tracking' behavior that evolved into coordinated group activity. Organized group circling behavior unique to spaceflight may represent stereotyped motor behavior, rewarding effects of physical exercise, or vestibular sensation produced via self-motion. Affording mice the opportunity to grab and run in the RH resembles physical activities that the crew participate in routinely. Our approach yields a useful analog for better understanding human responses to spaceflight, providing the opportunity to assess how physical movement influences responses to microgravity.
Collapse
Affiliation(s)
- April E Ronca
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA. .,Wake Forest School of Medicine, Obstetrics and Gynecology, Winston-Salem, NC, 27101, USA.
| | - Eric L Moyer
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.,Utrecht University Graduate School of Life Sciences, Regenerative Medicine and Technology Program, Universiteitsweg 98, 3584 CG, UTRECHT, The Netherlands
| | - Yuli Talyansky
- Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,San Jose State University, San Jose, CA, 95192, USA.,Keck School of Medicine of the University of Southern California, Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Moniece Lowe
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Shreejit Padmanabhan
- San Jose State University, San Jose, CA, 95192, USA.,Duke Empirical Inc., 2829 Mission St, Santa Cruz, CA, 95060, USA
| | - Sungshin Choi
- KBRwyle, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Cynthia Gong
- KBRwyle, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Samuel M Cadena
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Louis Stodieck
- BioServe Space Technologies, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, 80302, USA
| | - Ruth K Globus
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| |
Collapse
|
19
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Gobinath AR, Wong S, Chow C, Lieblich SE, Barr AM, Galea LAM. Maternal exercise increases but concurrent maternal fluoxetine prevents the increase in hippocampal neurogenesis of adult offspring. Psychoneuroendocrinology 2018; 91:186-197. [PMID: 29579632 DOI: 10.1016/j.psyneuen.2018.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/14/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
Treating postpartum depression (PPD) with pharmacological antidepressants like fluoxetine (FLX) is complicated because these drugs can remain active in breast milk and potentially affect infant development. Alternatively, non-pharmacological treatments such as exercise are associated with beneficial effects on infant development but its potential ability to counter the effects of PPD are largely unknown. To investigate this, we treated dams with corticosterone (CORT) or vehicle (sesame oil) from postpartum days 2-25 to model PPD. Within oil and CORT treatments, dams were also assigned to one of these treatments: 1) exercise (voluntary running wheel) + FLX (10 mg/kg, i.p.), 2) exercise + saline (vehicle for FLX), 3) no exercise + FLX, 4) no exercise + saline. Both male and female offspring were analyzed, and this generated a total of 16 experimental groups for this study. Adult male and female offspring (125 d old) of these dams were tested for anxiety-like behavior in the novelty suppressed feeding test and stress reactivity in the dexamethasone suppression test. Hippocampal tissue was processed for doublecortin, a protein expressed in immature neurons. Regardless of sex, maternal exercise increased neurogenesis in the dorsal hippocampus of adult offspring, but concurrent exposure to maternal fluoxetine prevented this effect. Exposure to either maternal exercise or maternal FLX facilitated HPA negative feedback in adult males but not females. Maternal postpartum CORT also facilitated HPA feedback in adult offspring of both sexes. Collectively, these data indicate that maternal exercise increased dorsal hippocampal neurogenesis in both sexes but differentially affected offspring HPA axis based on sex. Alternatively, maternal postpartum FLX facilitated HPA axis negative feedback only in males. These findings indicate that different types of maternal interventions bear long-term effects on offspring outcome with implications for treating PPD.
Collapse
Affiliation(s)
- Aarthi R Gobinath
- Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Sarah Wong
- Department of Psychology, University of British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, University of British Columbia, Canada
| | | | - Alasdair M Barr
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Canada; Centre for Brain Health, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
21
|
Funck V, Fracalossi M, Vidigal A, Beijamini V. Dorsal hippocampal galanin modulates anxiety-like behaviours in rats. Brain Res 2018; 1687:74-81. [DOI: 10.1016/j.brainres.2018.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 01/22/2023]
|
22
|
Kingston RC, Smith M, Lacey T, Edwards M, Best JN, Markham CM. Voluntary exercise increases resilience to social defeat stress in Syrian hamsters. Physiol Behav 2018; 188:194-198. [DOI: 10.1016/j.physbeh.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
|
23
|
Alkadhi KA. Exercise as a Positive Modulator of Brain Function. Mol Neurobiol 2018; 55:3112-3130. [PMID: 28466271 DOI: 10.1007/s12035-017-0516-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
Various forms of exercise have been shown to prevent, restore, or ameliorate a variety of brain disorders including dementias, Parkinson's disease, chronic stress, thyroid disorders, and sleep deprivation, some of which are discussed here. In this review, the effects on brain function of various forms of exercise and exercise mimetics in humans and animal experiments are compared and discussed. Possible mechanisms of the beneficial effects of exercise including the role of neurotrophic factors and others are also discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
24
|
Mul JD. Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? J Mol Endocrinol 2018; 60:R77-R95. [PMID: 29330149 DOI: 10.1530/jme-17-0165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Acute or chronic exposure to stress can increase the risk to develop major depressive disorder, a severe, recurrent and common psychiatric condition. Depression places an enormous social and financial burden on modern society. Although many depressed patients are treated with antidepressants, their efficacy is only modest, underscoring the necessity to develop clinically effective pharmaceutical or behavioral treatments. Exercise training produces beneficial effects on stress-related mental disorders, indicative of clinical potential. The pro-resilient and antidepressant effects of exercise training have been documented for several decades. Nonetheless, the underlying molecular mechanisms and the brain circuitries involved remain poorly understood. Preclinical investigations using voluntary wheel running, a frequently used rodent model that mimics aspects of human exercise training, have started to shed light on the molecular adaptations, signaling pathways and brain nuclei underlying the beneficial effects of exercise training on stress-related behavior. In this review, I highlight several neurotransmitter systems that are putative mediators of the beneficial effects of exercise training on mental health, and review recent rodent studies that utilized voluntary wheel running to promote our understanding of exercise training-induced central adaptations. Advancements in our mechanistic understanding of how exercise training induces beneficial neuronal adaptations will provide a framework for the development of new strategies to treat stress-associated mental illnesses.
