1
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Maded ZK, Lassoued MA, Taqa GAA, Fawzi HA, Abdulqader AA, Jabir MS, Mahal RK, Sfar S. Topical Application of Dipyridamole and Roflumilast Combination Nanoparticles Loaded Nanoemulgel for the Treatment of Psoriasis in Rats. Int J Nanomedicine 2024; 19:13113-13134. [PMID: 39679247 PMCID: PMC11638079 DOI: 10.2147/ijn.s492180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Background Phosphodiesterase-4 is an enzyme that regulates immune responses and contributes to the development of psoriasis. Dipyridamole and roflumilast function as phosphodiesterase-4 inhibitors, reducing pro-inflammatory cytokine expression. The aim was to evaluate the anti-psoriatic effect of the topical administration of dipyridamole and roflumilast nanoemulgel combination on imiquimod-induced psoriasiform skin inflammation in rats. Methods Dipyridamole and roflumilast were formulated into nanoemulgel to enhance skin penetration and retention. The production of nanoemulgels involves a two-part process. A nanoemulsion is created (the aqueous phase titration method was employed to create nanoemulsions), which is then incorporated into the gelling agent during the second phase. The new formula was then tested in rats. The rats were divided into seven groups; all animals were treated for 16 days. Induction was achieved by 120 mg of 5% imiquimod cream, which was applied daily for 8 days. After induction, groups received one of the following: 0.05% clobetasol ointment, 1% dipyridamole nanoemulgel (D-NEG), 0.3% roflumilast nanoemulgel (R-NEG), 1% dipyridamole and 0.3% roflumilast gel combination (DR-gel), and 1% dipyridamole and 0.3% roflumilast nanoemulgel combination (DR-NEG). At the end of the experiment, all animals were euthanized, and their blood and skin tissue samples were obtained. Inflammatory markers, immunohistochemistry, and histopathology were measured. Results The DR-NEG group showed significantly lower levels of IL17, IL23, and TNF-α, while TGF-β showed higher levels than the clobetasol group. The expression of CK16 was significantly lower compared to the clobetasol group. DR-NEG showed a significantly lower PASI and Baker score than the clobetasol group. Conclusion The new DR-NEG's topical combination administration showed better anti-inflammatory, tissue healing, and anti-psoriatic activity than each drug alone or topical clobetasol administration; this could be attributed to the possible synergic effects of both drugs and the enhanced skin penetration offered by the nanoemulgel formulation.
Collapse
Affiliation(s)
- Zeyad Khalaf Maded
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Ghada Abd Alrhman Taqa
- Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | | | | | - Majid S Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Raffah Khamis Mahal
- Department of Pharmaceutics, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq
| | - Souad Sfar
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
3
|
Yen JH, Chang CC, Hsu HJ, Yang CH, Mani H, Liou JW. C-X-C motif chemokine ligand 12-C-X-C chemokine receptor type 4 signaling axis in cancer and the development of chemotherapeutic molecules. Tzu Chi Med J 2024; 36:231-239. [PMID: 38993827 PMCID: PMC11236080 DOI: 10.4103/tcmj.tcmj_52_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
Chemokines are small, secreted cytokines crucial in the regulation of a variety of cell functions. The binding of chemokine C-X-C motif chemokine ligand 12 (CXCL12) (stromal cell-derived factor 1) to a G-protein-coupled receptor C-X-C chemokine receptor type 4 (CXCR4) triggers downstream signaling pathways with effects on cell survival, proliferation, chemotaxis, migration, and gene expression. Intensive and extensive investigations have provided evidence suggesting that the CXCL12-CXCR4 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, as well as in creating tumor microenvironment, thus implying that this axis is a potential target for the development of cancer therapies. The structures of CXCL12 and CXCR4 have been resolved with experimental methods such as X-ray crystallography, NMR, or cryo-EM. Therefore, it is possible to apply structure-based computational approaches to discover, design, and modify therapeutic molecules for cancer treatments. Here, we summarize the current understanding of the roles played by the CXCL12-CXCR4 signaling axis in cellular functions linking to cancer progression and metastasis. This review also provides an introduction to protein structures of CXCL12 and CXCR4 and the application of computer simulation and analysis in understanding CXCR4 activation and antagonist binding. Furthermore, examples of strategies and current progress in CXCL12-CXCR4 axis-targeted development of therapeutic anticancer inhibitors are discussed.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hao Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hemalatha Mani
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Maded ZK, Sfar S, Taqa GAA, Lassoued MA, Ben Hadj Ayed O, Fawzi HA. Development and Optimization of Dipyridamole- and Roflumilast-Loaded Nanoemulsion and Nanoemulgel for Enhanced Skin Permeation: Formulation, Characterization, and In Vitro Assessment. Pharmaceuticals (Basel) 2024; 17:803. [PMID: 38931470 PMCID: PMC11207013 DOI: 10.3390/ph17060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
This study explores developing and optimizing a nanoemulsion (NE) system loaded with dipyridamole and roflumilast, aiming to improve skin penetration and retention. The NE formulation was further transformed into a nanoemulgel to enhance its application as a topical treatment for psoriasis. Solubility studies were conducted to select the oil, surfactant, and co-surfactant. Phase diagrams were constructed using the aqueous phase titration method. All the formulations were in nanoscale, and Formula (F2) (which contains oleic acid oil as the oil phase, a mixture of Surfactant Tween 80 and co-surfactant (ethanol) at a ratio of 1:2 in addition to distilled water as an aqueous phase in a ratio of 1:5:4, respectively) was the selected formula depending on the particle size, PDI, and zeta potential. Formula (F2) has the best ratio because it gives the smallest nanoemulsion globule size (particle size average of 167.1 nm), the best homogenicity (lowest PDI of 0.195), and the highest stability (higher zeta potential of -32.22). The selected formula was converted into a nanoemulgel by the addition of 0.5% (w/w) xanthan gum (average particle size of 172.7 nm) and the best homogenicity (lowest PDI of 0.121%) and highest stability (higher zeta potential of -28.31). In conclusion, the selected formula has accepted physical and chemical properties, which enhanced skin penetration.
Collapse
Affiliation(s)
- Zeyad Khalaf Maded
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia; (Z.K.M.); (M.A.L.); (O.B.H.A.)
| | - Souad Sfar
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | - Ghada Abd Alrhman Taqa
- Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Mosul 41002, Iraq;
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia; (Z.K.M.); (M.A.L.); (O.B.H.A.)
| | - Olfa Ben Hadj Ayed
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia; (Z.K.M.); (M.A.L.); (O.B.H.A.)
| | - Hayder Adnan Fawzi
- Department of Pharmacy, Al Mustafa University College, Baghdad 10064, Iraq
| |
Collapse
|
5
|
Han R, Gaurav A, Mai CW, Gautam V, Gabriel Akyirem A. Phosphodiesterase Inhibitors of Natural Origin. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155251390230927064442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2025]
Abstract
Abstract:
Phosphodiesterases (PDEs) function to hydrolyze intracellular cyclic adenosine monophosphate
(cAMP) and cyclic guanosine monophosphate (cGMP), regulating a variety of intracellular
signal transduction and physiological activities. PDEs can be divided into 11 families
(PDE1~11) and the diversity and complex expression of PDE family genes suggest that different
subtypes may have different mechanisms. PDEs are involved in various disease pathologies such
as inflammation, asthma, depression, and erectile dysfunction and are thus targets of interest for
several drug discovery campaigns. Natural products have always been an important source of bioactive
compounds for drug discovery, over the years several natural compounds have shown potential
as inhibitors of PDEs. In this article, phosphodiesterase inhibitors of natural origin have been
reviewed with emphasis on their chemistry and biological activities.
Collapse
Affiliation(s)
- Rui Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Anand Gaurav
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
- Department of Pharmaceutical Sciences, School of Health Sciences and
Technology, UPES, Dehradun, 248007, Uttarakhand, India
- Faculty of Health Sciences, Villa College, QI Campus,
Rahdhebai Hingun, Male', 20373, Republic of Maldives
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Vertika Gautam
- Institute of Pharmaceutical Research, GLA University,
Mathura, 281406, Uttar Pradesh, India
| | - Akowuah Gabriel Akyirem
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan,
47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Mukherjee S, Roy S, Mukherjee S, Harikishore A, Bhunia A, Mandal AK. 14-3-3 interaction with phosphodiesterase 8A sustains PKA signaling and downregulates the MAPK pathway. J Biol Chem 2024; 300:105725. [PMID: 38325743 PMCID: PMC10926215 DOI: 10.1016/j.jbc.2024.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.
