1
|
Hardin KR, Penas AB, Joubert S, Ye C, Myers KR, Zheng JQ. A Critical Role for the Fascin Family of Actin Bundling Proteins in Axon Development, Brain Wiring and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639554. [PMID: 40027761 PMCID: PMC11870622 DOI: 10.1101/2025.02.21.639554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Actin-based cell motility drives many neurodevelopmental events including guided axonal growth. Fascin is a major family of F-actin bundling proteins, but its role in axon development in vivo and brain wiring remains unclear. Here, we report that fascin is required for axon development, brain wiring and function. We show that fascin is enriched in the motile filopodia of axonal growth cones and its inhibition impairs axonal extension and branching of hippocampal neurons in culture. We next provide evidence that fascin is essential for axon development and brain wiring in vivo using Drosophila melanogaster as a model. Drosophila expresses a single ortholog of mammalian fascin called Singed (SN), which is highly expressed in the mushroom body (MB) of the central nervous system. We observe that loss of SN results in drastic MB disruption, highlighted by α- and β-lobe defects that are consistent with altered axonal guidance. SN-null flies also exhibit defective sensorimotor behaviors as assessed by the negative geotaxis assay. MB- specific expression of SN in SN-null flies rescues MB structure and sensorimotor deficits, indicating that SN functions autonomously in MB neurons. Together, our data from primary neuronal culture and in vivo models highlight a critical role for fascin in brain development and function. Highlights Fascin regulates axonal growth and branching of hippocampal neurons in culture.Singed, Drosophila fascin, is enriched specifically in mushroom body (MB) axons.Singed loss causes axon guidance defects and sensorimotor issues in flies.MB-specific Singed re-expression rescues MB structure and behavior in flies.
Collapse
|
2
|
Ye Y, Homer HA. A surge in cytoplasmic viscosity triggers nuclear remodeling required for Dux silencing and pre-implantation embryo development. Cell Rep 2024; 43:113917. [PMID: 38446665 DOI: 10.1016/j.celrep.2024.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Embryonic genome activation (EGA) marks the transition from dependence on maternal transcripts to an embryonic transcriptional program. The precise temporal regulation of gene expression, specifically the silencing of the Dux/murine endogenous retrovirus type L (MERVL) program during late 2-cell interphase, is crucial for developmental progression in mouse embryos. How this finely tuned regulation is achieved within this specific window is poorly understood. Here, using particle-tracking microrheology throughout the mouse oocyte-to-embryo transition, we identify a surge in cytoplasmic viscosity specific to late 2-cell interphase brought about by high microtubule and endomembrane density. Importantly, preventing the rise in 2-cell viscosity severely impairs nuclear reorganization, resulting in a persistently open chromatin configuration and failure to silence Dux/MERVL. This, in turn, derails embryo development beyond the 2- and 4-cell stages. Our findings reveal a mechanical role of the cytoplasm in regulating Dux/MERVL repression via nuclear remodeling during a temporally confined period in late 2-cell interphase.
Collapse
Affiliation(s)
- Yunan Ye
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
| | - Hayden Anthony Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia.
| |
Collapse
|
3
|
Nietmann P, Kaub K, Suchenko A, Stenz S, Warnecke C, Balasubramanian MK, Janshoff A. Cytosolic actin isoforms form networks with different rheological properties that indicate specific biological function. Nat Commun 2023; 14:7989. [PMID: 38042893 PMCID: PMC10693642 DOI: 10.1038/s41467-023-43653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
The implications of the existence of different actins expressed in epithelial cells for network mechanics and dynamics is investigated by microrheology and confocal imaging. γ-actin predominately found in the apical cortex forms stiffer networks compared to β-actin, which is preferentially organized in stress fibers. We attribute this to selective interactions with Mg2+-ions interconnecting the filaments' N-termini. Bundling propensity of the isoforms is different in the presence of Mg2+-ions, while crosslinkers such as α-actinin, fascin, and heavy meromyosin alter the mechanical response independent of the isoform. In the presence of myosin, β-actin networks show a large number of small contraction foci, while γ-actin displays larger but fewer foci indicative of a stronger interaction with myosin motors. We infer that subtle changes in the amino acid sequence of actin isoforms lead to alterations of the mechanical properties on the network level with potential implications for specific biological functions.
Collapse
Affiliation(s)
- Peter Nietmann
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | - Kevin Kaub
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
- Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Andrejus Suchenko
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Susanne Stenz
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | - Claas Warnecke
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | | | - Andreas Janshoff
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany.
- Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany.
| |
Collapse
|
4
|
Sampietro M, Cassina V, Salerno D, Barbaglio F, Buglione E, Marrano CA, Campanile R, Scarfò L, Biedenweg D, Fregin B, Zamai M, Díaz Torres A, Labrador Cantarero V, Ghia P, Otto O, Mantegazza F, Caiolfa VR, Scielzo C. The Nanomechanical Properties of CLL Cells Are Linked to the Actin Cytoskeleton and Are a Potential Target of BTK Inhibitors. Hemasphere 2023; 7:e931. [PMID: 37492437 PMCID: PMC10365208 DOI: 10.1097/hs9.0000000000000931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of the leukemic cells between the peripheral blood and lymphoid tissues. It is known that the ability of lymphocytes to recirculate strongly depends on their capability to rapidly rearrange their cytoskeleton and adapt to external cues; however, little is known about the differences occurring between CLL and healthy B cells during these processes. To investigate this point, we applied a single-cell optical (super resolution microscopy) and nanomechanical approaches (atomic force microscopy, real-time deformability cytometry) to both CLL and healthy B lymphocytes and compared their behavior. We demonstrated that CLL cells have a specific actomyosin complex organization and altered mechanical properties in comparison to their healthy counterpart. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton's tyrosine kinase inhibitors and we found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. We further validated these results in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. Our results suggest that CLL cells' mechanical properties are linked to their actin cytoskeleton organization and might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target aiming at the normalization of the mechanical fingerprints of the leukemic cells.
Collapse
Affiliation(s)
- Marta Sampietro
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Federica Barbaglio
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Buglione
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Riccardo Campanile
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Lydia Scarfò
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Doreen Biedenweg
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Fleischmannstr, Germany
| | - Bob Fregin
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonsa Díaz Torres
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Veronica Labrador Cantarero
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paolo Ghia
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Oliver Otto
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Valeria R. Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Jiang Y, N'Diaye A, Koh CS, Quilichini TD, Shunmugam ASK, Kirzinger MW, Konkin D, Bekkaoui Y, Sari E, Pasha A, Esteban E, Provart NJ, Higgins JD, Rozwadowski K, Sharpe AG, Pozniak CJ, Kagale S. The coordinated regulation of early meiotic stages is dominated by non-coding RNAs and stage-specific transcription in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:209-224. [PMID: 36710629 DOI: 10.1111/tpj.16125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.
