1
|
Liu H, Craig SEL, Molchanov V, Floramo JS, Zhao Y, Yang T. SUMOylation in Skeletal Development, Homeostasis, and Disease. Cells 2022; 11:cells11172710. [PMID: 36078118 PMCID: PMC9454984 DOI: 10.3390/cells11172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
The modification of proteins by small ubiquitin-related modifier (SUMO) molecules, SUMOylation, is a key post-translational modification involved in a variety of biological processes, such as chromosome organization, DNA replication and repair, transcription, nuclear transport, and cell signaling transduction. In recent years, emerging evidence has shown that SUMOylation regulates the development and homeostasis of the skeletal system, with its dysregulation causing skeletal diseases, suggesting that SUMOylation pathways may serve as a promising therapeutic target. In this review, we summarize the current understanding of the molecular mechanisms by which SUMOylation pathways regulate skeletal cells in physiological and disease contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
- Correspondence: ; Tel.: +1-616-234-5820
| |
Collapse
|
2
|
Genome-Wide CRISPR/Cas9-Based Screening for Deubiquitinase Subfamily Identifies Ubiquitin-Specific Protease 11 as a Novel Regulator of Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23020856. [PMID: 35055037 PMCID: PMC8778097 DOI: 10.3390/ijms23020856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The osteoblast differentiation capacity of mesenchymal stem cells must be tightly regulated, as inadequate bone mineralization can lead to osteoporosis, and excess bone formation can cause the heterotopic ossification of soft tissues. The balanced protein level of Msh homeobox 1 (MSX1) is critical during normal osteogenesis. To understand the factors that prevent MSX1 protein degradation, the identification of deubiquitinating enzymes (DUBs) for MSX1 is essential. In this study, we performed loss-of-function-based screening for DUBs regulating MSX1 protein levels using the CRISPR/Cas9 system. We identified ubiquitin-specific protease 11 (USP11) as a protein regulator of MSX1 and further demonstrated that USP11 interacts and prevents MSX1 protein degradation by its deubiquitinating activity. Overexpression of USP11 enhanced the expression of several osteogenic transcriptional factors in human mesenchymal stem cells (hMSCs). Additionally, differentiation studies revealed reduced calcification and alkaline phosphatase activity in USP11-depleted cells, while overexpression of USP11 enhanced the differentiation potential of hMSCs. These results indicate the novel role of USP11 during osteogenic differentiation and suggest USP11 as a potential target for bone regeneration.
Collapse
|
3
|
Saleem K, Zaib T, Sun W, Fu S. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Heliyon 2019; 5:e03019. [PMID: 31886431 PMCID: PMC6921104 DOI: 10.1016/j.heliyon.2019.e03019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Non syndromic orofacial clefts specifically non-syndromic cleft lip/palate are one of the most common craniofacial malformation among birth defects in human having multifactorial etiology with an incidence of 1:700/1000. On the basis of association with other congenital malformations or their presence as isolated anomaly, OFC can be classified as syndromic (30%) and nonsyndromic (70%) respectively. The major cause of disease demonstrates complex interplay between genetic and environmental factors. The pathogenic mechanism of underlying factors have been provided by different genetic studies on large-scale with significant recent advances in genotyping technologies usually based on linkage or genome wide association studies (GWAS). On the basis of recent studies, new tools to identify causative genes involved in NSCL/P reported approximately more than 30 genetic risk loci that are responsible for pathogenesis of facial deformation. Despite these findings, it is still uncertain that how much of variance in NSCL/P predisposing factors can be explain by identified risk loci, as they all together accounts for only 20%-25% of NSCL/P heritability. So there is need of further findings about the problem of rare low frequency coding variants and other missing responsive factors or genetic modifiers. This review will described those potential genes and loci reported in different studies whose involvement in pathogenesis of nonsyndromic OFC has wide scientific evidence.