Collapse
Affiliation(s)
| | - Somesh Roy
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | | | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | - Atin K Mandal
- Department of Biological Sciences, Bose Institute, Kolkata, India.
| |
Collapse
|
7
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
8
|
Yang X, Xu Z, Hu S, Shen J. Perspectives of PDE inhibitor on treating idiopathic pulmonary fibrosis. Front Pharmacol 2023; 14:1111393. [PMID: 36865908 PMCID: PMC9973527 DOI: 10.3389/fphar.2023.1111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) without an identifiable cause. If not treated after diagnosis, the average life expectancy is 3-5 years. Currently approved drugs for the treatment of IPF are Pirfenidone and Nintedanib, as antifibrotic drugs, which can reduce the decline rate of forced vital capacity (FVC) and reduce the risk of acute exacerbation of IPF. However these drugs can not relieve the symptoms associated with IPF, nor improve the overall survival rate of IPF patients. We need to develop new, safe and effective drugs to treat pulmonary fibrosis. Previous studies have shown that cyclic nucleotides participate in the pathway and play an essential role in the process of pulmonary fibrosis. Phosphodiesterase (PDEs) is involved in cyclic nucleotide metabolism, so PDE inhibitors are candidates for pulmonary fibrosis. This paper reviews the research progress of PDE inhibitors related to pulmonary fibrosis, so as to provide ideas for the development of anti-pulmonary fibrosis drugs.
Collapse
Affiliation(s)
- Xudan Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | - Songhua Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Juan Shen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
9
|
Treatment of Experimental Autoimmune Encephalomyelitis with an Inhibitor of Phosphodiesterase-8 (PDE8). Cells 2022; 11:cells11040660. [PMID: 35203312 PMCID: PMC8870644 DOI: 10.3390/cells11040660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
After decades of development, inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice for the treatment of inflammatory disorders, with three PDE4 inhibitors being in clinical use as therapeutics for psoriasis, psoriatic arthritis, chronic obstructive pulmonary disease and atopic dermatitis. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. We have previously demonstrated a role for the PDE8A-Raf-1 kinase complex in the regulation of myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55) activated CD4+ effector T cell adhesion and locomotion by a mechanism that differs from PDE4 activity. In this study, we explored the in vivo treatment of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS) induced in mice immunized with MOG using the PDE8-selective inhibitor PF-04957325. For treatment in vivo, mice with EAE were either subcutaneously (s.c.) injected three times daily (10 mg/kg/dose), or were implanted subcutaneously with Alzet mini-osmotic pumps to deliver the PDE8 inhibitor (15.5 mg/kg/day). The mice were scored daily for clinical signs of paresis and paralysis which were characteristic of EAE. We observed the suppression of the clinical signs of EAE and a reduction of inflammatory lesion formation in the CNS by histopathological analysis through the determination of the numbers of mononuclear cells isolated from the spinal cord of mice with EAE. The PDE8 inhibitor treatment reduces the accumulation of both encephalitogenic Th1 and Th17 T cells in the CNS. Our study demonstrates the efficacy of targeting PDE8 as a treatment of autoimmune inflammation in vivo by reducing the inflammatory lesion load.
Collapse
|
10
|
Hoffman CS. Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors. Front Pharmacol 2022; 12:833156. [PMID: 35111072 PMCID: PMC8802716 DOI: 10.3389/fphar.2021.833156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) have been proven to be targets for which highly selective and potent drugs can be developed. Mammalian genomes possess 21 genes whose products are pharmacologically grouped into 11 families; however related genes from pathogenic organisms display sufficient divergence from the mammalian homologs such that PDE inhibitors to these enzymes could be used to treat parasitic infections without acting on the related human PDEs. We have developed a platform for expressing cloned PDEs in the fission yeast Schizosaccharomyces pombe, allowing for inexpensive, but robust screening for small molecule inhibitors that are cell permeable. Such compounds typically display the expected biological activity when tested in cell culture, including anti-inflammatory properties for PDE4 and PDE7 inhibitors. The genetic pliability of S. pombe also allows for molecular genetic screens to identify mutations in target PDE genes that confer some resistance to these inhibitors as a way of investigating the PDE-inhibitor interaction. This screening method is readily accessible to academic laboratories as it does not require the purification of large quantities of a target protein. This allows for the discovery and profiling of PDE inhibitors to treat inflammation or of inhibitors of targets such as pathogen PDEs for which there may not be a sufficient financial motivation for pharmaceutical companies to identify selective PDE inhibitors using more traditional in vitro enzyme-based screening methods.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
11
|
Thapa K, Singh TG, Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 2021; 282:119843. [PMID: 34298037 DOI: 10.1016/j.lfs.2021.119843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) occurs in renal artery stenosis, partial nephrectomy and most commonly during kidney transplantation. It brings serious consequences such as DGF (Delayed Graft Function) or organ dysfunction leading to renal failure and ultimate death. There is no effective therapy to handle the consequences of Renal Ischemia/Reperfusion (I/R) injury. Cyclic nucleotides, cAMP and cGMP are the important second messengers that stimulate intracellular signal transduction for cell survival in response to growth factors and peptide hormones in normal tissues and in kidneys plays significant role that involves vascular tone regulation, inflammation and proliferation of parenchymal cells. Renal ischemia and subsequent reperfusion injury stimulate signal transduction pathways involved in oxidative stress, inflammation, alteration in renal blood flow leading to necrosis and apoptosis of renal cell. MATERIALS AND METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out. To understand the functioning of Phosphodiesterases (PDEs) and its pharmacological modulation in Renal Ischemia-Reperfusion Injury. KEY FINDINGS Current therapeutic options may not be enough to treat renal I/R injury in group of patients and therefore, the current review has discussed the general characteristics and physiology of PDEs and preclinical-studies defining the relationship between PDEs expression in renal injury due to I/R and its outcome on renal function. SIGNIFICANCE The role of PDE inhibitors in renal I/R injury and the clinical status of drugs for various renal diseases have been summarized in this review.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India; School of Pharmacy, Himachal Pradesh, India
| | | | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| |
Collapse
|
12
|
Ponsaerts L, Alders L, Schepers M, de Oliveira RMW, Prickaerts J, Vanmierlo T, Bronckaers A. Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines 2021; 9:703. [PMID: 34206420 PMCID: PMC8301462 DOI: 10.3390/biomedicines9070703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is caused by a thromboembolic occlusion of a major cerebral artery, with the impaired blood flow triggering neuroinflammation and subsequent neuronal damage. Both the innate immune system (e.g., neutrophils, monocytes/macrophages) in the acute ischemic stroke phase and the adaptive immune system (e.g., T cells, B cells) in the chronic phase contribute to this neuroinflammatory process. Considering that the available therapeutic strategies are insufficiently successful, there is an urgent need for novel treatment options. It has been shown that increasing cAMP levels lowers neuroinflammation. By inhibiting cAMP-specific phosphodiesterases (PDEs), i.e., PDE4, 7, and 8, neuroinflammation can be tempered through elevating cAMP levels and, thereby, this can induce an improved functional recovery. This review discusses recent preclinical findings, clinical implications, and future perspectives of cAMP-specific PDE inhibition as a novel research interest for the treatment of ischemic stroke. In particular, PDE4 inhibition has been extensively studied, and is promising for the treatment of acute neuroinflammation following a stroke, whereas PDE7 and 8 inhibition more target the T cell component. In addition, more targeted PDE4 gene inhibition, or combined PDE4 and PDE7 or 8 inhibition, requires more extensive research.
Collapse
Affiliation(s)
- Laura Ponsaerts
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Lotte Alders
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Melissa Schepers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Jos Prickaerts
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annelies Bronckaers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
13
|
Luo Y, Qu K, Kuai L, Ru Y, Huang K, Yan X, Xing M. Epigenetics in psoriasis: perspective of DNA methylation. Mol Genet Genomics 2021; 296:1027-1040. [PMID: 34137900 DOI: 10.1007/s00438-021-01804-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes (KCs). Onset of psoriasis is related to genetic, immune and environmental factors. The environment can interact with the genome through epigenetic modifications, including DNA methylation, and this modification is involved in the pathogenesis of psoriasis. In addition to a skin disease, psoriasis is also considered a systemic disease. We reviewed the current literature of psoriatic DNA methylation for studies from several aspects on the DNA methylation distribution patterns in different tissues/cells, single-nucleotide polymorphisms, and candidate disease genes and identified target genes regulated by DNA methylation that have been directly/indirectly validated. This review contributes to a comprehensive understanding of the important a role that DNA methylation plays in psoriasis from a holistic perspective and will promote the implementation of DNA methylation in diagnostic and therapeutic strategies for psoriatic patients.