Collapse
Affiliation(s)
- Yunfei Jiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Amidou N'Diaye
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Chu Shin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Rd., Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Arun S K Shunmugam
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Morgan W Kirzinger
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yasmina Bekkaoui
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Ehsan Sari
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, Leicestershire, LE1 7RH, UK
| | - Kevin Rozwadowski
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Pl., Saskatoon, SK, S7N 0X2, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Rd., Saskatoon, SK, S7N 4L8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
6
|
Lehne F, Bogdan S. Getting cells into shape by calcium-dependent actin cross-linking proteins. Front Cell Dev Biol 2023; 11:1171930. [PMID: 37025173 PMCID: PMC10070769 DOI: 10.3389/fcell.2023.1171930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
The actin cytoskeleton represents a highly dynamic filament system providing cell structure and mechanical forces to drive a variety of cellular processes. The dynamics of the actin cytoskeleton are controlled by a number of conserved proteins that maintain the pool of actin monomers, promote actin nucleation, restrict the length of actin filaments and cross-link filaments into networks or bundles. Previous work has been established that cytoplasmic calcium is an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we summarize new recent perspectives on how calcium fluxes are transduced to the actin cytoskeleton in a physiological context. In this mini-review we will focus on three calcium-binding EF-hand-containing actin cross-linking proteins, α-actinin, plastin and EFHD2/Swiprosin-1, and how these conserved proteins affect the cell's actin reorganization in the context of cell migration and wound closure in response to calcium.
Collapse
|
7
|
How do cells stiffen? Biochem J 2022; 479:1825-1842. [PMID: 36094371 DOI: 10.1042/bcj20210806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Collapse
|
8
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
9
|
Bashirzadeh Y, Redford SA, Lorpaiboon C, Groaz A, Moghimianavval H, Litschel T, Schwille P, Hocky GM, Dinner AR, Liu AP. Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Commun Biol 2021. [PMID: 34584211 DOI: 10.1101/2020.10.03.322354v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven A Redford
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- The graduate program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | | | - Alessandro Groaz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Aaron R Dinner
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Bashirzadeh Y, Redford SA, Lorpaiboon C, Groaz A, Moghimianavval H, Litschel T, Schwille P, Hocky GM, Dinner AR, Liu AP. Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Commun Biol 2021; 4:1136. [PMID: 34584211 PMCID: PMC8478941 DOI: 10.1038/s42003-021-02653-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers. By encapsulating proteins in giant unilamellar vesicles, Bashirzadeh et al find that actin crosslinkers, α-actinin and fascin, can self-assemble with actin into complex structures that depend on the degree of confinement. Further analysis and modeling show that α-actinin and fascin sort to separate domains of these structures. These insights may be generalizable to other biopolymer networks containing crosslinkers.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven A Redford
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA.,The graduate program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | | | - Alessandro Groaz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Aaron R Dinner
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA. .,Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA. .,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Castaneda N, Park J, Kang EH. Regulation of Actin Bundle Mechanics and Structure by Intracellular Environmental Factors. FRONTIERS IN PHYSICS 2021; 9:675885. [PMID: 34422787 PMCID: PMC8376200 DOI: 10.3389/fphy.2021.675885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mechanical and structural properties of actin cytoskeleton drive various cellular processes, including structural support of the plasma membrane and cellular motility. Actin monomers assemble into double-stranded helical filaments as well as higher-ordered structures such as bundles and networks. Cells incorporate macromolecular crowding, cation interactions, and actin-crosslinking proteins to regulate the organization of actin bundles. Although the roles of each of these factors in actin bundling have been well-known individually, how combined factors contribute to actin bundle assembly, organization, and mechanics is not fully understood. Here, we describe recent studies that have investigated the mechanisms of how intracellular environmental factors influence actin bundling. This review highlights the effects of macromolecular crowding, cation interactions, and actin-crosslinking proteins on actin bundle organization, structure, and mechanics. Understanding these mechanisms is important in determining in vivo actin biophysics and providing insights into cell physiology.
Collapse
Affiliation(s)
- Nicholas Castaneda
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jinho Park
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States
| | - Ellen Hyeran Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States
- Department of Physics, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
12
|
Alexander JI, Vendramini-Costa DB, Francescone R, Luong T, Franco-Barraza J, Shah N, Gardiner JC, Nicolas E, Raghavan KS, Cukierman E. Palladin isoforms 3 and 4 regulate cancer-associated fibroblast pro-tumor functions in pancreatic ductal adenocarcinoma. Sci Rep 2021; 11:3802. [PMID: 33589694 PMCID: PMC7884442 DOI: 10.1038/s41598-021-82937-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/27/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has a five-year survival under 10%. Treatment is compromised due to a fibrotic-like stromal remodeling process, known as desmoplasia, which limits therapeutic perfusion, supports tumor progression, and establishes an immunosuppressive microenvironment. These processes are driven by cancer-associated fibroblasts (CAFs), functionally activated through transforming growth factor beta1 (TGFβ1). CAFs produce a topographically aligned extracellular matrix (ECM) that correlates with reduced overall survival. Paradoxically, ablation of CAF populations results in a more aggressive disease, suggesting CAFs can also restrain PDAC progression. Thus, unraveling the mechanism(s) underlying CAF functions could lead to therapies that reinstate the tumor-suppressive features of the pancreatic stroma. CAF activation involves the f-actin organizing protein palladin. CAFs express two palladin isoforms (iso3 and iso4) which are up-regulated in response to TGFβ1. However, the roles of iso3 and iso4 in CAF functions remain elusive. Using a CAF-derived ECM model, we uncovered that iso3/iso4 are required to sustain TGFβ1-dependent CAF activation, secrete immunosuppressive cytokines, and produce a pro-tumoral ECM. Findings demonstrate a novel role for CAF palladin and suggest that iso3/iso4 regulate both redundant and specific tumor-supportive desmoplastic functions. This study highlights the therapeutic potential of targeting CAFs to restore fibroblastic anti-tumor activity in the pancreatic microenvironment.