Collapse
Affiliation(s)
- Joram D Mul
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of EndocrinologyDepartment of Clinical Chemistry, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| |
Collapse
|
25
|
Fang P, Yu M, Wan D, Zhang L, Han L, Shen Z, Shi M, Zhu Y, Zhang Z, Bo P. Regulatory effects of galanin system on development of several age-related chronic diseases. Exp Gerontol 2017; 95:88-97. [PMID: 28450241 DOI: 10.1016/j.exger.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
Age is a major risk factor for developing chronic diseases, including type 2 diabetes, depression and Alzheimer's disease. The rapidly increase in the morbidity of these age-related chronic diseases is becoming a global problem. Although our understanding of these age-related diseases has tremendously been improved in recent years, certain aspects of their etiology and relative regulatory factors still remain elusive to clinicians and researchers. Emerging evidences suggest that neuropeptide galanin is involved in the pathogenesis of type 2 diabetes, depression and Alzheimer's disease. This article summarized relevant results of our and others studies to highlight the relationship between the galanin system and these age-related chronic diseases. On the one hand, a high galanin expression was found in subjects with type 2 diabetes, depression and Alzheimer's disease. On the other hand, current data suggest that galanin and its agonists (M617, M1145 and M1153) manifest the characters of anti-insulin resistance, anti-Alzheimer's disease and ameliorate or reinforce depression-like behavior. Specially, activation of GAL2 can alleviate those disease features in human and rodent models. These are helpful for us to understand the roles of galanin system in the pathogenesis of these age-related chronic diseases and to provide useful hints for the development of novel approaches to treat these complex diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China,; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China
| | - Dang Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Long Han
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China
| | - Zhongqi Shen
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
26
|
Lavebratt C, Herring MP, Liu JJ, Wei YB, Bossoli D, Hallgren M, Forsell Y. Interleukin-6 and depressive symptom severity in response to physical exercise. Psychiatry Res 2017; 252:270-276. [PMID: 28285256 DOI: 10.1016/j.psychres.2017.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Abstract
Elevated IL-6 has been implicated in depression. The anti-inflammatory effects of exercise may be associated with its clinical efficacy for depression. We determined if serum IL-6 levels were altered by 12 weeks of physical exercise, and if IL-6 levels were associated with baseline depression severity and change in depression severity in response to exercise. Data from 116 adults (42.7±11.5y) with mild-to-moderate depression (Patient Health Questionnaire >9) who participated in the physical exercise arm of the Regassa RCT (www.regassa.se) were analyzed. Participants were requested to complete three 60-min exercise sessions weekly for 12 weeks. Blood samples were provided at baseline and post-intervention following an overnight fast and were analyzed for serum levels of IL-6 using ELISA. IL-6 values were logarithm-transformed. Higher baseline serum IL-6 levels were significantly associated with reduced depression severity after exercise. Reduced IL-6 levels following exercise were significantly associated with parallel reductions in depression severity. These findings are consistent with a previously reported association between reduced serum IL-1β levels and reduced depression severity following 12 weeks of physical exercise in 105 depressed adults. Findings support associations between IL-6, depressive symptoms, and exercise response, and provide support for the plausible involvement of IL-6 in the antidepressive effect of exercise.
Collapse
Affiliation(s)
- Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Neurogenetics Unit, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew P Herring
- Department of Physical Education and Sport Sciences, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Jia Jia Liu
- Department of Molecular Medicine and Surgery, Neurogenetics Unit, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ya Bin Wei
- Department of Molecular Medicine and Surgery, Neurogenetics Unit, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Davide Bossoli
- Department of Statistics, University of Padua, Padua, Italy
| | - Mats Hallgren
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Short AK, Yeshurun S, Powell R, Perreau VM, Fox A, Kim JH, Pang TY, Hannan AJ. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl Psychiatry 2017; 7:e1114. [PMID: 28463242 PMCID: PMC5534950 DOI: 10.1038/tp.2017.82] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that the preconceptual lifestyle and other environmental exposures of a father can significantly alter the physiological and behavioral phenotypes of their children. We and others have shown that paternal preconception stress, regardless of whether the stress was experienced during early-life or adulthood, results in offspring with altered anxiety and depression-related behaviors, attributed to hypothalamic-pituitary-adrenal axis dysregulation. The transgenerational response to paternal preconceptual stress is believed to be mediated by sperm-borne small noncoding RNAs, specifically microRNAs. As physical activity confers physical and mental health benefits for the individual, we used a model of voluntary wheel-running and investigated the transgenerational response to paternal exercise. We found that male offspring of runners had suppressed reinstatement of juvenile fear memory, and reduced anxiety in the light-dark apparatus during adulthood. No changes in these affective behaviors were observed in female offspring. We were surprised to find that running had a limited impact on sperm-borne microRNAs. The levels of three unique microRNAs (miR-19b, miR-455 and miR-133a) were found to be altered in the sperm of runners. In addition, we discovered that the levels of two species of tRNA-derived RNAs (tDRs)-tRNA-Gly and tRNA-Pro-were also altered by running. Taken together, we believe this is the first evidence that paternal exercise is associated with an anxiolytic behavioral phenotype of male offspring and altered levels of small noncoding RNAs in sperm. These small noncoding RNAs are known to have an impact on post-transcriptional gene regulation and can thus change the developmental trajectory of offspring brains and associated affective behaviors.