Collapse
Affiliation(s)
- Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Keke Huang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| |
Collapse
|
14
|
Simao M, Régnier F, Taheraly S, Fraisse A, Tacine R, Fraudeau M, Benabid A, Feuillet V, Lambert M, Delon J, Randriamampita C. cAMP Bursts Control T Cell Directionality by Actomyosin Cytoskeleton Remodeling. Front Cell Dev Biol 2021; 9:633099. [PMID: 34095108 PMCID: PMC8173256 DOI: 10.3389/fcell.2021.633099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
T lymphocyte migration is an essential step to mounting an efficient immune response. The rapid and random motility of these cells which favors their sentinel role is conditioned by chemokines as well as by the physical environment. Morphological changes, underlaid by dynamic actin cytoskeleton remodeling, are observed throughout migration but especially when the cell modifies its trajectory. However, the signaling cascade regulating the directional changes remains largely unknown. Using dynamic cell imaging, we investigated in this paper the signaling pathways involved in T cell directionality. We monitored cyclic adenosine 3′-5′ monosphosphate (cAMP) variation concomitantly with actomyosin distribution upon T lymphocyte migration and highlighted the fact that spontaneous bursts in cAMP starting from the leading edge, are sufficient to promote actomyosin redistribution triggering trajectory modification. Although cAMP is commonly considered as an immunosuppressive factor, our results suggest that, when transient, it rather favors the exploratory behavior of T cells.
Collapse
Affiliation(s)
- Morgane Simao
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Fabienne Régnier
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Sarah Taheraly
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Achille Fraisse
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Rachida Tacine
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Marie Fraudeau
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Adam Benabid
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Vincent Feuillet
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Mireille Lambert
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Jérôme Delon
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | | |
Collapse
|
15
|
Epstein PM, Basole C, Brocke S. The Role of PDE8 in T Cell Recruitment and Function in Inflammation. Front Cell Dev Biol 2021; 9:636778. [PMID: 33937235 PMCID: PMC8085600 DOI: 10.3389/fcell.2021.636778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice to treat inflammatory disorders, with three PDE4 inhibitors currently in clinical use as therapeutics for psoriasis, psoriatic arthritis, atopic dermatitis and chronic obstructive pulmonary disease. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. It was shown that PDE8A plays a major role in controlling T cell and breast cancer cell motility, including adhesion to endothelial cells under physiological shear stress and chemotaxis. This is a unique function of PDE8 not shared by PDE4, another cAMP specific PDE, employed, as noted, as an anti-inflammatory therapeutic. Additionally, a regulatory role was shown for the PDE8A-rapidly accelerated fibrosarcoma (Raf)-1 kinase signaling complex in myelin antigen reactive CD4+ effector T cell adhesion and locomotion by a mechanism differing from that of PDE4. The PDE8A-Raf-1 kinase signaling complex affects T cell motility, at least in part, via regulating the LFA-1 integrin mediated adhesion to ICAM-1. The findings that PDE8A and its isoforms are expressed at higher levels in naive and myelin oligodendrocyte glycoprotein (MOG)35–55 activated effector T (Teff) cells compared to regulatory T (Treg) cells and that PDE8 inhibition specifically affects MOG35–55 activated Teff cell adhesion, indicates that PDE8A could represent a new beneficial target expressed in pathogenic Teff cells in CNS inflammation. The implications of this work for targeting PDE8 in inflammation will be discussed in this review.
Collapse
Affiliation(s)
- Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, CT, United States
| | - Chaitali Basole
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
16
|
Wu M, Li X, Zhang C, Zhang C, Qian D, Ma J, Cai M, Tang L, Cheng H, Shen C, Chen G, Zheng X, Zhang X, Zhou F. DNA methylation profile of psoriatic skins from different body locations. Epigenomics 2019; 11:1613-1625. [PMID: 31701765 DOI: 10.2217/epi-2018-0225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To understand whether the anatomical location of origin plays a role in shaping the DNA methylation (DNAm) landscape of psoriatic skins. Patients & methods: A number of 108 psoriatic and 57 control skin samples were grouped based on their anatomical locations. Two group t-tests were used to identify those differentially methylated sites and regions. Target region methylation loci were validated by bisulfate conversion sequencing. The correlations of DNAm with pathological features, DNAm and gene expression were also interrogated. Results: Our analysis revealed 315 location-specific differentially methylated sites for back, 291 for the extremities and 801 for abdomen. Moreover, we observed that the extremity-specific loci cg21942490 located on HOXA9 is associated with hyperkeratosis. We further observed that HOXA5 and KIAA1949 are differential methylation regions. Conclusion: Our study shown evidence of anatomical location-dependent DNAm pattern in psoriasis skins, and thus provided new insights into the pathogenesis of this disease.
Collapse
Affiliation(s)
- Mingshun Wu
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Xueying Li
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Chaowen Zhang
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Chuanliang Zhang
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Danfeng Qian
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Jie Ma
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Minglong Cai
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Lili Tang
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Hui Cheng
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Changbing Shen
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Gang Chen
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Xiaodong Zheng
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| | - Xuejun Zhang
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,Department of Dermatology, Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Fusheng Zhou
- Department of Dermatology, Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, PR China.,The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032, PR China
| |
Collapse
|
17
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
|
19
|
Johnstone TB, Smith KH, Koziol-White CJ, Li F, Kazarian AG, Corpuz ML, Shumyatcher M, Ehlert FJ, Himes BE, Panettieri RA, Ostrom RS. PDE8 Is Expressed in Human Airway Smooth Muscle and Selectively Regulates cAMP Signaling by β 2-Adrenergic Receptors and Adenylyl Cyclase 6. Am J Respir Cell Mol Biol 2018; 58:530-541. [PMID: 29262264 PMCID: PMC5894499 DOI: 10.1165/rcmb.2017-0294oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Two cAMP signaling compartments centered on adenylyl cyclase (AC) exist in human airway smooth muscle (HASM) cells, one containing β2-adrenergic receptor AC6 and another containing E prostanoid receptor AC2. We hypothesized that different PDE isozymes selectively regulate cAMP signaling in each compartment. According to RNA-sequencing data, 18 of 24 PDE genes were expressed in primary HASM cells derived from age- and sex-matched donors with and without asthma. PDE8A was the third most abundant of the cAMP-degrading PDE genes, after PDE4A and PDE1A. Knockdown of PDE8A using shRNA evoked twofold greater cAMP responses to 1 μM forskolin in the presence of 3-isobutyl-1-methylxanthine. Overexpression of AC2 did not alter this response, but overexpression of AC6 increased cAMP responses an additional 80%. We examined cAMP dynamics in live HASM cells using a fluorescence sensor. PF-04957325, a PDE8-selective inhibitor, increased basal cAMP concentrations by itself, indicating a significant basal level of cAMP synthesis. In the presence of an AC inhibitor to reduce basal signaling, PF-04957325 accelerated cAMP production and increased the inhibition of cell proliferation induced by isoproterenol, but it had no effect on cAMP concentrations or cell proliferation regulated by prostaglandin E2. Lipid raft fractionation of HASM cells revealed PDE8A immunoreactivity in buoyant fractions containing caveolin-1 and AC5/6 immunoreactivity. Thus, PDE8 is expressed in lipid rafts of HASM cells, where it specifically regulates β2-adrenergic receptor AC6 signaling without effects on signaling by the E prostanoid receptors 2/4-AC2 complex. In airway diseases such as asthma and chronic obstructive pulmonary disease, PDE8 may represent a novel therapeutic target to modulate HASM responsiveness and airway remodeling.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Airway Remodeling
- Asthma/enzymology
- Asthma/genetics
- Asthma/pathology
- Asthma/physiopathology
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP/metabolism
- Humans
- Membrane Microdomains/enzymology
- Membrane Microdomains/pathology
- Muscle, Smooth/enzymology
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Respiratory System/enzymology
- Respiratory System/pathology
- Respiratory System/physiopathology
- Second Messenger Systems
- Time Factors
Collapse
Affiliation(s)
- Timothy B. Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kaitlyn H. Smith
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Cynthia J. Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Fengying Li
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Austin G. Kazarian
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maia L. Corpuz
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Frederick J. Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
