1
|
Development and evaluation of polyethylenimine polyplexes as non-viral vectors for delivery of plasmid DNA encoding shRNA against STAT3 activity into triple negative breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2
|
Mokhtary P, Javan B, Sharbatkhari M, Soltani A, Erfani-Moghadam V. Cationic vesicles for efficient shRNA transfection in the MCF-7 breast cancer cell line. Int J Nanomedicine 2018; 13:7107-7121. [PMID: 30464462 PMCID: PMC6228047 DOI: 10.2147/ijn.s177674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Novel and safe delivery solutions for RNAi therapeutics are essential to obtain the full potential of cancer gene therapy. METHODS In this study, cationic vesicular nanocarrier was applied for delivering lnc urothelial carcinoma-associated 1 (lnc UCA1) shRNA expression vector to MCF-7 cells. The physicochemical characteristics, cytotoxicity, and transfection efficiency of cationic vesicles prepared from various molar ratios of amphiphilic surfactant Tween 80 (T), squalene (S), cationic charge lipid didodecyldimethylammonium bromide, and polyethylenimine were investigated. The particle sizes of the vesicles in the nanosize range were determined by dynamic light scattering and transmission electron microscopy. RESULTS Gel protection assay with agarose gel electrophoresis showed cationic vesicles can protect the shRNA plasmid from DNase 1 enzyme. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt result showed no significant cytotoxicity was caused in MCF-7 cancer cell line by (T:S):polyethylenimine cationic vesicles. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt assay, fluorescence microscope images, and flow cytometry analyses confirmed that (T:S)1,040 μM with 4.3 μg/mL of PEI vesicles provided effective transfection without significant cytotoxicity. Furthermore, we found efficient UCA1 shRNA transfection and significant (P<0.05) cell cycle arrest and apoptosis in MCF-7 cancer cells. CONCLUSION The novel nonviral vesicular nanocarrier, (T:S)1,040 μM with 4.3 μg/mL of PEI, might be safe and efficient for cancer gene therapy and can be used in further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Pardis Mokhtary
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran,
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran,
| | - Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran,
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Alireza Soltani
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran,
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran,
| |
Collapse
|
3
|
Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci U S A 2018; 115:E8547-E8556. [PMID: 30127005 DOI: 10.1073/pnas.1805055115] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inherited retinal degenerations are caused by mutations in >250 genes that affect photoreceptor cells or the retinal pigment epithelium and result in vision loss. For autosomal recessive and X-linked retinal degenerations, significant progress has been achieved in the field of gene therapy as evidenced by the growing number of clinical trials and the recent commercialization of the first gene therapy for a form of congenital blindness. However, despite significant efforts to develop a treatment for the most common form of autosomal dominant retinitis pigmentosa (adRP) caused by >150 mutations in the rhodopsin (RHO) gene, translation to the clinic has stalled. Here, we identified a highly efficient shRNA that targets human (and canine) RHO in a mutation-independent manner. In a single adeno-associated viral (AAV) vector we combined this shRNA with a human RHO replacement cDNA made resistant to RNA interference and tested this construct in a naturally occurring canine model of RHO-adRP. Subretinal vector injections led to nearly complete suppression of endogenous canine RHO RNA, while the human RHO replacement cDNA resulted in up to 30% of normal RHO protein levels. Noninvasive retinal imaging showed photoreceptors in treated areas were completely protected from retinal degeneration. Histopathology confirmed retention of normal photoreceptor structure and RHO expression in rod outer segments. Long-term (>8 mo) follow-up by retinal imaging and electroretinography indicated stable structural and functional preservation. The efficacy of this gene therapy in a clinically relevant large-animal model paves the way for treating patients with RHO-adRP.
Collapse
|
4
|
Yin D, Li Y, Guo B, Liu Z, Xu Y, Wang X, Du Y, Xu L, Meng Y, Zhao X, Zhang L. Plasmid-Based Stat3 siRNA Delivered by Functional Graphene Oxide Suppresses Mouse Malignant Melanoma Cell Growth. Oncol Res 2017; 23:229-36. [PMID: 27098146 PMCID: PMC7838696 DOI: 10.3727/096504016x14550280421449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi) has been used for cancer gene therapy in recent years. However, the application of RNAi is hindered in the absence of safe and efficient gene delivery. In this article, a novel vehicle of graphene oxide functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) was successfully synthetized and then used to deliver plasmid-based Stat3 siRNA. The carrier can readily bind plasmid with high transfection efficiency. Moreover, molecular biology studies reveal that Stat3-related gene and protein expressions were significantly inhibited, suggesting that the formation of GO-PEI-PEG complexes could be utilized as a promising gene delivery in cancer therapy.
