1
|
Wong WH, Liu SZ, Li ASR, Liu X, Manolson MF, Zirngibl RA. Evidence for Rab7b and Its Splice Isoforms Having Distinct Biological Functions from Rab7a. Int J Mol Sci 2025; 26:2610. [PMID: 40141252 PMCID: PMC11942325 DOI: 10.3390/ijms26062610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The Rab family of small guanosine triphosphatases (GTPases) are nucleotide-dependent switches. Mutations in Rabs can result in human diseases. Rab7a and Rab7b transition from early endosomes to lysosomes and are presumed to function similarly. Most studies look at Rab7a, less on Rab7b, with the underlying assumption they function similarly. There have yet to be articles comparing them side by side. Whilst cloning Rab7 homologues, we identified splice isoforms for Rab7b only. These splice isoforms, Rab7b2 and Rab7bx8 lacking different exons, have not been previously characterized but suggest alternative function(s) for Rab7b. Thus, we hypothesize that Rab7 homologues have distinct functions. Here, we compare Rab7a and Rab7b nucleotide mutants locked in GDP-bound (Rab7T22N), GTP-bound (Rab7Q67L), nucleotide-free (Rab7aN125I/Rab7bN124I) states and characterized localization of the Rab7b splice isoforms. HeLa cells were transiently transfected with fluorescently tagged Rab7 reporters. Confocal images were processed with ImageJ and analyzed with SPSS. Rab7a and Rab7b nucleotide mutants were significantly different to one another. Approximately 50% of Rab7b splice isoform-expressing cells had aggregated vesicles, which were phenotypically different from Rab7b vesicles. Rab7a and Rab7b vesicles shared approximately 60% colocalization with each other, while Rab7b vesicles preferentially localized to the Trans Golgi Network. Our results suggest Rab7b is distinct from Rab7a, and Rab7b splice isoforms have different biological functions.
Collapse
Affiliation(s)
- Wing Hei Wong
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (S.Z.L.); (A.S.R.L.); (X.L.); (R.A.Z.)
| | - Stephanie Z. Liu
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (S.Z.L.); (A.S.R.L.); (X.L.); (R.A.Z.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Annie Shi Ru Li
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (S.Z.L.); (A.S.R.L.); (X.L.); (R.A.Z.)
| | - Xingyou Liu
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (S.Z.L.); (A.S.R.L.); (X.L.); (R.A.Z.)
| | - Morris F. Manolson
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (S.Z.L.); (A.S.R.L.); (X.L.); (R.A.Z.)
| | - Ralph A. Zirngibl
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (S.Z.L.); (A.S.R.L.); (X.L.); (R.A.Z.)
| |
Collapse
|
2
|
Moreno-Corona NC, de León-Bautista MP, León-Juárez M, Hernández-Flores A, Barragán-Gálvez JC, López-Ortega O. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Traffic 2024; 25:e12950. [PMID: 38923715 DOI: 10.1111/tra.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.
Collapse
Affiliation(s)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia, Mexico
- Human Health, Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | | | - Juan Carlos Barragán-Gálvez
- División de Ciencias Naturales y Exactas, Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, Paris, France
| |
Collapse
|
3
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
4
|
Foot-and-Mouth Disease Virus VP3 Protein Acts as a Critical Proinflammatory Factor by Promoting Toll-Like Receptor 4-Mediated Signaling. J Virol 2021; 95:e0112021. [PMID: 34524915 PMCID: PMC8577349 DOI: 10.1128/jvi.01120-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infection in cloven-hoofed animals causes severe inflammatory symptoms, including blisters on the oral mucosa, hoof, and breast; however, the molecular mechanism underlying the inflammatory response is unclear. In this study, we provide the first evidence that the FMDV protein VP3 activates lipopolysaccharide-triggered Toll-like receptor 4 (TLR4) signaling. FMDV VP3 increased the expression of TLR4 by downregulating the expression of the lysozyme-related protein Rab7b. Additionally, Rab7b can interact with VP3 to promote the replication of FMDV. Our findings suggested that VP3 regulates the Rab7b-TLR4 axis to mediate the inflammatory response to FMDV. IMPORTANCE Foot-and-mouth disease virus (FMDV) infection causes a severe inflammatory response in cloven-hoofed animals, such as pigs, cattle, and sheep, with typical clinical manifestations of high fever, numerous blisters on the oral mucosa, hoof, and breast, as well as myocarditis (tigroid heart). However, the mechanism underlying the inflammatory response caused by FMDV is enigmatic. In this study, we identified the VP3 protein of FMDV as an important proinflammatory factor. Mechanistically, VP3 interacted with TLR4 to promote TLR4 expression by inhibiting the expression of the lysozyme-related protein Rab7b. Our findings suggest that FMDV VP3 is a major proinflammatory factor in FMDV-infected hosts.
Collapse
|
5
|
Vestre K, Persiconi I, Borg Distefano M, Mensali N, Guadagno NA, Bretou M, Wälchli S, Arnold-Schrauf C, Bakke O, Dalod M, Lennon-Dumenil AM, Progida C. Rab7b regulates dendritic cell migration by linking lysosomes to the actomyosin cytoskeleton. J Cell Sci 2021; 134:272095. [PMID: 34494097 PMCID: PMC8487646 DOI: 10.1242/jcs.259221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Lysosomal signaling facilitates the migration of immune cells by releasing Ca2+ to activate the actin-based motor myosin II at the cell rear. However, how the actomyosin cytoskeleton physically associates to lysosomes is unknown. We have previously identified myosin II as a direct interactor of Rab7b, a small GTPase that mediates the transport from late endosomes/lysosomes to the trans-Golgi network (TGN). Here, we show that Rab7b regulates the migration of dendritic cells (DCs) in one- and three-dimensional environments. DCs are immune sentinels that transport antigens from peripheral tissues to lymph nodes to activate T lymphocytes and initiate adaptive immune responses. We found that the lack of Rab7b reduces myosin II light chain phosphorylation and the activation of the transcription factor EB (TFEB), which controls lysosomal signaling and is required for fast DC migration. Furthermore, we demonstrate that Rab7b interacts with the lysosomal Ca2+ channel TRPML1 (also known as MCOLN1), enabling the local activation of myosin II at the cell rear. Taken together, our findings identify Rab7b as the missing physical link between lysosomes and the actomyosin cytoskeleton, allowing control of immune cell migration through lysosomal signaling. This article has an associated First Person interview with the first author of the paper. Summary: The small GTPase Rab7b bridges the lysosomal Ca2+ channel TRPML1 to myosin II, thus enabling the local activation of myosin II at the cell rear and promoting fast migration of dendritic cells.
Collapse
Affiliation(s)
- Katharina Vestre
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Irene Persiconi
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Nadia Mensali
- Department of Cellular Therapy, the Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Marine Bretou
- Institut Curie, Inserm U932, F-75005 Paris, France.,VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
| | - Sébastien Wälchli
- Department of Cellular Therapy, the Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Catharina Arnold-Schrauf
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France
| | | | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
6
|
Radyk MD, Spatz LB, Peña BL, Brown JW, Burclaff J, Cho CJ, Kefalov Y, Shih C, Fitzpatrick JAJ, Mills JC. ATF3 induces RAB7 to govern autodegradation in paligenosis, a conserved cell plasticity program. EMBO Rep 2021; 22:e51806. [PMID: 34309175 PMCID: PMC8419698 DOI: 10.15252/embr.202051806] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Differentiated cells across multiple species and organs can re-enter the cell cycle to aid in injury-induced tissue regeneration by a cellular program called paligenosis. Here, we show that activating transcription factor 3 (ATF3) is induced early during paligenosis in multiple cellular contexts, transcriptionally activating the lysosomal trafficking gene Rab7b. ATF3 and RAB7B are upregulated in gastric and pancreatic digestive-enzyme-secreting cells at the onset of paligenosis Stage 1, when cells massively induce autophagic and lysosomal machinery to dismantle differentiated cell morphological features. Their expression later ebbs before cells enter mitosis during Stage 3. Atf3-/- mice fail to induce RAB7-positive autophagic and lysosomal vesicles, eventually causing increased death of cells en route to Stage 3. Finally, we observe that ATF3 is expressed in human gastric metaplasia and during paligenotic injury across multiple other organs and species. Thus, our findings indicate ATF3 is an evolutionarily conserved gene orchestrating the early paligenotic autodegradative events that must occur before cells are poised to proliferate and contribute to tissue repair.