20
|
Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. Phosphodiesterase type 5 and cancers: progress and challenges. Oncotarget 2017; 8:99179-99202. [PMID: 29228762 PMCID: PMC5716802 DOI: 10.18632/oncotarget.21837] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Cinzia Giordano
- Centro Sanitario, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
21
|
Basole CP, Nguyen RK, Lamothe K, Vang A, Clark R, Baillie GS, Epstein PM, Brocke S. PDE8 controls CD4 + T cell motility through the PDE8A-Raf-1 kinase signaling complex. Cell Signal 2017; 40:62-72. [PMID: 28851628 DOI: 10.1016/j.cellsig.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022]
Abstract
The levels of cAMP are regulated by phosphodiesterase enzymes (PDEs), which are targets for the treatment of inflammatory disorders. We have previously shown that PDE8 regulates T cell motility. Here, for the first time, we report that PDE8A exerts part of its control of T cell function through the V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) kinase signaling pathway. To examine T cell motility under physiologic conditions, we analyzed T cell interactions with endothelial cells and ligands in flow assays. The highly PDE8-selective enzymatic inhibitor PF-04957325 suppresses adhesion of in vivo myelin oligodendrocyte glycoprotein (MOG) activated inflammatory CD4+ T effector (Teff) cells to brain endothelial cells under shear stress. Recently, PDE8A was shown to associate with Raf-1 creating a compartment of low cAMP levels around Raf-1 thereby protecting it from protein kinase A (PKA) mediated inhibitory phosphorylation. To test the function of this complex in Teff cells, we used a cell permeable peptide that selectively disrupts the PDE8A-Raf-1 interaction. The disruptor peptide inhibits the Teff-endothelial cell interaction more potently than the enzymatic inhibitor. Furthermore, the LFA-1/ICAM-1 interaction was identified as a target of disruptor peptide mediated reduction of adhesion, spreading and locomotion of Teff cells under flow. Mechanistically, we observed that disruption of the PDE8A-Raf-1 complex profoundly alters Raf-1 signaling in Teff cells. Collectively, our studies demonstrate that PDE8A inhibition by enzymatic inhibitors or PDE8A-Raf-1 kinase complex disruptors decreases Teff cell adhesion and migration under flow, and represents a novel approach to target T cells in inflammation.
Collapse
Affiliation(s)
| | | | - Katie Lamothe
- Department of Immunology, UConn Health, United States
| | - Amanda Vang
- Department of Immunology, UConn Health, United States; The National Hospital of Faroe Islands, Faroe Islands
| | - Robert Clark
- Department of Immunology, UConn Health, United States
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Stefan Brocke
- Department of Immunology, UConn Health, United States.
| |
Collapse
|
22
|
Vang AG, Basole C, Dong H, Nguyen RK, Housley W, Guernsey L, Adami AJ, Thrall RS, Clark RB, Epstein PM, Brocke S. Differential Expression and Function of PDE8 and PDE4 in Effector T cells: Implications for PDE8 as a Drug Target in Inflammation. Front Pharmacol 2016; 7:259. [PMID: 27601994 PMCID: PMC4993990 DOI: 10.3389/fphar.2016.00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/02/2016] [Indexed: 11/22/2022] Open
Abstract
Abolishing the inhibitory signal of intracellular cAMP is a prerequisite for effector T (Teff) cell function. The regulation of cAMP within leukocytes critically depends on its degradation by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE8A, a PDE isoform with 40–100-fold greater affinity for cAMP than PDE4, is selectively expressed in Teff vs. regulatory T (Treg) cells and controls CD4+ Teff cell adhesion and chemotaxis. Here, we determined PDE8A expression and function in CD4+ Teff cell populations in vivo. Using magnetic bead separation to purify leukocyte populations from the lung draining hilar lymph node (HLN) in a mouse model of ovalbumin-induced allergic airway disease (AAD), we found by Western immunoblot and quantitative (q)RT-PCR that PDE8A protein and gene expression are enhanced in the CD4+ T cell fraction over the course of the acute inflammatory disease and recede at the late tolerant non-inflammatory stage. To evaluate PDE8A as a potential drug target, we compared the selective and combined effects of the recently characterized highly potent PDE8-selective inhibitor PF-04957325 with the PDE4-selective inhibitor piclamilast (PICL). As previously shown, PF-04957325 suppresses T cell adhesion to endothelial cells. In contrast, we found that PICL alone increased firm T cell adhesion to endothelial cells by ~20% and significantly abrogated the inhibitory effect of PF-04957325 on T cell adhesion by over 50% when cells were co-exposed to PICL and PF-04957325. Despite its robust effect on T cell adhesion, PF-04957325 was over two orders of magnitude less efficient than PICL in suppressing polyclonal Teff cell proliferation, and showed no effect on cytokine gene expression in these cells. More importantly, PDE8 inhibition did not suppress proliferation and cytokine production of myelin-antigen reactive proinflammatory Teff cells in vivo and in vitro. Thus, targeting PDE8 through PF-04957325 selectively regulates Teff cell interactions with endothelial cells without marked immunosuppression of proliferation, while PDE4 inhibition has partially opposing effects. Collectively, our data identify PF-04957325 as a novel function-specific tool for the suppression of Teff cell adhesion and indicate that PDE4 and PDE8 play unique and non-redundant roles in the control of Teff cell functions.
Collapse
Affiliation(s)
- Amanda G Vang
- Department of Immunology, University of Connecticut Health CenterFarmington, CT, USA; Department of Diagnostic Medicine, National Hospital of the Faroe IslandsTórshavn, Faroe Islands
| | - Chaitali Basole
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Hongli Dong
- Department of Cell Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Rebecca K Nguyen
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - William Housley
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Linda Guernsey
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Alexander J Adami
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Roger S Thrall
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Paul M Epstein
- Department of Cell Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Stefan Brocke
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
23
|
Yan K, Gao LN, Cui YL, Zhang Y, Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol Med Rep 2016; 13:3715-23. [PMID: 27035868 PMCID: PMC4838136 DOI: 10.3892/mmr.2016.5005] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
During development of disease, complex intracellular signaling pathways regulate an intricate series of events, including resistance to external toxins, the secretion of cytokines and the production of pathological phenomena. Adenosine 3′,5′-cyclic monophosphate (cAMP) is a nucleotide that acts as a key second messenger in numerous signal transduction pathways. cAMP regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression. This review aimed to provide an understanding of the effects of the cAMP signaling pathway and the associated factors on disease occurrence and development by examining the information from a new perspective. These novel insights aimed to promote the development of novel therapeutic approaches and aid in the development of new drugs.
Collapse
Affiliation(s)
- Kuo Yan
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Li-Na Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yuan-Lu Cui
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yi Zhang
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xin Zhou
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
24
|
Inhibition of breast cancer cell migration by activation of cAMP signaling. Breast Cancer Res Treat 2015; 152:17-28. [PMID: 26022351 DOI: 10.1007/s10549-015-3445-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/23/2015] [Indexed: 01/05/2023]
Abstract
Almost all deaths from breast cancer arise from metastasis of the transformed cells to other sites in the body. Hence, uncovering a means of inhibiting breast cancer cell migration would provide a significant advance in the treatment of this disease. Stimulation of the cAMP signaling pathway has been shown to inhibit migration and motility of a number of cell types. A very effective way of selectively stimulating cAMP signaling is through inhibition of cyclic nucleotide phosphodiesterases (PDEs). Therefore, we examined full expression profiles of all known PDE genes at the mRNA and protein levels in four human breast cancer cell lines and eight patients' breast cancer tissues. By these analyses, expression of almost all PDE genes was seen in both cell lines and tissues. In the cell lines, appreciable expression was seen for PDEs 1C, 2A, 3B, 4A, 4B, 4D, 5A, 6B, 6C, 7A, 7B, 8A, 9A, 10A, and 11A. In patients' tissues, appreciable expression was seen for PDEs 1A, 3B, 4A, 4B, 4C, 4D, 5A, 6B, 6C, 7A, 7B, 8A, 8B, and 9A. PDE8A mRNA in particular is prominently expressed in all cell lines and patients' tissue samples examined. We show here that stimulation of cAMP signaling with cAMP analogs, forskolin, and PDE inhibitors, including selective inhibitors of PDE3, PDE4, PDE7, and PDE8, inhibit aggressive triple negative MDA-MB-231 breast cancer cell migration. Under the same conditions, these agents had little effect on breast cancer cell proliferation. This study demonstrates that PDE inhibitors inhibit breast cancer cell migration, and thus may be valuable therapeutic targets for inhibition of breast cancer metastasis. Since PDE8A is expressed in all breast cancer samples, and since dipyridamole, which inhibits PDE8, and PF-04957325, a selective PDE8 inhibitor, both inhibit migration, it suggests that PDE8A may be a valuable novel target for treatment of this disease.
