1
|
Leitner L, Schultheis M, Hofstetter F, Rudolf C, Fuchs C, Kizner V, Fiedler K, Konrad MT, Höbaus J, Genini M, Kober J, Ableitner E, Gmaschitz T, Walder D, Weitzer G. An autocrine synergistic desmin-SPARC network promotes cardiomyogenesis in cardiac stem cells. Cells Dev 2025; 181:203990. [PMID: 39734020 DOI: 10.1016/j.cdev.2024.203990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/15/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
The mammalian heart contains cardiac stem cells throughout life, but it has not been possible to harness or stimulate these cells to repair damaged myocardium in vivo. Assuming physiological relevance of these cells, which have evolved and have been maintained throughout mammalian evolution, we hypothesize that cardiac stem cells may contribute to cardiomyogenesis in an unorthodox manner. Since the intermediate filament protein desmin and the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) promote cardiomyogenic differentiation during embryogenesis in a cell-autonomous and paracrine manner, respectively, we focus on their genes and employ mouse embryonic and cardiac stem cell lines as in vitro models to ask whether desmin and SPARC cooperatively influence cardiomyogenesis in cardiac stem and progenitor cells. We show that desmin also promotes cardiomyogenesis in a non-cell autonomous manner by increasing the expression and secretion of SPARC in differentiating embryonic stem cells. SPARC is also secreted by cardiac stem cells where it promotes cardiomyogenesis in an autocrine and concentration-dependent manner by upregulating the expression of myocardial transcription factors and its elicitor desmin. Desmin and SPARC interact genetically, forming a positive feedback loop and secreted autocrine and paracrine SPARC negatively affects sparc mRNA expression. Paracrine SPARC rescues cardiomyogenic desmin-haploinsufficiency in cardiac stem cells in a glycosylation-dependent manner, increases desmin expression, the phosphorylation of Smad2 and induces the expression of gata4, nkx2.5 and mef2C. Demonstration that desmin-induced autocrine secretion of SPARC in cardiac stem cells promotes cardiomyogenesis raises the possibility that a physiological function of cardiac stem cells in the adult and aging heart may be the gland-like secretion of factors such as SPARC that modulate age-related and adverse environmental influences and thereby contribute to cardiac homeostasis throughout life.
Collapse
Affiliation(s)
- Lucia Leitner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Martina Schultheis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Franziska Hofstetter
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Claudia Rudolf
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Christiane Fuchs
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Valeria Kizner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Kerstin Fiedler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Marie-Therese Konrad
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Höbaus
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Marco Genini
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Kober
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Elisabeth Ableitner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Teresa Gmaschitz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Diana Walder
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Georg Weitzer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria.
| |
Collapse
|
2
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. To Better Generate Organoids, What Can We Learn From Teratomas? Front Cell Dev Biol 2021; 9:700482. [PMID: 34336851 PMCID: PMC8324104 DOI: 10.3389/fcell.2021.700482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The genomic profile of animal models is not completely matched with the genomic profile of humans, and 2D cultures do not represent the cellular heterogeneity and tissue architecture found in tissues of their origin. Derived from 3D culture systems, organoids establish a crucial bridge between 2D cell cultures and in vivo animal models. Organoids have wide and promising applications in developmental research, disease modeling, drug screening, precision therapy, and regenerative medicine. However, current organoids represent only single or partial components of a tissue, which lack blood vessels, native microenvironment, communication with near tissues, and a continuous dorsal-ventral axis within 3D culture systems. Although efforts have been made to solve these problems, unfortunately, there is no ideal method. Teratoma, which has been frequently studied in pathological conditions, was recently discovered as a new in vivo model for developmental studies. In contrast to organoids, teratomas have vascularized 3D structures and regions of complex tissue-like organization. Studies have demonstrated that teratomas can be used to mimic multilineage human development, enrich specific somatic progenitor/stem cells, and even generate brain organoids. These results provide unique opportunities to promote our understanding of the vascularization and maturation of organoids. In this review, we first summarize the basic characteristics, applications, and limitations of both organoids and teratomas and further discuss the possibility that in vivo teratoma systems can be used to promote the vascularization and maturation of organoids within an in vitro 3D culture system.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jinlin Du
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
3
|
Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021; 30:9636897211035076. [PMID: 34498511 PMCID: PMC8438274 DOI: 10.1177/09636897211035076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
- Tetsuji Sekiya, Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan,.