Collapse
Affiliation(s)
- Megan D Radyk
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Lillian B Spatz
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Bianca L Peña
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey W Brown
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Joseph Burclaff
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Charles J Cho
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Yan Kefalov
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Chien‐Cheng Shih
- Washington University Center for Cellular ImagingWashington University School of MedicineSt. LouisMOUSA
| | - James AJ Fitzpatrick
- Washington University Center for Cellular ImagingWashington University School of MedicineSt. LouisMOUSA
- Departments of Neuroscience and Cell Biology & PhysiologyWashington University School of MedicineSt. LouisMOUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Jason C Mills
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
- Present address:
Section of Gastroenterology and HepatologyDepartments of Medicine and PathologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
7
|
Zhang Y, Li D, Zeng Q, Feng J, Fu H, Luo Z, Xiao B, Yang H, Wu M. LRRC4 functions as a neuron-protective role in experimental autoimmune encephalomyelitis. Mol Med 2021; 27:44. [PMID: 33932995 PMCID: PMC8088686 DOI: 10.1186/s10020-021-00304-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leucine rich repeat containing 4 (LRRC4), also known as netrin-G ligand-2 (NGL-2), belongs to the superfamily of LRR proteins and serves as a receptor for netrin-G2. LRRC4 regulates the formation of excitatory synapses and promotes axon differentiation. Mutations in LRRC4 occur in Autism Spectrum Disorder (ASD) and intellectual disability. Multiple sclerosis (MS) is a chronic neuroinflammatory disease with spinal cords demyelination and neurodegeneration. Here, we sought to investigate whether LRRC4 is involved in spinal cords neuron-associated diseases. METHODS LRRC4 was detected in the CNS of experimental autoimmune encephalomyelitis (EAE) mice by the use of real-time PCR and western blotting. LRRC4-/- mice were created and immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55. Pathological changes in spinal cords of LRRC4-/- and WT mice 15 days after immunization were examined by using hematoxylin and eosin (H&E), Luxol Fast Blue (LFB) staining and immunohistochemistry. The number of Th1/Th2/Th17/Treg cells in spleens and blood were measured with flow cytometry. Differential gene expression in the spinal cords from WT and LRRC4-/- mice was analyzed by using RNA sequencing (RNA-seq). Adeno-associated virus (AAV) vectors were used to overexpress LRRC4 (AAV-LRRC4) and were injected into EAE mice to assess the therapeutic effect of AAV-LRRC4 ectopic expression on EAE. RESULTS We report that LRRC4 is mainly expressed in neuron of spinal cords, and is decreased in the spinal cords of the EAE mice. Knockout of LRRC4 have a disease progression quickened and exacerbated with more severe myelin degeneration and infiltration of leukocytes into the spinal cords. We also first found that Rab7b is high expressed in EAE mice, and the deficiency of LRRC4 induces the elevated NF-κB p65 by up-regulating Rab7b, and up-regulation of IL-6, IFN-γ and down-regulation of TNF-α, results in more severe Th1 immune response in LRRC4-/- mice. Ectopic expression of LRRC4 alleviates the clinical symptoms of EAE mice and protects the neurons from immune damages. CONCLUSIONS We identified a neuroprotective role of LRRC4 in the progression of EAE, which may be used as a potential target for auxiliary support therapeutic treatment of MS.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Di Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Qiuming Zeng
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Zhaohui Luo
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiao
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Yang
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Yang Y, Zhu Y, Li X, Zhang X, Yu B. Identification of potential biomarkers and metabolic pathways based on integration of metabolomic and transcriptomic data in the development of breast cancer. Arch Gynecol Obstet 2021; 303:1599-1606. [PMID: 33791842 DOI: 10.1007/s00404-021-06015-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/23/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Breast cancer (BC) is the most common type of malignant tumor and the most common cause of cancer-related mortality among women. Metabolic reprogramming is considered a hallmark of cancer, and the study of BC metabolism may be the key to the development of new strategies for diagnosis and treatment. In this study, we aimed to explore the potential metabolites and gene biomarkers for BC through the integration of metabolomics and transcriptomic data, which could further understand BC tumor biology. METHODS Transcriptome dataset GSE139038 was downloaded to explore the differentially expressed genes (DEGs) between BC and normal control (NC) samples. Metabolomics dataset MTBLS326 was downloaded and preprocessed to obtain altered metabolites. Then, the principal component analysis (PCA) and linear models were used to reveal DEGs-metabolites relations. Finally, the pathway enrichment analysis of altered metabolites was performed. RESULTS A total of 280 DEGs and eight metabolites were explored between BC and NC samples. The liner module analysis investigated 28 DEGs-metabolites interactions including WASP family member 3 (WASF3)-lactate, ras-related protein Rab-7B (RAB7B)-lactate, and methyltransferase-like 7A (METTL7A)-pyruvate. Finally, pathways analysis showed that these metabolites (such as lactate and pyruvate) were mainly enriched in pathways like disorders of the Krebs cycle. CONCLUSIONS Combining with the transcriptomic and metabolomics data, we found that lactate, pyruvate, WASF3, RAB7B, and METTL7A might be used as novel biomarkers and potential therapeutic targets for BC. In addition, the disorders of the Krebs cycle pathway might affect the progression of BC.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Yunhua Zhu
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Xiaoyan Li
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Xiuxia Zhang
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China
| | - Bin Yu
- Department of Thyroid Mammary Surgery, The First People's Hospital of Yuhang, No. 369 Yingbin Road, Linping, Yuhang District, Hangzhou, 330110, Zhejiang, China.
| |
Collapse
|
9
|
Jin J, Qian H, Wan B, Zhou L, Chen C, Lv Y, Chen M, Zhu S, Ye L, Wang X, Xu W, Lv T, Song Y. Geranylgeranyl diphosphate synthase deficiency hyperactivates macrophages and aggravates lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1011-L1024. [PMID: 33729030 DOI: 10.1152/ajplung.00281.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage activation is a key contributing factor for excessive inflammatory responses of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Geranylgeranyl diphosphate synthase (GGPPS) plays a key role in the development of inflammatory diseases. Our group previously showed that GGPPS in alveolar epithelium have deleterious effects on acute lung injury induced by LPS or mechanical ventilation. Herein, we examined the role of GGPPS in modulating macrophage activation in ALI/ARDS. We found significant increased GGPPS expression in alveolar macrophages in patients with ARDS compared with healthy volunteers and in ALI mice induced by LPS. GGPPS-floxed control (GGPPSfl/fl) and myeloid-selective knockout (GGPPSfl/flLysMcre) mice were then generated. Interestingly, using an LPS-induced ALI mouse model, we showed that myeloid-specific GGPPS knockout significantly increased mortality, aggravated lung injury, and increased the accumulation of inflammatory cells, total protein, and inflammatory cytokines in BALF. In vitro, GGPPS deficiency upregulated the production of LPS-induced IL-6, IL-1β, and TNF-α in alveolar macrophages, bone marrow-derived macrophages (BMDMs), and THP-1 cells. Mechanistically, GGPPS knockout increased phosphorylation and nuclear translocation of NF-κB p65 induced by LPS. In addition, GGPPS deficiency increased the level of GTP-Rac1, which was responsible for NF-κB activation. In conclusion, decreased expression of GGPPS in macrophages aggravates lung injury and inflammation in ARDS, at least partly by regulating Rac1-dependent NF-κB signaling. GGPPS in macrophages may represent a novel therapeutic target in ARDS.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China.,Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yanling Lv
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meizi Chen
- Department of General Internal Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxia Wang
- Department of Intensive Care Unit, Inner Mongolia People's Hospital, Inner Mongolia Autonomous Region, Hohhot, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| |
Collapse
|
10
|
Douglass J, Hsiue EHC, Mog BJ, Hwang MS, DiNapoli SR, Pearlman AH, Miller MS, Wright KM, Azurmendi PA, Wang Q, Paul S, Schaefer A, Skora AD, Molin MD, Konig MF, Liu Q, Watson E, Li Y, Murphy MB, Pardoll DM, Bettegowda C, Papadopoulos N, Gabelli SB, Kinzler KW, Vogelstein B, Zhou S. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 2021; 6:6/57/eabd5515. [PMID: 33649101 DOI: 10.1126/sciimmunol.abd5515] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.