Collapse
|
25
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Otero C, Peñaloza JP, Rodas PI, Fernández-Ramires R, Velasquez L, Jung JE. Temporal and spatial regulation of cAMP signaling in disease: role of cyclic nucleotide phosphodiesterases. Fundam Clin Pharmacol 2014; 28:593-607. [PMID: 24750474 DOI: 10.1111/fcp.12080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Since its discovery, cAMP has been proposed as one of the most versatile second messengers. The remarkable feature of cAMP to tightly control highly diverse physiological processes, including metabolism, homeostasis, secretion, muscle contraction, cell proliferation and migration, immune response, and gene transcription, is reflected by millions of different articles worldwide. Compartmentalization of cAMP in space and time, maintained by mainly phosphodiesterases, contributes to the maintenance of equilibrium inside the cell where one signal can trigger many different events. Novel cAMP sensors seem to carry out certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Measuring space and time events with biosensors will increase our current knowledge on the pathophysiology of diseases, such as chronic obstructive pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart failure. Further insights into the cAMP dynamics will help to optimize the pharmacological treatment for these diseases.
Collapse
Affiliation(s)
- Carolina Otero
- Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
27
|
Lysko DE, Putt M, Golden JA. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules. J Neurosci 2014; 34:4941-62. [PMID: 24695713 PMCID: PMC3972721 DOI: 10.1523/jneurosci.4351-12.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/21/2022] Open
Abstract
Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.
Collapse
Affiliation(s)
- Daniel E. Lysko
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mary Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jeffrey A. Golden
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
28
|
Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35:195-233. [PMID: 24311737 PMCID: PMC3963262 DOI: 10.1210/er.2013-1053] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases.
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology Genetics (M.F.A., F.R.F., E.B., A.H., I.L., R.B.d.A., C.A.S.), Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892; Section of Endocrinology (M.F.A.), University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia 70840-901, Brazil; Group for Advanced Molecular Investigation (F.R.F., R.B.d.A.), Graduate Program in Health Science, Medical School, Pontificia Universidade Catolica do Paraná, Curitiba 80215-901, Brazil; Cardiovascular Pulmonary Branch (F.A., V.M.), National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892; and Pediatric Endocrinology Inter-Institute Training Program (C.A.S.), NICHD, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hall R. Identification of Inflammatory Mediators and Their Modulation by Strategies for the Management of the Systemic Inflammatory Response During Cardiac Surgery. J Cardiothorac Vasc Anesth 2013; 27:983-1033. [DOI: 10.1053/j.jvca.2012.09.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 12/21/2022]
|
30
|
Demirbas D, Wyman AR, Shimizu-Albergine M, Cakici O, Beavo JA, Hoffman CS. A yeast-based chemical screen identifies a PDE inhibitor that elevates steroidogenesis in mouse Leydig cells via PDE8 and PDE4 inhibition. PLoS One 2013; 8:e71279. [PMID: 23967182 PMCID: PMC3743849 DOI: 10.1371/journal.pone.0071279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/04/2013] [Indexed: 02/01/2023] Open
Abstract
A cell-based high-throughput screen (HTS) was developed to detect phosphodiesterase 8 (PDE8) and PDE4/8 combination inhibitors. By replacing the Schizosaccharomyces pombe PDE gene with the murine PDE8A1 gene in strains lacking adenylyl cyclase, we generated strains whose protein kinase A (PKA)-stimulated growth in 5-fluoro orotic acid (5FOA) medium reflects PDE8 activity. From our previously-identified PDE4 and PDE7 inhibitors, we identified a PDE4/8 inhibitor that allowed us to optimize screening conditions. Of 222,711 compounds screened, ∼0.2% displayed composite Z scores of >20. Additional yeast-based assays using the most effective 367 compounds identified 30 candidates for further characterization. Among these, compound BC8-15 displayed the lowest IC₅₀ value for both PDE4 and PDE8 inhibition in in vitro enzyme assays. This compound also displays significant activity against PDE10A and PDE11A. BC8-15 elevates steroidogenesis in mouse Leydig cells as a single pharmacological agent. Assays using BC8-15 and two structural derivatives support a model in which PDE8 is a primary regulator of testosterone production by Leydig cells, with an additional role for PDE4 in this process. BC8-15, BC8-15A, and BC8-15C, which are commercially available compounds, display distinct patterns of activity against PDE4, PDE8, PDE10A, and PDE11A, representing a chemical toolkit that could be used to examine the biological roles of these enzymes in cell culture systems.
Collapse
Affiliation(s)
- Didem Demirbas
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Arlene R. Wyman
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Masami Shimizu-Albergine
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Ozgur Cakici
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Joseph A. Beavo
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) is a key activator of the ERK pathway and is a target for cross-regulation of this pathway by the cAMP signaling system. The cAMP-activated protein kinase, PKA, inhibits Raf-1 by phosphorylation on S259. Here, we show that the cAMP-degrading phosphodiesterase-8A (PDE8A) associates with Raf-1 to protect it from inhibitory phosphorylation by PKA, thereby enhancing Raf-1's ability to stimulate ERK signaling. PDE8A binds to Raf-1 with high (picomolar) affinity. Mapping of the interaction domain on PDE8A using peptide array technology identified amino acids 454-465 as the main binding site, which could be disrupted by mutation. A cell-permeable peptide corresponding to this region disrupted the PDE8A/Raf-1 interaction in cells, thereby reducing ERK activation and the cellular response to EGF. Overexpression of a catalytically inactive PDE8A in cells displayed a dominant negative phenotype on ERK activation. These effects were recapitulated at the organism level in genetically modified (PDE8A(-/-)) mice. Similarly, PDE8 deletion in Drosophila melanogaster reduced basal ERK activation and sensitized flies to stress-induced death. We propose that PDE8A is a physiological regulator of Raf-1 signaling in some cells.
Collapse
|
32
|
Noel S, Dhooghe B, Leal T. PDE5 Inhibitors as Potential Tools in the Treatment of Cystic Fibrosis. Front Pharmacol 2012; 3:167. [PMID: 23024633 PMCID: PMC3444771 DOI: 10.3389/fphar.2012.00167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/24/2012] [Indexed: 12/31/2022] Open
Abstract
Despite great advances in the understanding of the genetics and pathophysiology of cystic fibrosis (CF), there is still no cure for the disease. Using phosphodiesterase type 5 (PDE5) inhibitors, we and others have provided evidence of rescued F508del-CFTR trafficking and corrected deficient chloride transport activity. Studies using PDE5 inhibitors in mice homozygous for the clinically relevant F508del mutation have been conducted with the aim of restoring F508del-CFTR protein function. We demonstrated, by measuring transepithelial nasal potential difference in F508del mice following intraperitoneal injection of sildenafil, vardenafil, or taladafil at clinical doses are able to restore the decreased CFTR-dependent chloride transport across the nasal mucosa. Moreover, vardenafil, but not sildenafil, stimulates chloride transport through the normal CFTR protein. We developed a specific nebulizer setup for mice, with which we demonstrated, through a single inhalation of PDE5 inhibitors, local activation of CFTR protein in CF. Significant potential advantages of inhalation drug therapy over oral or intravenous routes include rapid onset of pharmacological action, reduced systemic secondary effects, and reduced effective drug doses compared to the drug delivered orally; this underlines the relevance and impact of our work for translational science. More recently, we analyzed the bronchoalveolar lavage of CF and wild-type mice for cell infiltrates and expression of pro-inflammatory cytokines and chemokines; we found that the CFTR activating effect of vardenafil, selected as a representative long-lasting PDE5 inhibitor, breaks the vicious circle of lung inflammation which plays a major role in morbi-mortality in CF. Our data highlight the potential use of PDE5 inhibitors in CF. Therapeutic approaches using clinically approved PDE5 inhibitors to address F508del-CFTR defects could speed up the development of new therapies for CF.