Collapse
Affiliation(s)
- J I Alexander
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular, Cellular Biology and Genetics Program, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - D B Vendramini-Costa
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - R Francescone
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - T Luong
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - J Franco-Barraza
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - N Shah
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - J C Gardiner
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - E Nicolas
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - K S Raghavan
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular, Cellular Biology and Genetics Program, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - E Cukierman
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Bashirzadeh Y, Wubshet NH, Liu AP. Confinement Geometry Tunes Fascin-Actin Bundle Structures and Consequently the Shape of a Lipid Bilayer Vesicle. Front Mol Biosci 2020; 7:610277. [PMID: 33240934 PMCID: PMC7680900 DOI: 10.3389/fmolb.2020.610277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Depending on the physical and biochemical properties of actin-binding proteins, actin networks form different types of membrane protrusions at the cell periphery. Actin crosslinkers, which facilitate the interaction of actin filaments with one another, are pivotal in determining the mechanical properties and protrusive behavior of actin networks. Short crosslinkers such as fascin bundle F-actin to form rigid spiky filopodial protrusions. By encapsulation of fascin and actin in giant unilamellar vesicles (GUVs), we show that fascin-actin bundles cause various GUV shape changes by forming bundle networks or straight single bundles depending on GUV size and fascin concentration. We also show that the presence of a long crosslinker, α-actinin, impacts fascin-induced GUV shape changes and significantly impairs the formation of filopodia-like protrusions. Actin bundle-induced GUV shape changes are confirmed by light-induced disassembly of actin bundles leading to the reversal of GUV shape. Our study contributes to advancing the design of shape-changing minimal cells for better characterization of the interaction between lipid bilayer membranes and actin cytoskeleton.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Farhadi L, Ricketts SN, Rust MJ, Das M, Robertson-Anderson RM, Ross JL. Actin and microtubule crosslinkers tune mobility and control co-localization in a composite cytoskeletal network. SOFT MATTER 2020; 16:7191-7201. [PMID: 32207504 DOI: 10.1039/c9sm02400j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actin and microtubule filaments, with their auxiliary proteins, enable the cytoskeleton to carry out vital processes in the cell by tuning the organizational and mechanical properties of the network. Despite their critical importance and interactions in cells, we are only beginning to uncover information about the composite network. The challenge is due to the high complexity of combining actin, microtubules, and their hundreds of known associated proteins. Here, we use fluorescence microscopy, fluctuation, and cross-correlation analysis to examine the role of actin and microtubules in the presence of an antiparallel microtubule crosslinker, MAP65, and a generic, strong actin crosslinker, biotin-NeutrAvidin. For a fixed ratio of actin and microtubule filaments, we vary the amount of each crosslinker and measure the organization and fluctuations of the filaments. We find that the microtubule crosslinker plays the principle role in the organization of the system, while, actin crosslinking dictates the mobility of the filaments. We have previously demonstrated that the fluctuations of filaments are related to the mechanics, implying that actin crosslinking controls the mechanical properties of the network, independent of the microtubule-driven re-organization.
Collapse
Affiliation(s)
- Leila Farhadi
- Department of Physics, University of Massachusetts, Amherst, 666 N. Pleasant St., Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Cancer associated fibroblast: Mediators of tumorigenesis. Matrix Biol 2020; 91-92:19-34. [PMID: 32450219 DOI: 10.1016/j.matbio.2020.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
It is well accepted that the tumor microenvironment plays a pivotal role in cancer onset, development, and progression. The majority of clinical interventions are designed to target either cancer or stroma cells. These emphases have been directed by one of two prevailing theories in the field, the Somatic Mutation Theory and the Tissue Organization Field Theory, which represent two seemingly opposing concepts. This review proposes that the two theories are mutually inclusive and should be concurrently considered for cancer treatments. Specifically, this review discusses the dynamic and reciprocal processes between stromal cells and extracellular matrices, using pancreatic cancer as an example, to demonstrate the inclusivity of the theories. Furthermore, this review highlights the functions of cancer associated fibroblasts, which represent the major stromal cell type, as important mediators of the known cancer hallmarks that the two theories attempt to explain.
Collapse
|
16
|
Long-Range and Directional Allostery of Actin Filaments Plays Important Roles in Various Cellular Activities. Int J Mol Sci 2020; 21:ijms21093209. [PMID: 32370032 PMCID: PMC7246755 DOI: 10.3390/ijms21093209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
A wide variety of uniquely localized actin-binding proteins (ABPs) are involved in various cellular activities, such as cytokinesis, migration, adhesion, morphogenesis, and intracellular transport. In a micrometer-scale space such as the inside of cells, protein molecules diffuse throughout the cell interior within seconds. In this condition, how can ABPs selectively bind to particular actin filaments when there is an abundance of actin filaments in the cytoplasm? In recent years, several ABPs have been reported to induce cooperative conformational changes to actin filaments allowing structural changes to propagate along the filament cables uni- or bidirectionally, thereby regulating the subsequent binding of ABPs. Such propagation of ABP-induced cooperative conformational changes in actin filaments may be advantageous for the elaborate regulation of cellular activities driven by actin-based machineries in the intracellular space, which is dominated by diffusion. In this review, we focus on long-range allosteric regulation driven by cooperative conformational changes of actin filaments that are evoked by binding of ABPs, and discuss roles of allostery of actin filaments in narrow intracellular spaces.
Collapse
|
17
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
18
|
Nguyen AV, Trompetto B, Tan XHM, Scott MB, Hu KHH, Deeds E, Butte MJ, Chiou PY, Rowat AC. Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cell Mol Bioeng 2020; 13:27-44. [PMID: 32030106 PMCID: PMC6981337 DOI: 10.1007/s12195-019-00603-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Metastasis is a fundamentally physical process in which cells deform through narrow gaps and generate forces to invade surrounding tissues. While it is commonly thought that increased cell deformability is an advantage for invading cells, we previously found that more invasive pancreatic ductal adenocarcinoma (PDAC) cells are stiffer than less invasive PDAC cells. Here we investigate potential mechanisms of the simultaneous increase in PDAC cell stiffness and invasion, focusing on the contributions of myosin II, Arp2/3, and formins. METHOD We measure cell invasion using a 3D scratch wound invasion assay and cell stiffness using atomic force microscopy (AFM). To determine the effects of actin- and myosin-mediated force generation on cell stiffness and invasion, we treat cells with pharmacologic inhibitors of myosin II (blebbistatin), Arp2/3 (CK-666), and formins (SMIFH2). RESULTS We find that the activity of myosin II, Arp2/3, and formins all contribute to the stiffness of PDAC cells. Interestingly, we find that the invasion of PDAC cell lines is differentially affected when the activity of myosin II, Arp2/3, or formins is inhibited, suggesting that despite having similar tissue origins, different PDAC cell lines may rely on different mechanisms for invasion. CONCLUSIONS These findings deepen our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incite further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit.
