1
|
Chen Y, Su L, Huang C, Wu S, Qiu X, Zhao X, Meng Q, Meng YM, Kong X, Wang M, Liu C, Wong PP. Galactosyltransferase B4GALT1 confers chemoresistance in pancreatic ductal adenocarcinomas by upregulating N-linked glycosylation of CDK11 p110. Cancer Lett 2021; 500:228-243. [PMID: 33309857 DOI: 10.1016/j.canlet.2020.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation in pancreatic cancer has been linked to cancer development, progression and chemoresistance. However, the role of glycogene, such as galactosyltransferase, in pancreatic cancer remains unknown. Herein, we establish beta-1.4-galactosyltransferase 1 (B4GALT1) as a clinical marker and regulator of chemoresistance. Clinically, high B4GALT1 expression correlates with poor survival, enhanced tumor size, increased lymph node metastasis, elevated cancer progression and enhanced incidence of relapse in PDAC patients. Expression of B4GALT1 is up-regulated in gemcitabine resistant patient derived organoids as well as chemoresistant cancer cell lines, while genetic perturbation of its expression in PDAC cell lines regulates cancer progression and chemoresistance. Mechanistically, we show that elevated p65 activity transcriptionally up-regulates B4GALT1 expression, which then interacts with and stabilizes cyclin dependent kinase 11 isomer CDK11p110 protein via N-linked glycosylation, in order to promote cancer progression and chemoresistance. Finally, depletion of B4GALT1 rescues the response of chemoresistant cells to gemcitabine in an orthotopic PDAC model. Overall, our data uncovers a mechanism by which p65-B4GALT1-CDK11p110 signalling axis determines cancer progression and chemoresistance, providing a new therapeutic target for an improved pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yitian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sangqing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiong Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Wang
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Chao Liu
- Department of Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 2019; 25:837-858. [PMID: 31025544 PMCID: PMC6566066 DOI: 10.1111/cns.13141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
Collapse
Affiliation(s)
- Maribel Lucero
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Ana E Suarez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| |
Collapse
|
3
|
Liu TH, Wu YF, Dong XL, Pan CX, Du GY, Yang JG, Wang W, Bao XY, Chen P, Pan MH, Lu C. Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation. Cell Cycle 2017; 16:861-868. [PMID: 28318374 DOI: 10.1080/15384101.2017.1304339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cyclin proteins are the key regulatory and activity partner of cyclin-dependent kinases (CDKs), which play pivotal regulatory roles in cell cycle progression. In the present study, we identified a Cyclin L1 and 2 CDK11 2 CDK11 splice variants, CDK11A and CDK11B, from silkworm, Bombyx mori. We determined that both Cyclin L1 and CDK11A/B are nuclear proteins, and further investigations were conducted to elucidate their spatiofunctional features. Cyclin L1 forms a complex with CDK11A/B and were co-localized to the nucleus. Moreover, the dimerization of CDK11A and CDK11B and the effects of Cyclin L1 and CDK11A/B on cell cycle regulation were also investigated. Using overexpression or RNA interference experiments, we demonstrated that the abnormal expression of Cyclin L1 and CDK11A/B leads to cell cycle arrest and cell proliferation suppression. Together, these findings indicate that CDK11A/B interacts with Cyclin L1 to regulate the cell cycle.