Collapse
Affiliation(s)
- Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Aitana Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Qing Wang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Complete Omics Inc., Baltimore, MD 21227, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Annika Schaefer
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Marco Dal Molin
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Qiang Liu
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
When Rab GTPases meet innate immune signaling pathways. Cytokine Growth Factor Rev 2021; 59:95-100. [PMID: 33608190 DOI: 10.1016/j.cytogfr.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Ras-related protein in brain (Rab) GTPases, the subfamily of small GTP-binding proteins superfamily, play a vital role in regulating and controlling vesicles' transport between different membrane-bound organelles. As the first-line defense against invading pathogens, the host's innate immune system recognizes various pathogen-associated molecular patterns through a series of membrane-bound or cytoplasmic pathogen recognition receptors to activate the downstream signaling pathway and induce the type I interferons (IFN-I). Numerous studies have demonstrated that Rab GTPases participate in innate immunity by regulating transmembrane signals' transduction and the transport, adhesion, anchoring, and fusion of vesicles. However, the underlying mechanism of Rab GTPases regulating innate immunity is not entirely understood. A comprehensive understanding of the interplay between the Rab GTPases and innate immunity will help develop novel therapeutics against microbial infections and chronic inflammations.
Collapse
|
12
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 789] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
13
|
Di Carlo E, Cipollone G, Mucilli F, Sorrentino C. Clinical impact of the lung tissue transcriptome in a teenager with multifocal invasive mucinous adenocarcinoma-a case report. Transl Lung Cancer Res 2020; 9:793-802. [PMID: 32676340 PMCID: PMC7354110 DOI: 10.21037/tlcr-20-177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transcriptional profiling of cancer and normal tissues harboring cancer can be a clinical and discovery tool, especially for the study of rare tumors. Invasive mucinous adenocarcinoma (IMA) is a rare lung cancer histotype, which mostly affects the elderly and commonly has a poor prognosis. We investigated the exceptional case of a teenager, exposed to passive smoke and chemical carcinogens, who developed a multifocal IMA with bilateral involvement. The malignancy was asymptomatic and was diagnosed occasionally during hospitalization for acute abdominal pain due to adnexitis. The young patient underwent video-assisted thoracoscopic surgery and lung samples were analysed by RNA-Sequencing. The transcriptome of patient’s normal and neoplastic lung tissues was compared with matched healthy controls and IMA signature cases, using Gene Set Enrichment Analyses, Gene Ontology and Genotype Tissue Expression database. Compared to healthy controls, the patient’s lung tissue lacked the expression of lymphocyte and humoral-mediated immune response genes, whereas genes driving the response to stimulus, chemical and organic substances, primarily, CXCL8, ACKR1, RAB7B, HOXC9, HOXD9, KLF5 and NKX2-8 were overexpressed. Genes driving extracellular structure organization, cell adhesion, cell movement, metabolic and apoptotic processes were down-modulated in patient’s lung tissue. When compared to IMA signature cases, the patient’s IMA revealed a prevalent expression of genes regulating the response to stimulus, myeloid and neutrophil activation and immune system processes, primarily CD1a and CXCL13/BCA1, whereas stemness genes and proto-oncogenes, such as SOX4, HES1, IER3 and SERPINH1 were downmodulated. These transcriptional signature associated with a favorable clinical course, since the patient was healthy five years after initial diagnosis. The transcriptome of the normal tissues bearing tumor provides meaningful information on the gene pathways driving tumor histogenesis, with a prospective impact on early diagnosis. Unlike the tumor histotype-related transcriptional signature, the individual patient’s signature enables tailored treatment and accurate prognosis.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Cipollone
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,General and Thoracic Surgery, "SS Annunziata" Hospital, Chieti, Italy
| | - Felice Mucilli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,General and Thoracic Surgery, "SS Annunziata" Hospital, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Role of bacterial infections in extracellular vesicles release and impact on immune response. Biomed J 2020; 44:157-164. [PMID: 32888911 PMCID: PMC8178569 DOI: 10.1016/j.bj.2020.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicle (EV) biology involves understanding the cellular and molecular mechanisms of cell communication. Studies conducted so far with various bacterial infection models demonstrate the release of various types of EVs that include exosomes and microvesicles. Depending upon the infection and cell type, EV cargo composition changes and ultimately might impact the host immune response and bacterial growth. The mechanisms behind the EVs release, cargo composition, and impact on the immune system have not been fully investigated. Future research needs to include in vivo models to understand the relevance of EVs in host immune function during bacterial infection, and to determine aspects that are shared or species-specific in the host. This would aid in the development of EVs as therapeutics or as markers of disease.
Collapse
|
15
|
Sun M, Luong G, Plastikwala F, Sun Y. Control of Rab7a activity and localization through endosomal type Igamma PIP 5-kinase is required for endosome maturation and lysosome function. FASEB J 2019; 34:2730-2748. [PMID: 31908013 DOI: 10.1096/fj.201901830r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023]
Abstract
The small GTPase Ras-related protein Rab-7a (Rab7a) serves as a key organizer of the endosomal-lysosomal system. However, molecular mechanisms controlling Rab7a activation levels and subcellular translocation are still poorly defined. Here, we demonstrate that type Igamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an endosome-localized enzyme that produces phosphatidylinositol 4,5-bisphosphate, directly interacts with Rab7a and plays critical roles in the control of the endosomal-lysosomal system. The loss of PIPKIγi5 blocks Rab7a recruitment to early endosomes, which prevents the maturation of early to late endosomes. PIPKIγi5 loss disturbs retromer complex connection with Rab7a, which blocks the retrograde sorting of Cation-independent Mannose 6-Phosphate Receptor from late endosomes. This leads to the decreased sorting of hydrolases to lysosomes and reduces the autophagic degradation. By modulating the retromer-Rab7a connection, PIPKIγi5 is also required for the recruitment of the GTPase-activating protein TBC1 domain family member 5 to late endosomes, which controls the conversion of Rab7a from the active state to the inactive state. Thus, PIPKIγi5 is critical for the modulation of Rab7a activity, localization, and function in the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Ming Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary Luong
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Faiz Plastikwala
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
16
|
Lafalla Manzano AF, Gil Lorenzo AF, Bocanegra V, Costantino VV, Cacciamani V, Benardon ME, Vallés PG. Rab7b participation on the TLR4 (Toll-like receptor) endocytic pathway in Shiga toxin-associated Hemolytic Uremic Syndrome (HUS). Cytokine 2019; 121:154732. [PMID: 31153054 DOI: 10.1016/j.cyto.2019.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The inflammatory response of the host to Shiga toxin and/or lipopolysaccharide (LPS) of Escherichia coli (E. coli) is included in (HUS). The TLR4-LPS complex is internalized and TLR4 induced inflammatory signaling is stopped by targeting the complex for degradation. Rab7b, a small guanosine triphosphatase (GTPase) expressed in monocytes, regulates the later stages of the endocytic pathway. OBJECTIVE we studied the Rab7b participation on the TLR4 endocytic pathway and its effect on monocyte cytokine production along the acute course of pediatric Shiga toxin-associated HUS. METHODS AND RESULTS Monocytes were identified according to their positivity in CD14 expression. Surface TLR4 expression in monocytes from 18 HUS patients significantly increased by day 1 to 6, showing the highest increase on day 4 compared to monocytes of 10 healthy children. Significant higher surface TLR4 expression was accompanied by increased proinflammatory intracellular cytokines, tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). In contrast, after these time points, surface TLR4 expression and intracellular TNF-α levels, returned to near control levels after 10 days. Furthermore, confocal immunofluorescence microscopy proved colocalization of increased intracellular TLR4/Rab7b determined by Pearson's coefficient in monocytes from HUS patients from day 1 on the highest colocalization of both proteins by day 4. Decreased TLR4/Rab7b colocalization was shown 10 days after HUS onset. CONCLUSION The colocalization of TLR4 and Rab7b allows us to suggest Rab7b participation in the control of the TLR4 endocytic pathway in HUS patient monocytes. A consequential fall in cytokine production throughout the early follow up of HUS is demonstrated.
Collapse
Affiliation(s)
| | - Andrea Fernanda Gil Lorenzo
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Victoria Bocanegra
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Valeria Victoria Costantino
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Valeria Cacciamani
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - María Eugenia Benardon
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia G Vallés
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Hospital Pediátrico Humberto J. Notti, Servicio de Nefrología, Ministerio de Salud, Mendoza, Argentina.
| |
Collapse
|
17
|
Qi J, Rong Y, Wang L, Xu J, Zhao K. Rab7b Overexpression-Ameliorated Ischemic Brain Damage Following tMCAO Involves Suppression of TLR4 and NF-κB p65. J Mol Neurosci 2019; 68:163-170. [PMID: 30911939 DOI: 10.1007/s12031-019-01295-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Cerebral stroke is one of the leading causes of death and permanent disability worldwide. Toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) p65 play a critical role in brain damage following ischemia-induced stroke. Rab7b, a lysosome-associated small Rab GTPase, has been implicated in TLR4 regulation; however, its role in cerebral stroke is poorly understood. In this study, by investigating a rat model with cerebral stroke, we found that Rab7b was upregulated in the rat brain following the transient middle cerebral artery occlusion (tMCAO). Functionally, overexpression of Rab7b in the brain by DNA transfection reduced cerebral infarction and improved neurological outcome following tMCAO, suggesting that Rab7b alleviates ischemic brain damage. Mechanistically, Rab7b overexpression suppressed the expression of TLR4 and NF-κB p65 and also inhibited the activation of NF-κB p65. Furthermore, Rab7b overexpression suppressed the production of proinflammatory mediators including TNF-α, IFN-γ, IL-1β, and IL-6 in the brain following tMCAO. In summary, these results suggest that Rab7b protects against ischemic brain damage following tMCAO and that this protection may relate to the suppressed inflammatory response mediated by TLR4 and NF-κB p65. Our study might offer Rab7b as a novel therapeutic target in the treatment of cerebral stroke.