Collapse
Affiliation(s)
- Angelyn V. Nguyen
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | - Brittany Trompetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | | | - Michael B. Scott
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
- Present Address: Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Biomedical Engineering, Northwestern McCormick School of Engineering, Evanston, USA
| | | | - Eric Deeds
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, USA
| | - Manish J. Butte
- Department of Pediatrics, University of California, Los Angeles, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA
| | - Pei Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
19
|
Zou A, Lee S, Li J, Zhou R. Retained Stability of the RNA Structure in DNA Packaging Motor with a Single Mg2+ Ion Bound at the Double Mg-Clamp Structure. J Phys Chem B 2020; 124:701-707. [DOI: 10.1021/acs.jpcb.9b06428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aodong Zou
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Sangyun Lee
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Jingyuan Li
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
20
|
Effect of F-actin and Microtubules on Cellular Mechanical Behavior Studied Using Atomic Force Microscope and an Image Recognition-Based Cytoskeleton Quantification Approach. Int J Mol Sci 2020; 21:ijms21020392. [PMID: 31936268 PMCID: PMC7014474 DOI: 10.3390/ijms21020392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cytoskeleton morphology plays a key role in regulating cell mechanics. Particularly, cellular mechanical properties are directly regulated by the highly cross-linked and dynamic cytoskeletal structure of F-actin and microtubules presented in the cytoplasm. Although great efforts have been devoted to investigating the qualitative relation between the cellular cytoskeleton state and cell mechanical properties, comprehensive quantification results of how the states of F-actin and microtubules affect mechanical behavior are still lacking. In this study, the effect of both F-actin and microtubules morphology on cellular mechanical properties was quantified using atomic force microscope indentation experiments together with the proposed image recognition-based cytoskeleton quantification approach. Young’s modulus and diffusion coefficient of NIH/3T3 cells with different cytoskeleton states were quantified at different length scales. It was found that the living NIH/3T3 cells sense and adapt to the F-actin and microtubules states: both the cellular elasticity and poroelasticity are closely correlated to the depolymerization degree of F-actin and microtubules at all measured indentation depths. Moreover, the significance of the quantitative effects of F-actin and microtubules in affecting cellular mechanical behavior is depth-dependent.
Collapse
|
21
|
Francis ML, Ricketts SN, Farhadi L, Rust MJ, Das M, Ross JL, Robertson-Anderson RM. Non-monotonic dependence of stiffness on actin crosslinking in cytoskeleton composites. SOFT MATTER 2019; 15:9056-9065. [PMID: 31647488 PMCID: PMC6854303 DOI: 10.1039/c9sm01550g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cytoskeleton is able to precisely tune its structure and mechanics through interactions between semiflexible actin filaments, rigid microtubules and a suite of crosslinker proteins. However, the role that each of these components, as well as the interactions between them, plays in the dynamics of the composite cytoskeleton remains an open question. Here, we use optical tweezers microrheology and fluorescence confocal microscopy to reveal the surprising ways in which actin crosslinking tunes the viscoelasticity and mobility of actin-microtubule composites from steady-state to the highly nonlinear regime. While previous studies have shown that increasing crosslinking in actin networks increases elasticity and stiffness, we instead find that composite stiffness displays a striking non-monotonic dependence on actin crosslinking - first increasing then decreasing to a response similar to or even lower than un-linked composites. We further show that actin crosslinking has an unexpectedly strong impact on the mobility of microtubules; and it is in fact the microtubule mobility - dictated by crosslinker-driven rearrangements of actin filaments - that controls composite stiffness. This result is at odds with conventional thought that actin mobility drives cytoskeleton mechanics. More generally, our results demonstrate that - when crosslinking composite materials to confer strength and resilience - more is not always better.
Collapse
Affiliation(s)
- Madison L Francis
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Shea N Ricketts
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Leila Farhadi
- Department of Physics, University of Massachusetts, Amherst, 666 N. Pleasant St., Amherst, MA 01003, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, 900 E 57th St, Chicago, IL 60637, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts, Amherst, 666 N. Pleasant St., Amherst, MA 01003, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
22
|
Lopez-Menendez H. A mesoscopic theory to describe the flexibility regulation in F-actin networks: An approach of phase transitions with nonlinear elasticity. J Mech Behav Biomed Mater 2019; 101:103432. [PMID: 31542571 DOI: 10.1016/j.jmbbm.2019.103432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
The synthetic actin network arouses great interest as bio-material due to its soft and wet nature that mimics many biological scaffolding structures. Inside the cell, the actin network is regulated by tens of actin-binding proteins (ABP's), which make for a highly complex system with several emergent behaviors. In particular, calponin is an ABP that was identified as an actin stabiliser, but whose mechanism is still poorly understood. Recent experiments using an in vitro model system of cross-linked actin with calponin and large deformation bulk rheology, found that networks with exhibited a delayed onset and were able to withstand a higher maximal strain before softening. In this work, we show that at network scale the actin network with calponin furthermore the reduction of the persistence length allows: (i) The reduction in the network pre-strain. (ii) The increment of the crosslinks adhesion energy. We verify these effects theoretically using nonlinear continuum mechanics for the semiflexible and crosslinked network. In addition, the alterations over the microstructure are described by the definition of an interaction parameter Γ according the formalism of Landau for phase transitions. According to this model we demonstrates that the interaction parameter can describe the experimental observations following a scaling exponent as Γ~|c-ccr|1/2, where c is the ratio between concentration of calponin and actin. This result provides interesting feedback to improve our understanding of several mechano-biological pathways.
Collapse
|
23
|
Lamson AR, Edelmaier CJ, Glaser MA, Betterton MD. Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly. Biophys J 2019; 116:1719-1731. [PMID: 31010665 PMCID: PMC6507341 DOI: 10.1016/j.bpj.2019.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022] Open
Abstract
Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which microtubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mechanisms of this process include regulated filament polymerization, cross-linking, and motor-protein activity. Remarkably, using passive cross-linkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization because of dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive cross-linkers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include cross-linker-binding kinetics and other stochastic effects. Our results show that rapid cross-linker reorganization to microtubule overlaps facilitates cross-linker-driven spindle assembly, a testable prediction for future experiments. Combining these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization.
Collapse
Affiliation(s)
- Adam R Lamson
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
24
|
Isogai T, Danuser G. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0110. [PMID: 29632262 DOI: 10.1098/rstb.2017.0110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Tadamoto Isogai
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Parandakh A, Tafazzoli-Shadpour M, Ardeshirylajimi A, Khojasteh A, Khani MM. The effects of short-term uniaxial strain on the mechanical properties of mesenchymal stem cells upon TGF-β1 stimulation. In Vitro Cell Dev Biol Anim 2018; 54:677-686. [DOI: 10.1007/s11626-018-0289-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
|
26
|
Ma R, Berro J. Structural organization and energy storage in crosslinked actin assemblies. PLoS Comput Biol 2018; 14:e1006150. [PMID: 29813051 PMCID: PMC5993335 DOI: 10.1371/journal.pcbi.1006150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/08/2018] [Accepted: 04/18/2018] [Indexed: 11/19/2022] Open
Abstract
During clathrin-mediated endocytosis in yeast cells, short actin filaments (< 200nm) and crosslinking protein fimbrin assemble to drive the internalization of the plasma membrane. However, the organization of the actin meshwork during endocytosis remains largely unknown. In addition, only a small fraction of the force necessary to elongate and pinch off vesicles can be accounted for by actin polymerization alone. In this paper, we used mathematical modeling to study the self-organization of rigid actin filaments in the presence of elastic crosslinkers in conditions relevant to endocytosis. We found that actin filaments condense into either a disordered meshwork or an ordered bundle depending on filament length and the mechanical and kinetic properties of the crosslinkers. Our simulations also demonstrated that these nanometer-scale actin structures can store a large amount of elastic energy within the crosslinkers (up to 10kBT per crosslinker). This conversion of binding energy into elastic energy is the consequence of geometric constraints created by the helical pitch of the actin filaments, which results in frustrated configurations of crosslinkers attached to filaments. We propose that this stored elastic energy can be used at a later time in the endocytic process. As a proof of principle, we presented a simple mechanism for sustained torque production by ordered detachment of crosslinkers from a pair of parallel filaments.