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield, England
| |
Collapse
|
4
|
Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H, Ivankovic M, Schultheis M, Klammer J, Gottschamel T, Capetanaki Y, Weitzer G. Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biol Open 2016; 5:140-53. [PMID: 26787680 PMCID: PMC4823984 DOI: 10.1242/bio.014993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Nkx2.5 and the intermediate filament protein desmin are simultaneously expressed in cardiac progenitor cells during commitment of primitive mesoderm to the cardiomyogenic lineage. Up-regulation of Nkx2.5 expression by desmin suggests that desmin may contribute to cardiogenic commitment and myocardial differentiation by directly influencing the transcription of the nkx2.5 gene in cardiac progenitor cells. Here, we demonstrate that desmin activates transcription of nkx2.5 reporter genes, rescues nkx2.5 haploinsufficiency in cardiac progenitor cells, and is responsible for the proper expression of Nkx2.5 in adult cardiac side population stem cells. These effects are consistent with the temporary presence of desmin in the nuclei of differentiating cardiac progenitor cells and its physical interaction with transcription factor complexes bound to the enhancer and promoter elements of the nkx2.5 gene. These findings introduce desmin as a newly discovered and unexpected player in the regulatory network guiding cardiomyogenesis in cardiac stem cells.
Collapse
Affiliation(s)
- Christiane Fuchs
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Sonja Gawlas
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Philipp Heher
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 115 27, Greece
| | - Hannah Paar
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Mario Ivankovic
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Martina Schultheis
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Julia Klammer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Teresa Gottschamel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 115 27, Greece
| | - Georg Weitzer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna A1030, Austria
| |
Collapse
|
5
|
Zaninovic N, Zhan Q, Rosenwaks Z. Derivation of human embryonic stem cells (hESC). Methods Mol Biol 2014; 1154:121-44. [PMID: 24782008 DOI: 10.1007/978-1-4939-0659-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Stem cells are characterized by their absolute or relative lack of specialization their ability for self-renewal, as well as their ability to generate differentiated progeny through cellular lineages with one or more branches. The increased availability of embryonic tissue and greatly improved derivation methods have led to a large increase in the number of hESC lines.
Collapse
Affiliation(s)
- Nikica Zaninovic
- Center for Reproductive Medicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA,
| | | | | |
Collapse
|
6
|
Koley M, Mike AK, Heher P, Koenig X, Schön M, Schnürch M, Hilber K, Weitzer G, Mihovilovic MD. VUT-MK142 : a new cardiomyogenic small molecule promoting the differentiation of pre-cardiac mesoderm into cardiomyocytes. MEDCHEMCOMM 2013; 4:1189-1195. [PMID: 25045463 PMCID: PMC4101245 DOI: 10.1039/c3md00101f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intra-cardiac cell transplantation is a new therapy after myocardial infarction. Its success, however, is impeded by the limited capacity of donor cells to differentiate into functional cardiomyocytes in the heart. A strategy to overcome this problem is the induction of cardiomyogenic function in cells prior to transplantation. Among other approaches, recently, synthetic small molecules were identified, which promote differentiation of stem cells of various origins into cardiac-like cells or cardiomyocytes. The aim of this study was to develop and characterise new promising cardiomyogenic synthetic low-molecular weight compounds. Therefore, the structure of the known cardiomyogenic molecule cardiogenol C was selectively modified, and the effects of the resulting compounds were tested on various cell types. From this study, VUT-MK142 was identified as the most promising candidate with respect to cardiomyogenic activity. Treatment using this novel agent induced the strongest up-regulation of expression of the cardiac marker ANF in both P19 embryonic carcinoma cells and C2C12 skeletal myoblasts. The activity of VUT-MK142 on this marker superseded CgC; moreover, the novel compound significantly up-regulated the expression of other cardiac markers, and promoted the development of beating cardiomyocytes from cardiovascular progenitor cells. We conclude that VUT-MK142 is a potent new cardiomyogenic synthetic agent promoting the differentiation of pre-cardiac mesoderm into cardiomyocytes, which may be useful to differentiate stem cells into cardiomyocytes for cardiac repair. Additionally, an efficient synthesis of VUT-MK142 is reported taking advantage of continuous flow techniques superior to classical batch reactions both in yield and reaction time.