Collapse
Affiliation(s)
- Tai-Hang Liu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Yun-Fei Wu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xiao-Long Dong
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| | - Cai-Xia Pan
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Guo-Yu Du
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Ji-Gui Yang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Wei Wang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xi-Yan Bao
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Peng Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Min-Hui Pan
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,c Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Cheng Lu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,c Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| |
Collapse
|
4
|
Liu K, Liu H, Zhang Z, Ye W, Xu X. The role of N-glycosylation in high glucose-induced upregulation of intercellular adhesion molecule-1 on bovine retinal endothelial cells. Acta Ophthalmol 2016; 94:353-7. [PMID: 27151646 DOI: 10.1111/aos.13028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/24/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE The development of diabetic retinopathy has been implicated as a consequence of chronic inflammation. Given the role of the intercellular adhesion molecule-1 (ICAM-1) in inflammation, the potential effect of N-glycosylation on the upregulated expression of ICAM-1 at the surface of bovine retinal endothelial cells (BRECs) induced by high glucose concentrations was investigated. METHODS Gene and protein expression of ICAM-1 in primary BRECs cultured in medium containing increasing concentrations of mannose or glucose in the presence or absence of tunicamycin were studied with reverse transcription-polymerase chain reaction and Western blot analysis, and the expression level of ICAM-1 at the surface of BRECs was examined with an immunofluorescence analysis. A lectin blot assay with PHA-L was performed to explore the level of N-glycans on cell total proteins or immunoprecipitated ICAM-1 from cells treated or untreated with high glucose. RESULTS Both the mRNA and protein levels of ICAM-1, as well as the level of ICAM-1 on the cell surface, were significantly upregulated by increasing the concentration of glucose in the culture medium, with a peak concentration of 20 mm. Consistent with these results, a dramatic increase in the N-glycosylation of ICAM-1 in BRECs cultured with a high concentration of glucose was observed, which could be partially attenuated by tunicamycin treatment. CONCLUSION High glucose-induced upregulation of ICAM-1 on the surface of BRECs could be ascribed to the alterations in its N-glycosylation at least in part, indicating that interference with the glycosylation of ICAM-1 may contribute to improving the efficiency of current therapies with diabetic retinopathy.
Collapse
Affiliation(s)
- Kun Liu
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Haiyun Liu
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhihua Zhang
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wen Ye
- Department of Ophthalmology; Huashan Hospital; Fudan University; Shanghai China
| | - Xun Xu
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
5
|
Chi Y, Huang S, Wang L, Zhou R, Wang L, Xiao X, Li D, Cai Y, Zhou X, Wu J. CDK11p58 inhibits ERα-positive breast cancer invasion by targeting integrin β3 via the repression of ERα signaling. BMC Cancer 2014; 14:577. [PMID: 25106495 PMCID: PMC4138392 DOI: 10.1186/1471-2407-14-577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Background CDK11p58, a Ser/Thr kinase that belongs to the cell division cycle 2-like 1 (CDC2L1) subfamily, is associated with cell cycle progression, tumorigenesis and apoptotic signaling. CDK11p58 is also involved in the regulation of steroid receptors, such as androgen and estrogen receptors. We previously found that CDK11p58 was abnormally expressed in prostate cancer. However, its role in breast cancer remains unclear. Methods CDK11p58 expression was evaluated by immunohistochemical staining in a tissue array. A Transwell assay was used to detect invasion and metastasis in breast cancer cells. The TaqMan® Metastasis Gene Expression Assay was used to search for potential downstream factors in the CDK11p58 signaling pathway. qRT-PCR was used to evaluate mRNA levels, and the dual luciferase array was used to analyze promoter activity. Western blotting was used to detect the protein level. Results CDK11p58 expression was negatively correlated with node status (P = 0.012), relapse status (P = 0.002) and metastasis status (P = 0.023). Kaplan-Meier survival curves indicated that the disease-free survival (DFS) was significantly poor in breast cancer patients with low CDK11 expression. Interestingly, using the breast cancer cell lines ZR-75-30 and MDA-MB-231, we found that CDK11p58 was capable of repressing the migration and invasion of ERα-positive breast cancer cells, but not ERα-negative breast cancer cells, in a kinase-dependent manner. Gene expression assays demonstrated that integrin β3 mRNA was dramatically repressed by CDK11p58, and luciferase results confirmed that the integrin β3 promoter was inhibited by CDK11p58 through ERα repression. The expression of integrin β3 was highly related to ERα signaling; ERα overexpression stimulated integrin β3 expression, whereas siRNA-mediated knockdown of ERα attenuated integrin β3 expression. Conclusions These data indicate that CDK11p58 is an anti-metastatic gene in ERα-positive breast cancer and that the regulation of integrin β3 by CDK11p58 via the repression of ERα signaling may constitute part of a signaling pathway underlying breast cancer invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiong Wu
- Breast Cancer Institute; Department of Breast Surgery, Fudan University Shanghai Cancer Center, Building 7, No, 270 Dong An Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Tang W, Weng S, Zhang S, Wu W, Dong L, Shen X, Zhang S, Gu J, Xue R. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma. Biochem Biophys Res Commun 2013; 434:449-454. [PMID: 23583406 DOI: 10.1016/j.bbrc.2013.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/30/2022]
Abstract
Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFR in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using (125)I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited (125)I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.