Collapse
Affiliation(s)
- Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
Rajagopal V, Holmes WR, Lee PVS. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1407. [PMID: 29195023 PMCID: PMC5836888 DOI: 10.1002/wsbm.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/19/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - William R. Holmes
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTNUSA
| | - Peter Vee Sin Lee
- Cell and Tissue Biomechanics Laboratory, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
28
|
Ringer P, Colo G, Fässler R, Grashoff C. Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol 2017; 64:6-16. [DOI: 10.1016/j.matbio.2017.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
29
|
Dräger NM, Nachman E, Winterhoff M, Brühmann S, Shah P, Katsinelos T, Boulant S, Teleman AA, Faix J, Jahn TR. Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep 2017; 18:2051-2066. [PMID: 28893863 DOI: 10.15252/embr.201744137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Endocytic processes are facilitated by both curvature-generating BAR-domain proteins and the coordinated polymerization of actin filaments. Under physiological conditions, the N-BAR protein Bin1 has been shown to sense and curve membranes in a variety of cellular processes. Recent studies have identified Bin1 as a risk factor for Alzheimer's disease, although its possible pathological function in neurodegeneration is currently unknown. Here, we report that Bin1 not only shapes membranes, but is also directly involved in actin binding through its BAR domain. We observed a moderate actin bundling activity by human Bin1 and describe its ability to stabilize actin filaments against depolymerization. Moreover, Bin1 is also involved in stabilizing tau-induced actin bundles, which are neuropathological hallmarks of Alzheimer's disease. We also provide evidence for this effect in vivo, where we observed that downregulation of Bin1 in a Drosophila model of tauopathy significantly reduces the appearance of tau-induced actin inclusions. Together, these findings reveal the ability of Bin1 to modify actin dynamics and provide a possible mechanistic connection between Bin1 and tau-induced pathobiological changes of the actin cytoskeleton.
Collapse
Affiliation(s)
- Nina M Dräger
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Eliana Nachman
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany.,German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Pranav Shah
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Taxiarchis Katsinelos
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism (B140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas R Jahn
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| |
Collapse
|
30
|
Phillip JM, Wu PH, Gilkes DM, Williams W, McGovern S, Daya J, Chen J, Aifuwa I, Lee JSH, Fan R, Walston J, Wirtz D. Biophysical and biomolecular determination of cellular age in humans. Nat Biomed Eng 2017; 1. [PMID: 31372309 DOI: 10.1038/s41551-017-0093] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ageing research has focused either on assessing organ- and tissue-based changes, such as lung capacity and cardiac function, or on changes at the molecular scale such as gene expression, epigenetic modifications and metabolism. Here, by using a cohort of 32 samples of primary dermal fibroblasts collected from individuals between 2 and 96 years of age, we show that the degradation of functional cellular biophysical features-including cell mechanics, traction strength, morphology and migratory potential-and associated descriptors of cellular heterogeneity predict cellular age with higher accuracy than conventional biomolecular markers. We also demonstrate the use of high-throughput single-cell technologies, together with a deterministic model based on cellular features, to compute the cellular age of apparently healthy males and females, and to explore these relationships in cells from individuals with Werner syndrome and Hutchinson-Gilford progeria syndrome, two rare genetic conditions that result in phenotypes that show aspects of premature ageing. Our findings suggest that the quantification of cellular age may be used to stratify individuals on the basis of cellular phenotypes and serve as a biological proxy of healthspan.
Collapse
Affiliation(s)
- Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniele M Gilkes
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Wadsworth Williams
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Shaun McGovern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jena Daya
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jonathan Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Ivie Aifuwa
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jerry S H Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Center for Strategic Scientific Initiatives, Office of the Director, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Jeremy Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
31
|
Broussard JA, Yang R, Huang C, Nathamgari SSP, Beese AM, Godsel LM, Hegazy MH, Lee S, Zhou F, Sniadecki NJ, Green KJ, Espinosa HD. The desmoplakin-intermediate filament linkage regulates cell mechanics. Mol Biol Cell 2017; 28:3156-3164. [PMID: 28495795 PMCID: PMC5687018 DOI: 10.1091/mbc.e16-07-0520] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Desmoplakin connects desmosomal core components to intermediate filaments at sites of cell–cell adhesion. Modulating the strength of this linkage using desmoplakin mutants led to alterations in cell–substrate and cell–cell forces and cell stiffness as assessed by micropillar arrays and atomic force microscopy. Perturbation of the actin cytoskeleton leads to abrogation of these effects. The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome–intermediate filament (DSM–IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM–IF interaction increases cell–substrate and cell–cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM–IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems.
Collapse
Affiliation(s)
- Joshua A Broussard
- Department of Pathology, Northwestern University, Chicago, IL 60611.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ruiguo Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Changjin Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - S Shiva P Nathamgari
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Allison M Beese
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Lisa M Godsel
- Department of Pathology, Northwestern University, Chicago, IL 60611.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Marihan H Hegazy
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Sherry Lee
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Fan Zhou
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195.,Department of Bioengineering, University of Washington, Seattle, WA 98195.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
| | - Kathleen J Green
- Department of Pathology, Northwestern University, Chicago, IL 60611 .,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 .,Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208
| |
Collapse
|
32
|
Acute Hypoxic Stress Affects Migration Machinery of Tissue O 2-Adapted Adipose Stromal Cells. Stem Cells Int 2016; 2016:7260562. [PMID: 28115943 PMCID: PMC5225392 DOI: 10.1155/2016/7260562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4-7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury.