Collapse
Affiliation(s)
- Moumita Koley
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Agnes K. Mike
- Department of Neurophysiology and pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Philipp Heher
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr.-Bohrgasse 9/2, A-1030 Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Michael Schön
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Georg Weitzer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr.-Bohrgasse 9/2, A-1030 Vienna, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| |
Collapse
|
7
|
Hoebaus J, Heher P, Gottschamel T, Scheinast M, Auner H, Walder D, Wiedner M, Taubenschmid J, Miksch M, Sauer T, Schultheis M, Kuzmenkin A, Seiser C, Hescheler J, Weitzer G. Embryonic stem cells facilitate the isolation of persistent clonal cardiovascular progenitor cell lines and leukemia inhibitor factor maintains their self-renewal and myocardial differentiation potential in vitro. Cells Tissues Organs 2013; 197:249-68. [PMID: 23343517 PMCID: PMC7615845 DOI: 10.1159/000345804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2012] [Indexed: 11/19/2022] Open
Abstract
Compelling evidence for the existence of somatic stem cells in the heart of different mammalian species has been provided by numerous groups; however, so far it has not been possible to maintain these cells as self-renewing and phenotypically stable clonal cell lines in vitro. Thus, we sought to identify a surrogate stem cell niche for the isolation and persistent maintenance of stable clonal cardiovascular progenitor cell lines, enabling us to study the mechanism of self-renewal and differentiation in these cells. Using postnatal murine hearts with a selectable marker as the stem cell source and embryonic stem cells and leukemia inhibitory factor (LIF)-secreting fibroblasts as a surrogate niche, we succeeded in the isolation of stable clonal cardiovascular progenitor cell lines. These cell lines self-renew in an LIF-dependent manner. They express both stemness transcription factors Oct4, Sox2, and Nanog and early myocardial transcription factors Nkx2.5, GATA4, and Isl-1 at the same time. Upon LIF deprivation, they exclusively differentiate to functional cardiomyocytes and endothelial and smooth muscle cells, suggesting that these cells are mesodermal intermediates already committed to the cardiogenic lineage. Cardiovascular progenitor cell lines can be maintained for at least 149 passages over 7 years without phenotypic changes, in the presence of LIF-secreting fibroblasts. Isolation of wild-type cardiovascular progenitor cell lines from adolescent and old mice has finally demonstrated the general feasibility of this strategy for the isolation of phenotypically stable somatic stem cell lines.
Collapse
Affiliation(s)
- Julia Hoebaus
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Philipp Heher
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Teresa Gottschamel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Matthias Scheinast
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Harmen Auner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Diana Walder
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Marc Wiedner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Jasmin Taubenschmid
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Maximilian Miksch
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thomas Sauer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Martina Schultheis
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Alexey Kuzmenkin
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Juergen Hescheler
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Georg Weitzer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Stefanova VT, Grifo JA, Hansis C. Derivation of novel genetically diverse human embryonic stem cell lines. Stem Cells Dev 2012; 21:1559-70. [PMID: 22204497 DOI: 10.1089/scd.2011.0642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.
Collapse
Affiliation(s)
- Valentina T Stefanova
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
9
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Fuchs C, Scheinast M, Pasteiner W, Lagger S, Hofner M, Hoellrigl A, Schultheis M, Weitzer G. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs 2011; 195:377-91. [PMID: 21860211 PMCID: PMC7615842 DOI: 10.1159/000328712] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 12/29/2022] Open
Abstract
Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an 'anterior' and a 'posterior' end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the 'left' side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells.
Collapse
Affiliation(s)
- Christiane Fuchs
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Matthias Scheinast
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Waltraud Pasteiner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Sabine Lagger
- Division of Molecular Genetics, Medical University of Vienna, Vienna, Austria
| | - Manuela Hofner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Alexandra Hoellrigl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Martina Schultheis
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Georg Weitzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| |
Collapse
|
11
|
Kheolamai P, Dickson AJ. Liver-enriched transcription factors are critical for the expression of hepatocyte marker genes in mES-derived hepatocyte-lineage cells. BMC Mol Biol 2009; 10:35. [PMID: 19389256 PMCID: PMC2680860 DOI: 10.1186/1471-2199-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 04/23/2009] [Indexed: 11/23/2022] Open
Abstract
Background Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. Results We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3α, -4α, -6, and CCAAT-enhancer binding protein-β might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. Conclusion The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.
