1
|
Tatar AS, Nagy-Simon T, Tigu AB, Tomuleasa C, Boca S. Optimization of Tyrosine Kinase Inhibitor-Loaded Gold Nanoparticles for Stimuli-Triggered Antileukemic Drug Release. J Funct Biomater 2023; 14:399. [PMID: 37623644 PMCID: PMC10455807 DOI: 10.3390/jfb14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Tyrosine kinase inhibitor (TKI) therapy is gaining attraction in advanced cancer therapeutics due to the ubiquity of kinases in cell survival and differentiation. Great progress was made in the past years in identifying tyrosine kinases that can function as valuable molecular targets and for the entrapment of their corresponding inhibitors in delivery compounds for triggered release. Herein we present a class of drug-delivery nanocompounds based on TKI Midostaurin-loaded gold nanoparticles that have the potential to be used as theranostic agents for the targeting of the FMS-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia. We optimized the nanocompounds' formulation with loading efficiency in the 84-94% range and studied the drug release behavior in the presence of stimuli-responsive polymers. The therapeutic activity of MDS-loaded particles, superior to that of the free drug, was confirmed with toxicities depending on specific dosage ranges. No effect was observed on FLT3-negative cells or for the unloaded particles. Beyond druggability, we can track this type of nanocarrier inside biological structures as demonstrated via dark field microscopy. These properties might contribute to the facilitation of personalized drug dosage administration, critical for attaining a maximal therapeutic effect.
Collapse
Affiliation(s)
- Andra-Sorina Tatar
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (A.-S.T.); (T.N.-S.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Timea Nagy-Simon
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (A.-S.T.); (T.N.-S.)
| | - Adrian Bogdan Tigu
- Research Center for Advanced Medicine—MEDFUTURE, Department of Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania; (A.B.T.); (C.T.)
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine—MEDFUTURE, Department of Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania; (A.B.T.); (C.T.)
- Department of Hematology, Oncologic Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (A.-S.T.); (T.N.-S.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Chen S, Tao L, He X, Di R, Wang X, Chu M. Single-nucleotide polymorphisms in <i>FLT3</i>, <i>NLRP5</i>, and <i>TGIF1</i> are associated with litter size in Small-tailed Han sheep. Arch Anim Breed 2021; 64:475-486. [PMID: 35024433 PMCID: PMC8738861 DOI: 10.5194/aab-64-475-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Previous studies have indicated that FLT3, NLRP5, and TGIF1 play a pivotal role in sheep fecundity. Nevertheless, little is known about the association of the polymorphisms of these genes with litter size (LS). In this study, the selected single-nucleotide polymorphisms (SNPs) were genotyped using a Sequenom MassARRAY® platform, and the distribution of different genotypes of the SNPs in the seven sheep breeds (Small-tailed Han, Hu, Cele Black, Suffolk, Tan, Prairie Tibetan, and Sunite sheep) were analyzed. The reliability of the estimated allele frequency for all seven SNPs was at least 0.9545. Given the association of the TGIF1 g.37866222C > T polymorphism with LS in Small-tailed Han sheep (p<0.05), fecundity differences might be caused by the change in amino acid from proline (Pro) to serine (Ser), which has an impact on secondary, tertiary protein structures with concomitant TGIF1 functionality changes. The FLT3 rs421947730 locus has a great effect on the LS (p<0.05), indicating that the locus of FLT3 in synergy with KILTG is likely to facilitate ovarian follicle maturation and ovulation. Moreover, NLRP5 rs426897754 is associated with the LS of the second and third parities (p<0.05). We speculate that a synonymous variant of NLRP5 may be involved in folliculogenesis accompanied by BMP15, FSHR, BMPR1B, AMH, and GDF9, resulting in the different fecundity of Small-tailed Han sheep. Our studies provide valuable genetic markers for sheep breeding.
Collapse
|
3
|
Li X, Jiang Y, Peterson YK, Xu T, Himes RA, Luo X, Yin G, Inks ES, Dolloff N, Halene S, Chan SSL, Chou CJ. Design of Hydrazide-Bearing HDACIs Based on Panobinostat and Their p53 and FLT3-ITD Dependency in Antileukemia Activity. J Med Chem 2020; 63:5501-5525. [PMID: 32321249 DOI: 10.1021/acs.jmedchem.0c00442] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we present a new series of hydrazide-bearing class I selective HDAC inhibitors designed based on panobinostat. The cap, linker, and zinc-binding group were derivatized to improve HDAC affinity and antileukemia efficacy. Lead inhibitor 13a shows picomolar or low nanomolar IC50 values against HDAC1 and HDAC3 and exhibits differential toxicity profiles toward multiple cancer cells with different FLT3 and p53 statuses. 13a indirectly inhibits the FLT3 signaling pathway and down-regulates master antiapoptotic proteins, resulting in the activation of pro-caspase3 in wt-p53 FLT3-ITD MV4-11 cells. While in the wt-FLT3 and p53-null cells, 13a is incapable of causing apoptosis at a therapeutic concentration. The MDM2 antagonist and the proteasome inhibitor promote 13a-triggered apoptosis by preventing p53 degradation. Furthermore, we demonstrate that apoptosis rather than autophagy is the key contributing factor for 13a-triggered cell death. When compared to panobinostat, 13a is not mutagenic and displays superior in vivo bioavailability and a higher AUC0-inf value.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China.,Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yuqi Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Tongqiang Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Richard A Himes
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, South Carolina 29424, United States
| | - Xin Luo
- Technology Center of Qingdao Customs, Qingdao, Shandong 266002, China
| | - Guilin Yin
- Technology Center of Qingdao Customs, Qingdao, Shandong 266002, China
| | - Elizabeth S Inks
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Nathan Dolloff
- Department of Cellular and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston SC29425, United States
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, United States