Collapse
Affiliation(s)
- Jinlong Qi
- Department of Neurology, Tianjin Baodi Hospital, No.8 of Guang Chuan Road, Baodi District, Tianjin, 301800, China
| | - Yanhong Rong
- Department of Neurology, Tianjin Baodi Hospital, No.8 of Guang Chuan Road, Baodi District, Tianjin, 301800, China
| | - Lu Wang
- Department of Neurology, Tianjin Baodi Hospital, No.8 of Guang Chuan Road, Baodi District, Tianjin, 301800, China
| | - Junying Xu
- Department of Neurology, Tianjin Baodi Hospital, No.8 of Guang Chuan Road, Baodi District, Tianjin, 301800, China
| | - Kun Zhao
- Department of Neurology, Tianjin Baodi Hospital, No.8 of Guang Chuan Road, Baodi District, Tianjin, 301800, China.
| |
Collapse
|
18
|
Knockdown of Rab7a suppresses the proliferation, migration, and xenograft tumor growth of breast cancer cells. Biosci Rep 2019; 39:BSR20180480. [PMID: 29769411 PMCID: PMC6361774 DOI: 10.1042/bsr20180480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 03/28/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is a common invasive cancer in women. Ras-related protein Rab-7a (Rab7a) is involved in late endocytic trafficking, while its role in breast cancer is largely unclear. In the present study, we investigated the role of Rab7a in breast cancer. Comparing with adjacent breast tissues, Rab7a expression was increased in breast cancer tissues. Using lentivirus-mediated knockdown strategy, we found that Rab7a silencing inhibited the proliferation and colony formation of MDA-MB-231 cells. Apoptosis and G2 cell cycle arrest were induced in Rab7a knockdown. By contrast, Rab7a suppressed the apoptosis and promoted proliferation and colony formation of MCF-7 cells. The migration of MDA-MB-231 cells was suppressed by Rab7a knockdown. In vivo, depletion of Rab7a inhibited the xenograft tumor development of MDA-MB-231 cells. Altogether, our results highlight the novel function of Rab7a in the proliferation, invasion, and xenograft tumor development of breast cancer cells.
Collapse
|
19
|
Abstract
The Golgi apparatus is a central sorting station in the cell. It receives newly synthesized molecules from the endoplasmic reticulum and directs them to different subcellular destinations, such as the plasma membrane or the endocytic pathway. Importantly, in the last few years, it has emerged that the maintenance of Golgi structure is connected to the proper regulation of membrane trafficking. Rab proteins are small GTPases that are considered to be the master regulators of the intracellular membrane trafficking. Several of the over 60 human Rabs are involved in the regulation of transport pathways at the Golgi as well as in the maintenance of its architecture. This chapter will summarize the different roles of Rab GTPases at the Golgi, both as regulators of membrane transport, scaffold, and tethering proteins and in preserving the structure and function of this organelle.
Collapse
|
20
|
Borg Distefano M, Hofstad Haugen L, Wang Y, Perdreau-Dahl H, Kjos I, Jia D, Morth JP, Neefjes J, Bakke O, Progida C. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci 2018; 131:jcs.216630. [PMID: 30111580 DOI: 10.1242/jcs.216630] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023] Open
Abstract
Rab GTPases are key regulators of intracellular trafficking, and cycle between a GTP-bound active state and a GDP-bound inactive state. This cycle is regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several efforts have been made in connecting the correct GEFs and GAPs to their specific Rab. Here, we aimed to identify GAPs for Rab7b, the small GTPase involved in transport from late endosomes to the trans-Golgi. An siRNA screen targeting proteins containing TBC domains critical for Rab GAPs was performed and coupled to a phenotypic read-out that visualized the distribution of Rab7b. Silencing of TBC1D5 provided the strongest phenotype and this protein was subsequently validated in various in vitro and cell-based assays. TBC1D5 localizes to Rab7b-positive vesicles, interacts with Rab7b and has GAP activity towards Rab7b in vitro, which is further increased by retromer proteins. Similarly to the constitutively active mutant of Rab7b, inactivation of TBC1D5 also reduces the number of CI-MPR- and sortilin-positive vesicles. Together, the results show that TBC1D5 is a GAP for Rab7b in the control of endosomal transport to the trans-Golgi.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Harmonie Perdreau-Dahl
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jens Preben Morth
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, 2300 RC Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
21
|
Chen D, Sahin A, Kam WR, Liu Y, Darabad RR, Sullivan DA. Influence of lipopolysaccharide on proinflammatory gene expression in human corneal, conjunctival and meibomian gland epithelial cells. Ocul Surf 2018; 16:382-389. [PMID: 29763693 DOI: 10.1016/j.jtos.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 05/11/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE Lipopolysaccharide (LPS), a bacterial endotoxin, is known to stimulate leuokotriene B4 (LTB4) secretion by human corneal (HCECs), conjunctival (HConjECs) and meibomian gland (HMGECs) epithelial cells. We hypothesize that this LTB4 effect represents an overall induction of proinflammatory gene expression in these cells. Our objective was to test this hypothesis. METHODS Immortalized HCECs, HConjECs and HMGECs were cultured in the presence or absence of LPS (15 μg/ml) and ligand binding protein (LBP; 150 ng/ml). Cells were then processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, background subtraction, cubic spline normalization and GeneSifter software. RESULTS Our findings show that LPS induces a striking increase in proinflammatory gene expression in HCECs and HConjECs. These cellular reactions are associated with a significant up-regulation of genes associated with inflammatory and immune responses (e.g. IL-1β, IL-8, and tumor necrosis factor), including those related to chemokine and Toll-like receptor signaling pathways, cytokine-cytokine receptor interactions, and chemotaxis. In contrast, with the exception of Toll-like signaling and associated innate immunity pathways, almost no proinflammatory ontologies were upregulated by LPS in HMGECs. CONCLUSIONS Our results support our hypothesis that LPS stimulates proinflammatory gene expression in HCECs and HConjECs. However, our findings also show that LPS does not elicit such proinflammatory responses in HMGECs.
Collapse
Affiliation(s)
- Di Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Afsun Sahin
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Wendy R Kam
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yang Liu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Raheleh Rahimi Darabad
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Clinical Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
23
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
24
|
Kjos I, Borg Distefano M, Sætre F, Repnik U, Holland P, Jones AT, Engedal N, Simonsen A, Bakke O, Progida C. Rab7b modulates autophagic flux by interacting with Atg4B. EMBO Rep 2017; 18:1727-1739. [PMID: 28835545 PMCID: PMC5623852 DOI: 10.15252/embr.201744069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 11/11/2022] Open
Abstract
Autophagy (macroautophagy) is a highly conserved eukaryotic degradation pathway in which cytosolic components and organelles are sequestered by specialized autophagic membranes and degraded through the lysosomal system. The autophagic pathway maintains basal cellular homeostasis and helps cells adapt during stress; thus, defects in autophagy can cause detrimental effects. It is therefore crucial that autophagy is properly regulated. In this study, we show that the cysteine protease Atg4B, a key enzyme in autophagy that cleaves LC3, is an interactor of the small GTPase Rab7b. Indeed, Atg4B interacts and co‐localizes with Rab7b on vesicles. Depletion of Rab7b increases autophagic flux as indicated by the increased size of autophagic structures as well as the magnitude of macroautophagic sequestration and degradation. Importantly, we demonstrate that Rab7b regulates LC3 processing by modulating Atg4B activity. Taken together, our findings reveal Rab7b as a novel negative regulator of autophagy through its interaction with Atg4B.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Frank Sætre
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Petter Holland
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Arwyn T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway .,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway .,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J Cell Sci 2016; 129:3971-3982. [PMID: 27802132 DOI: 10.1242/jcs.185702] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Wyroba E, Kwaśniak P, Miller K, Kobyłecki K, Osińska M. Site-directed mutagenesis, in vivo electroporation and mass spectrometry in search for determinants of the subcellular targeting of Rab7b paralogue in the model eukaryote Paramecium octaurelia. Eur J Histochem 2016; 60:2612. [PMID: 27349314 PMCID: PMC4933825 DOI: 10.4081/ejh.2016.2612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
Protein products of paralogous genes resulting from whole genome duplication may acquire new functions. The role of post-translational modifications (PTM) in proper targeting of Paramecium Rab7b paralogue (distinct from that of Rab7a directly involved in phagocytosis) was studied using point mutagenesis, proteomic analysis and double immunofluorescence after in vivo electroporation of the mutagenized protein. Here we show that substitution of Thr200 by Ala diminished the incorporation of [P32] by 37% and of [C14-]UDP-glucose by 24% into recombinant Rab7b_200 in comparison to the non-mutagenized control. Double confocal imaging revealed that Rab7b_200 was mistargeted upon electroporation into living cells in contrast to non-mutagenized recombinant Rab7b correctly incorporated in the cytostome area. Using nano LC-MS/MS to compare the peptide map of Rab7b with that after deglycosylation with a mixture of five enzymes of different specificity we identified a peptide ion at m/z=677.63+ representing a glycan group attached to Thr200. Based on its mass and quantitative assays with [P32] and [C14]UDP-glucose, the suggested composition of the adduct attached to Thr200 is (Hex)1(HexNAc)1(Phos)3 or (HexNAc)1 (Deoxyhexose)1 (Phos)1 (HexA)1. These data indicate that PTM of Thr200 located in the hypervariable C-region of Paramecium octaurelia Rab7b is crucial for the proper localization/function of this protein. Moreover, the two Rab7 paralogues differ also in another PTM: substantially more phosphorylated amino acid residues are in Rab7b than in Rab7a.