Collapse
Affiliation(s)
- Pakpoom Kheolamai
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| | | |
Collapse
|
12
|
Pekkanen-Mattila M, Kerkelä E, Tanskanen JMA, Pietilä M, Pelto-Huikko M, Hyttinen J, Skottman H, Suuronen R, Aalto-Setälä K. Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions--a comparison of multiple cell lines. Ann Med 2009; 41:360-70. [PMID: 19165643 DOI: 10.1080/07853890802609542] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM The differentiation efficiencies of human embryonic stem cell (hESC) lines differ from each other. To assess this in more detail we studied the cardiac differentiation of eight hESC lines derived in the same laboratory. RESULTS Substantial variation in growth and in the ability to form beating areas was seen between the different hESC lines; line HS346 gave the best efficiency (9.4%), while HS293 did not differentiate into beating colonies at all. Nine germ layer and differentiation markers were quantified during early differentiation in four hESC lines. The expression levels of Brachyury T, MESP1 and NKX2.5 were highest in the most efficient cardiac line (HS346). A systematic characterization of the beating cells revealed proper cardiac marker expression, electrophysiological activity, and pharmacological response. CONCLUSIONS The hESC lines derived in the same laboratory varied considerably in their potential to differentiate into beating cardiomyocytes. None of the expression markers could clearly predict cardiac differentiation potential, although the expression of early cardiomyogenic genes was upregulated in the best cardiac line. The proper cardiomyocyte characteristics and pharmacological response indicate that these cells could be used as a model for human cardiomyocytes in pharmacological and toxicological analyses when investigating new heart medications or cardiac side-effects.
Collapse
Affiliation(s)
- Mari Pekkanen-Mattila
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Biokatu 12, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang KH, Nelson AM, Fields PA, Hesson JL, Ulyanova T, Cao H, Nakamoto B, Ware CB, Papayannopoulou T. Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp Cell Res 2008; 314:2930-40. [PMID: 18692044 PMCID: PMC2642930 DOI: 10.1016/j.yexcr.2008.07.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 01/02/2023]
Abstract
Despite a growing body of literature concerning the hematopoietic differentiation of human embryonic stem cells (hESCs), the full hematopoietic potential of the majority of existing hESC lines remains unknown. In this study, the hematopoietic response of five NIH-approved hESC lines (H1, hSF6, BG01, BG02, and BG03) was compared. Our data show that despite expressing similar hESC markers under self-renewing conditions and initiating mesodermal differentiation under spontaneous differentiation conditions, marked differences in subsequent hematopoietic differentiation potential among these lines existed. A high degree of hematopoietic differentiation was attained only by H1 and BG02, whereas this process appeared to be abortive in nature for hSF6, BG01, and BG03. This difference in hematopoietic differentiation predisposition was readily apparent during spontaneous differentiation, and further augmented under hematopoietic-inducing conditions. This predisposition appeared to be intrinsic to the specific hESC line and independent of passage number or gender karyotype. Interestingly, H1 and BG02 displayed remarkable similarities in their kinetics of hematopoietic marker expression, hematopoietic colony formation, erythroid differentiation, and globin expression, suggesting that a similar, predetermined differentiation sequence is followed. The identification of intrinsic and extrinsic factors governing the hematopoietic differentiation potential of hESCs will be of great importance for the putative clinical utility of hESC lines.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Department of Medicine, Hematology Division, University of Washington, 1705 NE Pacific Street, Box 357710, Seattle, WA, USA
| | | | - Paul A. Fields
- Department of Medicine, Hematology Division, University of Washington, 1705 NE Pacific Street, Box 357710, Seattle, WA, USA
| | | | - Tatiana Ulyanova
- Department of Medicine, Hematology Division, University of Washington, 1705 NE Pacific Street, Box 357710, Seattle, WA, USA
| | - Hua Cao
- Department of Medicine, Medical Genetics Division, University of Washington, USA
| | - Betty Nakamoto
- Department of Medicine, Hematology Division, University of Washington, 1705 NE Pacific Street, Box 357710, Seattle, WA, USA
| | - Carol B. Ware
- Department of Comparative Medicine, University of Washington, USA
| | - Thalia Papayannopoulou
- Department of Medicine, Hematology Division, University of Washington, 1705 NE Pacific Street, Box 357710, Seattle, WA, USA
| |
Collapse
|
14
|
Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reprod Biomed Online 2008; 17:270-80. [DOI: 10.1016/s1472-6483(10)60206-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Hofner M, Höllrigl A, Puz S, Stary M, Weitzer G. Desmin stimulates differentiation of cardiomyocytes and up-regulation of brachyury and nkx2.5. Differentiation 2007; 75:605-15. [PMID: 17381547 PMCID: PMC7615841 DOI: 10.1111/j.1432-0436.2007.00162.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Desmin contributes to structural integrity and function of the myocardium but its function seems to be redundant in early cardiomyogenesis in the desmin null mouse model. To test the hypothesis that desmin also plays a supportive role in cardiomyogenic commitment and early differentiation of cardiomyocytes we investigated cardiomyogenesis in embryoid bodies expressing different desmin alleles. Constitutive expression of desmin and increased synthesis during mesoderm formation led to the up-regulation of brachyury and nkx2.5 genes, accelerated early cardiomyogenesis and resulted in the development of large, proliferating, highly interconnected, and synchronously beating cardiomyocyte clusters, whereas desmin null cardiomyocytes featured an opposite phenotype. In contrast, constitutive expression of amino-terminally truncated desmin(Delta1-48) interfered with the beginning of cardiomyogenesis, caused down-regulation of mesodermal and myocardial transcription factors, and hampered myofibrillogenesis and survival of cardiomyocytes. These results provide first evidence that a type III intermediate filament protein takes part in regulating the differentiation of mesoderm to cardiomyocytes at the very beginning of cardiomyogenesis.