Collapse
|
33
|
Jokhadar ŠZ, Derganc J. Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane. Cell Biochem Biophys 2016; 71:1605-13. [PMID: 25395197 DOI: 10.1007/s12013-014-0383-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
34
|
Mrkonjic S, Destaing O, Albiges-Rizo C. Mechanotransduction pulls the strings of matrix degradation at invadosome. Matrix Biol 2016; 57-58:190-203. [PMID: 27392543 DOI: 10.1016/j.matbio.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
Degradation of the extracellular matrix is a critical step of tumor cell invasion. Both protease-dependent and -independent mechanisms have been described as alternate processes in cancer cell motility. Interestingly, some effectors of protease-dependent degradation are focalized at invadosomes and are directly coupled with contractile and adhesive machineries composed of multiple mechanosensitive proteins. This review presents recent findings in protease-dependent mechanisms elucidating the ways the force affects extracellular matrix degradation by targeting protease expression and activity at invadosome. The aim is to highlight mechanosensing and mechanotransduction processes to direct the degradative activity at invadosomes, with the focus on membrane tension, proteases and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sanela Mrkonjic
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| |
Collapse
|
35
|
Cheng C, Nowak RB, Fowler VM. The lens actin filament cytoskeleton: Diverse structures for complex functions. Exp Eye Res 2016; 156:58-71. [PMID: 26971460 DOI: 10.1016/j.exer.2016.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/05/2023]
Abstract
The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype. Acta Biomater 2016; 30:26-48. [PMID: 26596568 DOI: 10.1016/j.actbio.2015.11.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
Abstract
The chemistry, geometry, topography and mechanical properties of biomaterials modulate biochemical signals (in particular ligand-receptor binding events) that control cells-matrix interactions. In turn, the regulation of cell adhesion by the biochemical and physical properties of the matrix controls cell phenotypes such as proliferation, motility and differentiation. In particular, nanoscale geometrical, topographical and mechanical properties of biomaterials are essential to achieve control of the cell-biomaterials interface. The design of such nanoscale architectures and platforms requires understanding the molecular mechanisms underlying adhesion formation and the assembly of the actin cytoskeleton. This review presents some of the important molecular mechanisms underlying cell adhesion to biomaterials mediated by integrins and discusses the nanoscale engineered platforms used to control these processes. Such nanoscale understanding of the cell-biomaterials interface offers exciting opportunities for the design of biomaterials and their application to the field of tissue engineering. STATEMENT OF SIGNIFICANCE Biomaterials design is important in the fields of regenerative medicine and tissue engineering, in particular to allow the long term expansion of stem cells and the engineering of scaffolds for tissue regeneration. Cell adhesion to biomaterials often plays a central role in regulating cell phenotype. It is emerging that physical properties of biomaterials, and more generally the microenvironment, regulate such behaviour. In particular, cells respond to nanoscale physical properties of their matrix. Understanding how such nanoscale physical properties control cell adhesion is therefore essential for biomaterials design. To this aim, a deeper understanding of molecular processes controlling cell adhesion, but also a greater control of matrix engineering is required. Such multidisciplinary approaches shed light on some of the fundamental mechanisms via which cell adhesions sense their nanoscale physical environment.
Collapse
|
37
|
Webster KD, Ng WP, Fletcher DA. Tensional homeostasis in single fibroblasts. Biophys J 2015; 107:146-55. [PMID: 24988349 DOI: 10.1016/j.bpj.2014.04.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/21/2014] [Accepted: 04/28/2014] [Indexed: 01/07/2023] Open
Abstract
Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury.
Collapse
Affiliation(s)
- Kevin D Webster
- Biophysics Graduate Group, University of California, Berkeley, California; Department of Bioengineering, University of California, Berkeley, California
| | - Win Pin Ng
- Department of Bioengineering, University of California, Berkeley, California; University of California Berkeley/University of California San Francisco Graduate Group in Bioengineering, Berkeley, California
| | - Daniel A Fletcher
- Biophysics Graduate Group, University of California, Berkeley, California; Department of Bioengineering, University of California, Berkeley, California; University of California Berkeley/University of California San Francisco Graduate Group in Bioengineering, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
38
|
Schaefer A, Hordijk PL. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration. J Cell Sci 2015; 128:2221-30. [PMID: 26092932 DOI: 10.1242/jcs.163055] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessels. Each step of this leukocyte transendothelial migration (TEM) process is regulated by distinct endothelial adhesion receptors such as the intercellular adhesion molecule 1 (ICAM1). Adherent leukocytes exert force on these receptors, which sense mechanical cues and transform them into localized mechanosignaling in endothelial cells. In turn, the function of the mechanoreceptors is controlled by the stiffness of the endothelial cells and of the underlying substrate representing a positive-feedback loop. In this Commentary, we focus on the mechanotransduction in leukocytes and endothelial cells, which is induced in response to variations in substrate stiffness. Recent studies have described the first key proteins involved in these mechanosensitive events, allowing us to identify common regulatory mechanisms in both cell types. Finally, we discuss how endothelial cell stiffness controls the individual steps in the leukocyte TEM process. We identify endothelial cell stiffness as an important component, in addition to locally presented chemokines and adhesion receptors, which guides leukocytes to sites that permit TEM.
Collapse
Affiliation(s)
- Antje Schaefer
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
39
|
Schmeiser C, Winkler C. The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation. J Theor Biol 2015; 380:144-55. [PMID: 26002996 DOI: 10.1016/j.jtbi.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/28/2022]
Abstract
The crawling motility of many cell types relies on lamellipodia, flat protrusions spreading on flat substrates but (on cells in suspension) also growing into three-dimensional space. Lamellipodia consist of a plasma membrane wrapped around an oriented actin filament meshwork. It is well known that the actin density is controlled by coordinated polymerization, branching, and capping processes, but the mechanisms producing the small aspect ratios of lamellipodia (hundreds of nm thickness vs. several μm lateral and inward extension) remain unclear. The main hypothesis of this work is a strong influence of the local geometry of the plasma membrane on the actin dynamics. This is motivated by observations of co-localization of proteins with I-BAR domains (like IRSp53) with polymerization and branching agents along the membrane. The I-BAR domains are known to bind to the membrane and to prefer and promote membrane curvature. This hypothesis is translated into a stochastic mathematical model where branching and capping rates, and polymerization speeds depend on the local membrane geometry and branching directions are influenced by the principal curvature directions. This requires the knowledge of the deformation of the membrane, being described in a quasi-stationary approximation by minimization of a modified Helfrich energy, subject to the actin filaments acting as obstacles. Simulations with this model predict pieces of flat lamellipodia without any prescribed geometric restrictions.