Collapse
Affiliation(s)
- E Wyroba
- Nencki Institute of Experimental Biology of Polish Academy of Sciences.
| | | | | | | | | |
Collapse
|
27
|
Distefano MB, Kjos I, Bakke O, Progida C. Rab7b at the intersection of intracellular trafficking and cell migration. Commun Integr Biol 2015; 8:e1023492. [PMID: 27066171 PMCID: PMC4802807 DOI: 10.1080/19420889.2015.1023492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/21/2015] [Indexed: 02/06/2023] Open
Abstract
Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs).
Collapse
Affiliation(s)
- Marita Borg Distefano
- Department of Biosciences; Center for Immune Regulation; University of Oslo ; Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences; Center for Immune Regulation; University of Oslo ; Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences; Center for Immune Regulation; University of Oslo ; Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences; Center for Immune Regulation; University of Oslo ; Oslo, Norway
| |
Collapse
|
28
|
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014; 6:a022616. [PMID: 25341920 DOI: 10.1101/cshperspect.a022616] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Of the approximately 70 human Rab GTPases, nearly three-quarters are involved in endocytic trafficking. Significant plasticity in endosomal membrane transport pathways is closely coupled to receptor signaling and Rab GTPase-regulated scaffolds. Here we review current literature pertaining to endocytic Rab GTPase localizations, functions, and coordination with regulatory proteins and effectors. The roles of Rab GTPases in (1) compartmentalization of the endocytic pathway into early, recycling, late, and lysosomal routes; (2) coordination of individual transport steps from vesicle budding to fusion; (3) effector interactomes; and (4) integration of GTPase and signaling cascades are discussed.
Collapse
Affiliation(s)
- Angela Wandinger-Ness
- Department of Pathology MSC08 4640, University of New Mexico HSC, Albuquerque, New Mexico 87131
| | - Marino Zerial
- Max Planck Institute of Molecular and Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
29
|
Borg M, Bakke O, Progida C. A novel interaction between Rab7b and actomyosin reveals a dual role in intracellular transport and cell migration. J Cell Sci 2014; 127:4927-39. [PMID: 25217632 DOI: 10.1242/jcs.155861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rab proteins are small GTPases that regulate transport between the different compartments of the endomembrane system in eukaryotic cells. Here, we show that Rab7b, a Rab that controls the transport between late endosomes and the trans Golgi network, interacts directly with myosin II. We illustrate the functional relevance of this interaction, demonstrating that myosin II mediates the transport of Rab7b endosomes, as Rab7b dynamics are strongly affected after myosin II depletion or inhibition. We also demonstrate that a member of the Rab family regulates actin remodeling and, consequently, influences cell adhesion, polarization and migration. We find the molecular mechanism by which Rab7b influences stress fiber formation - through controlling the activation status of the small GTPase RhoA and therefore influencing myosin light chain phosphorylation. Our findings reveal a newly identified role for Rab proteins outside of their canonical role in intracellular trafficking, identifying Rab7b as a coordinator of cytoskeletal organization.
Collapse
Affiliation(s)
- Marita Borg
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
30
|
TPC1 has two variant isoforms, and their removal has different effects on endo-lysosomal functions compared to loss of TPC2. Mol Cell Biol 2014; 34:3981-92. [PMID: 25135478 PMCID: PMC4386455 DOI: 10.1128/mcb.00113-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1XG716 and Tpcn1T159) and show expression of a novel evolutionarily conserved Tpcn1B transcript from an alternative promoter, raising important questions regarding the status of Tpcn1 expression in mice recently described to be Tpcn1 knockouts. We show that the transgenic Tpcn1T159 line lacks expression of both Tpcn1 isoforms in all tissues analyzed. Using mouse embryonic fibroblasts (MEFs) from Tpcn1−/− and Tpcn2−/− animals, we show that a lack of Tpcn1 or Tpcn2 expression has no significant impact on resting endo-lysosomal pH or morphology. However, differential effects in endo-lysosomal function were observed upon the loss of Tpcn1 or Tpcn2 expression; thus, while Tpcn1−/− MEFs have impaired trafficking of cholera toxin from the plasma membrane to the Golgi apparatus, Tpcn2−/− MEFs show slower kinetics of ligand-induced platelet-derived growth factor receptor β (PDGFRβ) degradation, which is dependent on trafficking to lysosomes. Our findings indicate that TPC1 and TPC2 have important but distinct roles in the endo-lysosomal pathway.
Collapse
|
31
|
Berg-Larsen A, Landsverk OJB, Progida C, Gregers TF, Bakke O. Differential regulation of Rab GTPase expression in monocyte-derived dendritic cells upon lipopolysaccharide activation: a correlation to maturation-dependent functional properties. PLoS One 2013; 8:e73538. [PMID: 24039975 PMCID: PMC3764041 DOI: 10.1371/journal.pone.0073538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/21/2013] [Indexed: 12/25/2022] Open
Abstract
The regulation of Rab expression to modulate cellular function has recently been proposed. Dendritic cells are a prototypic example of cells that drastically alter their function in response to environmental cues by reducing endocytosis, secreting cytokines, changing surface protein repertoires and altering morphology and migration. This is not a binary event, but is subject to fluctuations through the activation process, termed maturation. Consequently, DCs transiently increase endocytosis and production of major histocompatibility complex class II molecules, and secrete inflammatory cytokines in infected tissues before migrating to secondary lymph nodes and releasing T cell polarizing factors. All these cellular processes rely on intracellular membrane transport, which is regulated by Rab family GTPases and their diverse effectors. Here we examine how the Rabs likely to be involved in these functions are regulated throughout DC maturation. We find that Rab expression is altered upon lipopolysaccharide-induced activation, and discuss how this correlates to the reported functions of these cells during maturation.
Collapse
Affiliation(s)
- Axel Berg-Larsen
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole J. B. Landsverk
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| | - Cinzia Progida
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tone F. Gregers
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Tardif V, Riquelme SA, Remy S, Carreño LJ, Cortés CM, Simon T, Hill M, Louvet C, Riedel CA, Blancou P, Bach JM, Chauveau C, Bueno SM, Anegon I, Kalergis AM. Carbon monoxide decreases endosome-lysosome fusion and inhibits soluble antigen presentation by dendritic cells to T cells. Eur J Immunol 2013; 43:2832-44. [PMID: 23852701 DOI: 10.1002/eji.201343600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
Heme oxygenase-1 (HO-1) inhibits immune responses and inflammatory reactions via the catabolism of heme into carbon monoxide (CO), Fe(2+) , and biliverdin. We have previously shown that either induction of HO-1 or treatment with exogenous CO inhibits LPS-induced maturation of dendritic cells (DCs) and protects in vivo and in vitro antigen-specific inflammation. Here, we evaluated the capacity of HO-1 and CO to regulate antigen presentation on MHC class I and MHC class II molecules by LPS-treated DCs. We observed that HO-1 and CO treatment significantly inhibited the capacity of DCs to present soluble antigens to T cells. Inhibition was restricted to soluble OVA protein, as no inhibition was observed for antigenic OVA-derived peptides, bead-bound OVA protein, or OVA as an endogenous antigen. Inhibition of soluble antigen presentation was not due to reduced antigen uptake by DCs, as endocytosis remained functional after HO-1 induction and CO treatment. On the contrary, CO significantly reduced the efficiency of fusion between late endosomes and lysosomes and not by phagosomes and lysosomes. These data suggest that HO-1 and CO can inhibit the ability of LPS-treated DCs to present exogenous soluble antigens to naïve T cells by blocking antigen trafficking at the level of late endosome-lysosome fusion.