Collapse
Affiliation(s)
- A K Short
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
- Department of Pediatrics and Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - S Yeshurun
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - R Powell
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - V M Perreau
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - A Fox
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - J H Kim
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - T Y Pang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - A J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hökfelt TGM, Xu ZQD. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A 2016; 113:E4726-35. [PMID: 27457954 PMCID: PMC4987783 DOI: 10.1073/pnas.1609198113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuropeptide galanin coexists in rat brain with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus (LC), and it has been suggested to be involved in depression. We studied rats exposed to chronic mild stress (CMS), a rodent model of depression. As expected, these rats showed several endophenotypes relevant to depression-like behavior compared with controls. All these endophenotypes were normalized after administration of a selective serotonin reuptake inhibitor. The transcripts for galanin and two of its receptors, galanin receptor 1 (GALR1) and GALR2, were analyzed with quantitative real-time PCR using laser capture microdissection in the following brain regions: the hippocampal formation, LC, and ventral periaqueductal gray (vPAG). Only Galr1 mRNA levels were significantly increased, and only in the latter region. After knocking down Galr1 in the vPAG with an siRNA technique, all parameters of the depressive behavioral phenotype were similar to controls. Thus, the depression-like behavior in rats exposed to CMS is likely related to an elevated expression of Galr1 in the vPAG, suggesting that a GALR1 antagonist could have antidepressant effects.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; Division of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jing Sun
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tong Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Pan Zhang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hanjiang Luo
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yongjun Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Chuanyue Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linkoping University, SE-58183 Linkoping, Sweden
| | - Tomas G M Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
29
|
Jones AB, Gupton R, Curtis KS. Estrogen and voluntary exercise interact to attenuate stress-induced corticosterone release but not anxiety-like behaviors in female rats. Behav Brain Res 2016; 311:279-286. [PMID: 27247143 DOI: 10.1016/j.bbr.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 01/13/2023]
Abstract
The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress.
Collapse
Affiliation(s)
- Alexis B Jones
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States
| | - Rebecca Gupton
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107-1898, United States.
| |
Collapse
|
30
|
Nedelescu H, Chowdhury TG, Wable GS, Arbuthnott G, Aoki C. Cerebellar sub-divisions differ in exercise-induced plasticity of noradrenergic axons and in their association with resilience to activity-based anorexia. Brain Struct Funct 2016; 222:317-339. [PMID: 27056728 PMCID: PMC5215061 DOI: 10.1007/s00429-016-1220-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 11/01/2022]
Abstract
The vermis or "spinocerebellum" receives input from the spinal cord and motor cortex for controlling balance and locomotion, while the longitudinal hemisphere region or "cerebro-cerebellum" is interconnected with non-motor cortical regions, including the prefrontal cortex that underlies decision-making. Noradrenaline release in the cerebellum is known to be important for motor plasticity but less is known about plasticity of the cerebellar noradrenergic (NA) system, itself. We characterized plasticity of dopamine β-hydroxylase-immunoreactive NA fibers in the cerebellum of adolescent female rats that are evoked by voluntary wheel running, food restriction (FR) or by both, in combination. When 8 days of wheel access was combined with FR during the last 4 days, some responded with excessive exercise, choosing to run even during the hours of food access: this exacerbated weight loss beyond that due to FR alone. In the vermis, exercise, with or without FR, shortened the inter-varicosity intervals and increased varicosity density along NA fibers, while excessive exercise, due to FR, also shortened NA fibers. In contrast, the hemisphere required the FR-evoked excessive exercise to evoke shortened inter-varicosity intervals along NA fibers and this change was exhibited more strongly by rats that suppressed the FR-evoked excessive exercise, a behavior that minimized weight loss. Presuming that shortened inter-varicosity intervals translate to enhanced NA release and synthesis of norepinephrine, this enhancement in the cerebellar hemisphere may contribute towards protection of individuals from the life-threatening activity-based anorexia via relays with higher-order cortical areas that mediate the animal's decision to suppress the innate FR-evoked hyperactivity.