Collapse
Affiliation(s)
- Di Yin
- Prostate Diseases Prevention and Treatment Research Centre and Department of Pathophysiology, Norman Bethune Medical School, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tsai WH, Chang WT. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes. Methods Mol Biol 2014; 1101:321-38. [PMID: 24233788 PMCID: PMC7121774 DOI: 10.1007/978-1-62703-721-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism of gene silencing induced by double-stranded RNAs (dsRNAs). Among the widely used dsRNAs, small interfering RNAs (siRNAs) and short hairpin RNAs have evolved as extremely powerful and the most popular gene silencing reagents. The key challenge to achieving efficient gene silencing especially for the purpose of therapeutics is mainly dependent on the effectiveness and specificity of the selected RNAi-targeted sequences. Practically, only a small number of dsRNAs are capable of inducing highly effective and sequence-specific gene silencing via RNAi mechanism. In addition, the efficiency of gene silencing induced by dsRNAs can only be experimentally examined based on inhibition of the target gene expression. Therefore, it is essential to develop a fully robust and comparative validation system for measuring the efficacy of designed dsRNAs. In this chapter, we focus our discussion on a reliable and quantitative reporter-based siRNA validation system that has been previously established in our laboratory. The system consists of a short synthetic DNA fragment containing an RNAi-targeted sequence of interest and two expression vectors for targeting reporter and triggering siRNA expressions. The efficiency of siRNAs is determined by their abilities to inhibit expression of the targeting reporters with easily quantified readouts including enhanced green fluorescence protein and firefly luciferase. Since only a readily available short synthetic DNA fragment is needed for constructing this reliable and efficient reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective RNAi-targeted sequences from mammalian genes but also implicates the use of RNAi-based dsRNA reagents for reverse functional genomics and molecular therapeutics.
Collapse
Affiliation(s)
- Wen-Hui Tsai
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Taiwan, P.R. China
| | | |
Collapse
|
6
|
Yin D, Li Y, Lin H, Guo B, Du Y, Li X, Jia H, Zhao X, Tang J, Zhang L. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. NANOTECHNOLOGY 2013; 24:105102. [PMID: 23425941 DOI: 10.1088/0957-4484/24/10/105102] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) has attracted intensive interest in the biomedical field in recent years. We investigate whether the use of functional graphene oxide as an efficient delivery system for delivering specific molecular antitumor therapeutics in vivo could achieve a more excellent antitumor effect. Constitutive activation of signal transducer and activator of transcription 3 (Stat3) promotes survival in a wide spectrum of human cancers. In this paper, we study the in vivo behavior of graphene oxide chemically functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) as a plasmid-based Stat3-specific small interfering RNA (siRNA) carrier in mouse malignant melanoma. The in vivo results indicate significant regression in tumor growth and tumor weight after plasmid-based Stat3 siRNA delivered by GO-PEI-PEG treatment. Moreover, there was no significant side effect from GO-PEI-PEG treatment according to histological examination and blood chemistry analysis in mice. Thus, our work is the first success of using GO-PEI-PEG as a promising carrier for plasmid Stat3 siRNA delivery and down-regulation of Stat3 by a polymer-mediated vehicle and suggests the great promise of graphene in biomedical applications such as cancer treatment.