Collapse
Affiliation(s)
- Virginie Tardif
- INSERM, UMR 1064, Nantes, France; CHU Nantes, ITUN, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Rab GTPases are at the central node of the machinery that regulates trafficking of organelles, including phagosomes. Thanks to the unique combination of high quality phagosome purification with highly sensitive proteomic studies, the network of Rab proteins that are dynamically associated with phagosomes during the process of maturation of this organelle is relatively well known. Whereas the phagosomal functions of many of the Rab proteins associated with phagosomes are characterized, the role(s) of most of these trafficking regulators remains to be identified. In some cases, even when the function in the context of phagosome biology is described, phagosomal Rab proteins seem to have similar roles. This review summarizes the current knowledge about the identity and function of phagosomal Rab GTPases, with a particular emphasis on new evidence that clarify these seemingly overlapping Rab functions during phagosome maturation.
Collapse
|
34
|
Kelly C, Canning P, Buchanan PJ, Williams MT, Brown V, Gruenert DC, Elborn JS, Ennis M, Schock BC. Toll-like receptor 4 is not targeted to the lysosome in cystic fibrosis airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 304:L371-82. [PMID: 23316065 PMCID: PMC4073939 DOI: 10.1152/ajplung.00372.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/03/2013] [Indexed: 01/13/2023] Open
Abstract
The innate immune response to bacterial infection is mediated through Toll-like receptors (TLRs), which trigger tightly regulated signaling cascades through transcription factors including NF-κB. LPS activation of TLR4 triggers internalization of the receptor-ligand complex which is directed toward lysosomal degradation or endocytic recycling. Cystic fibrosis (CF) patients display a robust and uncontrolled inflammatory response to bacterial infection, suggesting a defect in regulation. This study examined the intracellular trafficking of TLR4 in CF and non-CF airway epithelial cells following stimulation with LPS. We employed cells lines [16hBE14o-, CFBE41o- (CF), and CFTR-complemented CFBE41o-] and confirmed selected experiments in primary nasal epithelial cells from non-CF controls and CF patients (F508del homozygous). In control cells, TLR4 expression (surface and cytoplasmic) was reduced after LPS stimulation but remained unchanged in CF cells and was accompanied by a heightened inflammatory response 24 h after stimulation. All cells expressed markers of the early (EEA1) and late (Rab7b) endosomes at basal levels. However, only CF cells displayed persistent expression of Rab7b following LPS stimulation. Rab7 variants may directly internalize bacteria to the Golgi for recycling or to the lysosome for degradation. TLR4 colocalized with the lysosomal marker LAMP1 in 16 hBE14o- cells, suggesting that TLR4 is targeted for lysosomal degradation in these cells. However, this colocalization was not observed in CFBE41o- cells, where persistent expression of Rab7 and release of proinflammatory cytokines was detected. Consistent with the apparent inability of CF cells to target TLR4 toward the lysosome for degradation, we observed persistent surface and cytoplasmic expression of this pathogen recognition receptor. This defect may account for the prolonged cycle of chronic inflammation associated with CF.
Collapse
Affiliation(s)
- Catriona Kelly
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cogli L, Progida C, Thomas CL, Spencer-Dene B, Donno C, Schiavo G, Bucci C. Charcot-Marie-Tooth type 2B disease-causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin. Acta Neuropathol 2013; 125:257-72. [PMID: 23179371 PMCID: PMC3549248 DOI: 10.1007/s00401-012-1063-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) is a peripheral ulcero-mutilating neuropathy caused by four missense mutations in the rab7a gene. CMT2B is clinically characterized by prominent sensory loss, distal muscle weakness leading to muscle atrophy, high frequency of foot ulcers and infections that often results in toe amputations. RAB7A is a ubiquitous small GTPase, which controls transport to late endocytic compartments. Although the biochemical and functional properties of disease-causing RAB7A mutant proteins have been investigated, it is not yet clear how the disease originates. To understand how mutations in a ubiquitous protein specifically affect peripheral neurons, we performed a two-hybrid screen using a dorsal root ganglia cDNA library with the purpose of identifying RAB7A interactors specific for these cells. We identified peripherin, an intermediate filament protein expressed primarily in peripheral neurons, as a putative RAB7A interacting protein. The interaction was confirmed by co-immunoprecipitation and pull-down experiments, and established that the interaction is direct using recombinant proteins. Silencing or overexpression of wild type RAB7A changed the soluble/insoluble rate of peripherin indicating that RAB7A is important for peripherin organization and function. In addition, disease-causing RAB7A mutant proteins bind more strongly to peripherin and their expression causes a significant increase in the amount of soluble peripherin. Since peripherin plays a role not only in neurite outgrowth during development but also in axonal regeneration after injury, these data suggest that the altered interaction between disease-causing RAB7A mutants and peripherin could play an important role in CMT2B neuropathy.
Collapse
Affiliation(s)
- Laura Cogli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Progida C, Nielsen MS, Koster G, Bucci C, Bakke O. Dynamics of Rab7b-dependent transport of sorting receptors. Traffic 2012; 13:1273-85. [PMID: 22708738 DOI: 10.1111/j.1600-0854.2012.01388.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/26/2022]
Abstract
The small GTPase Rab7b localizes to late endosomes-lysosomes and to the Golgi, regulating the transport between these two intracellular compartments. We have recently demonstrated that depletion of Rab7b causes missorting of the cation-independent mannose 6-phosphate receptor (CI-MPR), suggesting that Rab7b may control the trafficking of this receptor. Here we further investigated the function of this small GTPase with special attention to its role in the trafficking of sorting receptors and dynamics in living cells. Using endosome-to-Golgi retrieval assays we show that Rab7b is involved not only in CI-MPR transport but also in the MPRs independent pathway. Indeed, we find that it regulates and interacts with sortilin, a mannose 6-phosphate-independent sorting receptor. CI-MPR and sortilin are sorted from the trans-Golgi network (TGN) in tubular structures and the expression of Rab7b mutants or its silencing reduces CI-MPR and sortilin tubulation. In addition, the constitutively active mutant Rab7b Q67L impairs the formation of carriers from TGN. Collectively, our observations show for the first time that Rab7b is required for transport from endosomes to the TGN, not only of the CI-MPR, but also of sortilin, and that alterations in this transport result in impaired carrier formation from TGN.
Collapse
Affiliation(s)
- Cinzia Progida
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | | | | | | | | |
Collapse
|
37
|
Stein M, Pilli M, Bernauer S, Habermann BH, Zerial M, Wade RC. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity. PLoS One 2012; 7:e34870. [PMID: 22523562 PMCID: PMC3327705 DOI: 10.1371/journal.pone.0034870] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/06/2012] [Indexed: 01/07/2023] Open
Abstract
Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.