| | - Sherine S L Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
4
|
Tima S, Okonogi S, Ampasavate C, Berkland C, Anuchapreeda S. FLT3-specific curcumin micelles enhance activity of curcumin on FLT3-ITD overexpressing MV4-11 leukemic cells. Drug Dev Ind Pharm 2019; 45:498-505. [PMID: 30572745 DOI: 10.1080/03639045.2018.1562462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin, a major active compound in the turmeric rhizome, has many biological properties, especially anti-leukemia activity. The overexpression of FMS-like tyrosine kinase 3 protein with internal tandem duplication (FLT3-ITD) mutation protein was related to the poor prognosis and disease progression of leukemia. In this study, the cytotoxicity and inhibitory effect of curcumin on cell cycle of FLT3-ITD overexpressing MV4-11 leukemic cells were evaluated. Moreover, curcumin polymeric micelles conjugated with FLT3-specific peptide (FLT3-Cur-micelles) were prepared using a film hydration method to increase curcumin solubility and the inhibitory effect on MV4-11 cells was evaluated. Cytotoxicity and cell cycle analysis were performed using an MTT assay and flow cytometry, respectively. Physical properties of FLT3-Cur-micelles, including particle size, size distribution, morphology, and entrapment efficiency (EE), were evaluated. Cellular uptake of the micelles on MV4-11 cells was determined by flow cytometry and fluorescence microscopy. FLT3-Cur-micelles were observed with size less than 50 nm and high EE of >75%. In addition, FLT3-Cur-micelles demonstrated excellent internalization and increased curcumin accumulation in leukemic cells when compared to free curcumin. Furthermore, FLT3-Cur-micelles exhibited a strong cytotoxic effect on MV4-11 cells with IC50 value of 1.1 µM, whereas the blank micelles showed no effect. Furthermore, FLT3-Cur-micelles showed no significant effect on normal human PBMCs with IC50 value >25 µM. In summary, FLT3-Cur-micelles are a promising nanocarrier system for enhancing anti-leukemic activity of curcumin and suitable for further preclinical studies.
Collapse
Affiliation(s)
- Singkome Tima
- a Department of Medical Technology, Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand.,d Research Center of Pharmaceutical Nanotechnology, Chiang Mai University , Chiang Mai , Thailand.,e Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| | - Siriporn Okonogi
- b Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand.,d Research Center of Pharmaceutical Nanotechnology, Chiang Mai University , Chiang Mai , Thailand
| | - Chadarat Ampasavate
- b Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Cory Berkland
- c Department of Pharmaceutical Chemistry, School of Pharmacy , University of Kansas , Kansas , USA
| | - Songyot Anuchapreeda
- a Department of Medical Technology, Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand.,d Research Center of Pharmaceutical Nanotechnology, Chiang Mai University , Chiang Mai , Thailand.,e Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
5
|
Noguera NI, Pelosi E, Angelini DF, Piredda ML, Guerrera G, Piras E, Battistini L, Massai L, Berardi A, Catalano G, Cicconi L, Castelli G, D'Angiò A, Pasquini L, Graziani G, Fioritoni G, Voso MT, Mastrangelo D, Testa U, Lo-Coco F. High-dose ascorbate and arsenic trioxide selectively kill acute myeloid leukemia and acute promyelocytic leukemia blasts in vitro. Oncotarget 2018; 8:32550-32565. [PMID: 28427227 PMCID: PMC5464808 DOI: 10.18632/oncotarget.15925] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
The use of high-dose ascorbate (ASC) for the treatment of human cancer has been attempted several decades ago and has been recently revived by several in vitro and in vivo studies in solid tumors. We tested the cytotoxic effects of ASC, alone or in combination with arsenic trioxide (ATO) in acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL). Leukemic cell lines and primary blasts from AML and APL patients were treated with graded concentrations of ASC, alone or in association with standard concentration (1 μM) of ATO. The ASC/ATO combination killed myeloid blasts, including leukemic CD34+ cells, while sparing CD34+ progenitors obtained from normal cord blood and bone marrow. Actually, approximately one-third (11/36) of primary AML cases were highly sensitive to the ASC/ATO combination. The mechanism of cell killing appeared to be related to increased oxidative stress and overproduction of ROS in a non-quantitative fashion, which resulted in induction of apoptosis. These effects were reverted by the addition of the antioxidant N-Acetyl-Cysteine (NAC). In the APL NB4 model, ASC induced direct degradation of the PML and PML/RARA proteins via caspase activation, while the transcriptional repressor DAXX was recruited in re-constituted PML nuclear bodies. Our findings encourage the design of pilot studies to explore the potential clinical benefit of ASC alone or in combination with ATO in advanced AML and APL.
Collapse
Affiliation(s)
- Nélida I Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela F Angelini
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Maria Liliana Piredda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Eleonora Piras
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Lauretta Massai
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Polo Scientifico San Miniato, Siena, Italy
| | - Anna Berardi
- Pescara Cell Factory Foundation Onlus, Pescara, Italy
| | | | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese D'Angiò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pasquini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Mastrangelo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Polo Scientifico San Miniato, Siena, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| |
Collapse
|
6
|
Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells. PLoS One 2016; 11:e0158290. [PMID: 27387666 PMCID: PMC4936702 DOI: 10.1371/journal.pone.0158290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Internal tandem duplication (ITD) mutations in the Fms-related tyrosine kinase 3 (FLT3) gene (FLT3-ITD) are associated with poor prognosis in patients with acute myeloid leukemia (AML). Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21) and pre-B cell leukemia transcription factor 1 (Pbx1) that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL) cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression.