Collapse
Affiliation(s)
- Di Yin
- Prostate Diseases Prevention and Treatment Research Centre and Department of Pathophysiology, Norman Bethune Medical School, Jilin University, Changchun 130021, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Daft PG, Yuan K, Warram JM, Klein MJ, Siegal GP, Zayzafoon M. Alpha-CaMKII plays a critical role in determining the aggressive behavior of human osteosarcoma. Mol Cancer Res 2013; 11:349-59. [PMID: 23364534 DOI: 10.1158/1541-7786.mcr-12-0572] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. Despite improvements in osteosarcoma treatment, more specific molecular targets are needed as potential therapeutic options. One target of interest is α-Ca(2+)/calmodulin-dependent protein kinase II (α-CaMKII), a ubiquitous mediator of Ca(2+)-linked signaling, which has been shown to regulate tumor cell proliferation and differentiation. Here, we investigate the role of α-CaMKII in the growth and tumorigenicity of human osteosarcoma. We show that α-CaMKII is highly expressed in primary osteosarcoma tissue derived from 114 patients, and is expressed in varying levels in different human osteosarcoma (OS) cell lines [MG-63, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)/HOS, and 143B). To examine whether α-CaMKII regulates osteosarcoma tumorigenic properties, we genetically inhibited α-CaMKII in two osteosarcoma cell lines using two different α-CaMKII shRNAs delivered by lentiviral vectors and overexpressed α-CaMKII by retrovirus. The genetic deletion of α-CaMKII by short hairpin RNA (shRNA) in MG-63 and 143B cells resulted in decreased proliferation (50% and 41%), migration (22% and 25%), and invasion (95% and 90%), respectively. The overexpression of α-CaMKII in HOS cells resulted in increased proliferation (240%), migration (640%), and invasion (10,000%). Furthermore, α-CaMKII deletion in MG-63 cells significantly reduced tumor burden in vivo (65%), whereas α-CaMKII overexpression resulted in tumor formation in a previously nontumor forming osteosarcoma cell line (HOS). Our results suggest that α-CaMKII plays a critical role in determining the aggressive phenotype of osteosarcoma, and its inhibition could be an attractive therapeutic target to combat this devastating adolescent disease.
Collapse
Affiliation(s)
- Paul G Daft
- Department of Pathology, University of Alabama at Birmingham, 813 Shelby Building, 1825 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
8
|
Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo. Asian J Androl 2011; 13:481-6. [PMID: 21297658 DOI: 10.1038/aja.2010.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on the growth of mouse prostate cancer cells of si-Stat3 delivered by hydroxyapatite were determined in this study. RM-1 tumour blocks were transplanted into C57BL/6 mice. CaCl₂-modified hydroxyapatite carrying si-Stat3 plasmids were injected into tumours, and tumour growth and histology were determined. The expression levels of Stat3, pTyr-Stat3, Bcl-2, Bax, Caspase3, VEGF and cyclin D1 were measured by western blot analysis. Amounts of apoptosis in cancer cells were analysed with immunohistochemistry and the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay. The results showed that hydroxyapatite-delivered si-Stat3 significantly suppressed tumour growth up to 74% (P < 0.01). Stat3 expression was dramatically downregulated in the tumours. The immunohistochemistry and TUNEL results showed that si-Stat3-induced apoptosis (up to 42%, P < 0.01). The Stat3 downstream genes Bcl-2, VEGF and cyclin D1 were also strongly downregulated in the tumour tissues that also displayed significant increases in Bax expression and Caspase3 activity. These results suggest that hydroxyapatite can be used for the in vivo delivery of plasmid-based siRNAs into tumours.
Collapse
|
9
|
Chen SY, Wu CL, Lai MD, Lin CC, Yo YT, Jou IM, Lee CH, Weng CT, Shiau AL, Wang CR. Amelioration of Rat Collagen-Induced Arthritis Through CD4+ T Cells Apoptosis and Synovial Interleukin-17 Reduction by Indoleamine 2,3-Dioxygenase Gene Therapy. Hum Gene Ther 2011; 22:145-54. [DOI: 10.1089/hum.2009.217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Shih-Yao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chi-Chen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Te Yo
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Che-Hsin Lee
- Department of Microbiology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chia-Tse Weng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chrong-Reen Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Section of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
10
|
Inhibitory efficacy of hypoxia-inducible factor 1α short hairpin RNA plasmid DNA-loaded poly (D, L-lactide-co-glycolide) nanoparticles on choroidal neovascularization in a laser-induced rat model. Gene Ther 2009; 17:338-51. [DOI: 10.1038/gt.2009.158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Kemppainen MJ, Pardo AG. pHg/pSILBAγ vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA - triggering in the mycorrhizal fungus Laccaria bicolor. Microb Biotechnol 2009; 3:178-200. [PMID: 21255319 PMCID: PMC3836584 DOI: 10.1111/j.1751-7915.2009.00122.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Roque Sáenz Peña 352, (B1876BXD) Bernal, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Multitarget therapy of malignant cancers by the head-to-tail tandem array multiple shRNAs expression system. Cancer Gene Ther 2009; 16:516-31. [PMID: 19165234 DOI: 10.1038/cgt.2008.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Coexpression of multiple shRNAs can simultaneously inhibit multiple genes or target multiple sites on a single gene. These approaches can be used for dissecting complex signaling pathways and even be applied to targeting multiple genes in cancer therapy. Here we established a simple and efficient multiple shRNAs expression system based on pSUPER, the most popular expression vector in mammalian cells. A series of head-to-tail tandem array multiple shRNAs expression vectors were constructed containing different combinations of six shRNA expression cassettes targeting genes involved in cell proliferation and survival pathways: Bcl-2, Survivin, Akt1, Erk2, CyclinE and NFkappaB. In HeLa and HEK293 cells, the multiple shRNAs expression constructs could efficiently and simultaneously induce inhibition of all six genes. We further evaluated the inhibition effects of the multiple shRNAs expression vectors on the human prostate cancer cell line PC3, which contains different cell variants with distinct oncogenic signaling alterations. The results revealed that the multiple shRNAs expression system could inhibit all six genes and was much more efficient in inducing apoptosis in the PC3 cells. Our results suggest that the multitarget shRNAs expression system could be an effective strategy in cancer therapy and be applied to any other DNA vector-based shRNA expression system.