Collapse
Affiliation(s)
- Komal Saleem
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Tahir Zaib
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| |
Collapse
|
4
|
|
5
|
Pauws E, Stanier P. Sumoylation in Craniofacial Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:323-335. [PMID: 28197921 DOI: 10.1007/978-3-319-50044-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Craniofacial development requires a complex series of coordinated and finely tuned events to take place, during a relatively short time frame. These events are set in motion by switching on and off transcriptional cascades that involve the use of numerous signalling pathways and a multitude of factors that act at the site of gene transcription. It is now well known that amidst the subtlety of this process lies the intricate world of protein modification, and the posttranslational addition of the small ubiquitin -like modifier, SUMO, is an example that has been implicated in this process. Many proteins that are required for formation of various structures in the embryonic head and face adapt specific functions with SUMO modification. Interestingly, the main clinical phenotype reported for a disruption of the SUMO1 locus is the common birth defect cleft lip and palate. In this chapter therefore, we discuss the role of SUMO1 in craniofacial development, with emphasis on orofacial clefts. We suggest that these defects can be a sensitive indication of down regulated SUMO modification at a critical stage during embryogenesis. As well as specific mutations affecting the ability of particular proteins to be sumoylated, non-genetic events may have the effect of down-regulating the SUMO pathway to give the same result. Enzymes regulating the SUMO pathway may become important therapeutic targets in the preventative and treatment therapies for craniofacial defects in the future.
Collapse
Affiliation(s)
- Erwin Pauws
- Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
6
|
Bioinformatic Analysis of Msx1 and Msx2 Involved in Craniofacial Development. J Craniofac Surg 2014; 25:129-34. [DOI: 10.1097/scs.0000000000000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
A network of transcription factors operates during early tooth morphogenesis. Mol Cell Biol 2013; 33:3099-112. [PMID: 23754753 DOI: 10.1128/mcb.00524-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improving the knowledge of disease-causing genes is a unique challenge in human health. Although it is known that genes causing similar diseases tend to lie close to one another in a network of protein-protein or functional interactions, the identification of these protein-protein networks is difficult to unravel. Here, we show that Msx1, Snail, Lhx6, Lhx8, Sp3, and Lef1 interact in vitro and in vivo, revealing the existence of a novel context-specific protein network. These proteins are all expressed in the neural crest-derived dental mesenchyme and cause tooth agenesis disorder when mutated in mouse and/or human. We also identified an in vivo direct target for Msx1 function, the cyclin D-dependent kinase (CDK) inhibitor p19(ink4d), whose transcription is differentially modulated by the protein network. Considering the important role of p19(ink4d) as a cell cycle regulator, these results provide evidence for the first time of the unique plasticity of the Msx1-dependent network of proteins in conferring differential transcriptional output and in controlling the cell cycle through the regulation of a cyclin D-dependent kinase inhibitor. Collectively, these data reveal a novel protein network operating in the neural crest-derived dental mesenchyme that is relevant for many other areas of developmental and evolutionary biology.
Collapse
|
8
|
Wang Y, Shankar SR, Kher D, Ling BMT, Taneja R. Sumoylation of the basic helix-loop-helix transcription factor sharp-1 regulates recruitment of the histone methyltransferase G9a and function in myogenesis. J Biol Chem 2013; 288:17654-62. [PMID: 23637228 DOI: 10.1074/jbc.m113.463257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sumoylation is an important post-translational modification that alters the activity of many transcription factors. However, the mechanisms that link sumoylation to alterations in chromatin structure, which culminate in tissue specific gene expression, are not fully understood. In this study, we demonstrate that SUMO modification of the transcription factor Sharp-1 is required for its full transcriptional repression activity and function as an inhibitor of skeletal muscle differentiation. Sharp-1 is modified by sumoylation at two conserved lysine residues 240 and 255. Mutation of these SUMO acceptor sites in Sharp-1 does not impact its subcellular localization but attenuates its ability to act as a transcriptional repressor and inhibit myogenic differentiation. Consistently, co-expression of the SUMO protease SENP1 with wild type Sharp-1 abrogates Sharp-1-dependent inhibition of myogenesis. Interestingly, sumoylation acts as a signal for recruitment of the co-repressor G9a. Thus, enrichment of G9a, and histone H3 lysine 9 dimethylation (H3K9me2), a signature of G9a activity, is dramatically reduced at muscle promoters in cells expressing sumoylation-defective Sharp-1. Our findings demonstrate how sumoylation of Sharp-1 exerts an impact on chromatin structure and transcriptional repression of muscle gene expression through recruitment of G9a.