Collapse
|
7
|
Takahashi S, Shirahama K. Internal tandem duplication and tyrosine kinase domain mutations in FLT3 alter the response to daunorubicin in Ba/F3 cells. Biomed Rep 2015; 4:83-86. [PMID: 26870340 DOI: 10.3892/br.2015.541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 01/12/2023] Open
Abstract
Internal tandem duplication (ITD) and activating point mutations, mainly at aspartic acid 835 in the tyrosine kinase domain (TKD), are frequently identified in the Fms-related tyrosine kinase 3 (FLT3) receptor gene in acute myeloid leukemia. The ITD in FLT3 (FLT3-ITD) confers resistance to several chemotherapeutic drugs; however, the relative effects of FLT3-ITD and FLT3-TKD mutations on the efficacy of these drugs have not been reported. In the present study, ITD or TKD mutant forms of FLT3 in Ba/F3 cells were expressed, as in the absence of interleukin-3 (IL-3) the growth of these cells is completely dependent on FLT3 oncogenic signals. As a result, the 50% effective dose for daunorubicin was significantly higher in both Ba/F3-FLT3-ITD clones, and also in one of the two Ba/F3-FLT3-TKD clones when cells were cultured without IL-3. This phenomenon was not observed for cytarabine in either Ba/F3-FLT3-ITD or Ba/F3-FLT3-TKD cells. Collectively, these results indicate that ITD and TKD mutations in FLT3 may confer daunorubicin resistance in Ba/F3 cells.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Sciences, Kanagawa 252-0373, Japan
| | - Kumi Shirahama
- Division of Hematology, Kitasato University School of Allied Health Sciences, Kanagawa 252-0373, Japan
| |
Collapse
|
8
|
Song G, Valdez BC, Li Y, Liu Y, Champlin RE, Andersson BS. Synergistic cytotoxicity of sorafenib with busulfan and nucleoside analogs in human FMS-like tyrosine kinase 3 internal tandem duplications-positive acute myeloid leukemia cells. Biol Blood Marrow Transplant 2014; 20:1687-95. [PMID: 25111583 DOI: 10.1016/j.bbmt.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/04/2014] [Indexed: 01/28/2023]
Abstract
Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) are used in pretransplantation conditioning therapy for patients with myeloid leukemia. To further improve their efficacy in FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD)-positive acute myeloid leukemia (AML), we investigated their synergism with sorafenib (Sor). Exposure of FLT3-ITD-positive MV-4-11 and MOLM 13 cells to Bu+Clo+Flu+Sor resulted in synergistic cytotoxicity; no such synergism was observed in the FLT3-wild type THP-1 and KBM3/Bu250(6) cell lines. The drug synergism in MV-4-11 cells could be attributed to activation of DNA damage response, histone 3 modifications, inhibition of prosurvival kinases, and activation of apoptosis. Further, the phosphorylation of kinases, including FLT3, MAPK kinase (MEK), and AKT, was inhibited. The FLT3-ITD substrate STAT5 and its target gene PIM 2 product decreased when cells were exposed to Sor alone, Bu+Clo+Flu, and Bu+Clo+Flu+Sor. The level of the proapoptotic protein p53 upregulated modulator of apoptosis (PUMA) increased, whereas the level of prosurvival protein MCL-1 decreased when cells were exposed to Bu+Clo+Flu+Sor. The interactions of PUMA with MCL-1 and/or BCL-2 were enhanced when cells were exposed to Bu+Clo+Flu or Bu+Clo+Flu+Sor. The changes in the level of these proteins, which are involved in mitochondrial control of apoptosis, correlate with changes in mitochondrial membrane potential. Bu+Clo+Flu+Sor decreased mitochondrial membrane potential by 60% and caused leakage of cytochrome c, second mitochondria-derived activator of caspases (SMAC)/direct IAP Binding protein with low pI (DIABLO), and AIF from the mitochondria to the cytoplasm, caspase activation, and cell death, suggesting the activation of apoptosis. Analogous, synergistic cytotoxicity in response to Bu, Clo, Flu, and Sor was observed in mononuclear cells isolated from FLT3-ITD-positive AML patients. Although our previous studies were aimed at standardizing the conditioning regimen, the new findings suggest that patients with abnormal expression of FLT3 might further benefit from individualizing treatment through the addition of Sor to Bu+Clo+Flu, thereby providing personalized pretransplantation therapy.
Collapse
Affiliation(s)
- Guiyun Song
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Liu
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
9
|
Park CH, Lee C, Yang JS, Joe BY, Chun K, Kim H, Kim HY, Kang JS, Lee JI, Kim MH, Han G. Discovery of thienopyrimidine-based FLT3 inhibitors from the structural modification of known IKKβ inhibitors. Bioorg Med Chem Lett 2014; 24:2655-60. [DOI: 10.1016/j.bmcl.2014.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
10
|
Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev 2012; 6:e8. [PMID: 25992210 PMCID: PMC4419636 DOI: 10.4081/oncol.2012.e8] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/06/2012] [Accepted: 04/13/2012] [Indexed: 01/10/2023] Open
Abstract
Hematopoiesis, the process by which the hematopoietic stem cells and progenitors differentiate into blood cells of various lineages, involves complex interactions of transcription factors that modulate the expression of downstream genes and mediate proliferation and differentiation signals. Despite the many controls that regulate hematopoiesis, mutations in the regulatory genes capable of promoting leukemogenesis may occur. The FLT3 gene encodes a tyrosine kinase receptor that plays a key role in controlling survival, proliferation and differentiation of hematopoietic cells. Mutations in this gene are critical in causing a deregulation of the delicate balance between cell proliferation and differentiation. In this review, we provide an update on the structure, synthesis and activation of the FLT3 receptor and the subsequent activation of multiple downstream signaling pathways. We also review activating FLT3 mutations that are frequently identified in acute myeloid leukemia, cause activation of more complex downstream signaling pathways and promote leukemogenesis. Finally, FLT3 has emerged as an important target for molecular therapy. We, therefore, report on some recent therapies directed against it.