Collapse
Affiliation(s)
- Manuela Hofner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
16
|
Höllrigl A, Hofner M, Stary M, Weitzer G. Differentiation of cardiomyocytes requires functional serine residues within the amino-terminal domain of desmin. Differentiation 2007; 75:616-26. [PMID: 17381546 PMCID: PMC7615843 DOI: 10.1111/j.1432-0436.2007.00163.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Desmin contributes to the stability of the myocardium and its amino-terminal domain influences intermediate filament formation and interacts with a variety of proteins and DNAs. Specific serine residues located in this domain are reversibly phosphorylated in a cell cycle and developmental stage-dependent manner as has been demonstrated also for other cytoplasmic type III intermediate filament proteins. Although absence of desmin apparently does not affect cardiomyogenesis, homozygous deletion of the amino-terminal domain of desmin severely inhibited in vitro cardiomyogenesis. To demonstrate the significance of phosphorylation of this domain in cardiomyogenic commitment and differentiation, we inhibited phosphorylation of serine residues 6, 7, and 8 by mutation to alanine, and investigated early cardiomyogenesis in heterozygous embryoid bodies. As control, serine residues 31 and 32, which are not phosphorylated by kinases mutating serine residues 6, 7, and 8, were mutated to alanine in a second set. Desmin(S6,7,8A) interfered with cardiomyogenesis and myofibrillogenesis in a dominant negative fashion, whereas desmin(S31,32A) produced only a mild phenotype. Desmin(S6,7,8A) led to the down-regulation of the transcription factor genes brachyury, goosecoid, nkx2.5, and mef2C and increased apoptosis of presumptive mesoderm and differentiating cardiomyocytes. Surviving cardiomyocytes which were few in number had no myofibrils. Demonstration that some but not any mutant desmin interfered with the very beginning of cardiomyogenesis suggests an important function of temporarily phosphorylated serine residues 6, 7, and 8 in the amino-terminal domain of desmin in cardiomyogenic commitment and differentiation.
Collapse
Affiliation(s)
- Alexandra Höllrigl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | |
Collapse
|
17
|
Mikkola M, Olsson C, Palgi J, Ustinov J, Palomaki T, Horelli-Kuitunen N, Knuutila S, Lundin K, Otonkoski T, Tuuri T. Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC DEVELOPMENTAL BIOLOGY 2006; 6:40. [PMID: 16895598 PMCID: PMC1557488 DOI: 10.1186/1471-213x-6-40] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 08/08/2006] [Indexed: 12/25/2022]
Abstract
Background Individual differences between human embryonic stem cell (hESC) lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61) from frozen-thawed human embryos and compare their individual differentiation characteristic. Results The cell lines were cultured either on human or mouse feeder cells. The cells grew significantly faster and could be passaged enzymatically only on mouse feeders. However, this was found to lead to chromosomal instability after prolonged culture. All hESC lines expressed the established markers of pluripotent cells as well as several primordial germ cell (PGC) marker genes in a uniform manner. However, the cell lines showed distinct features in their spontaneous differentiation patterns. The embryoid body (EB) formation frequency of FES 30 cell line was significantly lower than that of other lines and cells within the EBs differentiated less readily. Likewise, teratomas derived from FES 30 cells were constantly cystic and showed only minor solid tissue formation with a monotonous differentiation pattern as compared with the other lines. Conclusion hESC lines may differ substantially in their differentiation properties although they appear similar in the undifferentiated state.