Collapse
|
13
|
Vopálenský V, Masek T, Horváth O, Vicenová B, Mokrejs M, Pospísek M. Firefly luciferase gene contains a cryptic promoter. RNA (NEW YORK, N.Y.) 2008; 14:1720-9. [PMID: 18697919 PMCID: PMC2525954 DOI: 10.1261/rna.831808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A firefly luciferase (FLuc) counts among the most popular reporters of present-day molecular and cellular biology. In this study, we report a cryptic promoter activity in the luc+ gene, which is the most frequently used version of the firefly luciferase. The FLuc coding region displays cryptic promoter activity both in mammalian and yeast cells. In human CCL13 and Huh7 cells, cryptic transcription from the luc+ gene is 10-16 times weaker in comparison to the strong immediate-early cytomegalovirus promoter. Additionally, we discuss a possible impact of the FLuc gene cryptic promoter on experimental results especially in some fields of the RNA-oriented research, for example, in analysis of translation initiation or analysis of miRNA/siRNA function. Specifically, we propose how this newly described cryptic promoter activity within the FLuc gene might contribute to the previous determination of the strength of the cryptic promoter found in the cDNA corresponding to the hepatitis C virus internal ribosome entry site. Our findings should appeal to the researchers to be more careful when designing firefly luciferase-based assays as well as open the possibility of performing some experiments with the hepatitis C virus internal ribosome entry site, which could not be considered until now.
Collapse
Affiliation(s)
- Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
14
|
Jang JY, Choi Y, Jeon YK, Kim CW. Suppression of adenine nucleotide translocase-2 by vector-based siRNA in human breast cancer cells induces apoptosis and inhibits tumor growth in vitro and in vivo. Breast Cancer Res 2008; 10:R11. [PMID: 18267033 PMCID: PMC2374967 DOI: 10.1186/bcr1857] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 01/09/2008] [Accepted: 02/12/2008] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Adenine nucleotide translocator (ANT) 2 is highly expressed in proliferative cells, and ANT2 induction in cancer cells is known to be directly associated with glycolytic metabolisms and carcinogenesis. In addition, ANT2 repression results in the growth arrest of human cells, implying that ANT2 is a candidate for cancer therapy based on molecular targeting. METHODS We utilized an ANT2-specific RNA interference approach to inhibit ANT2 expression for evaluating its antitumor effect in vitro and in vivo. Specifically, to investigate the therapeutic potential of ANT2 repression, we used a DNA vector-based RNA interference approach by expressing shRNA to knockdown ANT2 in breast cancer cell lines overexpressing ANT2. RESULTS ANT2 shRNA treatment in breast cancer cell line MDA-MB-231 repressed cell growth as well as proliferation. In addition, cell cycle arrest, ATP depletion and apoptotic cell death characterized by the potential disruption of mitochondrial membrane were observed from the ANT2 shRNA-treated breast cancer cells. Apoptotic breast cancer cells transfected with ANT2 shRNA also induced a cytotoxic bystander effect that generates necrotic cell death to the neighboring cells. The intracellular levels of TNFalpha and TNF-receptor I were increased in ANT2 shRNA transfected cells and the bystander effect was partly blocked by anti-TNFalpha antibody. Ultimately, ANT2 shRNA effectively inhibited tumor growth in vivo. CONCLUSION These results suggest that vector-based ANT2 RNA interference could be an efficient molecular therapeutic method for breast cancer with high expression of ANT2.