Collapse
Affiliation(s)
- Tiziana Grafone
- Department of Onco-Hematology, Fondazione di Ricerca e Cura Giovanni Paolo II, Campobasso
| | - Michela Palmisano
- San Raffaele Vita-Salute University, School of Molecular Medicine, Milano, Italy
| | - Chiara Nicci
- Department of Onco-Hematology, Fondazione di Ricerca e Cura Giovanni Paolo II, Campobasso
| | - Sergio Storti
- Department of Onco-Hematology, Fondazione di Ricerca e Cura Giovanni Paolo II, Campobasso
| |
Collapse
|
11
|
Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol 2011; 4:13. [PMID: 21453545 PMCID: PMC3076284 DOI: 10.1186/1756-8722-4-13] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/01/2011] [Indexed: 01/13/2023] Open
Abstract
FLT3 is a type III receptor tyrosine kinase. Mutations of FLT3 comprise one of the most frequently identified types of genetic alterations in acute myeloid leukemia. One-third of acute myeloid leukemia patients have mutations of this gene, and the majority of these mutations involve an internal tandem duplication in the juxtamembrane region of FLT3, leading to constitutive activation of downstream signaling pathways and aberrant cell growth. This review summarizes the current understanding of the effects of the downstream molecular signaling pathways after FLT3 activation, with a particular focus on the effects on transcription factors. Moreover, this review describes novel FLT3-targeted therapies, as well as efficient combination therapies for FLT3-mutated leukemia cells.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- The Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan.
| |
Collapse
|
12
|
Ferrandiz N, Caraballo JM, Albajar M, Gomez-Casares MT, Lopez-Jorge CE, Blanco R, Delgado MD, Leon J. p21(Cip1) confers resistance to imatinib in human chronic myeloid leukemia cells. Cancer Lett 2009; 292:133-9. [PMID: 20042273 DOI: 10.1016/j.canlet.2009.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/11/2009] [Accepted: 11/27/2009] [Indexed: 11/24/2022]
Abstract
Imatinib is a Bcr-Abl inhibitor used as first-line therapy of chronic myeloid leukemia (CML). p21(Cip1), initially described as a cell cycle inhibitor, also protects from apoptosis in some models. We describe that imatinib down-regulates p21(Cip1) expression in CML cells. Using K562 cells with inducible p21 expression and transient transfections we found that p21 confers partial resistance to imatinib-induced apoptosis. This protection is not related to the G2-arrest provoked by p21, a decrease in the imatinib activity against Bcr-Abl or a cytoplasmic localization of p21. The results suggest an involvement of p21(Cip1) in the response to imatinib in CML.
Collapse
Affiliation(s)
- Nuria Ferrandiz
- Departamento de Biología Molecular, Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Benekli M, Baumann H, Wetzler M. Targeting signal transducer and activator of transcription signaling pathway in leukemias. J Clin Oncol 2009; 27:4422-32. [PMID: 19667270 DOI: 10.1200/jco.2008.21.3264] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins comprise a seven-member family of latent cytoplasmic transcription factors that are activated through tyrosine phosphorylation by a variety of cytokines and growth factors. Aberrant activation of STATs accompanies malignant cellular transformation with resultant leukemogenesis. Constitutive activation of STATs has been demonstrated in various leukemias. A better understanding of the mechanisms of dysregulation of the STAT pathway and understanding of the cause and effect relationship in leukemogenesis may serve as a basis for designing novel therapeutic strategies directed against STATs. Mechanisms of STAT activation, the potential role of STAT signaling in leukemogenesis, and recent advances in drug discovery targeting the STAT pathway are the focus of this review.
Collapse
Affiliation(s)
- Mustafa Benekli
- Department of Medical Oncology, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | |
Collapse
|
14
|
Iseki Y, Imoto A, Okazaki T, Harigae H, Takahashi S. Identification of annexin 1 as a PU.1 target gene in leukemia cells. Leuk Res 2009; 33:1658-63. [PMID: 19428102 DOI: 10.1016/j.leukres.2009.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/12/2009] [Accepted: 04/07/2009] [Indexed: 11/25/2022]
Abstract
To identify PU.1 downstream target genes, we first established PU.1-knockdown K562 (K562PU.1KD) cells expressing reduced levels of PU.1 by stably transfected PU.1 siRNAs. From microarray analysis, we found that several genes including annexin 1 were markedly induced in K562PU.1KD cells. Annexin 1 is a calcium- and phospholipid-binding protein and increased expression leads to the constitutive activation of extracellular signal-regulated kinase (ERK). Consistent with this, we observed constitutive activation of ERK in K562PU.1KD cells. Furthermore, we revealed the mRNA expression of annexin 1 was negatively correlated with PU.1 mRNA expression in 43 primary AML specimens (R=-0.31, p<0.042).