Collapse
Affiliation(s)
- Hermina Nedelescu
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Center for Neural Science, New York University, New York, NY, 10003, USA. .,Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Tara G Chowdhury
- Center for Neural Science, New York University, New York, NY, 10003, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gauri S Wable
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Gordon Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
31
|
Herrera JJ, Fedynska S, Ghasem PR, Wieman T, Clark PJ, Gray N, Loetz E, Campeau S, Fleshner M, Greenwood BN. Neurochemical and behavioural indices of exercise reward are independent of exercise controllability. Eur J Neurosci 2016; 43:1190-202. [PMID: 26833814 DOI: 10.1111/ejn.13193] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 11/27/2022]
Abstract
Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary running (VR) and forced running (FR) protect rats against the anxiety-like and depression-like behavioural consequences of stress. Voluntary exercise is a natural reward, but whether rats find FR rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, VR, or FR groups. FR rats were forced to run in a pattern resembling the natural wheel running behavior of rats. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum and nucleus accumbens, and increased the activity of DA neurons in the lateral ventral tegmental area, as revealed by immunohistochemistry for tyrosine hydroxylase and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct-pathway (dynorphin-positive) neurons in the dorsal striatum and nucleus accumbens in both VR and FR rats, and in tyrosine hydroxylase-positive neurons in the lateral ventral tegmental area of VR rats only. The results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Sofiya Fedynska
- Department of Psychology, University of Colorado Denver, CB 173, PO Box 173364, Denver, 80217, CO, USA
| | - Parsa R Ghasem
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Tyler Wieman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Peter J Clark
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nathan Gray
- Department of Psychology, University of Colorado Denver, CB 173, PO Box 173364, Denver, 80217, CO, USA
| | - Esteban Loetz
- Department of Psychology, University of Colorado Denver, CB 173, PO Box 173364, Denver, 80217, CO, USA
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin N Greenwood
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
32
|
Fang P, Shi M, Zhu Y, Bo P, Zhang Z. Type 2 diabetes mellitus as a disorder of galanin resistance. Exp Gerontol 2016; 73:72-77. [PMID: 26585047 DOI: 10.1016/j.exger.2015.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/16/2022]
Abstract
The increasing prevalence of type 2 diabetes mellitus with its high morbidity and mortality becomes an important health problem. The multifactorial etiology of type 2 diabetes mellitus is relative to many gene and molecule alterations, and increased insulin resistance. Besides these, however, there are still other predisposing and risk factors accounting for type 2 diabetes mellitus not to be identified and recognized. Emerging evidence indicated that defects in galanin function played a crucial role in development of type 2 diabetes mellitus. Galanin homeostasis is tightly relative to insulin resistance and is regulated by blood glucose. Hyperglycemia, hyperinsulinism, enhanced plasma galanin levels and decreased galanin receptor activities are some of the characters of type 2 diabetes mellitus. The discrepancy between high insulin level and low glucose handling is named as insulin resistance. Similarly, the discrepancy between high galanin level and low glucose handling may be denominated as galanin resistance too. In this review, the characteristic milestones of type 2 diabetes mellitus were condensed as two analogical conceptual models, obesity-hyper-insulin-insulin resistance-type 2 diabetes mellitus and obesity-hyper-galanin-galanin resistance-type 2 diabetes mellitus. Both galanin resistance and insulin resistance are correlative with each other. Conceptualizing the etiology of type 2 diabetes mellitus as a disorder of galanin resistance may inspire a new concept to deepen our knowledge about pathogenesis of type 2 diabetes mellitus, eventually leading to novel preventive and therapeutic interventions for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
33
|
Fang P, He B, Shi M, Zhu Y, Bo P, Zhang Z. Crosstalk between exercise and galanin system alleviates insulin resistance. Neurosci Biobehav Rev 2015; 59:141-146. [PMID: 26542124 DOI: 10.1016/j.neubiorev.2015.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023]
Abstract
Studies have demonstrated that aerobic exercise can enhance insulin sensitivity, however, the precise mechanism for this outcome is not entirely identified. Emerging evidences point out that exercise can upregulate galanin protein and mRNA expression, resulting in improvement of insulin sensitivity via an increase in translocation of glucose transporter 4 and subsequent glucose uptake in myocytes and adipocytes of healthy and type 2 diabetic rats, which may be blocked by galanin antagonist. In return, galanin can exert the exercise-protective roles to prevent excessive movement of skeletal muscle and to accelerate exercise trauma repair in exercise-relative tissues. Studies also implicated that combination of aerobic exercise and activation of galanin system may make more significant improvement in insulin sensitivity than that of either one did. These suggest that galanin system is essential for physical activity to alleviate insulin resistance, namely, the beneficial effect of physical activity on glucose uptake is at least partly mediated by galanin system. Besides, co-treatment with galanin and exercise is an effective therapeutic strategy for reducing insulin resistance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 20024, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
34
|
Abstract
Much evidence from pain patients and animal models shows that chronic pain does not exist in a vacuum but has varied comorbidities and far-reaching consequences. Patients with long-term pain often develop anxiety and depression and can manifest changes in cognitive functioning, particularly with working memory. Longitudinal studies in rodent models also show the development of anxiety-like behavior and cognitive changes weeks to months after an injury causing long-term pain. Brain imaging studies in pain patients and rodent models find that chronic pain is associated with anatomical and functional alterations in the brain. Nevertheless, studies in humans reveal that lifestyle choices, such as the practice of meditation or yoga, can reduce pain perception and have the opposite effect on the brain as does chronic pain. In rodent models, studies show that physical activity and a socially enriched environment reduce pain behavior and normalize brain function. Together, these studies suggest that the burden of chronic pain can be reduced by nonpharmacological interventions.