Collapse
Affiliation(s)
- Ji-Young Jang
- Department of Pathology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul 110-799, South Korea
| | - Yun Choi
- Department of Pathology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul 110-799, South Korea
| | - Yoon-Kyung Jeon
- Department of Pathology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul 110-799, South Korea
| | - Chul-Woo Kim
- Department of Pathology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul 110-799, South Korea
| |
Collapse
|
15
|
Li YL, Quarles LD, Zhou HH, Xiao ZS. RNA interference and its application in bone-related diseases. Biochem Biophys Res Commun 2007; 361:817-21. [PMID: 17686458 DOI: 10.1016/j.bbrc.2007.07.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/24/2007] [Indexed: 01/17/2023]
Abstract
RNA interference (RNAi) is the most exciting insight in biology in past decades, which provided new perspectives into the genome-wide surveys of gene function by targeted degradation of mRNA with the introduction of small interfering RNAs (siRNAs) or small hairpin RNAs (shRNAs) in a large variety of organisms, and turned out to be a more efficient and convenient method compared with the traditional knockout pathway. What's more, as the enhancement of its stability and improvement of its delivery vehicles, RNAi is bound to be a practical tool in determine gene function first in vitro and then in vivo. In this paper, we will focus on the recent achievements of RNAi and also depict the development of RNAi as a potentially powerful tool in studying bone-related diseases.
Collapse
Affiliation(s)
- Ya Lin Li
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | | | | | | |
Collapse
|
16
|
Wu RH, Cheng TL, Lo SR, Hsu HC, Hung CF, Teng CF, Wu MP, Tsai WH, Chang WT. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells. J Gene Med 2007; 9:620-34. [PMID: 17486668 DOI: 10.1002/jgm.1048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a powerful and widely used gene silencing strategy for studying gene function in mammalian cells. Transient or constitutive expression of either small interfering RNA (siRNA) or short hairpin RNA (shRNA) results in temporal or persistent inhibition of gene expression, respectively. A tightly regulated and reversibly inducible RNAi-mediated gene silencing approach could conditionally control gene expression in a temporal or spatial manner that provides an extremely useful tool for studying gene function involved in cell growth, survival and development. MATERIAL AND METHODS In this study, we have developed a lactose analog isopropyl thiogalactose (IPTG)-responsive lac repressor-operator-controlled RNA polymerase III (Pol III)-dependent human RNase P RNA (H1) promoter-driven inducible siRNA expression system. To demonstrate its tight regulation, efficient induction and reversible inhibition, we have used this system to conditionally control the expression of firefly luciferase and human tumor suppressor protein p53 in both transient transfection cells and established stable clones. RESULTS The results showed that this inducible siRNA expression system could efficiently induce conditional inhibition of these two genes in a dose- and time-dependent manner by administration of the inducing agent IPTG as well as being fully reverted after withdrawal of IPTG. In particular, this system could conditionally inhibit the expression of both the genes in not only established stable clones but also transient transfection cells, which should greatly increase its usefulness and convenience. CONCLUSIONS The results presented in this study clearly indicate that this inducible siRNA expression system could efficiently, conditionally and reversibly inhibit gene expression with only very low or undetectable background silencing effects under non-inducing condition. Thus, this inducible siRNA expression system provides an ideal genetic switcher allowing the inducible and reversible control of specific gene activity in mammalian cells.
Collapse
Affiliation(s)
- Ren-Huang Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan 701, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Chemogenomics involves the combination of a compound's effect on biological targets together with modern genomics technologies. The merger of these two methodologies is creating a new way to screen for compound-target interactions, as well as map chemical and biological space in a parallel fashion. The challenge associated with mining complex databases has initiated the development of many novel in silico tools to profile and analyze data in a systematic way. The ability to analyze the combinatorial effects of chemical libraries on biological systems will aid the discovery of new therapeutic entities. Chemogenomics provides a tool for the rapid validation of novel targeted therapeutics, where a specific molecular target is modulated by a small molecule. Along with targeted therapies comes the ability to discovery pathway nodes where a single molecular target might be an essential component of more than one disease. Several disease areas will benefit directly from the chemogenomics approach, the most advanced being cancer. A genetic loss-of-function screen can be modulated in the presence of a compound to search for genes or pathways involved in the compound's activity. Several recent papers highlight how chemogenomics is changing with RNA interference-based screening and shaping the discovery of new targeted therapies. Together, chemical and RNA interference-based screens open the door for a new way to discovery disease-associated genes and novel targeted therapies.