Collapse
Affiliation(s)
- Yaju Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | | | | | | | | |
Collapse
|
9
|
Smith TM, Lozanoff S, Iyyanar PP, Nazarali AJ. Molecular signaling along the anterior-posterior axis of early palate development. Front Physiol 2013; 3:488. [PMID: 23316168 PMCID: PMC3539680 DOI: 10.3389/fphys.2012.00488] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/14/2012] [Indexed: 01/11/2023] Open
Abstract
Cleft palate is a common congenital birth defect in humans. In mammals, the palatal tissue can be distinguished into anterior bony hard palate and posterior muscular soft palate that have specialized functions in occlusion, speech or swallowing. Regulation of palate development appears to be the result of distinct signaling and genetic networks in the anterior and posterior regions of the palate. Development and maintenance of expression of these region-specific genes is crucial for normal palate development. Numerous transcription factors and signaling pathways are now recognized as either anterior- (e.g., Msx1, Bmp4, Bmp2, Shh, Spry2, Fgf10, Fgf7, and Shox2) or posterior-specific (e.g., Meox2, Tbx22, and Barx1). Localized expression and function clearly highlight the importance of regional patterning and differentiation within the palate at the molecular level. Here, we review how these molecular pathways and networks regulate the anterior-posterior patterning and development of secondary palate. We hypothesize that the anterior palate acts as a signaling center in setting up development of the secondary palate.
Collapse
Affiliation(s)
- Tara M Smith
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
10
|
Onitake A, Yamanaka K, Esaki M, Ogura T. Caenorhabditis elegans fidgetin homolog FIGL-1, a nuclear-localized AAA ATPase, binds to SUMO. J Struct Biol 2012; 179:143-51. [PMID: 22575764 DOI: 10.1016/j.jsb.2012.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/27/2012] [Accepted: 04/29/2012] [Indexed: 11/26/2022]
Abstract
Fidgetin is a member of the AAA (ATPases associated with diverse cellular activities) chaperones. It is well-known that the specific function of a given AAA protein primarily depends upon its subcellular localization and interacting partners. FIGL-1, a Caenorhabditis elegans homolog of mammalian fidgetin, is localized in the nucleus. Here, we identified that the N-terminal PKRVK sequence of FIGL-1 functions as a monopartite nuclear localization signal. Nuclear localization of FIGL-1 is required for its function. We also found that FIGL-1 specifically interacted with SMO-1, a C. elegans homolog of small ubiquitin-like modifier (SUMO), using a yeast two-hybrid assay. Furthermore, the direct physical interaction between FIGL-1 and SMO-1 was demonstrated by pull-down assay using purified proteins as well as immunoprecipitation assay using lysates from epitope-tagged SMO-1-expressing worms. Binding of FIGL-1 to SMO-1 is required for its function. The depletion of FIGL-1 and SMO-1 resulted in developmental defects in C. elegans. Taken altogether, our results indicate that FIGL-1 is a nuclear protein and that in concert with SMO-1, FIGL-1 plays an important role in the regulation of C. elegans development.