Collapse
|
35
|
Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2015; 1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system. To elucidate the contribution of galanin to LC physiology, here we briefly summarize the nature of stimuli that drive LC activity from a neuroanatomical perspective. We go on to describe the LC pathways in which galanin most likely exerts its effects on behavior, with a focus on addiction, depression, epilepsy, stress, and Alzheimer׳s disease. We propose a model in which LC-derived galanin has two distinct functions: as a neuromodulator, primarily acting via the galanin 1 receptor (GAL1), and as a trophic factor, primarily acting via galanin receptor 2 (GAL2). Finally, we discuss how the recent advances in neuropeptide detection, optogenetics and chemical genetics, and galanin receptor pharmacology can be harnessed to identify the roles of LC-derived galanin definitively. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA 30322, USA.
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
36
|
|
37
|
Zhang Z, Fang P, Shi M, Zhu Y, Bo P. Elevated galanin may predict the risk of type 2 diabetes mellitus for development of Alzheimer's disease. Mech Ageing Dev 2015; 150:20-26. [PMID: 26253934 DOI: 10.1016/j.mad.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/23/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological and clinical studies demonstrated that type 2 diabetes mellitus is an important risk factor for the development of Alzheimer's disease, i.e., the patients with type 2 diabetes mellitus are frequently companied with Alzheimer's disease symptoms. Despite many studies recently probed into the comorbid state of both diseases, so far the precise mechanism for this association is poorly understood. Emerging evidences suggest that defects in galanin play a central role on type 2 diabetes mellitus and is considered to be a risk factor for Alzheimer's disease development. This review provides a new insight into the multivariate relationship among galanin, type 2 diabetes mellitus and Alzheimer's disease, highlighting the effect of galanin system on the cross-talk between both diseases in human and rodent models. The current data support that activating central GalR2 attenuates insulin resistance and Alzheimer's disease feature in animal models. These may help us better understanding the pathogenesis of both diseases and provide useful hints for the development of novel therapeutic approaches to treat type 2 diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
38
|
Gan L, England E, Yang JY, Toulme N, Ambati S, Hartzell DL, Meagher RB, Baile CA. A 72-hour high fat diet increases transcript levels of the neuropeptide galanin in the dorsal hippocampus of the rat. BMC Neurosci 2015; 16:51. [PMID: 26260473 PMCID: PMC4531388 DOI: 10.1186/s12868-015-0188-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023] Open
Abstract
Background Recent evidence identifies the hippocampus, a brain structure commonly associated with learning and memory, as key to the regulation of food intake and the development and consequences of obesity. Intake of a high fat diet (HFD) results in altered consumptive behavior, hippocampal damage, and cognitive deficits. While many studies report the effects of HFD after chronic consumption and in the instance of obesity, few examine the events that occur following acute HFD consumption. In this study, male rats were fed either a control diet (10% fat by kcal) or HFD (45% fat by kcal) for 72 h. At the end of the 72-h period, serum and tissues were collected and weighed. Brains were rapidly frozen or formalin-fixed in preparation for qRT-PCR or immunohistochemistry, respectively. Results Acute intake of HFD resulted in higher serum levels of leptin and cholesterol, with no significant changes in final body weight or adipose tissue mass. In the dorsal hippocampus, transcription of the neuroprotective peptide galanin was significantly upregulated along with a trend for an increase in brain-derived neurotrophic factor and histone deacetylase 2 in the rats fed HFD. In the ventral hippocampus, there was a significant increase in histone deacetylase 4 and a decrease in galanin receptor 1 in this group. Results from immunohistochemistry validate strong presence of the galanin peptide in the CA1/CA2 region of the dorsal hippocampus. Conclusions These results provide evidence for a distinct response in specific functional regions of the hippocampus following acute HFD intake.
Collapse
Affiliation(s)
- Ling Gan
- Veterinary Medicine Department, Rongchang Campus, Southwest University, Rongchang, Chongqing, People's Republic of China. .,Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Emily England
- Neuroscience Division Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA.
| | - Jeong-Yeh Yang
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Natalie Toulme
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Suresh Ambati
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Diane L Hartzell
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | | | - Clifton A Baile
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
39
|
Pan-Vazquez A, Rye N, Ameri M, McSparron B, Smallwood G, Bickerdyke J, Rathbone A, Dajas-Bailador F, Toledo-Rodriguez M. Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety. Mol Brain 2015; 8:40. [PMID: 26135882 PMCID: PMC4487841 DOI: 10.1186/s13041-015-0128-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lack of physical activity and increased levels of stress contribute to the development of multiple physical and mental disorders. An increasing number of studies relate voluntary exercise with greater resilience to psychological stress, a process that is highly regulated by the hypothalamic-pituitary-adrenal (HPA) axis. However, the molecular mechanisms underlying the beneficial effects of exercise on stress resilience are still poorly understood. Here we have studied the impact of long term exercise and housing conditions on: a) hippocampal expression of glucocorticoid receptor (Nr3c1), b) epigenetic regulation of Nr3c1 (DNA methylation at the Nr3c1-1F promoter and miR-124 expression), c) anxiety (elevated plus maze, EPM), and d) adrenal gland weight and adrenocorticotropic hormone receptor (Mc2r) expression. RESULTS Exercise increased Nr3c1 and Nr3c1-1F expression and decreased miR-124 levels in the hippocampus in single-housed mice, suggesting enhanced resilience to stress. The opposite was found for pair-housed animals. Bisulfite sequencing showed virtually no DNA methylation in the Nr3c1-1F promoter region. Single-housing increased the time spent on stretch attend postures. Exercise decreased the time spent at the open arms of the EPM, however, the mobility of the exercise groups was significantly lower. Exercise had opposite effects on the adrenal gland weight of single and pair-housed mice, while it had no effect on adrenal Mc2r expression. CONCLUSIONS These results suggest that exercise exerts a positive impact on stress resilience in single-housed mice that could be mediated by decreasing miR-124 and increasing Nr3c1 expression in the hippocampus. However, pair-housing reverses these effects possibly due to stress from dominance disputes between pairs.