Collapse
Affiliation(s)
- L Alex Gaither
- Novartis Institutes for Biomedical Research, Developmental & Molecular Pathways, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Thomas M, Lu JJ, Chen J, Klibanov AM. Non-viral siRNA delivery to the lung. Adv Drug Deliv Rev 2007; 59:124-33. [PMID: 17459519 PMCID: PMC7103292 DOI: 10.1016/j.addr.2007.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 03/04/2007] [Indexed: 01/13/2023]
Abstract
SiRNAs exert their biological effect by guiding the degradation of their cognate mRNA sequence, thereby shutting down the corresponding protein production (gene silencing by RNA interference or RNAi). Due to this property, siRNAs are emerging as promising therapeutic agents for the treatment of inherited and acquired diseases, as well as research tools for the elucidation of gene function in both health and disease. Because of their lethality and prevalence, lung diseases have attracted particular attention as targets of siRNA-mediated cures. In addition, lung is accessible to therapeutic agents via multiple routes, e.g., through the nose and the mouth, thus obviating the need for targeting and making it an appealing target for RNAi-based therapeutic strategies. The clinical success of siRNA-mediated interventions critically depends upon the safety and efficacy of the delivery methods and agents. Delivery of siRNAs relevant to lung diseases has been attempted through multiple routes and using various carriers in animal models. This review focuses on the recent progress in non-viral delivery of siRNAs for the treatment of lung diseases, particularly infectious diseases. The rapid progress will put siRNA-based therapeutics on fast track to the clinic.
Collapse
Affiliation(s)
- Mini Thomas
- Department of Chemistry and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
19
|
Xiang Y, Lin G, Zhang Q, Tan Y, Lu G. Knocking down Wnt9a mRNA levels increases cellular proliferation. Mol Biol Rep 2007; 35:73-9. [PMID: 17351820 DOI: 10.1007/s11033-007-9055-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/02/2007] [Indexed: 11/26/2022]
Abstract
Wnts are secreted lipid-modified signaling proteins. Activation of Wnt signalling in many tissues has also been associated with cancer. In many eukaryotes, expression of nuclear-encoded mRNA can be strongly inhibited by the presence of a small double-stranded RNA corresponding to exon sequences in the mRNA. In this study we used pAVU6+27 vectors, which have SalI and XbaI clone sites, to construct the siRNA expression vectors for human Wnt9a. Two kinds of small interfering RNA inserts were designed, synthesized and visually tested for efficacy by in situ hybridization, the results demonstrated that in the cells, transfected with U6+27 cassettes with anti-Wnt9a hairpin siRNA inserts, dramatically reduced Wnt9a signals were observed as compared to the untransfected cells. The results of flow cytometry analysis showed that the cell proliferation was promoted after lowering expression of the human Wnt9a in MCF-7 cells by RNAi, but was inhibited after over-expression of human Wnt9a. These results suggests the expression level of human Wnt9a in MCF-7 that breast cancer may play a role in adjusting the rate of cellular proliferation.
Collapse
Affiliation(s)
- Yang Xiang
- Institute of Human Reproduction and Stem Cell Engineering, Central South University, 88 Xiangya Road, Changsha, Hunan, 410078, China.
| | | | | | | | | |
Collapse
|
20
|
Cheng TL, Chang WT. Construction of simple and efficient DNA vector-based short hairpin RNA expression systems for specific gene silencing in mammalian cells. Methods Mol Biol 2007; 408:223-241. [PMID: 18314586 DOI: 10.1007/978-1-59745-547-3_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism of posttranscriptional gene silencing induced by introducing the double-stranded RNAs (dsRNAs) into cells. Recent progress in RNAi-based gene-silencing techniques has revolutionarily advanced in studies of the functional genomics and molecular therapeutics. Among the widely used dsRNAs including exogenously synthetic and endogenously expressed small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), the shRNAs are more efficient than siRNAs on the induction of gene silencing and currently have evolved as an extremely powerful and the most popular gene silencing reagent. The DNA vector-based shRNA-expression systems provide not only a simple and effective way in inhibiting gene activities in either inheritable or inducible manner, but also a cost-effective tool in constructing the expression vectors. To fully explore the DNA vector-based shRNA-expression systems in RNAi-mediated gene-silencing techniques, four distinct RNA polymerase III (Pol III)-controlled type III promoter-based expression vectors are constructed including pHsH1, pHsU6, pMmH1, and pMmU6, which contain either the RNase P RNA H1 (H1) or small nuclear RNA U6 (U6) promoter from human and mouse. Moreover, to improve the constructing and screening efficiency for the shRNA-expression recombinant clones, these four DNA vectors are further reconstructed by inserting a stuffer of puromycin resistance gene (PuroR) between restriction enzyme ClaI and HindIII sites, which makes the preparation of vectors easy and simple for cloning the shRNA-expression sequences. Because of the ease, speed, and cost efficiency, these four improved DNA vector-based shRNA-expression vectors provide a simple, convenient, and efficient gene-silencing system for analyzing specific gene functions in mammalian cells. Herein, the simple and practical procedures for the construction of DNA vector-based expression vectors, potential and rational design rules for the selection of effective RNAi-targeting sequences, efficient and cost-effective cloning strategies for the construction of shRNA-expression cassettes, and effective and functional activity assays for the evaluation of expressed shRNAs are described.