Collapse
Affiliation(s)
- Akinobu Onitake
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | |
Collapse
|
11
|
Kerosuo L, Bronner-Fraser M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol 2012; 23:320-32. [PMID: 22430756 PMCID: PMC3345076 DOI: 10.1016/j.semcdb.2012.03.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/14/2012] [Accepted: 03/01/2012] [Indexed: 11/18/2022]
Abstract
Although the epithelial to mesenchymal transition (EMT) is famous for its role in cancer metastasis, it also is a normal developmental event in which epithelial cells are converted into migratory mesenchymal cells. A prime example of EMT during development occurs when neural crest (NC) cells emigrate from the neural tube thus providing an excellent model to study the principles of EMT in a nonmalignant environment. NC cells start life as neuroepithelial cells intermixed with precursors of the central nervous system. After EMT, they delaminate and begin migrating, often to distant sites in the embryo. While proliferating and maintaining multipotency and cell survival the transitioning neural crest cells lose apicobasal polarity and the basement membrane is broken down. This review discusses how these events are coordinated and regulated, by series of events involving signaling factors, gene regulatory interactions, as well as epigenetic and post-transcriptional modifications. Even though the series of events involved in NC EMT are well known, the sequence in which these steps take place remains a subject of debate, raising the intriguing possibility that, rather than being a single event, neural crest EMT may involve multiple parallel mechanisms.
Collapse
Affiliation(s)
- Laura Kerosuo
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States
| | | |
Collapse
|
12
|
Carta E, Pauws E, Thomas AC, Mengrelis K, Moore GE, Lees M, Stanier P. Investigation of SUMO pathway genes in the etiology of nonsyndromic cleft lip with or without cleft palate. ACTA ACUST UNITED AC 2012; 94:459-63. [DOI: 10.1002/bdra.23008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 12/21/2022]
|
13
|
Fish JL, Villmoare B, Köbernick K, Compagnucci C, Britanova O, Tarabykin V, Depew MJ. Satb2, modularity, and the evolvability of the vertebrate jaw. Evol Dev 2011; 13:549-64. [DOI: 10.1111/j.1525-142x.2011.00511.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer L. Fish
- Department of Craniofacial Development; King's College, London, Guy's Hospital; Floor 27, London Bridge; London; SE1 9RT; UK
| | - Brian Villmoare
- Department of Anthropology; University College London; 14 Taviton Street; London; WC1H 0BW; UK
| | - Katja Köbernick
- Department of Molecular Biology of Neuronal Signals; Max-Planck-Institute for Experimental Medicine; Hermann-Rein-Str. 3; 37075 Göttingen; Germany
| | - Claudia Compagnucci
- Department of Craniofacial Development; King's College, London, Guy's Hospital; Floor 27, London Bridge; London; SE1 9RT; UK
| | - Olga Britanova
- Department of Molecular Biology of Neuronal Signals; Max-Planck-Institute for Experimental Medicine; Hermann-Rein-Str. 3; 37075 Göttingen; Germany
| | - Victor Tarabykin
- Department of Molecular Biology of Neuronal Signals; Max-Planck-Institute for Experimental Medicine; Hermann-Rein-Str. 3; 37075 Göttingen; Germany
| | - Michael J. Depew
- Department of Craniofacial Development; King's College, London, Guy's Hospital; Floor 27, London Bridge; London; SE1 9RT; UK
| |
Collapse
|
14
|
Abstract
SUMOylation is a highly transient post-translational protein modification. Attachment of SUMO to target proteins occurs via a number of specific activating and ligating enzymes that form the SUMO-substrate complex, and other SUMO-specific proteases that cleave the covalent bond, thus leaving both SUMO and target protein free for the next round of modification. SUMO modification has major effects on numerous aspects of substrate function, including subcellular localisation, regulation of their target genes, and interactions with other molecules. The modified SUMO-protein complex is a very transient state, and it thus facilitates rapid response and actions by the cell, when needed. Like phosphorylation, acetylation and ubiquitination, SUMOylation has been associated with a number of cellular processes. In addition to its nuclear role, important sides of mitochondrial activity, stress response signalling and the decision of cells to undergo senescence or apoptosis, have now been shown to involve the SUMO pathway. With ever increasing numbers of reports linking SUMO to human disease, like neurodegeneration and cancer metastasis, it is highly likely that novel and equally important functions of components of the SUMOylation process in cell signalling pathways will be elucidated in the near future.