Collapse
Affiliation(s)
- Alejandro Pan-Vazquez
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.,Present address: MRC Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Natasha Rye
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Mitra Ameri
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Bethan McSparron
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Gabriella Smallwood
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Jordan Bickerdyke
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Alex Rathbone
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Federico Dajas-Bailador
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Maria Toledo-Rodriguez
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
40
|
Ogbonmwan YE, Sciolino NR, Groves-Chapman JL, Freeman KG, Schroeder JP, Edwards GL, Holmes PV, Weinshenker D. The galanin receptor agonist, galnon, attenuates cocaine-induced reinstatement and dopamine overflow in the frontal cortex. Addict Biol 2015; 20:701-13. [PMID: 25053279 PMCID: PMC4305031 DOI: 10.1111/adb.12166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex.
Collapse
Affiliation(s)
- Yvonne E. Ogbonmwan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Natale R. Sciolino
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
| | - Jessica L. Groves-Chapman
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
| | - Kimberly G. Freeman
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Jason P. Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Gaylen L. Edwards
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Philip V. Holmes
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
- Department of Psychology, University of Georgia, Athens, GA 30602
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
41
|
Morgan JA, Corrigan F, Baune BT. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. J Mol Psychiatry 2015; 3:3. [PMID: 26064521 PMCID: PMC4461979 DOI: 10.1186/s40303-015-0010-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer's disease, depression, and Parkinson's disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important CNS functions have yet to be clarified. Here we review murine evidence about the effects of exercise on discrete brain regions involved in important CNS functions. Exercise effects on circadian rhythm, central metabolism, cardiovascular function, stress responses in the brain stem and hypothalamic pituitary axis, and movement are examined. The databases Pubmed, Web of Science, and Embase were searched for articles investigating regional brain adaptations to exercise. Brain regions examined included the brain stem, hypothalamus, and basal ganglia. We found evidence of multiple regional adaptations to both forced and voluntary exercise. Exercise can induce molecular adaptations in neuronal function in many instances. Taken together, these findings suggest that the regional physiological adaptations that occur with exercise could constitute a promising field for elucidating molecular and cellular mechanisms of recovery in psychiatric and neurological health conditions.
Collapse
Affiliation(s)
- Julie A Morgan
- />University of Adelaide, School of Medicine, Discipline of Psychiatry, Psychiatric Neuroscience Laboratory, Adelaide, South Australia Australia
| | - Frances Corrigan
- />University of Adelaide, Discipline of Anatomy and Pathology, School of Medical Sciences, Adelaide, South Australia Australia
| | - Bernhard T Baune
- />University of Adelaide, School of Medicine, Discipline of Psychiatry, Psychiatric Neuroscience Laboratory, Adelaide, South Australia Australia
| |
Collapse
|
42
|
Ogbonmwan YE, Schroeder JP, Holmes PV, Weinshenker D. The effects of post-extinction exercise on cocaine-primed and stress-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2015; 232:1395-403. [PMID: 25358851 PMCID: PMC4388768 DOI: 10.1007/s00213-014-3778-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
Abstract
RATIONALE Voluntary aerobic exercise has shown promise as a treatment for substance abuse, reducing relapse in cocaine-dependent people. Wheel running also attenuates drug-primed and cue-induced reinstatement of cocaine seeking in rats, an animal model of relapse. However, in most of these studies, wheel access was provided throughout cocaine self-administration and/or extinction and had effects on several parameters of drug seeking. Moreover, the effects of exercise on footshock stress-induced reinstatement have not been investigated. OBJECTIVES The purposes of this study were to isolate and specifically examine the protective effect of exercise on relapse-like behavior elicited by a drug prime or stress. METHODS Rats were trained to self-administer cocaine at a stable level, followed by extinction training. Once extinction criteria were met, rats were split into exercise (24 h, continuous access to running wheel) and sedentary groups for 3 weeks, after which, drug-seeking behavior was assessed following a cocaine prime or footshock. We also measured galanin messenger RNA (mRNA) in the locus coeruleus and A2 noradrenergic nucleus. RESULTS Exercising rats ran ∼4-6 km/day, comparable to levels previously reported for rats without a history of cocaine self-administration. Post-extinction exercise significantly attenuated cocaine-primed, but not footshock stress-induced, reinstatement of cocaine seeking, and increased galanin mRNA expression in the LC but not A2. CONCLUSION These results indicate that chronic wheel running can attenuate some forms of reinstatement, even when initiated after the cessation of cocaine self-administration, supporting the idea that voluntary exercise programs may help maintain abstinence in clinical populations.