Collapse
Affiliation(s)
- Yuko Iseki
- Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara City, Kanagawa 228-8555, Japan
| | | | | | | | | |
Collapse
|
15
|
Flt3 receptor inhibition reduces constitutive NFkappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Apoptosis 2008; 13:1148-61. [PMID: 18670883 DOI: 10.1007/s10495-008-0243-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
High-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are characterized by the activation of the anti-apoptotic transcription factor NFkappaB, via the IKK complex. Here, we show that constitutive activation of the receptor tyrosine kinase Flt3 is responsible for IKK activation. Chemical inhibition or knockdown of Flt3 with small interfering RNAs reduced NFkappaB activation in MDS and AML cell lines, as well as in primary CD34(+) bone marrow cells from patients, causing apoptosis. Epistatic analysis involving the simultaneous inhibition of Flt3 and IKK suggested that both kinases act in the same anti-apoptotic pathway. An IKK2 mutant with a constitutive kinase activity and a plasma membrane-tethered mutant of NEMO that activates IKK1/2 prevented the cytocidal action of Flt3 inhibition. Flt3 phosphorylates IKK2 in vitro, and Flt3 inhibition reduced the phosphorylation of IKK2 in MDS or AML cell lines. IKK2 and Flt3 physically associated in MDS and AML cells, and Flt3 inhibition disrupted this interaction. Flt3 inhibition only killed CD34(+) bone marrow cells from high-risk MDS and AML patients, in correlation with blast numbers and NFkappaB activity, yet had no lethal effect on healthy CD34(+) cells or cells from low-risk MDS. These results suggest that Flt3 inhibitors might exert an anti-neoplastic effect in high-risk MDS and AML through inhibition of NFkappaB.
Collapse
|
16
|
Liu F, Kunter G, Krem MM, Eades WC, Cain JA, Tomasson MH, Hennighausen L, Link DC. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest 2008; 118:946-55. [PMID: 18292815 DOI: 10.1172/jci32704] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 12/19/2007] [Indexed: 12/11/2022] Open
Abstract
A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF-induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r.
Collapse
Affiliation(s)
- Fulu Liu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Smirnova OV, Ostroukhova TY, Bogorad RL. JAK-STAT pathway in carcinogenesis: Is it relevant to cholangiocarcinoma progression. World J Gastroenterol 2007; 13:6478-91. [PMID: 18161917 PMCID: PMC4611286 DOI: 10.3748/wjg.v13.i48.6478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The features of JAK-STAT signaling in liver cells are discussed in the current review. The role of this signaling cascade in carcinogenesis is accentuated. The possible involvement of this pathway and alteration of its elements are compared for normal cholangiocytes, cholangiocarcinoma predisposition and development. Prolactin and interleukin-6 are described in detail as the best studied examples. In addition, the non-classical nuclear translocation of cytokine receptors is discussed in terms of its possible implication to cholangiocarcinoma development.
Collapse
|
18
|
Li L, Piloto O, Kim KT, Ye Z, Nguyen HB, Yu X, Levis M, Cheng L, Small D. FLT3/ITD expression increases expansion, survival and entry into cell cycle of human haematopoietic stem/progenitor cells. Br J Haematol 2007; 137:64-75. [PMID: 17359372 DOI: 10.1111/j.1365-2141.2007.06525.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activating mutation of FLT3 by internal tandem duplications (ITDs) in the juxtamembrane region is the most common molecular aberration found in acute myeloid leukaemia (AML). In this study, a lentiviral vector containing two promoters achieved consistent and efficient co-expression of FLT3/ITD and GFP in transduced human CD34(+) haematopoietic stem/progenitor cells (HSPCs). When cultured in medium containing stem cell factor, thrombopoietin and FLT3 ligand (FL), FLT3/ITD-transduced cells demonstrated enhanced self-renewal and survival potential, unaffected by the withdrawal of FL. These cells retained a CD34(+)CD38(-/dim) immunophenotype, typical of HSPCs. Compared to cells transduced with a vector expressing GFP alone, FLT3/ITD-transduced HSPCs had a higher fraction of cells in active cell cycle. FLT3/ITD-transduced HSPCs were more sensitive to the induction of cytotoxicity by CEP-701, a selective FLT3 inhibitor, indicating a rapid 'addiction' to signalling through this oncogenic pathway. The FLT3/ITD-transduced HSPCs showed increased expression of Pim-1, c-Myc and Cyclin D3 (CCND3), each of which may contribute to the altered genetic programme instituted by FLT3/ITD signalling. Taken together, these results indicate that FLT3/ITD mutations may contribute to leukaemic transformation of normal HSPCs by prolonging survival, promoting proliferation and partially blocking differentiation. CEP-701 may act as a potent therapeutic agent for AML stem cells harbouring FLT3/ITD mutations.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Peterson LF, Yan M, Zhang DE. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 2007; 109:4392-8. [PMID: 17284535 PMCID: PMC1885483 DOI: 10.1182/blood-2006-03-012575] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 8;21 translocation is a major contributor to acute myeloid leukemia (AML) of the M2 classification occurring in approximately 40% of these cases. Multiple mouse models using this fusion protein demonstrate that AML1-ETO requires secondary mutagenic events to promote leukemogenesis. Here, we show that the negative cell cycle regulator p21(WAF1) gene is up-regulated by AML1-ETO at the protein, RNA, and promoter levels. Retroviral transduction and hematopoietic cell transplantation experiments with p21(WAF1)-deficient cells show that AML1-ETO is able to promote leukemogenesis in the absence of p21(WAF1). Thus, loss of p21(WAF1) facilitates AML1-ETO-induced leukemogenesis, suggesting that mutagenic events in the p21(WAF1) pathway to bypass the growth inhibitory effect from AML1-ETO-induced p21(WAF1) expression can be a significant factor in AML1-ETO-associated acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/physiology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/physiology
- Gene Expression Regulation, Leukemic
- Humans