Collapse
Affiliation(s)
- Tsung-Lin Cheng
- National Cheng Kung University Medical College, Tainan, Taiwan
| | | |
Collapse
|
21
|
Lu TJ, Lai WY, Huang CYF, Hsieh WJ, Yu JS, Hsieh YJ, Chang WT, Leu TH, Chang WC, Chuang WJ, Tang MJ, Chen TY, Lu TL, Lai MD. Inhibition of cell migration by autophosphorylated mammalian sterile 20-like kinase 3 (MST3) involves paxillin and protein-tyrosine phosphatase-PEST. J Biol Chem 2006; 281:38405-17. [PMID: 17046825 DOI: 10.1074/jbc.m605035200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MST3 is a member of the sterile-20 protein kinase family with a unique preference for manganese ion as a cofactor in vitro; however, its biological function is largely unknown. Suppression of endogenous MST3 by small interference RNA enhanced cellular migration in MCF-7 cells with reduced expression of E-cadherin at the edge of migrating cells. The alteration of cellular migration and protruding can be rescued by RNA interference-resistant MST3. The expression of surface integrin and Golgi apparatus was not altered, but phosphorylation on tyrosine 118 and tyrosine 31 of paxillin was attenuated by MST3 small interfering RNA (siRNA). Threonine 178 was determined to be one of the two main autophosphorylation sites of MST3 in vitro. Mutant T178A MST3, containing alanine instead of threonine at codon 178, lost autophosphorylation and kinase activities. Overexpression of wild type MST3, but not the T178A mutant MST3, inhibited migration and spreading in Madin-Darby canine kidney cells. MST3 could phosphorylate the protein-tyrosine phosphatase (PTP)-PEST and inhibit the tyrosine phosphatase activity of PTP-PEST. We conclude that MST3 inhibits cell migration in a fashion dependent on autophosphorylation and may regulate paxillin phosphorylation through tyrosine phosphatase PTP-PEST.
Collapse
Affiliation(s)
- Te-Jung Lu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hung CF, Lu KC, Cheng TL, Wu RH, Huang LY, Teng CF, Chang WT. A novel siRNA validation system for functional screening and identification of effective RNAi probes in mammalian cells. Biochem Biophys Res Commun 2006; 346:707-20. [PMID: 16793020 PMCID: PMC7092908 DOI: 10.1016/j.bbrc.2006.05.164] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/23/2006] [Indexed: 12/12/2022]
Abstract
Small interfering RNAs (siRNAs) have become the most powerful and widely used gene silencing reagents for reverse functional genomics and molecular therapeutics. The key challenge for achieving effective gene silencing in particular for the purpose of the therapeutics is primarily dependent on the effectiveness and specificity of the RNAi targeting sequence. However, only a limited number of siRNAs is capable of inducing highly effective and sequence-specific gene silencing by RNA interference (RNAi) mechanism. In addition, the efficacy of siRNA-induced gene silencing can only be experimentally measured based on inhibition of the target gene expression. Therefore, it is important to establish a fully robust and comparative validating system for determining the efficacy of designed siRNAs. In this study, we have developed a reliable and quantitative reporter-based siRNA validation system that consists of a short synthetic DNA fragment containing an RNAi targeting sequence of interest and two expression vectors for targeting reporter and triggering siRNA expression. The efficacy of the siRNAs is measured by their abilities to inhibit expression of the targeting reporter gene with easily quantified readouts including enhanced green fluorescence protein (EGFP) and firefly luciferase. Using fully analyzed siRNAs against human hepatitis B virus (HBV) surface antigen (HBsAg) and tumor suppressor protein p53, we have demonstrated that this system could effectively and faithfully report the efficacy of the corresponding siRNAs. In addition, we have further applied this system for screening and identification of the highly effective siRNAs that could specifically inhibit expression of mouse matrix metalloproteinase-7 (MMP-7), Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1), and human serine/threonine kinase AKT1. Since only a readily available short synthetic DNA fragment is needed for constructing this novel reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective siRNAs but also implicates in the use of RNAi for studying novel gene function in mammals.