Collapse
Affiliation(s)
- Artemisia M Andreou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | | |
Collapse
|
15
|
Petit S, Meary F, Pibouin L, Jeanny JC, Fernandes I, Poliard A, Hotton D, Berdal A, Babajko S. Autoregulatory loop of Msx1 expression involving its antisense transcripts. J Cell Physiol 2009; 220:303-10. [PMID: 19334036 DOI: 10.1002/jcp.21762] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Msx1 homeogene plays an important role in epithelial-mesenchymal interactions leading organogenesis. Msx1 gene is submitted to bidirectional transcription generating a long non-coding antisense (AS) RNA potentially involved in Msx1 expression regulation. RT-Q-PCR and RNA-FISH studies indicated that transient overexpression of the Msx1 AS transcript in 705IC5 mouse odontoblasts decreased the abundance of endogenous Msx1 S mRNA at the post-transcriptional level. Conversely, Msx1 overexpression increased the AS RNA level probably by activating AS transcription. In vivo mapping by RT-PCR evidenced both Msx1 RNAs in all adult mouse tissues tested raising the issue of Msx1 function during adulthood. The expression patterns of the two RNAs were similar, confirming the tight S/AS relationship. In particular, both Msx1 mRNAs and Msx1 protein were similarly distributed in eyes, and were found in regions with a common ectodermic origin and in cells potentially involved in regeneration. In conclusion, we report that Msx1 S RNA is negatively controlled by its AS RNA at a post-transcriptional level, and that the AS RNA is retrocontrolled positively by Msx1. The tight link between Msx1 S and AS RNAs constitutes a regulatory loop resulting in a fine-tuned expression of Msx1 which appears to be significant for adult homeostasis.
Collapse
Affiliation(s)
- Stéphane Petit
- INSERM U872, Equipe 5, Laboratoire de Biologie Oro-Faciale et Pathologie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Song T, Li G, Jing G, Jiao X, Shi J, Zhang B, Wang L, Ye X, Cao F. SUMO1 polymorphisms are associated with non-syndromic cleft lip with or without cleft palate. Biochem Biophys Res Commun 2008; 377:1265-8. [PMID: 18983974 DOI: 10.1016/j.bbrc.2008.10.138] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022]
Affiliation(s)
- Tao Song
- Department of Oral Maxillofacial Surgery, School of Stomatology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The spindle positioning protein Kar9p interacts with the sumoylation machinery in Saccharomyces cerevisiae. Genetics 2008; 180:2033-55. [PMID: 18832349 DOI: 10.1534/genetics.108.095042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele. The physical interaction between Kar9p and Ubc9p was confirmed by in vitro binding assays. A single-amino-acid substitution in Kar9p, L304P disrupted its two-hybrid interaction with proteins in the sumoylation pathway, but retained its interactions with the spindle positioning proteins Bim1p, Stu2p, Bik1p, and Myo2p. The kar9-L304P mutant showed defects in positioning the mitotic spindle, with the spindle located more distally than normal. Whereas wild-type Kar9p-3GFP normally localizes to only the bud-directed spindle pole body (SPB), Kar9p-L304P-3GFP was mislocalized to both SPBs. Using a reconstitution assay, Kar9p was sumoylated in vitro. We propose a model in which sumoylation regulates spindle positioning by restricting Kar9p to one SPB. These findings raise the possibility that sumoylation could regulate other microtubule-dependent processes.