Collapse
Affiliation(s)
- Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, Université Catholique de Louvain Brussels, Belgium
| | | | | |
Collapse
|
33
|
Abstract
The main function of cyclic AMP phosphodiesterases (PDEs) is to degrade cAMP, a ubiquitous second messenger. Therefore, PDEs can function as prime regulators of cAMP/PKA-dependent processes such as steroidogenesis. Until recently, the roles of the PDE8 family have been largely unexplored, presumably due to the lack of a selective inhibitor. This review focuses on recent reports about the regulatory roles of the PDE8 family in adrenal steroidogenesis, as well as the inhibitory properties and specificity of a new PDE8-selective inhibitor, PF-04957325. We also describe a method of measuring urinary corticosterone levels in vivo as a minimally invasive way of monitoring the stress level in a mouse.
Collapse
Affiliation(s)
- L-C L Tsai
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | |
Collapse
|
34
|
Brown KM, Lee LCY, Findlay JE, Day JP, Baillie GS. Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation. FEBS Lett 2012; 586:1631-7. [PMID: 22673573 DOI: 10.1016/j.febslet.2012.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 02/06/2023]
Abstract
The cyclic AMP-specific phosphodiesterase PDE8 has been shown to play a pivotal role in important processes such as steroidogenesis, T cell adhesion, regulation of heart beat and chemotaxis. However, no information exists on how the activity of this enzyme is regulated. We show that under elevated cAMP conditions, PKA acts to phosphorylate PDE8A on serine 359 and this action serves to enhance the activity of the enzyme. This is the first indication that PDE8 activity can be modulated by a kinase, and we propose that this mechanism forms a feedback loop that results in the restoration of basal cAMP levels.
Collapse
Affiliation(s)
- Kim M Brown
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
35
|
Shimizu-Albergine M, Tsai LCL, Patrucco E, Beavo JA. cAMP-specific phosphodiesterases 8A and 8B, essential regulators of Leydig cell steroidogenesis. Mol Pharmacol 2012; 81:556-66. [PMID: 22232524 PMCID: PMC3310417 DOI: 10.1124/mol.111.076125] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/05/2012] [Indexed: 01/12/2023] Open
Abstract
Phosphodiesterase (PDE) 8A and PDE8B are high-affinity, cAMP-specific phosphodiesterases that are highly expressed in Leydig cells. PDE8A is largely associated with mitochondria, whereas PDE8B is broadly distributed in the cytosol. We used a new, PDE8-selective inhibitor, PF-04957325, and genetically ablated PDE8A(-/-), PDE8B(-/-) and PDE8A(-/-)/B(-/-) mice to determine roles for these PDEs in the regulation of testosterone production. PF-04957325 treatment of WT Leydig cells or MA10 cells increased steroid production but had no effect in PDE8A (-/-)/B(-/-) double-knockout cells, confirming the selectivity of the drug. Moreover, under basal conditions, cotreatment with PF-04957325 plus rolipram, a PDE4-selective inhibitor, synergistically potentiated steroid production. These results suggest that the pool(s) of cAMP regulating androgen production are controlled by PDE8s working in conjunction with PDE4. Likewise, PDE8A (-/-)/B(-/-) cells had higher testosterone production than cells from either PDE8A(-/-) or PDE8B(-/-) mice, suggesting that both PDE8s work in concert to regulate steroid production. We further demonstrate that combined inhibition of PDE8s and PDE4 greatly increased PKA activity including phosphorylation of cholesterol-ester hydrolase (CEH)/hormone-sensitive lipase (HSL). CEH/HSL phosphorylation also was increased in PDE8A(-/-)/B(-/-) cells compared with WT cells. Finally, combined inhibition of PDE8s and PDE4 increased the expression of steroidogenic acute regulatory (StAR) protein. Together these findings suggest that both PDE8A and PDE8B play essential roles to maintain low cAMP levels, thereby suppressing resting steroidogenesis by keeping CEH/HSL inactive and StAR protein expression low. They also suggest that in order for PDE inhibitor therapy to be an effective stimulator of steroidogenesis, both PDE8 isozymes and PDE4 need to be simultaneously targeted.
Collapse
|
36
|
Role of CD11b/CD18 in the process of intoxication by the adenylate cyclase toxin of Bordetella pertussis. Infect Immun 2011; 80:850-9. [PMID: 22144488 DOI: 10.1128/iai.05979-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The adenylate cyclase toxin (ACT) of Bordetella pertussis does not require a receptor to generate intracellular cyclic AMP (cAMP) in a broad range of cell types. To intoxicate cells, ACT binds to the cell surface, translocates its catalytic domain across the cell membrane, and converts intracellular ATP to cAMP. In cells that express the integrin CD11b/CD18 (CR3), ACT is more potent than in CR3-negative cells. We find, however, that the maximum levels of cAMP accumulation inside CR3-positive and -negative cells are comparable. To better understand how CR3 affects the generation of cAMP, we used Chinese hamster ovary and K562 cells transfected to express CR3 and examined the steps in intoxication in the presence and absence of the integrin. The binding of ACT to cells is greater in CR3-expressing cells at all concentrations of ACT, and translocation of the catalytic domain is enhanced by CR3 expression, with ∼80% of ACT molecules translocating their catalytic domain in CR3-positive cells but only 25% in CR3-negative cells. Once in the cytosol, the unregulated catalytic domain converts ATP to cAMP, and at ACT concentrations >1,000 ng/ml, the intracellular ATP concentration is <5% of that in untreated cells, regardless of CR3 expression. This depletion of ATP prevents further production of cAMP, despite the CR3-mediated enhancement of binding and translocation. In addition to characterizing the effects of CR3 on the actions of ACT, these data show that ATP consumption is yet another concentration-dependent activity of ACT that must be considered when studying how ACT affects target cells.
Collapse
|
37
|
Divergent actions by inhibitors of DP IV and APN family enzymes on CD4+ Teff cell motility and functions. Immunobiology 2011; 216:1295-301. [DOI: 10.1016/j.imbio.2011.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/03/2011] [Indexed: 01/17/2023]
|
38
|
Kruse LS, Møller M, Kruuse C. Distribution of PDE8A in the nervous system of the Sprague-Dawley rat. J Chem Neuroanat 2011; 42:184-91. [DOI: 10.1016/j.jchemneu.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 12/01/2022]
|
39
|
PDE8 regulates rapid Teff cell adhesion and proliferation independent of ICER. PLoS One 2010; 5:e12011. [PMID: 20711499 PMCID: PMC2918507 DOI: 10.1371/journal.pone.0012011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 07/01/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs) is a prerequisite for effector T (Teff) cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions. METHODOLOGY/PRINCIPAL FINDINGS We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP) activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem-/- mice lacking the inducible cAMP early repressor (ICER). Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection. CONCLUSION/SIGNIFICANCE Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells.