Collapse
Affiliation(s)
- Chuan-Fu Hung
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | - Kuang-Chu Lu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | - Tsung-Lin Cheng
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | - Ren-Huang Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | - Lin-Ya Huang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | - Chiao-Fang Teng
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
- Corresponding author. Fax: +886 6 2741694.
| |
Collapse
|
23
|
Cron RQ, Bandyopadhyay R, Genin A, Brunner M, Kersh GJ, Yin J, Finkel TH, Crow MK. Early growth response-1 is required for CD154 transcription. THE JOURNAL OF IMMUNOLOGY 2006; 176:811-8. [PMID: 16393964 PMCID: PMC1424665 DOI: 10.4049/jimmunol.176.2.811] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD154 (CD40 ligand) expression on CD4 T cells is normally tightly controlled, but abnormal or dysregulated expression of CD154 has been well documented in autoimmune diseases, such as systemic lupus erythematosus. Beyond regulation by NFAT proteins, little is known about the transcriptional activation of the CD154 promoter. We identified a species-conserved purine-rich sequence located adjacent to the CD154 transcriptional promoter proximal NFAT site, which binds early growth response (Egr) transcription factors. Gel shift assays and chromatin immunoprecipitation assays reveal that Egr-1, Egr-3, and NFAT1 present in primary human CD4 T cells are capable of binding this combinatorial site in vitro and in vivo, respectively. Multimerization of this NFAT/Egr sequence in the context of a reporter gene demonstrates this sequence is transcriptionally active upon T cell activation in primary human CD4 T cells. Overexpression of Egr-1, but not Egr-3, is capable of augmenting transcription of this reporter gene as well as that of an intact CD154 promoter. Conversely, overexpression of small interfering RNA specific for Egr-1 in primary human CD4 T cells inhibits CD154 expression. Similarly, upon activation, CD154 message is notably decreased in splenic CD4 T cells from Egr-1-deficient mice compared with wild-type controls. Our data demonstrate that Egr-1 is required for CD154 transcription in primary CD4 T cells. This has implications for selective targeting of Egr family members to control abnormal expression of CD154 in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Randy Q Cron
- Division of Rheumatology, Children's Hospital of Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hung CF, Cheng TL, Wu RH, Teng CF, Chang WT. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells. Biochem Biophys Res Commun 2005; 339:1035-42. [PMID: 16337609 DOI: 10.1016/j.bbrc.2005.11.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells.
Collapse
Affiliation(s)
- Chuan-Fu Hung
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | | | | | | | | |
Collapse
|
25
|
Wooddell CI, Van Hout CV, Reppen T, Lewis DL, Herweijer H. Long-term RNA interference from optimized siRNA expression constructs in adult mice. Biochem Biophys Res Commun 2005; 334:117-27. [PMID: 15993838 DOI: 10.1016/j.bbrc.2005.06.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
DNA constructs for small interfering RNA (siRNA) expression in mammalian cells have the potential for longer-term target gene knockdown than synthetic siRNAs. We compared in adult mice the efficacy and longevity of target gene knockdown from siRNA expression cassettes contained in plasmids, PCR-generated linear constructs or PCR constructs containing "dumbbell" ends using the hydrodynamic delivery method. Plasmid siRNA expression constructs were more effective than PCR constructs for target gene knockdown. The efficacy of the PCR constructs was improved by addition of short extensions beyond the transcription termination signal and greatly improved by addition of dumbbell ends. Constructs containing the H1 promoter were significantly less effective in mice than those containing the U6 promoter, whereas both promoters functioned equally well in cultured cells. Target gene knockdown perdured for at least 20 weeks in mice after delivery of either PCR or plasmid siRNA expression cassettes. These results will help guide RNAi vector design.
Collapse
|