Collapse
Affiliation(s)
- Wenqing Tang
- Department of Gastroenterology and Hepatology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen H, Hao Y, Wang L, Jia D, Ruan Y, Gu J. Sodium arsenite down-regulates the expression of X-linked inhibitor of apoptosis protein via translational and post-translational mechanisms in hepatocellular carcinoma. Biochem Biophys Res Commun 2012; 422:721-6. [PMID: 22627131 DOI: 10.1016/j.bbrc.2012.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 12/17/2022]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferation and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin-proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.
Collapse
Affiliation(s)
- Hong Chen
- Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Bajić VP, Su B, Lee HG, Kudo W, Siedlak SL, Živković L, Spremo-Potparević B, Djelic N, Milicevic Z, Singh AK, Fahmy LM, Wang X, Smith MA, Zhu X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cell Mol Biol Lett 2011; 16:359-72. [PMID: 21461981 PMCID: PMC3153952 DOI: 10.2478/s11658-011-0011-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Post-mitotic neurons are typically terminally differentiated and in a quiescent status. However, in Alzheimer disease (AD), many neurons display ectopic re-expression of cell cycle-related proteins. Cyclin-dependent kinase 11 (CDK11) mRNA produces a 110-kDa protein (CDK11(p110)) throughout the cell cycle, a 58-kDa protein (CDK11(p58)) that is specifically translated from an internal ribosome entry site and expressed only in the G(2)/M phase of the cell cycle, and a 46-kDa protein (CDK11(p46)) that is considered to be apoptosis specific. CDK11 is required for sister chromatid cohesion and the completion of mitosis. In this study, we found that the expression patterns of CDK11 vary such that cytoplasmic CDK11 is increased in AD cellular processes, compared to a pronounced nuclear expression pattern in most controls. We also investigated the effect of amyloid precursor protein (APP) on CDK11 expression in vitro by using M17 cells overexpressing wild-type APP and APP Swedish mutant phenotype and found increased CDK11 expression compared to empty vector. In addition, amyloid-β(25-35) resulted in increased CDK11 in M17 cells. These data suggest that CDK11 may play a vital role in cell cycle re-entry in AD neurons in an APP-dependent manner, thus presenting an intriguing novel function of the APP signaling pathway in AD.
Collapse
Affiliation(s)
- Vladan P. Bajić
- Institute of Biomedical Research, Galenika a.d., 11000 Belgrade, Serbia
| | - Bo Su
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Wataru Kudo
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Lada Živković
- Institute of Physiology, Department of Biology and Human Genetics, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Spremo-Potparević
- Institute of Physiology, Department of Biology and Human Genetics, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ninoslav Djelic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorana Milicevic
- Department of Endocrinology and Molecular Biology, Institute of Nuclear Sciences “Vinca”, Belgrade, Serbia
| | - Avneet K. Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Lara M. Fahmy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| |
Collapse
|
9
|
Manikandan R, Beulaja M, Arulvasu C, Sellamuthu S, Dinesh D, Prabhu D, Babu G, Vaseeharan B, Prabhu N. Synergistic anticancer activity of curcumin and catechin: An in vitro study using human cancer cell lines. Microsc Res Tech 2011; 75:112-6. [DOI: 10.1002/jemt.21032] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/21/2011] [Indexed: 01/09/2023]
|
10
|
Yang X, Liu Y, Liu J, Wang X, Yan Q. Cyclophosphamide-induced apoptosis in A431 cells is inhibited by fucosyltransferase IV. J Cell Biochem 2011; 112:1376-83. [DOI: 10.1002/jcb.23054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Hao Y, Kong X, Ruan Y, Gan H, Chen H, Zhang C, Ren S, Gu J. CDK11p46 and RPS8 associate with each other and suppress translation in a synergistic manner. Biochem Biophys Res Commun 2011; 407:169-74. [PMID: 21371428 DOI: 10.1016/j.bbrc.2011.02.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 12/31/2022]
Abstract
CDK11p46, a 46kDa isoform of the PITSLRE kinase family, is a key mediator of cell apoptosis, while the precise mechanism remains to be elucidated. By using His pull-down and mass spectrometry analysis, we identified the ribosomal protein S8 (RPS8), a member of the small subunit ribosome, as an interacting partner of CDK11p46. Further analysis confirmed the association of CDK11p46 and RPS8 in vitro and in vivo, and revealed that RPS8 was not a substrate of CDK11p46. Moreover, RPS8 and CDK11p46 synergize to inhibit the translation process both in cap- and internal ribosomal entry site (IRES)-dependent way, and sensitize cells to Fas ligand-induced apoptosis. Taken together, our results provide evidence for the novel role of CDK11p46 in the regulation of translation and cell apoptosis.