- Jurkat Cells
- K562 Cells
- Leukemia/genetics
- Leukemia/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/physiology
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein
- Signal Transduction/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Luke F Peterson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
20
|
Takahashi S, Harigae H, Yokoyama H, Ishikawa I, Abe S, Imaizumi M, Sasaki T, Kaku M. Synergistic effect of arsenic trioxide and flt3 inhibition on cells with flt3 internal tandem duplication. Int J Hematol 2006; 84:256-61. [PMID: 17050201 DOI: 10.1532/ijh97.06076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Flt3 internal tandem duplication (Flt3-ITD) is a prevalent mutation in acute myeloid leukemia (AML). Flt3-ITD constitutively activates various signaling pathways, including a mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Arsenic trioxide (ATO) and MEK inhibition were recently reported to interact synergistically to induce apoptosis in AML cells. In this study, we aimed to clarify whether ATO and Flt3 inhibition would be a more specific and efficient therapy for Flt3-ITD cells. We demonstrate that the combination of ATO and an Flt3 inhibitor, AG1296, profoundly inhibits the growth of Flt3-ITD cells and induces their apoptosis. We further revealed that this combined treatment potently inhibits the ERK activity that might be responsible for cell growth. Moreover, using the Chou-Talalay method, we observed a synergistic growth-inhibitory effect for ATO and AG1296 in Flt3-ITD cells (BaF3-Flt3-ITD, MV4-11, and PL-21 cells), but not in Flt3 wild-type cells (RS4-11 and NB4 cells), for almost all dose ranges tested. Our results provide an experimental basis for a specific and efficient therapy for Flt3-ITD cells that involves combined treatment with Flt3 inhibitors and ATO.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Heiss E, Masson K, Sundberg C, Pedersen M, Sun J, Bengtsson S, Rönnstrand L. Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2. Blood 2006; 108:1542-50. [PMID: 16684964 DOI: 10.1182/blood-2005-07-008896] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Early signal relay steps upon ligand binding to the receptor tyrosine kinase Flt3 (ie, sites of Flt3 autophosphorylation and subsequent docking partners) are mainly unresolved. By immunoprecipitation of specific tryptic peptides contained in the juxtamembrane region of human Flt3 and subsequent radiosequencing, we identified the tyrosine residues 572, 589, 591, and 599 as in vivo autophosphorylation sites. Focusing on Y589 and Y599, we examined Flt3 ligand (FL)-mediated responses in wild-type-Flt3-(WT-Flt3-), Y589F-Flt3-, and Y599F-Flt3-expressing 32D cells. Compared with WT-Flt3-32D cells upon ligand stimulation, 32D-Y589F-Flt3 showed enhanced Erk activation and proliferation/survival, whereas 32D-Y599F-Flt3 cells hereby displayed substantially diminished responses. Both pY589 and pY599 were identified as association sites for signal relay molecules including Src family kinases and SHP2. Consistently, 32D-Y589F-Flt3 and 32D-Y599F-Flt3 showed decreased FL-triggered activation of Src family kinases. Interference with the Src-dependent negative regulation of Flt3 signaling may account for the enhanced mitogenic response of Y589F-Flt3. Y599 was additionally found to interact with the protein tyrosine phosphatase SHP2 in a phosphorylation-dependent manner. As Y599F-Flt3-32D was unable to associate with and to phosphorylate SHP2 and since silencing of SHP2 in WT-Flt3-expressing cells mimicked the Y599F-Flt3 phenotype, we hypothesize that recruitment of SHP2 to pY599 contributes to FL-mediated Erk activation and proliferation.
Collapse
Affiliation(s)
- Elke Heiss
- Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Takahashi S. Identification of Flt3 internal tandem duplications downstream targets by high-throughput immunoblotting protein array system. Am J Hematol 2006; 81:717-9. [PMID: 16838337 DOI: 10.1002/ajh.20697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The receptor tyrosine kinase Flt3 plays an important role in proliferation and survival of hematopoietic cells. Flt3 is the most frequently mutated gene (20-30%) in cases of acutemyeloid leukemia (AML). The majority of Flt3 mutations are internal tandem duplications (ITD) in the juxtamembrane domain of Flt3 receptor. This mutation results in the constitutive activation of STAT5 and Ras/mitogen-activated protein kinase pathways, leading to the aberrant growth of AML cells. In this study, to better understand the mechanisms of Flt3-ITD to the downstream pathways, a high-throughput immunoblotting protein array system was employed. As a result, c-Jun and c-Raf were markedly induced, suggesting that these factors are functional downstream targets of Flt3-ITD.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
23
|
Nakasato M, Shirakura Y, Ooga M, Iwatsuki M, Ito M, Kageyama SI, Sakai S, Nagata M, Aoki F. Involvement of the STAT5 signaling pathway in the regulation of mouse preimplantation development. Biol Reprod 2006; 75:508-17. [PMID: 16775227 DOI: 10.1095/biolreprod.105.047860] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The signal transducer and activator of transcription 5 (STAT5) is an essential factor in the signal transduction pathways for a number of cytokines that regulate the growth and differentiation of mammalian cells. In this study, we investigated the STAT5 signaling pathway in mouse embryos, to elucidate the mechanism of cytokine signal transduction that regulates preimplantation development. The results of the RT-PCR analysis showed that both STAT5A and B were expressed throughout preimplantation development. Immunocytochemistry revealed that the STAT5A/B proteins were located in the nucleus from the early 1-cell stage to the blastocyst stage. STAT5 activation appeared to be regulated by Janus kinases (JAKs) and SRC family kinases (SFKs), since inhibitors of these kinases inhibited the localization of STAT5 proteins to the nucleus. The JAK inhibitor Ag490 reduced both the developmental rate of the embryos and the expression levels of the downstream genes of the JAK-STAT5 signaling pathway. These findings suggest that STAT5 proteins function in preimplantation development by mediating the signals from cytokines.