Collapse
Affiliation(s)
- Christian Schmeiser
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria; Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria
| | - Christoph Winkler
- Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria.
| |
Collapse
|
40
|
Kowalczyk A, Oelschlaeger C, Willenbacher N. Visualization of micro-scale inhomogeneities in acrylic thickener solutions: A multiple particle tracking study. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Abstract
Aging is a complex, multifaceted process that induces a myriad of physiological changes over an extended period of time. Aging is accompanied by major biochemical and biomechanical changes at macroscopic and microscopic length scales that affect not only tissues and organs but also cells and subcellular organelles. These changes include transcriptional and epigenetic modifications; changes in energy production within mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their surrounding extracellular matrix. In addition, aging influences the ability of cells to sense changes in extracellular-matrix compliance (mechanosensation) and to transduce these changes into biochemical signals (mechanotransduction). Moreover, following a complex positive-feedback loop, aging is accompanied by changes in the composition and structure of the extracellular matrix, resulting in changes in the mechanics of connective tissues in older individuals. Consequently, these progressive dysfunctions facilitate many human pathologies and deficits that are associated with aging, including cardiovascular, musculoskeletal, and neurodegenerative disorders and diseases. Here, we critically review recent work highlighting some of the primary biophysical changes occurring in cells and tissues that accompany the aging process.
Collapse
Affiliation(s)
- Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Ivie Aifuwa
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Jeremy Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Departments of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
42
|
Vattepu R, Yadav R, Beck MR. Actin-induced dimerization of palladin promotes actin-bundling. Protein Sci 2014; 24:70-80. [PMID: 25307943 DOI: 10.1002/pro.2588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics.
Collapse
Affiliation(s)
- Ravi Vattepu
- Chemistry Department, Wichita State University, Wichita, Kansas, 67260
| | | | | |
Collapse
|
43
|
McAndrews KM, McGrail DJ, Quach ND, Dawson MR. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation. Phys Biol 2014; 11:056004. [PMID: 25156989 DOI: 10.1088/1478-3975/11/5/056004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
44
|
Luo T, Srivastava V, Ren Y, Robinson DN. Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles. APPLIED PHYSICS LETTERS 2014; 104:153701. [PMID: 24803681 PMCID: PMC4000382 DOI: 10.1063/1.4871861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/30/2014] [Indexed: 05/07/2023]
Abstract
The composite of the actin cytoskeleton and plasma membrane plays important roles in many biological events. Here, we employed the emulsion method to synthesize artificial cells with biomimetic actin cortex in vesicles and characterized their mechanical properties. We demonstrated that the emulsion method provides the flexibility to adjust the lipid composition and protein concentrations in artificial cells to achieve the desired size distribution, internal microstructure, and mechanical properties. Moreover, comparison of the cortical elasticity measured for reconstituted artificial cells to that of real cells, including those manipulated using genetic depletion and pharmacological inhibition, strongly supports that actin cytoskeletal proteins are dominant over lipid molecules in cortical mechanics. Our study indicates that the assembly of biological systems in artificial cells with purified cellular components provides a powerful way to answer biological questions.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Vasudha Srivastava
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA ; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yixin Ren
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA ; Department of Pharmacology and Molecular Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA ; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
45
|
Ghosh D, Lili L, McGrail DJ, Matyunina LV, McDonald JF, Dawson MR. Integral role of platelet-derived growth factor in mediating transforming growth factor-β1-dependent mesenchymal stem cell stiffening. Stem Cells Dev 2014; 23:245-61. [PMID: 24093435 PMCID: PMC3904528 DOI: 10.1089/scd.2013.0240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in matrix remodeling, fibroblast activation, angiogenesis, and immunomodulation and are an integral part of fibrovascular networks that form in developing tissues and tumors. The engraftment and function of MSCs in tissue niches is regulated by a multitude of soluble proteins. Transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF) have previously been recognized for their role in MSC biology; thus, we sought to investigate their function in mediating MSC mechanics and matrix interactions. Cytoskeletal organization, characterized by cell elongation, stress fiber formation, and condensation of actin and microtubules, was dramatically affected by TGF-β1, individually and in combination with PDGF. The intracellular mechanical response to these stimuli was measured with particle tracking microrheology. MSCs stiffened in response to TGF-β1 (their elastic moduli was ninefold higher than control cells), a result that was enhanced by the addition of PDGF (100-fold change). Blocking TGF-β1 or PDGF signaling with inhibitors SB-505124 or JNJ-10198409, respectively, reversed soluble-factor-induced stiffening, indicating that crosstalk between these two pathways is essential for stiffening response. A genome-wide microarray analysis revealed TGF-β1-dependent regulation of cytoskeletal actin-binding protein genes. Actin crosslinking and bundling protein genes, which regulate cytosolic rheology through changes in semiflexible actin polymer meshwork, were upregulated with TGF-β1 treatment. TGF-β1 alone and in combination with PDGF also amplified surface integrin expression and adhesivity of MSCs with extracellular matrix proteins. These findings will provide a more mechanistic insight for modeling tissue-level rigidity in fibrotic tissues and tumors.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia
| | - Loukia Lili
- Georgia Institute of Technology, School of Biology, Atlanta, Georgia
- Georgia Institute of Technology, Integrated Cancer Research Center, Atlanta, Georgia
| | - Daniel J. McGrail
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia
| | - Lilya V. Matyunina
- Georgia Institute of Technology, School of Biology, Atlanta, Georgia
- Georgia Institute of Technology, Integrated Cancer Research Center, Atlanta, Georgia
| | - John F. McDonald
- Georgia Institute of Technology, School of Biology, Atlanta, Georgia
- Georgia Institute of Technology, Integrated Cancer Research Center, Atlanta, Georgia
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Michelle R. Dawson
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
46
|
Zheng Y, Currie L, Pollock N, Heath A, Sheridan C, Choudhary A, O'Reilly S, Grierson I. Measurement and computer modeling of temporary arrangements of polygonal actin structures in trabecular meshwork cells which consist of cross-linked actin networks and polygonal actin arrangements. J Ocul Pharmacol Ther 2014; 30:224-36. [PMID: 24438004 DOI: 10.1089/jop.2013.0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In trabecular meshwork (TM) cells, actin geodesic arrangements were measured and then subjected to computational modeling to appreciate the response of different dome shapes to mechanical force. METHODS Polygonal actin arrangements (PAAs) and cross-linked actin networks (CLANs) were induced and imaged by Alexa Flour(®) 488 Phalloidin in bovine TM and human TM cells. Masked images were examined for size, circularity, and spoke and hub dimensions using ImageJ. Finite element modeling was used to create idealized dome structures and "realistic" PAA and CLAN models. The models were subjected to different loads simulating concentrated force and distortion measured. RESULTS We provide evidence that PAAs and CLANs are not identical. Both structures formed flattened domes but PAAs were 6 times larger than CLANs, significantly more circular and had greater height. The dimensions of the triangulations of hubs and spokes were, however, remarkably similar. Hubs were around 2 μm(2) in area, whereas spokes were about 5 μm in length. Our modeling showed that temporary arrangements of polygonal actin structures (TAPAS) were because of their flattened shape, more resistant to shearing than compression when compared with idealized domes. CLANs were marginally more resistant to shearing than PAAs but because of size much more resistant to compression. CONCLUSIONS Evidence is provided that there are 2 types of actin icosahedrons in cultured TM cells we collectively call TAPAS. Modeling suggests that TAPAS have rigidity and are better at dealing with shearing than compression forces. The 2 types of TAPAS, PAAs, and CLANs, have much in common but there are size and mechanical response differences that need to be taken into account in future experimentation.