Collapse
Affiliation(s)
- Yuqing Hao
- Department of Biochemistry and Molecular Biology, Shanghai, Medical College, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chi Y, Zhang C, Zong H, Hong Y, Kong X, Liu H, Zou W, Wang Y, Yun X, Gu J. Thr-370 is responsible for CDK11(p58) autophosphorylation, dimerization, and kinase activity. J Biol Chem 2010; 286:1748-57. [PMID: 21078675 DOI: 10.1074/jbc.m110.107367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CDK11(p58), a member of the p34(cdc2)-related kinase family, is associated with cell cycle progression, tumorigenesis, and proapoptotic signaling. It is also required for the maintenance of chromosome cohesion, the maturation of centrosome, the formation of bipolar spindle, and the completion of mitosis. Here we identified that CDK11(p58) interacted with itself to form homodimers in cells, whereas D224N, the kinase-dead mutant, failed to form homodimers. CDK11(p58) was autophosphorylated, and the main functions of CDK11(p58), such as kinase activity, transactivation of nuclear receptors, and proapoptotic signal transduction, were dependent on its autophosphorylation. Furthermore, the in vitro kinase assay indicated that CDK11(p58) was autophosphorylated at Thr-370. By mutagenesis, we created CDK11(p58) T370A and CDK11(p58) T370D, which mimic the dephosphorylated and phosphorylated forms of CDK11(p58), respectively. The T370A mutant could not form dimers and be phosphorylated by the wild type CDK11(p58) and finally lost the kinase activity. Further functional research revealed that T370A failed to repress the transactivation of androgen receptor and enhance the cell apoptosis. Overall, our data indicated that Thr-370 is responsible for the autophosphorylation, dimerization, and kinase activity of CDK11(p58). Moreover, Thr-370 mutants might affect CDK11(p58)-mediated signaling pathways.
Collapse
Affiliation(s)
- Yayun Chi
- Gene Research Center, Shanghai Medical College and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xu Q, Ma P, Yu W, Tan C, Liu H, Xiong C, Qiao Y, Du Y. Chitooligosaccharides protect human embryonic hepatocytes against oxidative stress induced by hydrogen peroxide. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:292-298. [PMID: 19690919 DOI: 10.1007/s10126-009-9222-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
Chitooligosaccharides (COS) has many biological activities, such as antitumor activity and hepatoprotective effect. Herein, we investigated the protective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress on human embryonic hepatocytes (L02 cells) and its scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical in vitro. The results showed that the lost cell viability induced by H2O2 was markedly restored after 24 h pre-incubation with COS (0.1-0.4 mg/ml). This rescue effect could be related to the antioxidant property of COS, in which we showed that the radical scavenging activity of COS reached 80% at concentration of 2 mg/ml. In addition, COS could prevent cell apoptosis induced by H2O2, as shown by the inhibition of the cleavage of poly (adenosine diphosphate-ribose) polymerase and increased expression of the anti-apoptotic protein Bcl-xL. Furthermore, we have utilized confocal laser microscopy to observe cellular uptake of COS, an important step for COS to exert its effects on target cells. Taken together, our findings suggested that COS could effectively protect L02 cells against oxidative stress, which might be useful in clinical setting during the treatment of oxidative stress-related liver damages.