Collapse
|
18
|
The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 2008; 84:37-138. [PMID: 19186243 DOI: 10.1016/s0070-2153(08)00602-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cleft lip and cleft palate are frequent human congenital malformations with a complex multifactorial etiology. These orofacial clefts can occur as part of a syndrome involving multiple organs or as isolated clefts without other detectable defects. Both forms of clefting constitute a heavy burden to the affected individuals and their next of kin. Human and mouse facial traits are utterly dissimilar. However, embryonic development of the lip and palate are strikingly similar in both species, making the mouse a model of choice to study their normal and abnormal development. Human epidemiological and genetic studies are clearly important for understanding the etiology of lip and palate clefting. However, our current knowledge about the etiopathogenesis of these malformations has mainly been gathered throughout the years from mouse models, including those with mutagen-, teratogen- and targeted mutation-induced clefts as well as from mice with spontaneous clefts. This review provides a comprehensive description of the numerous mouse models for cleft lip and/or cleft palate. Despite a few weak points, these models have revealed a high order of molecular complexity as well as the stringent spatiotemporal regulations and interactions between key factors which govern the development of these orofacial structures.
Collapse
|
19
|
FGF signalling and SUMO modification: new players in the aetiology of cleft lip and/or palate. Trends Genet 2007; 23:631-40. [DOI: 10.1016/j.tig.2007.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 12/18/2022]
|
20
|
Carinci F, Scapoli L, Palmieri A, Zollino I, Pezzetti F. Human genetic factors in nonsyndromic cleft lip and palate: an update. Int J Pediatr Otorhinolaryngol 2007; 71:1509-19. [PMID: 17606301 DOI: 10.1016/j.ijporl.2007.06.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/30/2007] [Accepted: 06/02/2007] [Indexed: 10/23/2022]
Abstract
Nonsyndromic cleft lip and/or palate (or orofacial cleft, OFC) is a malformation characterized by an incomplete separation between nasal and oral cavities without any associated anomalies. The last point defines the distinction between syndromic and nonsyndromic OFC. Nonsyndromic OFC is one of the most common malformations among live births and is composed of two separate entities: cleft lip with or without cleft palate (CL+/-P) and cleft palate isolated (CPI). Because of the complex etiology of nonsyndromic OFC, which is due to the differences between CL+/-P and CPI, and the heterogeneity of each group, caused by the number of genes involved, the type of inheritance, and the interaction with environmental factors, we reviewed those genes and available loci in the literature whose involvement in the onset of nonsyndromic OFC has more sound scientific evidence. Genetic studies on human populations have demonstrated that CL+/-P and CPI have distinct genetic backgrounds and, therefore, environmental factors probably disclose only these malformations. In CL+/-P several loci, OFC from 1 to 10 have been identified. The first locus, OFC1, has been mapped to chromosome 6p24. Other CL+/-P loci have been mapped to 2p13 (OFC2), 19q13.2 (OFC3) and 4q (OFC4). OFC5-8 are identified by mutations in the MSX1, IRF6, PVRL1, and TP73L gene, respectively. OFC9 maps to 13q33.1-q34, whereas OFC10 is associated with haploinsufficiency of the SUMO1 gene. In addition, MTHFR, TGF-beta3, and RARalpha play a role in cleft onset. In CPI one gene has been identified (TBX22) at present, but others are probably involved. Greater efforts are necessary in order to have a complete picture of the main factors involved in lip and palate formation. These elements will permit us to better understand and better treat patients affected by OFC.