Collapse
Affiliation(s)
- Makoto Nakasato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Leeman RJ, Lui VWY, Grandis JR. STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 2006; 6:231-41. [PMID: 16503733 DOI: 10.1517/14712598.6.3.231] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The signal transducer and activator of transcription (STAT) proteins relay signals from cytokine receptors and receptor tyrosine kinases on the cell surface to the nucleus, where they affect the transcription of genes involved in normal cell functions, including growth, apoptosis and differentiation. STAT3 has been found to be constitutively active in head and neck squamous cell carcinoma (HNSCC) as well as in other epithelial malignancies. In HNSCC, STAT3 alters the cell cycle, prevents apoptosis, and mediates the proliferation and survival of tumour cells. Several therapeutic approaches are being developed to target STAT3, including molecules that block either dimerisation or DNA binding by STAT3, strategies to decrease STAT3 expression and drugs that inhibit STAT3 function. Strategies that block STAT3 may prove efficacious for cancer treatment.
Collapse
Affiliation(s)
- Rebecca J Leeman
- Department of Otolaryngology, The Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
25
|
Seki M, Kameoka J, Takahashi S, Harigae H, Yanai N, Obinata M, Sasaki T. Identification of tenascin-C as a key molecule determining stromal cell-dependent erythropoiesis. Exp Hematol 2006; 34:519-27. [PMID: 16569598 DOI: 10.1016/j.exphem.2006.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 12/20/2005] [Accepted: 01/03/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE We previously established 33 bone marrow stromal cell lines from SV40 T-antigen transgenic mice. Of these, 27 clones supported erythroid colony formation, while 6 did not. The objective of this study is to identify the molecules that determine these erythroid colony-forming activities. MATERIALS AND METHODS We compared gene expression profiling by DNA microarray between cell lines that support erythropoiesis (E(+); TBR9, 184, 31-2) and cell lines that do not (E(-); TBR17, 33, 511). Among the differentially expressed genes, we selected candidate genes with results of quantitative reverse transcriptase polymerase chain reaction, and examined the effect of small interfering RNA (siRNA) and the addition of exogenous proteins on the erythroid colony formation. RESULTS Out of 7226 genes examined, 138 and 282 genes were upregulated and downregulated in E(+) by threefold or more, respectively. We have selected one of the upregulated genes, tenascin-C (TN-C), as a candidate. Expressions of TN-C in E(+) were all higher than the three E-cell lines, with a mean of 3.6-fold. The number of erythroid colonies in the presence of TN-C siRNA was significantly lower than that of control siRNA in TBR9 (20.7 +/- 6.3 vs 4.7 +/- 4.8 colonies; p = 0.01) and in TBR184 (13.3 +/- 5.3 vs 0.3 +/- 0.5; p = 0.02). Moreover, addition of exogenous TN-C enhanced the number of erythroid colonies in TBR184 (13.3 +/- 3.5 vs 20.0 +/- 2.0; p = 0.04) and in TBR31-2 (7.5 +/- 3.1 vs 13.5 +/- 2.6; p = 0.03). CONCLUSION These results suggest that TN-C is responsible for determining the stromal cell-dependent erythropoiesis.
Collapse
Affiliation(s)
- Masanori Seki
- Department of Rheumatology and Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Inomata M, Takahashi S, Harigae H, Kameoka J, Kaku M, Sasaki T. Inverse correlation between Flt3 and PU.1 expression in acute myeloblastic leukemias. Leuk Res 2005; 30:659-64. [PMID: 16271760 DOI: 10.1016/j.leukres.2005.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 07/27/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), playing a role in leukemogenesis while decreased expression of PU.1 induces AML in mice model. Therefore, we speculated that there is an inverse relationship between these two factors. To clarify this, we measured the expression level of Flt3 and PU.1 in 24 primary AML specimens. As a result, there is a significant negative correlation between Flt3 and PU.1 (r=-0.43, p<0.05). Furthermore, we revealed that flt3 gene promoter is suppressed by the over-expression of PU.1, suggesting that PU.1 is a potential suppressor of flt3 gene promoter.
Collapse
Affiliation(s)
- Mitsue Inomata
- Department of Rheumatology and Hematology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Takahashi S, Harigae H, Kameoka J, Sasaki T, Kaku M. AML1B transcriptional repressor function is impaired by the Flt3-internal tandem duplication. Br J Haematol 2005; 130:428-36. [PMID: 16042694 DOI: 10.1111/j.1365-2141.2005.05621.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fms-like tyrosine kinase 3 (Flt3) is a type III receptor tyrosine kinase. The internal tandem duplication (ITD) of the juxtamembrane region of this receptor is the most prevalent mutation in acute myeloid leukaemia (AML). The silencing mediator of retinoic and thyroid hormone receptors (SMRT) co-repressor recruits histone deacetylases (HDAC) and mediates transcriptional repression by interacting with various transcription factors. We recently reported that Flt3-ITD interferes with the transcriptional and biological action of promyelocytic leukaemia zinc finger transcriptional repressor by dissociating it from SMRT. In this study, we aimed to clarify whether the repressional activity of other well-known oncoproteins, such as AML1/Runx1 (AML1), is also affected by Flt3-ITD. We verified that the repression activity of AML1B, the isoform of AML1, is dependent on HDAC activity by using HDAC inbitor trichostatin A in GAL4 reporter assays. Mammalian two-hybrid assays demonstrated that this protein interacts with SMRT. Furthermore, this AML1B-SMRT interaction was disrupted by the overexpression of Flt3-ITD, leading to the reduction of AML1B repression activity. Additionally, we showed AML1B repression target, p21 (WAF1/CIP1), was aberrantly expressed in Flt3-ITD stably expressed BaF3 cells. Taken together, Flt3-ITD disrupts transcriptional repressor functions resulting in aberrant gene regulation in leukaemic cells.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