Collapse
Affiliation(s)
- Yvonne E. Ogbonmwan
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason P. Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Philip V. Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Sciolino NR, Smith JM, Stranahan AM, Freeman KG, Edwards GL, Weinshenker D, Holmes PV. Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology 2015; 89:255-64. [PMID: 25301278 PMCID: PMC4250306 DOI: 10.1016/j.neuropharm.2014.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/15/2022]
Abstract
Exercise promotes resilience to stress and increases galanin in the locus coeruleus (LC), but the question of whether changes in galanin signaling mediate the stress-buffering effects of exercise has never been addressed. To test the contributions of galanin to stress resilience, male Sprague Dawley rats received intracerebroventricular (ICV) cannulation for drug delivery and frontocortical cannulation for microdialysis, and were housed with or without a running wheel for 21d. Rats were acutely injected with vehicle or the galanin receptor antagonist M40 and exposed to a single session of either footshock or no stress. Other groups received galanin, the galanin receptor antagonist M40, or vehicle chronically for 21d prior to the stress session. Microdialysis sampling occurred during stress exposure and anxiety-related behavior was measured on the following day in the elevated plus maze. Dendritic spines were visualized by Golgi impregnation in medial prefrontal cortex (mPFC) pyramidal neurons and quantified. Exercise increased galanin levels in the LC. Under non-stressed conditions, anxiety-related behavior and dopamine levels were comparable between exercised and sedentary rats. In contrast, exposure to stress reduced open arm exploration in sedentary rats but not in exercise rats or those treated chronically with ICV galanin, indicating improved resilience. Both exercise and chronic, ICV galanin prevented the increased dopamine overflow and loss of dendritic spines observed after stress in sedentary rats. Chronic, but not acute M40 administration blocked the resilience-promoting effects of exercise. The results indicate that increased galanin levels promote features of resilience at both behavioral and neural levels.
Collapse
Affiliation(s)
- N R Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | - J M Smith
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | - A M Stranahan
- Physiology Department, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| | - K G Freeman
- Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA.
| | - G L Edwards
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA; Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA.
| | - D Weinshenker
- Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - P V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA; Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
44
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
45
|
Fang P, Min W, Sun Y, Guo L, Shi M, Bo P, Zhang Z. The potential antidepressant and antidiabetic effects of galanin system. Pharmacol Biochem Behav 2014; 120:82-87. [PMID: 24582894 DOI: 10.1016/j.pbb.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 11/17/2022]
Abstract
Epidemiological and clinical studies demonstrated that type 2 diabetes mellitus and depression are interconnected. Depression is an important risk factor for the development of type 2 diabetes mellitus, while patients with type 2 diabetes mellitus frequently have depressive symptoms. Despite many studies recently probed into the comorbid state of both diseases, so far the precise mechanism for this association is poorly understood. Experiments have demonstrated that neuropeptide galanin is involved in the pathogenesis of depression and type 2 diabetes mellitus. This review provides a new insight into the multivariate relationship among galanin, depression and type 2 diabetes mellitus, highlighting the effect of galanin system on the cross-talk between both diseases in human and rodent models. The current data support that activating central GalR2 attenuates insulin resistance and depressive feature in animal models. These may help us better understand the pathogenesis of both diseases and provide useful hints for the development of novel therapeutic approaches, i.e. to coadministrate GalR2 agonist with traditional antidepressive and antidiabetic medicines to treat depression and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Penghua Fang
- Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China.
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Yong Sun
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Lili Guo
- Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
46
|
Hare BD, Beierle JA, Toufexis DJ, Hammack SE, Falls WA. Exercise-associated changes in the corticosterone response to acute restraint stress: evidence for increased adrenal sensitivity and reduced corticosterone response duration. Neuropsychopharmacology 2014; 39:1262-9. [PMID: 24280995 PMCID: PMC3957122 DOI: 10.1038/npp.2013.329] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/09/2022]
Abstract
Exercise promotes stress resistance and is associated with reduced anxiety and reduced depression in both humans and in animal models. Despite the fact that dysfunction within the hypothalamic pituitary adrenal (HPA) axis is strongly linked to both anxiety and depressive disorders, the evidence is mixed as to how exercise alters the function of the HPA axis. Here we demonstrate that 4 weeks of voluntary wheel running was anxiolytic in C57BL/6J mice and resulted in a shorter time to peak corticosterone (CORT) and a more rapid decay of CORT following restraint stress. Wheel running was also associated with increased adrenal size and elevated CORT following systemic administration of adrenocorticotropic hormone. Finally, the HPA-axis response to peripheral or intracerebroventricular administration of dexamethasone did not suggest that wheel running increases HPA-axis negative feedback through GR-mediated mechanisms. Together these findings suggest that exercise may promote stress resilience in part by insuring a more rapid and shortened HPA response to a stressor thus affecting overall exposure to the potentially negative effects of more sustained HPA-axis activation.