Collapse
Affiliation(s)
- Qingsong Xu
- Dalian Institute of Chemical Physics, Chinese Academy Sciences, Zhongshan Street 457, Dalian 116023, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Apoptosis induced by enniatins H and MK1688 isolated from Fusarium oxysporum FB1501. Toxicon 2009; 53:723-8. [PMID: 19248798 DOI: 10.1016/j.toxicon.2009.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/20/2022]
Abstract
Enniatins are cyclic peptides isolated from bacteria, fungi, and plants, with numerous biological effects on animal systems. Recently, we have reported that certain enniatins (ENs), such as EN H and EN MK1688, have cytotoxic effects on several adenocarcinoma cell lines. In an effort to understand the mechanism behind their cytotoxicity, we investigated whether ENs can induce apoptosis in human colorectal carcinoma cells (HCT-15 cells). Treatment with the ENs H and MK1688 resulted in an alteration of cellular and nuclear morphology, leading to an increase in the number of the cells with apoptotic nuclei (seen as condensed or fragmented nuclei). Furthermore, it was observed that cellular DNA fragmentation increased in a dose-dependent manner in EN treated cells. These cells have elevated activity levels for caspase-3, the enzyme responsible for initiating cell death, compared with the untreated cells. Normal caspase-3 activity levels were observed when Z-VAD-FMK, a caspase inhibitor, was added simultaneously with the ENs. Based on our results, we propose that the new ENs H and MK1688 induce cytotoxicity via an apoptotic pathway.
Collapse
|
15
|
Shen A, Chen J, Qian J, Zhu J, Hu L, Yan M, Zhou D, Gao Y, Yang J, Ding F, Cheng C. Elevated β1,4-galactosyltransferase-I induced by the intraspinal injection of lipopolysaccharide. Glycoconj J 2008; 26:19-31. [DOI: 10.1007/s10719-008-9158-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 06/02/2008] [Accepted: 06/06/2008] [Indexed: 11/24/2022]
|
16
|
Ji Y, Xiao F, Sun L, Qin J, Shi S, Yang J, Liu Y, Zhou D, Zhao J, Shen A. Increased expression of CDK11p58 and cyclin D3 following spinal cord injury in rats. Mol Cell Biochem 2007; 309:49-60. [PMID: 18008145 DOI: 10.1007/s11010-007-9642-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 10/30/2007] [Indexed: 11/26/2022]
Abstract
Protein kinases are critical signalling molecules for normal cell growth and development. CDK11p58 is a p34cdc2-related protein kinase, and plays an important role in normal cell cycle progression. However its distribution and function in the central nervous system (CNS) lesion remain unclear. In this study, we mainly investigated the protein expression and cellular localization of CDK11 during spinal cord injury (SCI). Western blot analysis revealed that CDK11p58 was not detected in normal spinal cord. It gradually increased, reached a peak at 3 day after SCI, and then decreased. The protein expression of CDK11(p58) was further analyzed by immunohistochemistry. The variable immunostaining patterns of CDK11p58 were visualized at different periods of injury. Double immunofluorescence staining showed that CDK11 was co-expressed with NeuN, CNPase and GFAP. Co-localization of CDK11/active caspase-3 and CDK11/proliferating cell nuclear antigen (PCNA) were detected in some cells. Cyclin D3, which was associated with CDK11p58 and could enhance kinase activity, was detected in the normal and injured spinal cord. The cyclin D3 protein underwent a similar pattern with CDK11p58 during SCI. Double immunofluorescence staining indicated that CDK11 co-expressed with cyclin D3 in neurons and glial cells. Coimmunoprecipitation further showed that CDK11p58 and cyclin D3 interacted with each other in the damaged spinal cord. Thus, it is likely CDK11p58 and cyclin D3 could interact with each other after acute SCI. Another partner of CDK11p58 was beta-1,4-galactosyltransferase 1 (beta-1,4-GT 1). The co-localization of CDK11/beta-1,4-GT 1 in the damaged spinal cord was revealed by immunofluorescence analysis. The cyclin D3-CDK4 complexes were also present by coimmunoprecipitation analysis. Taken together, these data suggested that both CDK11 and cyclin D3 may play important roles in spinal cord pathophysiology.