28
|
Lopes de Menezes DE, Peng J, Garrett EN, Louie SG, Lee SH, Wiesmann M, Tang Y, Shephard L, Goldbeck C, Oei Y, Ye H, Aukerman SL, Heise C. CHIR-258: A Potent Inhibitor of FLT3 Kinase in Experimental Tumor Xenograft Models of Human Acute Myelogenous Leukemia. Clin Cancer Res 2005; 11:5281-91. [PMID: 16033847 DOI: 10.1158/1078-0432.ccr-05-0358] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fms-like tyrosine kinase 3 (FLT3) encodes a receptor tyrosine kinase (RTK) for which activating mutations have been identified in a proportion of acute myelogenous leukemia (AML) patients and associated with poor clinical prognosis. Given the relevance of FLT3 mutations in AML, we investigated the activity of CHIR-258, an orally active, multitargeted small molecule, with potent activity against FLT3 kinase and class III, IV, and V RTKs involved in endothelial and tumor cell proliferation in AML models. EXPERIMENTAL DESIGN CHIR-258 was tested on two human leukemic cell lines in vitro and in vivo with differing FLT3 mutational status [MV4;11 cells express FLT3 internal tandem duplications (ITD) versus RS4;11 cells with wild-type (WT) FLT3]. RESULTS Antiproliferative activity of CHIR-258 against MV4;11 was approximately 24-fold greater compared with RS4;11, indicating more potent inhibition against cells with constitutively activated FLT3 ITD. Dose-dependent down modulation of receptor phosphorylation and downstream signaling [signal transducer and activator of transcription 5 (STAT5) and extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase] in MV4;11 cells with CHIR-258 confirmed the molecular mechanism of action. Target modulation of phospho-FLT3, phospho-STAT5, and phospho-ERK in MV4;11 tumors was achieved at biologically active doses of CHIR-258. Tumor regressions and eradication of AML cells from the bone marrow were shown in s.c. and bone marrow engraftment leukemic xenograft models. Tumor responses were characterized by decreased cellular proliferation and positive immunohistochemical staining for active caspase-3 and cleaved poly(ADP-ribose) polymerase, suggesting cell death was mediated in part via apoptosis. CONCLUSIONS Our data indicate that CHIR-258 may be an effective therapy in FLT3-associated AML and warrants clinical trials.
Collapse
MESH Headings
- Animals
- Benzimidazoles/pharmacology
- Cell Proliferation
- DNA Mutational Analysis
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Humans
- Immunohistochemistry
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/veterinary
- Mice
- Mice, SCID
- Neoplasm Transplantation
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Quinolones/pharmacology
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Tandem Repeat Sequences
- Transplantation, Heterologous
- Tumor Cells, Cultured
- fms-Like Tyrosine Kinase 3
Collapse
|
29
|
Takahashi S, Harigae H, Ishii KK, Inomata M, Fujiwara T, Yokoyama H, Ishizawa K, Kameoka J, Licht JD, Sasaki T, Kaku M. Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6. Leuk Res 2005; 29:893-9. [PMID: 15978940 DOI: 10.1016/j.leukres.2005.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
Activating mutations or over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), associated with activation of Ras/MAP kinase and other signaling pathways. In this study, we addressed the role of Flt3 in the activation of nuclear factor-kappa B (NF-kappaB), which is a target molecule of these kinase pathways. In BaF3 cells stably expressing Flt3, a NF-kappaB-responsive reporter was upregulated and its target gene, IL-6, was increased by the involvement of Flt3-ERK/MAPK-NF-kappaB pathway. Furthermore, we found a modest positive correlation (r=0.35, p=0.096) between Flt3 and IL-6 mRNA expression in 24 AML specimens. These results suggest a role of Flt3 over-expression in NF-kappaB pathway.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Department of Clinical Laboratory Medicine, Tohoku University School of Medicine, 1-1 Seiryou-machi, Aobaku, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Takahashi S, McConnell MJ, Harigae H, Kaku M, Sasaki T, Melnick AM, Licht JD. The Flt3 internal tandem duplication mutant inhibits the function of transcriptional repressors by blocking interactions with SMRT. Blood 2004; 103:4650-8. [PMID: 14982881 DOI: 10.1182/blood-2003-08-2759] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fms-like tyrosine kinase 3 (Flt3) is a type III receptor tyrosine kinase (RTK). Between 20% and 30% of acute myeloid leukemia (AML) patients have either an internal tandem duplication (ITD) of the juxtamembrane region or a point mutation of the Flt3 receptor leading to the constitutive activation of downstream signaling pathways and aberrant cell growth. The silencing mediator of retinoic and thyroid hormone receptors (SMRT) corepressor mediates transcriptional repression by interacting with transcription factors such as the promyelocytic leukemia zinc finger (PLZF) protein. Previous reports indicate that SMRT interaction with transcription factors can be disrupted by phosphorylation through activation of RTK pathways. We report here that the Flt3-ITD interferes with the transcriptional and biologic action of the PLZF transcriptional repressor. In the presence of Flt3-ITD, PLZF-SMRT interaction was reduced, transcriptional repression by PLZF was inhibited, and PLZF-mediated growth suppression of leukemia cells was partially blocked. Furthermore, overexpression of Flt3-ITD led to a partial relocalization of SMRT protein from the nucleus to the cytoplasm. Nuclear export was dependent on the SMRT receptor interaction domain (RID), and Flt3-ITD enhances the binding of nuclear-cytoplasm shuttling protein nuclear factor-kappaB-p65 (NFkappaB-p65) to this region. These data suggest that activating mutations of Flt3 may disrupt transcriptional repressor function resulting in aberrant gene regulation and abnormal leukemia cell growth.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, Box 1079, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|