Collapse
Affiliation(s)
- Milla Mikkola
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
| | - Cia Olsson
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
- Family Federation of Finland, Infertility Clinic, Fredrikinkatu 47, 00100 Helsinki, Finland
| | - Jaan Palgi
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
| | - Tiina Palomaki
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
| | | | - Sakari Knuutila
- Laboratory of Cytomolecular Genetics, Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Karolina Lundin
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
- Hospital for Children and Adolescents, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Timo Tuuri
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Helsinki, Finland
- Family Federation of Finland, Infertility Clinic, Fredrikinkatu 47, 00100 Helsinki, Finland
| |
Collapse
|
18
|
Davey RE, Zandstra PW. Spatial organization of embryonic stem cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem cell niche. Stem Cells 2006; 24:2538-48. [PMID: 16825607 DOI: 10.1634/stemcells.2006-0216] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly ordered aggregates of cells, or niches, regulate stem cell fate. Specific tissue location need not be an obligatory requirement for a stem cell niche, particularly during embryogenesis, where cells exist in a dynamic environment. We investigated autoregulatory fixed-location-independent processes controlling cell fate by analyzing the spatial organization of embryonic stem cells (ESCs) using quantitative single-cell immunocytochemistry and a computational approach involving Delaunay triangulation. ESC colonies demonstrated radial organization of phosphorylated signal transducer and activator of transcription 3, Nanog, and Oct4 (among others) in the presence and absence of exogenous leukemia inhibitory factor (LIF). Endogenous self-renewal signaling resulted from autocrine non-LIF gp130 ligands, which buffered cells against differentiation upon exogenous LIF deprivation. Together with a radial organization of differential responsiveness to gp130 ligands within colonies, autocrine signaling produced a radial organization of self-renewal, generating a fixed-location-independent autoregulatory niche. These findings reveal fundamental properties of niches and elucidate mechanisms colonies of cells use to transition between fates during morphogenesis.
Collapse
Affiliation(s)
- Ryan E Davey
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Stary M, Schneider M, Sheikh SP, Weitzer G. Parietal endoderm secreted S100A4 promotes early cardiomyogenesis in embryoid bodies. Biochem Biophys Res Commun 2006; 343:555-63. [PMID: 16554030 DOI: 10.1016/j.bbrc.2006.02.161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/27/2006] [Indexed: 01/22/2023]
Abstract
Cardiomyogenesis is influenced by factors secreted by anterior-lateral and extra-embryonic endoderm. Differentiation of embryonic stem cells in embryoid bodies allows to study the influence of growth factors on cardiomyogenesis. By these means SPARC was identified as a new factor enhancing cardiomyogenesis [M. Stary, W. Pasteiner, A. Summer, A. Hrdina, A. Eger, G. Weitzer, Parietal endoderm secreted SPARC promotes early cardiomyogenesis in vitro, Exp. Cell Res. 310 (2005) 331-341]. Here we report a similar and new function for S100A4, a calcium-binding protein of the EF-hand type. S100A4 is secreted by parietal endoderm and promotes early differentiation and proliferation of cardiomyocytes. Oligomeric S100A4 supports cardiomyogenesis in a concentration-dependent manner, whereas inhibition of autocrine S100A4 severely attenuates cardiomyogenesis. S100A4 specifically influences transcription in differentiating cardiomyocytes, as evident from increased expression of cardiac transcription factor genes nkx2.5 and mef2C. These data suggest that S100A4, like SPARC, plays a supportive role in early in vitro cardiomyogenesis.
Collapse
Affiliation(s)
- Martina Stary
- Max F. Perutz Laboratories, University Institutes at the Vienna Biocenter, Department of Medical Biochemistry, Division of Molecular Cell Biology, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | |
Collapse
|
20
|
Boiani M, Schöler HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005; 6:872-84. [PMID: 16227977 DOI: 10.1038/nrm1744] [Citation(s) in RCA: 499] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian development requires the specification of over 200 cell types from a single totipotent cell. Investigation of the regulatory networks that are responsible for pluripotency in embryo-derived stem cells is fundamental to understanding mammalian development and realizing therapeutic potential. Extracellular signals and second messengers modulate cell-autonomous regulators such as OCT4, SOX2 and Nanog in a combinatorial complexity. Knowledge of this circuitry might reveal how to achieve phenotypic changes without the genetic manipulation of Oct4, Nanog and other toti/pluripotency-associated genes.
Collapse
Affiliation(s)
- Michele Boiani
- Max-Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Mendelstrasse 7/Von-Esmarch Strasse 56, 48149 Münster, Germany
| | | |
Collapse
|