Collapse
|
40
|
Savai R, Pullamsetti SS, Banat GA, Weissmann N, Ghofrani HA, Grimminger F, Schermuly RT. Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs 2010; 19:117-31. [PMID: 20001559 DOI: 10.1517/13543780903485642] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD For many cancers, there has been a shift from management with traditional, nonspecific cytotoxic chemotherapies to treatment with molecule-specific targeted therapies that are used either alone or in combination with traditional chemotherapy and radiation therapy. Accumulating data suggest that multi-targeted agents may produce greater benefits than those observed with single-targeted therapies, may have acceptable tolerability profiles, and may be active against a broader range of tumour types. Thus, regulation of cyclic nucleotide signalling is properly regarded as a composite of multiple component pathways involved in diverse aspects of tumour cell function. The impairment of cAMP and/or cGMP generation by overexpression of PDE isoforms that has been described in various cancer pathologies, and the effects of PDE inhibitors in tumour models in vitro and in vivo, may offer promising insight into future cancer treatments because of the numerous advantages of PDE inhibitors. AREAS COVERED IN THIS REVIEW In this review, we focus on the expression and regulation of cyclic nucleotide phosphodiesterases (PDEs) in tumour progression and provide evidence that PDE inhibitors may be effective agents for treating cancer; the review covers literature from the past several years. WHAT THE READER WILL GAIN PDEs have been studied in a variety of tumours; data have suggested that the levels of PDE activity are elevated and, therefore, the ratio of cGMP to cAMP is affected. In addition, PDE inhibitors may be potential targets for tumour cell growth inhibition and induction of apoptosis. This review explores the prospects of targeting PDEs with therapeutic agents for cancer, as well as the shortcomings of this approach such as dose-limiting side effects, toxicity/efficacy ratio and selectivity towards tumour tissue. In addition, it includes opinions and suggestion for developing PDE inhibition for cancer treatment from initial concept to potential therapeutic application and final relevance in clinical use. TAKE HOME MESSAGE Impaired cAMP and/or cGMP generation upon overexpression of PDE isoforms has been described in various cancer pathologies. Inhibition of selective PDE isoforms, which raises the levels of intracellular cAMP and/or cGMP, induces apoptosis and cell cycle arrest in a broad spectrum of tumour cells and regulates the tumour microenvironment. Therefore, the development and clinical application of inhibitors specific for individual PDE isoenzymes may selectively restore normal intracellular signalling, providing antitumour therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Rajkumar Savai
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodelling, Bad Nauheim, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol 2009; 47:678-84. [PMID: 19939455 DOI: 10.1016/j.molimm.2009.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/23/2009] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Treg) are crucial for the suppression of antigen-specific immune responses by activated conventional T cells (Tcon). It has been recently reported that this suppression is mediated by cyclic adenosine monophosphate (cAMP) transported from Treg to Tcon via gap junctions. However, the underlying biochemical mechanisms of cAMP accumulation in activated Treg are still unclear. Here we reported that although non-activated murine Treg and Tcon displayed similar intracellular cAMP amounts, both subpopulations showed distinct expression of enzymes regulating cAMP metabolism. Thus, in Treg, activities of both anabolic (adenylyl cyclase, AC) and catabolic (phosphodiesterase, PDE) enzymes were lower than in Tcon. Furthermore, we demonstrated for the first time the expression of the PDE11 protein in murine Treg and Tcon. Treg activation by IL-2 induced a strong AC7 activation and cAMP accumulation in Treg. In contrast, Tcon showed a significant decrease in the AC7 activity and cAMP amounts under these conditions. Our data suggest that the mechanism of cAMP accumulation in stimulated Treg involves the AC7 activation and provide new insight into the modulation of Treg activities via AC inhibition or stimulation in various pathological processes like tumor and autoimmune diseases.
Collapse
Affiliation(s)
- Alexandr V Bazhin
- Skin Cancer Unit, German Cancer Research Center and University Hospital Mannheim, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
42
|
Corda D, Zizza P, Varone A, Filippi BM, Mariggiò S. The glycerophosphoinositols: cellular metabolism and biological functions. Cell Mol Life Sci 2009; 66:3449-67. [PMID: 19669618 PMCID: PMC11115907 DOI: 10.1007/s00018-009-0113-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/26/2009] [Accepted: 07/16/2009] [Indexed: 12/25/2022]
Abstract
The glycerophosphoinositols are cellular products of phospholipase A(2) and lysolipase activities on the membrane phosphoinositides. Their intracellular concentrations can vary upon oncogenic transformation, cell differentiation and hormonal stimulation. Specific glycerophosphodiester phosphodiesterases are involved in their catabolism, which, as with their formation, is under hormonal regulation. With their mechanisms of action including modulation of adenylyl cyclase, intracellular calcium levels, and Rho-GTPases, the glycerophosphoinositols have diverse effects in multiple cell types: induction of cell proliferation in thyroid cells; modulation of actin cytoskeleton organisation in fibroblasts; and reduction of the invasive potential of tumour cell lines. More recent investigations include their effects in inflammatory and immune responses. Indeed, the glycerophosphoinositols enhance cytokine-dependent chemotaxis in T-lymphocytes induced by SDF-1alpha-receptor activation, indicating roles for these compounds as modulators of T-cell signalling and T-cell responses.
Collapse
Affiliation(s)
- Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Pasquale Zizza
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Alessia Varone
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Beatrice Maria Filippi
- Present Address: MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| |
Collapse
|
43
|
Dong H, Zitt C, Auriga C, Hatzelmann A, Epstein PM. Inhibition of PDE3, PDE4 and PDE7 potentiates glucocorticoid-induced apoptosis and overcomes glucocorticoid resistance in CEM T leukemic cells. Biochem Pharmacol 2009; 79:321-9. [PMID: 19737543 DOI: 10.1016/j.bcp.2009.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/26/2022]
Abstract
Stimulation of the cAMP signaling pathway has been shown to induce apoptosis and augment the effects of glucocorticoids in inducing apoptosis in leukemic cells. We recently reported that in primary B cell chronic lymphocytic leukemic (B-CLL) cells, apoptosis could be induced by stimulating the cAMP signaling pathway with a phosphodiesterase4 (PDE4) inhibitor alone; while in contrast, in the CEM T leukemic cell line, PDE4 inhibitors alone were ineffective, and concurrent stimulation of adenylyl cyclase was required to see effects [Tiwari et al. (2005)]. We report here that in the CEM and Jurkat T leukemic cell lines, the most abundantly expressed PDEs are PDE3B, PDE4A, PDE4D, PDE7A, and PDE8A. Selective inhibition of PDE3, PDE4 or PDE7 alone produces little effect on cell viability, but inhibition of all three of these PDEs together dramatically enhances glucocorticoid-induced apoptosis in CEM cells, and overcomes glucocorticoid resistance in a glucocorticoid-resistant CEM cell line. These studies indicate that for some leukemic cell types, a desired therapeutic effect may be achieved by inhibiting more than one form of PDE.
Collapse
Affiliation(s)
- Hongli Dong
- Signal Transduction Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-6125, USA
| | | | | | | | | |
Collapse
|
44
|
Sasseville M, Albuz FK, Côté N, Guillemette C, Gilchrist RB, Richard FJ. Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol Reprod 2009; 81:415-25. [PMID: 19357367 DOI: 10.1095/biolreprod.108.074450] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The phosphodiesterase (PDE) family is a group of enzymes that catalyzes the transformation of cyclic nucleotides into 5' nucleotides. Based on rodents, the current mammalian model of PDE distribution in the ovarian follicle predicts Pde3a in the oocyte and Pde4d in the somatic cells. Using bovine as an experimental model, the present results showed that PDE3 was the predominant PDE activity in oocytes. However, cumulus cell cAMP-PDE activity was predominantly resistant to inhibition by 3-isobutyl-methylxantine, indicating PDE8 activity (60% of total PDE activity) and a minor role for PDE4 (<5%). A total of 20% of total oocyte PDE activity was also attributed to PDE8. The PDE activity measurements in mural granulosa cells from 2 to 6 mm in diameter suggest the presence of PDE4 and PDE8. In granulosa cells from follicles >10 mm, total PDE and PDE8 activities along with PDE8A protein level were increased compared with smaller follicles. The RT-PCR experiments showed that cumulus cells expressed PDE8A, PDE8B, and PDE10A. Western blot experiments showed PDE8A, PDE8B, and PDE4D proteins in mural granulosa cells and cumulus-oocyte complexes. PDE8 inhibition using dipyridamole in a dose-dependent manner increased cAMP levels in the cumulus-oocyte complexes and delayed oocyte nuclear maturation. These results are the first to demonstrate the functional presence of PDE8 in the mammalian ovarian follicle. This challenges the recently described cell-specific expression of cAMP-PDEs in the ovarian follicle and the notion that PDE4 is the predominant granulosa/cumulus cell PDE. These findings have implications for our understanding of hormonal regulation of folliculogenesis and the potential application of PDE inhibitors as novel contraceptives.