Collapse
Affiliation(s)
- Yuhong Ji
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shen J, Jiang J, Wei Y, Zhou L, Liu D, Zhou J, Gu J. Two specific inhibitors of the phosphatidylinositol 3-kinase LY294002 and wortmannin up-regulate beta1,4-galactosyltransferase I and thus sensitize SMMC-7721 human hepatocarcinoma cells to cycloheximide-induced apoptosis. Mol Cell Biochem 2007; 304:361-7. [PMID: 17557191 DOI: 10.1007/s11010-007-9519-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/16/2007] [Indexed: 12/11/2022]
Abstract
Previous study indicated that beta1,4-galactosyltransferase I (beta1,4GT1) was up-regulated by cycloheximide (CHX) and thus enhanced apoptosis induced by CHX in SMMC-7721 cells. In this study, we reported that constitutively active Akt protein (myr-Akt) inhibited CHX-induced apoptosis in SMMC-7721 cells through down-regulating beta1,4GT1. However, the two PI3K inhibitors LY294002 and wortmannin treatment up-regulated beta1,4GT1 through enhancing Sp1 protein expression and consequently increased CHX-induced SMMC-7721 cells apoptosis. Besides, our results suggested that beta1,4GT1 and cell surface galactose residues synthesized by elevated beta1,4GT1 played an important role in SMMC-7721 cells apoptosis treated with CHX and PI3K inhibitor together. Moreover, we found that CHX accentuated beta1,4GT1 through down-regulating Akt expression to mediate SMMC-7721 cells apoptosis. Taken together, PI3K inhibitors LY294002 and wortmannin up-regulated beta1,4GT1 and enhanced CHX-induced apoptosis in SMMC-7721 cells, which suggested that PI3K inhibitors might have therapeutic potential when combined with CHX in the treatment of hepatoma.
Collapse
Affiliation(s)
- Jialin Shen
- Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, P. R. China
| | | | | | | | | | | | | |
Collapse
|
18
|
Yun X, Wu Y, Yao L, Zong H, Hong Y, Jiang J, Yang J, Zhang Z, Gu J. CDK11(p58) protein kinase activity is associated with Bcl-2 down-regulation in pro-apoptosis pathway. Mol Cell Biochem 2007; 304:213-8. [PMID: 17516030 DOI: 10.1007/s11010-007-9502-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
CDK11(p58), a G2/M-specific protein kinase, has been shown to be associated with apoptosis in many cell lines, with largely unknown mechanisms. Our previous study proved that CDK11(p58)-enhanced cycloheximide (CHX)-induced apoptosis in SMMC-7721 hepatocarcinoma cells. Here we report for the first time that ectopic expression of CDK11(p58) down-regulates Bcl-2 expression and its Ser70, Ser87 phosphorylation in CHX-induced apoptosis in SMMC-7721 cells. Overexpression of Bcl-2 counteracts the pro-apoptotic activity of CDK11(p58). Furthermore, we confirm that the kinase activity of CDK11(p58) is essential to the down-regulation of Bcl-2 as well as apoptosis. Taken together, these results demonstrate that CDK11(p58) down-regulates Bcl-2 in pro-apoptosis pathway depending on its kinase activity, which elicits survival signal in hepatocarcinoma cells.
Collapse
Affiliation(s)
- Xiaojing Yun
- Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang J, Zhou J, Wei Y, Shen J, Liu D, Chen X, Zhang S, Kong X, Yun X, Gu J. beta4GalT-II increases cisplatin-induced apoptosis in HeLa cells depending on its Golgi localization. Biochem Biophys Res Commun 2007; 358:41-6. [PMID: 17470362 DOI: 10.1016/j.bbrc.2007.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 04/05/2007] [Indexed: 11/22/2022]
Abstract
beta1,4-Galactosyltransferase II (beta4GalT-II) is one of the enzymes transferring galactose to the terminal N-acetylglucosamine of complex-type N-glycans and its expression is significantly altered during oncogenesis with unknown functions. Here, we reported for the first time the pro-apoptotic role of beta4GalT-II in tumor cells. The level of beta4GalT-II mRNA expression was obviously decreased during HeLa cell apoptosis induced by cisplatin. Interestingly, the ectopic expression of beta4GalT-II in HeLa cells markedly increased apoptosis and cleavage of PARP induced by cisplatin as well as the expression of pro-apoptotic protein Bax. Furthermore, deletion of Golgi localization domain abolished the apoptotic role of beta4GalT-II in HeLa cells. Collectively, these results suggest that beta4GalT-II increases HeLa cell apoptosis induced by cisplatin depending on its Golgi localization, which indicates that beta4GalT-II might contribute to the therapeutic efficiency of cisplatin for cervix cancer.