Collapse
Affiliation(s)
- Matthias Stein
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail: (MS); (RW)
| | - Manohar Pilli
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Sabine Bernauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bianca H. Habermann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- * E-mail: (MS); (RW)
| |
Collapse
|
38
|
Bucci C, Bakke O, Progida C. Rab7b and receptors trafficking. Commun Integr Biol 2011; 3:401-4. [PMID: 21057625 DOI: 10.4161/cib.3.5.12341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 12/31/2022] Open
Abstract
Rab proteins are key-regulators of intracellular membrane trafficking. Rab7b is a recently identified Rab protein that may downregulate TLR4 and TLR9-mediated inflammatory responses. Rab7b, believed to have similar function as Rab7, controls however vesicular trafficking from endosomes to the TGN. It is localized to late endosomes/lysosomes as well as the TGN. Rab7b interferes with enzymes delivery to lysosomes and with the retrograde Shiga toxin transport to the Golgi. Furthermore, Rab7b depletion alters CI-MPR and TGN46 trafficking. In conclusion, Rab7b, by regulating the transport from late endosomes to the TGN, is fundamental for trafficking of several receptors, opening for a revised scenario for its influence on signaling of Toll-like Receptors (TLRs) and other receptors.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA); University of Salento; Lecce, Italy
| | | | | |
Collapse
|
39
|
Sender V, Moulakakis C, Stamme C. Pulmonary surfactant protein A enhances endolysosomal trafficking in alveolar macrophages through regulation of Rab7. THE JOURNAL OF IMMUNOLOGY 2011; 186:2397-411. [PMID: 21248257 DOI: 10.4049/jimmunol.1002446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surfactant protein A (SP-A), the most abundant pulmonary soluble collectin, modulates innate and adaptive immunity of the lung, partially via its direct effects on alveolar macrophages (AM), the most predominant intra-alveolar cells under physiological conditions. Enhanced phagocytosis and endocytosis are key functional consequences of AM/SP-A interaction, suggesting a SP-A-mediated modulation of small Rab (Ras related in brain) GTPases that are pivotal membrane organizers in both processes. In this article, we show that SP-A specifically and transiently enhances the protein expression of endogenous Rab7 and Rab7b, but not Rab5 and Rab11, in primary AM from rats and mice. SP-A-enhanced GTPases are functionally active as determined by increased interaction of Rab7 with its downstream effector Rab7 interacting lysosomal protein (RILP) and enhanced maturation of cathepsin-D, a function of Rab7b. In AM and RAW264.7 macrophages, the SP-A-enhanced lysosomal delivery of GFP-Escherichia coli is abolished by the inhibition of Rab7 and Rab7 small interfering RNA transfection, respectively. The constitutive expression of Rab7 in AM from SP-A(-/-) mice is significantly reduced compared with SP-A(+/+) mice and is restored by SP-A. Rab7 blocking peptides antagonize SP-A-rescued lysosomal delivery of GFP-E. coli in AM from SP-A(-/-) mice. Activation of Rab7, but not Rab7b, by SP-A depends on the PI3K/Akt/protein kinase Cζ (PKCζ) signal transduction pathway in AM and RAW264.7 macrophages. SP-A induces a Rab7/PKCζ interaction in these cells, and the disruption of PKCζ by small interfering RNA knockdown abolishes the effect of SP-A on Rab7. The data demonstrate a novel role for SP-A in modulating endolysosomal trafficking via Rab7 in primary AM and define biochemical pathways involved.
Collapse
Affiliation(s)
- Vicky Sender
- Division of Cellular Pneumology, Department of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, Germany
| | | | | |
Collapse
|
40
|
He D, Chen T, Yang M, Zhu X, Wang C, Cao X, Cai Z. Small Rab GTPase Rab7b promotes megakaryocytic differentiation by enhancing IL-6 production and STAT3-GATA-1 association. J Mol Med (Berl) 2010; 89:137-50. [PMID: 20953574 DOI: 10.1007/s00109-010-0689-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Induction of the differentiation of human leukemia cells is a useful strategy in treatment of human leukemia. However, the molecular mechanisms involved in leukemia cell differentiation have not been fully elucidated. Interleukin 6 (IL-6) is a pleiotropic cytokine acting on a variety of cell types, and plays important roles in hematopoiesis. GATA binding protein 1 (GATA-1) is an important transcription factor involved in either megakaryocytic or erythrocytic differentiation. Herein we report that Rab7b, a late endosome/lysosome-localized myeloid small GTPase, promotes phorbol-12-myristate-13-acetate (PMA)-induced megakaryocytic differentiation by increasing nuclear factor κB (NF-κB)-dependent IL-6 production and subsequently enhancing the association of activated signal transducer and activator of transcription 3 (STAT3) with GATA-1. By using PMA-induced megakaryocytic differentiation of leukemia cells as a model, we investigated the roles of Rab7b in megakaryocytic differentiation. We find that Rab7b can potentiate PMA-induced upregulation of megakaryocytic markers, production of IL-6, and activation of NF-κB. Inhibitor of NF-κB and neutralizing antibodies for IL-6 or the IL-6 signaling receptor gp130 can block the effects of Rab7b in megakaryocytic differentiation. In Rab7b-silenced cells, PMA-induced activation of NF-κB, IL-6 production, and megakaryocytic differentiation are impaired. Furthermore, we demonstrate that IL-6-induced activation of STAT3 and the subsequent association of STAT3 with GATA-1 may contribute to PMA-induced and Rab7b-mediated transcriptional upregulation of megakaryocytic differentiation markers. Therefore, our data suggest that Rab7b may play important roles in megakaryopoiesis by activating NF-κB and promoting IL-6 production. Our study also indicates that the IL-6-induced association of STAT3 with GATA-1 may regulate megakaryocytic differentiation.
Collapse
Affiliation(s)
- Donghua He
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, 38 Zheda Road, Hangzhou, 310027, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C. Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 2010; 123:1480-91. [PMID: 20375062 DOI: 10.1242/jcs.051474] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Rab7b is a recently identified member of the Rab GTPase protein family and has high similarity to Rab7. It has been reported that Rab7b is lysosome associated, that it is involved in monocytic differentiation and that it promotes lysosomal degradation of TLR4 and TLR9. Here we investigated further the localization and function of this GTPase. We found that wild-type Rab7b is lysosome associated whereas an activated, GTP-bound form of Rab7b localizes to the Golgi apparatus. In contrast to Rab7, Rab7b is not involved in EGF and EGFR degradation. Depletion of Rab7b or expression of Rab7b T22N, a Rab7b dominant-negative mutant, impairs cathepsin-D maturation and causes increased secretion of hexosaminidase. Moreover, expression of Rab7b T22N or depletion of Rab7b alters TGN46 distribution, cation-independent mannose-6-phosphate receptor (CI-MPR) trafficking, and causes an increase in the levels of the late endosomal markers CI-MPR and cathepsin D. Vesicular stomatitis virus G protein (VSV-G) trafficking, by contrast, is normal in Rab7b-depleted or Rab7b-T22N-expressing cells. In addition, depletion of Rab7b prevents cholera toxin B-subunit from reaching the Golgi. Altogether, these data indicate that Rab7b is required for normal lysosome function, and, in particular, that it is an essential factor for retrograde transport from endosomes to the trans-Golgi network (TGN).
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Dou T, Ji C, Gu S, Chen F, Xu J, Ye X, Ying K, Xie Y, Mao Y. Cloning and Characterization of a novel splice variant of humanRab18gene (RAB18). ACTA ACUST UNITED AC 2009; 16:230-4. [PMID: 16147880 DOI: 10.1080/10425170500061681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rab GTPase proteins are a kind of small GTP-binding proteins, which functions mainly focus on regulating interacellular trafficking pathways during vesicular transport. To date, 60 distinct human RAB proteins have been identified. RAB18 gene is discovered from endothelial cells. Its function is considered as endosomes and plasma membrane recycling. Research indicates RAB18 may relate to inflammation and some kinds of tumor. Here we report a splice variant of RAB18, which is 2571 bp in length and has an open reading frame coding a predicted 235 amino-acids protein. RT-PCR shows that the cDNA has different expression pattern with RAB18 and is highly expressed in testis.
Collapse
Affiliation(s)
- Tonghai Dou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yao M, Liu X, Li D, Chen T, Cai Z, Cao X. Late Endosome/Lysosome-Localized Rab7b Suppresses TLR9-Initiated Proinflammatory Cytokine and Type I IFN Production in Macrophages. THE JOURNAL OF IMMUNOLOGY 2009; 183:1751-8. [DOI: 10.4049/jimmunol.0900249] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Mackiewicz P, Wyroba E. Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol Biol 2009; 9:101. [PMID: 19442299 PMCID: PMC2693434 DOI: 10.1186/1471-2148-9-101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/14/2009] [Indexed: 11/14/2022] Open
Abstract
Background An important role in the evolution of intracellular trafficking machinery in eukaryotes played small GTPases belonging to the Rab family known as pivotal regulators of vesicle docking, fusion and transport. The Rab family is very diversified and divided into several specialized subfamilies. We focused on the VII functional group comprising Rab7 and Rab9, two related subfamilies, and analysed 210 sequences of these proteins. Rab7 regulates traffic from early to late endosomes and from late endosome to vacuole/lysosome, whereas Rab9 participates in transport from late endosomes to the trans-Golgi network. Results Although Rab7 and Rab9 proteins are quite small and show heterogeneous rates of substitution in different lineages, we found a phylogenetic signal and inferred evolutionary relationships between them. Rab7 proteins evolved before radiation of main eukaryotic supergroups while Rab9 GTPases diverged from Rab7 before split of choanoflagellates and metazoans. Additional duplication of Rab9 and Rab7 proteins resulting in several isoforms occurred in the early evolution of vertebrates and next in teleost fishes and tetrapods. Three Rab7 lineages emerged before divergence of monocots and eudicots and subsequent duplications of Rab7 genes occurred in particular angiosperm clades. Interestingly, several Rab7 copies were identified in some representatives of excavates, ciliates and amoebozoans. The presence of many Rab copies is correlated with significant differences in their expression level. The diversification of analysed Rab subfamilies is also manifested by non-conserved sequences and structural features, many of which are involved in the interaction with regulators and effectors. Individual sites discriminating different subgroups of Rab7 and Rab9 GTPases have been identified.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- University of Wrocław, Faculty of Biotechnology, Department of Genomics, 63/77 Przybyszewskiego Street, 51-148 Wrocław, Poland.