Collapse
MESH Headings
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 8/genetics
- Cleft Lip/genetics
- Cleft Palate/genetics
- Gene Expression/genetics
- Humans
- Polymorphism, Restriction Fragment Length/genetics
Collapse
Affiliation(s)
- Francesco Carinci
- Department of D.M.C.C.C., Section of Maxillofacial Surgery, University of Ferrara, Corso, Giovecca 203, 44100 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
21
|
Andreou AM, Pauws E, Jones MC, Singh MK, Bussen M, Doudney K, Moore GE, Kispert A, Brosens JJ, Stanier P. TBX22 missense mutations found in patients with X-linked cleft palate affect DNA binding, sumoylation, and transcriptional repression. Am J Hum Genet 2007; 81:700-12. [PMID: 17846996 PMCID: PMC2227921 DOI: 10.1086/521033] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/13/2007] [Indexed: 11/03/2022] Open
Abstract
The T-box transcription factor TBX22 is essential for normal craniofacial development, as demonstrated by the finding of nonsense, frameshift, splice-site, or missense mutations in patients with X-linked cleft palate (CPX) and ankyloglossia. To better understand the function of TBX22, we studied 10 different naturally occurring missense mutations that are phenotypically equivalent to loss-of-function alleles. Since all missense mutations are located in the DNA-binding T-box domain, we first investigated the preferred recognition sequence for TBX22. Typical of T-box proteins, the resulting sequence is a palindrome based around near-perfect copies of AGGTGTGA. DNA-binding assays indicate that missense mutations at or near predicted contact points with the DNA backbone compromise stable DNA-protein interactions. We show that TBX22 functions as a transcriptional repressor and that TBX22 missense mutations result in impaired repression activity. No effect on nuclear localization of TBX22 was observed. We find that TBX22 is a target for the small ubiquitin-like modifier SUMO-1 and that this modification is required for TBX22 repressor activity. Although the site of SUMO attachment at the lysine at position 63 is upstream of the T-box domain, loss of SUMO-1 modification is consistently found in all pathogenic CPX missense mutations. This implies a general mechanism linking the loss of SUMO conjugation to the loss of TBX22 function. Orofacial clefts are well known for their complex etiology and variable penetrance, involving both genetic and environmental risk factors. The sumoylation process is also subject to and profoundly affected by similar environmental stresses. Thus, we suggest that SUMO modification may represent a common pathway that regulates normal craniofacial development and is involved in the pathogenesis of both Mendelian and idiopathic forms of orofacial clefting.
Collapse
|
22
|
Andrieux J, Villenet C, Quief S, Lignon S, Geffroy S, Roumier C, de Leersnyder H, de Blois MC, Manouvrier S, Delobel B, Benzacken B, Bitoun P, Attie-Bitach T, Thomas S, Lyonnet S, Vekemans M, Kerckaert JP. Genotype phenotype correlation of 30 patients with Smith-Magenis syndrome (SMS) using comparative genome hybridisation array: cleft palate in SMS is associated with larger deletions. J Med Genet 2007; 44:537-40. [PMID: 17468296 PMCID: PMC2597929 DOI: 10.1136/jmg.2006.048736] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Smith-Magenis syndrome (SMS) is rare (prevalence 1 in 25 000) and is associated with psychomotor delay, a particular behavioural pattern and congenital anomalies. SMS is often due to a chromosomal deletion of <4 Mb at the 17p11.2 locus, leading to haploinsufficiency of numerous genes. Mutations of one of these gemes, RAI1, seems to be responsible for the main features found with heterozygous 17p11.2 deletions. METHODS We studied DNA from 30 patients with SMS using a 300 bp amplimers comparative genome hybridisation array encompassing 75 loci from a 22 Mb section from the short arm of chromosome 17. RESULTS Three patients had large deletions (10%). Genotype-phenotype correlation showed that two of them had cleft palate, which was not found in any of the other patients with SMS (p<0.007, Fisher's exact test). The smallest extra-deleted region associated with cleft palate in SMS is 1.4 Mb, contains <16 genes and is located at 17p11.2-17p12. Gene expression array data showed that the ubiquitin B precursor (UBB) is significantly expressed in the first branchial arch in the fourth and fifth weeks of human development. CONCLUSION These data support UBB as a good candidate gene for isolated cleft palate.
Collapse
|
23
|
Hayashi K, Nakamura S, Nishida W, Sobue K. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Mol Cell Biol 2006; 26:9456-70. [PMID: 17030628 PMCID: PMC1698541 DOI: 10.1128/mcb.00759-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Nakamura
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wataru Nishida
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Sobue
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding
author. Mailing address: Department of Neuroscience (D13), Osaka
University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka
565-0871, Japan. Phone: 81 6 6879 3680. Fax: 81 6 6879 3689. E-mail:
| |
Collapse
|