Collapse
Affiliation(s)
- Maxime Sasseville
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Wang H, Yan Z, Yang S, Cai J, Robinson H, Ke H. Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity. Biochemistry 2008; 47:12760-8. [PMID: 18983167 PMCID: PMC2646200 DOI: 10.1021/bi801487x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterase-8 (PDE8) is a family of cAMP-specific enzymes and plays important roles in many biological processes, including T-cell activation, testosterone production, adrenocortical hyperplasia, and thyroid function. However, no PDE8 selective inhibitors are available for trial treatment of human diseases. Here we report kinetic properties of the highly active PDE8A1 catalytic domain prepared from refolding and its crystal structures in the unliganded and 3-isobutyl-1-methylxanthine (IBMX) bound forms at 1.9 and 2.1 A resolutions, respectively. The PDE8A1 catalytic domain has a K(M) of 1.8 microM, V(max) of 6.1 micromol/min/mg, a k(cat) of 4.0 s(-1) for cAMP, and a K(M) of 1.6 mM, V(max) of 2.5 micromol/min/mg, a k(cat) of 1.6 s(-1) for cGMP, thus indicating that the substrate specificity of PDE8 is dominated by K(M). The structure of the PDE8A1 catalytic domain has similar topology as those of other PDE families but contains two extra helices around Asn685-Thr710. Since this fragment is distant from the active site of the enzyme, its impact on the catalysis is unclear. The PDE8A1 catalytic domain is insensitive to the IBMX inhibition (IC(50) = 700 microM). The unfavorable interaction of IBMX in the PDE8A1-IBMX structure suggests an important role of Tyr748 in the inhibitor binding. Indeed, the mutation of Tyr748 to phenylalanine increases the PDE8A1 sensitivity to several nonselective or family selective PDE inhibitors. Thus, the structural and mutagenesis studies provide not only insight into the enzymatic properties but also guidelines for design of PDE8 selective inhibitors.
Collapse
Affiliation(s)
- Huanchen Wang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Zier Yan
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
- Laboratory of Structure Biology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Serena Yang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jiwen Cai
- Laboratory of Structure Biology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
- Laboratory of Structure Biology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
46
|
Refolding and kinetic characterization of the phosphodiesterase-8A catalytic domain. Protein Expr Purif 2008; 64:82-8. [PMID: 18984055 DOI: 10.1016/j.pep.2008.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/21/2022]
Abstract
Cyclic nucleotide phosphodiesterase-8 (PDE8) hydrolyzes the second messenger cAMP and is involved in many biological processes such as testosterone production. Although the bacterial and mammalian expression systems have been extensively tried, production of large quantity of soluble and active PDE8 remains to be a major hurdle for pharmacological and structural studies. Reported here is a detailed protocol of refolding and purification of large quantity of the PDE8A1 catalytic domain (residues 480-820) and kinetic characterization of the refolded protein. This protocol yielded about 8 mg of the PDE8A catalytic domain from 2l Escherichia coli culture, which has at least 40-fold higher activity than those reported in literature. The PDE8A1 catalytic domain has k(cat) of 4.0 s(-1) for Mn(2+) and 2.9s(-1) for Mg(2+), and the K(M) values of 1-1.8 microM. In addition, the PDE8A1 (205-820) fragment that contains both PAS and catalytic domains was expressed in E. coli and refolded. This PDE8A1 (205-820) fragment has k(cat) of 1.1 s(-1) and K(M) of 0.28 microM, but aggregated at high concentration. The K(M) of PDE8A1 (205-820) is 2- to 7-fold higher than the K(M) values of 40-150 nM for the full-length PDE8s in literature, but about 6-fold lower than that of the catalytic domain. Thus, the K(M) difference likely implies an allosteric regulation of the PDE8A activity by its PAS domain.
Collapse
|
47
|
Tan X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol 2008; 19:1741-1752. [PMID: 18525004 PMCID: PMC2518439 DOI: 10.1681/asn.2007060666] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 04/08/2008] [Indexed: 02/05/2023] Open
Abstract
Inflammation is a pathologic feature of a variety of chronic kidney diseases. Several lines of evidence suggest a potential anti-inflammatory role for vitamin D in chronic kidney disease, but the underlying mechanism remains unknown. Here, the effect of the synthetic vitamin D analogue paricalcitol on renal inflammation was investigated in a mouse model of obstructive nephropathy. Paricalcitol reduced infiltration of T cells and macrophages in the obstructed kidney. This inhibition of inflammatory cell infiltration was accompanied by a decreased expression of RANTES and TNF-alpha. Induction of RANTES was localized primarily to the tubular epithelium, underscoring a role for tubular cells in renal inflammation. In a human proximal tubular cell line (HKC-8), paricalcitol inhibited RANTES mRNA and protein expression and abolished the ability of tubular cells to recruit lymphocytes and monocytes after TNF-alpha stimulation. Although RANTES induction depended on NF-kappaB signaling, paricalcitol affected neither TNF-alpha-mediated IkappaB alpha phosphorylation and degradation nor p65 NF-kappaB activation and nuclear translocation. Instead, chromatin immunoprecipitation assay showed that paricalcitol abolished the binding of p65 to its cognate cis-acting element in the RANTES promoter. The vitamin D receptor (VDR) and p65 formed a complex in tubular cells after paricalcitol treatment, which inhibited the ability of p65 to trans-activate gene transcription. In vivo, paricalcitol did not block NF-kappaB nuclear translocation after obstructive injury but did increase the expression and nuclear distribution of VDR. These results suggest that paricalcitol inhibits renal inflammatory infiltration and RANTES expression by promoting VDR-mediated sequestration of NF-kappaB signaling.
Collapse
Affiliation(s)
- Xiaoyue Tan
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
48
|
Abstract
Dipyridamole (DP) is a phosphodiesterase inhibitor that increases the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanine monophosphate (cGMP) by preventing their conversion to AMP and GMP, respectively. By increasing cAMP and cGMP levels in platelets, DP reversibly inhibits platelet aggregation and platelet-mediated thrombotic disease. In addition, DP may potentiate some of the vascular protective effects of endothelium-derived nitric oxide (NO), which increases cGMP by stimulating soluble guanylyl cyclase. Endothelium-derived NO is an important regulator of vascular tone, blood flow, and tissue perfusion. Indeed, endothelial NO synthase-deficient (eNOS-/-) mice exhibit elevated systemic blood pressure and have larger myocardial and cerebral infarct size after ischemic injury. Other NO/cGMP-dependent effects that may be potentiated by DP include inhibition of vascular smooth muscle proliferation and prevention of endothelial-leukocyte interaction. In addition, DP increases local concentrations of adenosine and prostacyclin, which could affect vascular tone and inflammation. Finally, DP has antioxidant properties, which could stabilize platelet and vascular membranes as well as prevent the oxidation of low-density lipoprotein. These platelet and nonplatelet actions of DP may contribute to some of its therapeutic benefits in vascular disease.
Collapse
Affiliation(s)
- Hyung-Hwan Kim
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
49
|
Patrussi L, Baldari CT. Intracellular mediators of CXCR4-dependent signaling in T cells. Immunol Lett 2007; 115:75-82. [PMID: 18054087 DOI: 10.1016/j.imlet.2007.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 01/03/2023]
Abstract
The signaling pathways induced in T lymphocytes by CXCR4-CXCL12 interaction, which lead to the cytoskeletal macro-rearrangements observable in migrating cells, are as yet largely uncharacterized. The aim of this review is to briefly summarize the current knowledge of the signaling machinery which controls the process of chemotaxis in CXCL12-stimulated T lymphocytes.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | | |
Collapse
|
50
|
Lorenowicz MJ, Fernandez-Borja M, Hordijk PL. cAMP signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 2007; 27:1014-22. [PMID: 17347487 DOI: 10.1161/atvbaha.106.132282] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The migration of leukocytes across the vascular endothelium is crucial for immunosurveillance as well as for inflammatory responses. Uncontrolled leukocyte transendothelial migration results in pathologies such as asthma, rheumatoid arthritis, and atherosclerosis. The molecular mechanisms that regulate leukocyte transendothelial migration involve signaling downstream of intracellular messengers such as cAMP, calcium, phosphoinositol lipids, or reactive oxygen species. Among these, cAMP is particularly intriguing because it is generated in both leukocytes and endothelial cells and regulates leukocyte chemotaxis as well as endothelial barrier function. In addition, physiological stimuli that induce cAMP production generate both pro- and antiinflammatory signals, underscoring the complexity of cAMP-driven signaling. This review discusses our current knowledge of the control of leukocyte transendothelial migration by two main cAMP effectors: protein kinase A and the Rap exchange factor Epac (Exchange protein directly activated by cAMP).
Collapse
Affiliation(s)
- Magdalena J Lorenowicz
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|