| | | |
Collapse
|
45
|
Han C, Chen T, Yang M, Li N, Liu H, Cao X. Human SCAMP5, a novel secretory carrier membrane protein, facilitates calcium-triggered cytokine secretion by interaction with SNARE machinery. THE JOURNAL OF IMMUNOLOGY 2009; 182:2986-96. [PMID: 19234194 DOI: 10.4049/jimmunol.0802002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokines produced by immune cells play pivotal roles in the regulation of both innate and adaptive immunity. However, the mechanisms controlling secretion of cytokines have not been fully elucidated. Secretory carrier membrane proteins (SCAMPs) are widely distributed integral membrane molecules implicated in regulating vesicular transport. In this study, we report the functional characterization of human SCAMP5 (hSCAMP5), a novel SCAMP protein that is widely expressed by a variety of neuronal and nonneuronal tissues and cells. By measuring the cytokine secretion (RANTES/CCL5 and IL-1beta) as an exocytotic model, we show that hSCAMP5 can promote the calcium-regulated signal peptide-containing cytokine (CCL5 but not IL-1beta) secretion in human epithelial cancer cells, human monocytes, and mouse macrophages. By using subcellular fractionation, immunofluorescence confocal microscopy, and membrane vesicle immunoisolation methods, we find that hSCAMP5 is mainly localized in the Golgi-associated compartments, and the calcium ionophore ionomycin can trigger a rapid translocation of hSCAMP5 from Golgi apparatus to plasma membrane along the classical exocytosis pathway. During the translocation of hSCAMP5 from Golgi apparatus to plasma membrane, hSCAMP5 can codistribute and complex with local soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) molecules. We further demonstrate that hSCAMP5 can directly interact with the calcium sensor synaptotagmins via the cytosolic C-terminal tail of hSCAMP5, thus providing a potential molecular mechanism linking SCAMPs with the SNARE molecules. Our findings suggest that hSCAMP5, in cooperation with the SNARE machinery, is involved in calcium-regulated exocytosis of signal peptide-containing cytokines.
Collapse
Affiliation(s)
- Chaofeng Han
- Institute of Immunology, Tsinghua University School of Medicine, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Effect of differentiating agents (all-trans retinoic acid and phorbol 12-myristate 13-acetate) on drug sensitivity of HL60 and NB4 cells in vitro. Folia Histochem Cytobiol 2008; 46:323-30. [DOI: 10.2478/v10042-008-0080-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Dowling P, O'Driscoll L, Meleady P, Henry M, Roy S, Ballot J, Moriarty M, Crown J, Clynes M. 2-D difference gel electrophoresis of the lung squamous cell carcinoma versus normal sera demonstrates consistent alterations in the levels of ten specific proteins. Electrophoresis 2008; 28:4302-10. [PMID: 18041032 DOI: 10.1002/elps.200700246] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Most lung cancers are diagnosed too late for curative treatment to be possible, therefore early detection is crucial. Serum proteins are a rich source of biomarkers and have the potential to be used as diagnostic and prognostic indicators for lung cancer. In order to examine differences in serum levels of specific proteins associated with human lung squamous carcinoma, immunodepletion of albumin and five other high-abundant serum proteins followed by 2-D difference gel electrophoresis (DIGE) analysis and subsequent MS was used to generate a panel of proteins found to be differentially expressed between the cancer and normal samples. Proteins found to have increased abundance levels in squamous cell carcinoma sera compared to normal sera included apolipoprotein A-IV precursor, chain F; human complement component C3c, haptoglobin, serum amyloid A protein precursor and Ras-related protein Rab-7b. Proteins found to have lower abundance levels in squamous cell carcinoma sera compared to normal sera included alpha-2-HS glycoprotein, hemopexin precursor, proapolipoprotein, antithrombin III and SP40; 40. The data presented here demonstrate that high-abundant protein removal combined with 2-D DIGE is a powerful strategy for the discovery of potential biomarkers. The identification of lung cancer-specific biomarkers is crucial to early detection, which in turn could lead to a dramatic increase in survival rates.
Collapse
Affiliation(s)
- Paul Dowling
- The National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang R, Frank B, Hemminki K, Bartram CR, Wappenschmidt B, Sutter C, Kiechle M, Bugert P, Schmutzler RK, Arnold N, Weber BHF, Niederacher D, Meindl A, Burwinkel B. SNPs in ultraconserved elements and familial breast cancer risk. Carcinogenesis 2008; 29:351-5. [PMID: 18174240 DOI: 10.1093/carcin/bgm290] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultraconserved elements (UCEs) are segments of >200 bp length showing absolute sequence identity between orthologous regions of human, rat and mouse genomes. The selection factors acting on these UCEs are still unknown. Recent studies have shown that UCEs function as long-range enhancers of flanking genes or are involved in splicing when overlapping with exons. The depletion of UCEs among copy number variation as well as the significant under-representation of single-nucleotide polymorphisms (SNPs) within UCEs have also revealed their evolutional and functional importance indicating their potential impact on disease, such as cancer. In the present study, we investigated the influence of six SNPs within UCEs on familial breast cancer risk. Two out of six SNPs showed an association with familial breast cancer risk. Whereas rs9572903 showed only a borderline significant association, the frequency of the rare [G] allele of rs2056116 was higher in cases than in controls indicating an increased familial breast cancer risk ([G] versus [A]: odds ratio (OR) = 1.18, 95% confidence interval (CI) 1.06-1.30, P = 0.0020; [GG] versus [AA]: OR = 1.41, 95% CI 1.15-1.74, P = 0.0011). Interestingly, comparing with the older age group, the ORs were increased in woman younger than 50 years of age ([G] versus [A]: OR = 1.27, 95% CI 1.11-1.45, P = 0.0005; [GG] versus [AA]: OR = 1.60, 95% CI 1.22-2.10, P = 0.0007) pointing to an age- or hormone-related effect. This is the first study indicating that SNPs in UCEs might be associated with cancer risk.
Collapse
Affiliation(s)
- Rongxi Yang
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Chen T, Han C, He D, Liu H, An H, Cai Z, Cao X. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 2007; 110:962-71. [PMID: 17395780 DOI: 10.1182/blood-2007-01-066027] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor 4 (TLR4) initiates both myeloid differentiation factor 88 (MyD88)-dependent and Toll/interleukin (IL)-1R domain-containing adapter, inducing interferon (IFN)-beta-dependent signaling, leading to production of proinflammatory mediators and type I interferon (IFN) to eliminate pathogens. However, uncontrolled TLR4 activation may contribute to pathogenesis of autoimmune and inflammatory diseases. TLR4 is transported from the plasma membrane to the endosome for ubiqutination and to the lysosome for degradation, and downregulation of TLR4 expression or promotion of TLR4 degradation are important ways for negative regulation of TLR4 signaling. We previously identified a lysosome-associated small guanosine triphosphatase (GTPase) Rab7b that may be involved in lysosomal trafficking and degradation of proteins. Here we demonstrate that Rab7b can negatively regulate lipopolysaccharide (LPS)-induced production of tumor necrosis factor (TNF)-alpha, IL-6, nitric oxide, and IFN-beta, and potentiate LPS-induced activation of mitogen-activated protein kinase, nuclear factor kappaB, and IFN regulatory factor 3 signaling pathways in macrophages by promoting the degradation of TLR4. Rab7b is localized in LAMP-1-positive subcellular compartments and colocalized with TLR4 after LPS treatment and can decrease the protein level of TLR4. Our findings suggest that Rab7b is a negative regulator of TLR4 signaling, potentially by promoting the translocation of TLR4 into lysosomes for degradation.
Collapse
Affiliation(s)
- Yuzhen Wang
- Institute of Immunology, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gez S, Crossett B, Christopherson RI. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1173-83. [PMID: 17698427 DOI: 10.1016/j.bbapap.2007.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/05/2007] [Accepted: 06/15/2007] [Indexed: 12/18/2022]
Abstract
Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.
Collapse
Affiliation(s)
- Swetlana Gez
- School of Molecular and Microbial Biosciences G08, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|