Collapse
Affiliation(s)
- Yalin Zheng
- 1 Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool , Liverpool, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kesselman D, Kossover O, Mironi-Harpaz I, Seliktar D. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels. Acta Biomater 2013; 9:7630-9. [PMID: 23624218 DOI: 10.1016/j.actbio.2013.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 01/24/2013] [Accepted: 04/17/2013] [Indexed: 01/27/2023]
Abstract
Mesenchymal stromal cells residing in proteolytically responsive hydrogel scaffolds were subjected to changes in mechanical properties associated with their own three-dimensional (3-D) morphogenesis. In order to investigate this relationship the current study documents the transient degradation and restructuring of fibroblasts seeded in hydrogel scaffolds undergoing active cell-mediated reorganization over 7days in culture. A semi-synthetic proteolytically degradable polyethylene glycol-fibrinogen (PF) hydrogel matrix and neonatal human dermal fibroblasts (NHDF) were used. Rheology (in situ and ex situ) measured stiffening of the gels and confocal laser scanning microscopy (CLSM) measured cell morphogenesis within the gels. The assumption that the matrix modulus systematically decreases as cells locally begin to enzymatically disassemble the PF hydrogel to become spindled in the material was not supported by the bulk mechanical property measurements. Instead, the PF hydrogels exhibited cell-mediated stiffening concurrent with their dynamic morphogenesis, as indicated by a four-fold increase in storage modulus after 1week in culture. Fibrin hydrogels, which were used as the control biomaterial, proved similarly adaptive to cell-mediated remodeling only in the presence of the exogenous serine protease inhibitor aprotinin. Acellular and non-viable hydrogels also served as control groups to verify that transient matrix remodeling was entirely associated with cell-mediated events, including collagen deposition, cell-mediated proteolysis, and the formation of multicellular networks within the hydrogel constructs. The fact that cell network formation and collagen deposition both paralleled transient stiffening of the PF hydrogels, further reinforces the notion that cells actively balance between proteolysis and ECM synthesis when remodeling proteolytically responsive hydrogel scaffolds.
Collapse
Affiliation(s)
- Dafna Kesselman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
48
|
Wood ST, Dean BC, Dean D. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models. Med Image Anal 2013; 17:337-47. [PMID: 23395283 PMCID: PMC3626120 DOI: 10.1016/j.media.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 10/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.
Collapse
Affiliation(s)
- Scott T Wood
- Department of Bioengineering, Clemson University, Clemson, SC 29634-0905, USA.
| | | | | |
Collapse
|
49
|
Wei Q, Reidler D, Shen MY, Huang H. Keratinocyte cytoskeletal roles in cell sheet engineering. BMC Biotechnol 2013; 13:17. [PMID: 23442760 PMCID: PMC3599259 DOI: 10.1186/1472-6750-13-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/22/2013] [Indexed: 01/27/2023] Open
Abstract
Background There is an increasing need to understand cell-cell interactions for cell and tissue engineering purposes, such as optimizing cell sheet constructs, as well as for examining adhesion defect diseases. For cell-sheet engineering, one major obstacle to sheet function is that cell sheets in suspension are fragile and, over time, will contract. While the role of the cytoskeleton in maintaining the structure and adhesion of cells cultured on a rigid substrate is well-characterized, a systematic examination of the role played by different components of the cytoskeleton in regulating cell sheet contraction and cohesion in the absence of a substrate has been lacking. Results In this study, keratinocytes were cultured until confluent and cell sheets were generated using dispase to remove the influence of the substrate. The effects of disrupting actin, microtubules or intermediate filaments on cell-cell interactions were assessed by measuring cell sheet cohesion and contraction. Keratin intermediate filament disruption caused comparable effects on cell sheet cohesion and contraction, when compared to actin or microtubule disruption. Interfering with actomyosin contraction demonstrated that interfering with cell contraction can also diminish cell cohesion. Conclusions All components of the cytoskeleton are involved in maintaining cell sheet cohesion and contraction, although not to the same extent. These findings demonstrate that substrate-free cell sheet biomechanical properties are dependent on the integrity of the cytoskeleton network.
Collapse
Affiliation(s)
- Qi Wei
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 500 W 120th Street, MC 8904, New York, NY 10027, USA
| | | | | | | |
Collapse
|
50
|
Kraft R, Kahn A, Medina-Franco JL, Orlowski ML, Baynes C, López-Vallejo F, Barnard K, Maggiora GM, Restifo LL. A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions. Dis Model Mech 2012; 6:217-35. [PMID: 22917928 PMCID: PMC3529353 DOI: 10.1242/dmm.008243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The actin-bundling protein fascin is a key mediator of tumor invasion and metastasis and its activity drives filopodia formation, cell-shape changes and cell migration. Small-molecule inhibitors of fascin block tumor metastasis in animal models. Conversely, fascin deficiency might underlie the pathogenesis of some developmental brain disorders. To identify fascin-pathway modulators we devised a cell-based assay for fascin function and used it in a bidirectional drug screen. The screen utilized cultured fascin-deficient mutant Drosophila neurons, whose neurite arbors manifest the 'filagree' phenotype. Taking a repurposing approach, we screened a library of 1040 known compounds, many of them FDA-approved drugs, for filagree modifiers. Based on scaffold distribution, molecular-fingerprint similarities, and chemical-space distribution, this library has high structural diversity, supporting its utility as a screening tool. We identified 34 fascin-pathway blockers (with potential anti-metastasis activity) and 48 fascin-pathway enhancers (with potential cognitive-enhancer activity). The structural diversity of the active compounds suggests multiple molecular targets. Comparisons of active and inactive compounds provided preliminary structure-activity relationship information. The screen also revealed diverse neurotoxic effects of other drugs, notably the 'beads-on-a-string' defect, which is induced solely by statins. Statin-induced neurotoxicity is enhanced by fascin deficiency. In summary, we provide evidence that primary neuron culture using a genetic model organism can be valuable for early-stage drug discovery and developmental neurotoxicity testing. Furthermore, we propose that, given an appropriate assay for target-pathway function, bidirectional screening for brain-development disorders and invasive cancers represents an efficient, multipurpose strategy for drug discovery.
Collapse
Affiliation(s)
- Robert Kraft
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|