Collapse
Affiliation(s)
- Jianhai Jiang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang J, Shen J, Wu T, Wei Y, Chen X, Zong H, Zhang S, Sun M, Xie J, Kong X, Yang Y, Shen A, Wang H, Gu J. Down-regulation of beta1,4-galactosyltransferase V is a critical part of etoposide-induced apoptotic process and could be mediated by decreasing Sp1 levels in human glioma cells. Glycobiology 2006; 16:1045-51. [PMID: 16873896 DOI: 10.1093/glycob/cwl027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
beta1,4-Galactosyltransferase V (beta1,4GalT V; EC 2.4.1.38) is considered to be very important in glioma for expressing transformation-related highly branched N-glycans. Recently, we have characterized beta1,4GalT V as a positive growth regulator in several glioma cell lines. However, the role of beta1,4GalT V in glioma therapy has not been clearly reported. In this study, interfering with the expression of beta1,4GalT V by its antisense cDNA in SHG44 human glioma cells markedly promoted apoptosis induced by etoposide and the activation of caspases as well as processing of Bid and expression of Bax and Bak. Conversely, the ectopic expression of beta1,4GalT V attenuated the apoptotic effect of etoposide on SHG44 cells. In addition, both the beta1,4GalT V transcription and the binding of total or membrane glycoprotein with Ricinus communis agglutinin-I (RCA-I) were partially reduced in etoposide-treated SHG44 cells, correlated well with a decreased level of Sp1 that has been identified as an activator of beta1,4GalT V transcription. Collectively, our results suggest that the down-regulation of beta1,4GalT V expression plays an important role in etoposide-induced apoptosis and could be mediated by a decreasing level of Sp1 in SHG44 cells, indicating that inhibitors of beta1,4GalT V may enhance the therapeutic efficiency of etoposide for malignant glioma.
Collapse
Affiliation(s)
- Jianhai Jiang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Gene Research Center, Shanghai Medical College of Fudan University (formerly Shanghai Medical University), Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Z, Zong H, Kong X, Zhang S, Wang H, Sun Q, Gu J. Cell surface beta 1, 4-galactosyltransferase 1 promotes apoptosis by inhibiting epidermal growth factor receptor pathway. Mol Cell Biochem 2006; 291:69-76. [PMID: 16786197 DOI: 10.1007/s11010-006-9198-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/21/2006] [Indexed: 11/28/2022]
Abstract
Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.
Collapse
Affiliation(s)
- Zejuan Li
- Gene Research Center, Shanghai Medical College of Fudan University, Shanghai, China, 200032
| | | | | | | | | | | | | |
Collapse
|
22
|
Wei Y, Jiang J, Sun M, Chen X, Wang H, Gu J. ATF5 increases cisplatin-induced apoptosis through up-regulation of cyclin D3 transcription in HeLa cells. Biochem Biophys Res Commun 2005; 339:591-6. [PMID: 16300731 DOI: 10.1016/j.bbrc.2005.11.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
ATF5 transcription factor plays an essential role in hematopoietic and glioma cell survival and neuronal cell differentiation. Here, we report for the first time the pro-apoptosis role of ATF5 and identify Cyclin D3 as an ATF5-targeted apoptosis-related gene. The ectopic expression of ATF5 in HeLa cells could markedly increase cisplatin-induced apoptosis and the cleavage of Caspase-3, and induce Cyclin D3 mRNA expression via cooperation with E2F1 transcription factor. Moreover, the interference of Cyclin D3 expression by transfection with Cyclin D3 RNAi could protect cells from ATF5-mediated apoptosis induced by cisplatin, indicating the contribution of Cyclin D3 in ATF5-mediated apoptosis. Taken together, these results suggest that ATF5 increases cisplatin-induced apoptosis through up-regulation of Cyclin D3 transcription, which elicits survival signals in HeLa cells.
Collapse
Affiliation(s)
- Yuanyan Wei
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|