Collapse
Affiliation(s)
- Brendan D Hare
- Department of Psychology, University of Vermont, Burlington, Vermont, USA
| | - Jacob A Beierle
- Department of Psychology, University of Vermont, Burlington, Vermont, USA
| | - Donna J Toufexis
- Department of Psychology, University of Vermont, Burlington, Vermont, USA
| | | | - William A Falls
- Department of Psychology, University of Vermont, Burlington, Vermont, USA,Department of Psychology, University of Vermont, John Dewey Hall, 2 ColcehsterAvenue, Burlington, Vermont 05405, USA, Tel: +1 802 656 5748, Fax: +1 802 656 8783, E-mail:
| |
Collapse
|
47
|
Holmes PV. Trophic Mechanisms for Exercise-Induced Stress Resilience: Potential Role of Interactions between BDNF and Galanin. Front Psychiatry 2014; 5:90. [PMID: 25120496 PMCID: PMC4112800 DOI: 10.3389/fpsyt.2014.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Current concepts of the neurobiology of stress-related disorders, such as anxiety and depression emphasize disruptions in neural plasticity and neurotrophins. The potent trophic actions of exercise, therefore, represent not only an effective means for prevention and treatment of these disorders, they also afford the opportunity to employ exercise paradigms as a basic research tool to uncover the neurobiological mechanisms underlying these disorders. Novel approaches to studying stress-related disorders focus increasingly on trophic factor signaling in corticolimbic circuits that both mediate and regulate cognitive, behavioral, and physiological responses to deleterious stress. Recent evidence demonstrates that the neural plasticity supported by these trophic mechanisms is vital for establishing and maintaining resilience to stress. Therapeutic interventions that promote these mechanisms, be they pharmacological, behavioral, or environmental, may therefore prevent or reverse stress-related mental illness by enhancing resilience. The present paper will provide an overview of trophic mechanisms responsible for the enhancement of resilience by voluntary exercise with an emphasis on brain-derived neurotrophic factor, galanin, and interactions between these two trophic factors.
Collapse
Affiliation(s)
- Philip V Holmes
- Neuroscience Program, Psychology Department, Biomedical and Health Sciences Institute, The University of Georgia , Athens, GA , USA
| |
Collapse
|
48
|
Epps SA, Kahn AB, Holmes PV, Boss-Williams KA, Weiss JM, Weinshenker D. Antidepressant and anticonvulsant effects of exercise in a rat model of epilepsy and depression comorbidity. Epilepsy Behav 2013; 29:47-52. [PMID: 23933912 PMCID: PMC3783960 DOI: 10.1016/j.yebeh.2013.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
Abstract
The bidirectional comorbidity between epilepsy and depression is associated with severe challenges for treatment efficacy and safety, often resulting in poor prognosis and outcome for the patient. We showed previously that rats selectively bred for depression-like behaviors (SwLo rats) also have increased limbic seizure susceptibility compared with their depression-resistant counterparts (SwHi rats). In this study, we examined the therapeutic efficacy of voluntary exercise in our animal model of epilepsy and depression comorbidity. We found that chronic wheel running significantly increased both struggling duration in the forced swim test and latency to pilocarpine-induced limbic motor seizure in SwLo rats but not in SwHi rats. The antidepressant and anticonvulsant effects of exercise were associated with an increase in galanin mRNA specifically in the locus coeruleus of SwLo rats. These results demonstrate the beneficial effects of exercise in a rodent model of epilepsy and depression comorbidity and suggest a potential role for galanin.
Collapse
Affiliation(s)
- S. Alisha Epps
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Alexa B. Kahn
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | - Jay M. Weiss
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322,Address correspondence to: David Weinshenker, PhD, Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA 30322, Phone: (404) 727-3106, Fax: (404) 727-3949,
| |
Collapse
|
49
|
Lapmanee S, Charoenphandhu J, Charoenphandhu N. Beneficial effects of fluoxetine, reboxetine, venlafaxine, and voluntary running exercise in stressed male rats with anxiety- and depression-like behaviors. Behav Brain Res 2013; 250:316-25. [PMID: 23707245 DOI: 10.1016/j.bbr.2013.05.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/05/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022]
Abstract
Rodents exposed to mild but repetitive stress may develop anxiety- and depression-like behaviors. Whether this stress response could be alleviated by pharmacological treatments or exercise interventions, such as wheel running, was unknown. Herein, we determined anxiety- and depression-like behaviors in restraint stressed rats (2h/day, 5 days/week for 4 weeks) subjected to acute diazepam treatment (30min prior to behavioral test), chronic treatment with fluoxetine, reboxetine or venlafaxine (10mg/kg/day for 4 weeks), and/or 4-week voluntary wheel running. In elevated plus-maze (EPM) and forced swimming tests (FST), stressed rats spent less time in the open arms and had less swimming duration than the control rats, respectively, indicating the presence of anxiety- and depression-like behaviors. Stressed rats also developed learned fear as evaluated by elevated T-maze test (ETM). Although wheel running could reduce anxiety-like behaviors in both EPM and ETM, only diazepam was effective in the EPM, while fluoxetine, reboxetine, and venlafaxine were effective in the ETM. Fluoxetine, reboxetine, and wheel running, but not diazepam and venlafaxine, also reduced depression-like behavior in FST. Combined pharmacological treatment and exercise did not further reduce anxiety-like behavior in stressed rats. However, stressed rats treated with wheel running plus reboxetine or venlafaxine showed an increase in climbing duration in FST. In conclusion, regular exercise (voluntary wheel running) and pharmacological treatments, especially fluoxetine and reboxetine, could alleviate anxiety- and depression-like behaviors in stressed male rats.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
50
|
Loughridge AB, Greenwood BN, Day HEW, McQueen MB, Fleshner M. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus. Front Behav Neurosci 2013; 7:37. [PMID: 23717271 PMCID: PMC3650681 DOI: 10.3389/fnbeh.2013.00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/18/2013] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms.
Collapse
Affiliation(s)
- Alice B Loughridge
- Department of Integrative Physiology, University of Colorado Boulder Boulder, CO, USA
| | | | | | | | | |
Collapse
|