1
|
Kwun MS, Lee DG. Ferroptosis-Like Death Induction in Saccharomyces cerevisiae by Gold Nanoparticles. J Microbiol Biotechnol 2025; 35:e2501029. [PMID: 40295204 PMCID: PMC12089944 DOI: 10.4014/jmb.2501.01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
Ferroptosis, a novel form of regulated cell death (RCD), has emerged as a promising therapeutic strategy for cancer treatment. While gold nanoparticles (AuNPs) are known to induce cell death and ferroptosis in combination with certain antibiotics, the mechanisms underlying ferroptosis in microorganisms remain poorly understood. This study aimed to investigate whether AuNPs induce ferroptosis-like cell death in the eukaryotic microbe Saccharomyces cerevisiae. Our findings revealed that AuNPs significantly reduced cell viability in S. cerevisiae, suggesting their ability to trigger cell death. Ferroptosis-related precursors, including intracellular iron overload and depletion of glutathione (GSH), were observed, leading to the inactivation of glutathione peroxidase (GPx). These changes were associated with the accumulation of reactive oxygen species (ROS) and lipid peroxidation, which amplified oxidative stress within the cells. Elevated ROS levels and lipid peroxidation further resulted in membrane rupture and the formation of 8-hydroxydeoxyguanosine, indicating DNA damage. Mitochondrial dysfunction, a hallmark of ferroptosis, was also evident. AuNP treatment caused mitochondrial membrane potential hyperpolarization and a reduction in mitochondrial membrane density. Unlike previously characterized forms of RCD, ferroptosis-like death in S. cerevisiae did not involve chromatin condensation, DNA fragmentation, or metacaspase activation. Finally, ferroptosis-like characteristics were confirmed using Liperfluo, a lipid ROS-specific probe. In conclusion, this study demonstrated that AuNPs can induce ferroptosis-like cell death in S. cerevisiae. These findings highlight the potential of AuNPs as antifungal agents and contribute to the broader understanding of ferroptosis in eukaryotic microbes.
Collapse
Affiliation(s)
- Min Seok Kwun
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Wu Y, Shi H, Xu Y, Shu G, Xiao Y, Hong G, Xu S. Targeted Restoration of GPX3 Attenuates Renal Ischemia/Reperfusion Injury by Balancing Selenoprotein Expression and Inhibiting ROS-mediated Mitochondrial Apoptosis. Transplantation 2024; 108:2351-2365. [PMID: 38771110 DOI: 10.1097/tp.0000000000005068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Renal ischemia/reperfusion (IR) injury is the leading cause of acute kidney injury in both autologous and transplanted kidneys. Low-level glutathione peroxidase 3 (GPX3) is associated with renal IR injury. The exact mechanism of targeted GPX3 restoration in renal IR injury has yet to be determined. METHODS The distribution of GPX3 in different tissues and organs of the body was investigated. The level of GPX3 in renal IR injury was assessed. To confirm the action of GPX3 and its mechanisms, IR models were used to introduce adeno-associated virus 9 containing GPX3, as well as hypoxia/reoxygenation-exposed normal rat kidney cells that consistently overexpressed GPX3. Reverse molecular docking was used to confirm whether GPX3 was a target of ebselen. RESULTS GPX3 is abundant in the kidneys and decreases in expression during renal IR injury. GPX3 overexpression reduced renal IR injury and protected tubular epithelial cells from apoptosis. Proteomics analysis revealed a strong link between GPX3 and mitochondrial signaling, cellular redox state, and different expression patterns of selenoproteins. GPX3 inhibited reactive oxygen species-induced mitochondrial apoptosis and balanced the disordered expression of selenoproteins. GPX3 was identified as a stable selenoprotein that interacts with ebselen. Ebselen enhanced the level of GPX3 and reduced IR-induced mitochondrial damage and renal dysfunction. CONCLUSIONS Targeted restoration of GPX3 attenuates renal IR injury by balancing selenoprotein expression and inhibiting reactive oxygen species-mediated mitochondrial apoptosis, indicating that GPX3 could be a potential therapeutic target for renal IR injury.
Collapse
Affiliation(s)
- Yikun Wu
- Guizhou University Medical College, Guiyang, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hua Shi
- Department of Urology, Tongren City People's Hospital, Tongren, China
| | - Yuangao Xu
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Guofeng Shu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu Xiao
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guangyi Hong
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
3
|
Damoo D, Kretschmer M, Lee CWJ, Herrfurth C, Feussner I, Heimel K, Kronstad JW. Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2024; 25:e70007. [PMID: 39487654 PMCID: PMC11530707 DOI: 10.1111/mpp.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
Pathogens must efficiently acquire nutrients from host tissue to proliferate, and strategies to block pathogen access therefore hold promise for disease control. In this study, we investigated whether heme biosynthesis is an effective target for ablating the virulence of the phytopathogenic fungus Ustilago maydis on maize plants. We first constructed conditional heme auxotrophs of the fungus by placing the heme biosynthesis gene hem12 encoding uroporphyrinogen decarboxylase (Urod) under the control of nitrogen or carbon source-regulated promoters. These strains were heme auxotrophs under non-permissive conditions and unable to cause disease in maize seedlings, thus demonstrating the inability of the fungus to acquire sufficient heme from host tissue to support proliferation. Subsequent experiments characterized the role of endocytosis in heme uptake, the susceptibility of the fungus to heme toxicity as well as the transcriptional response to exogenous heme. The latter RNA-seq experiments identified a candidate ABC transporter with a role in the response to heme and xenobiotics. Given the importance of heme biosynthesis for U. maydis pathogenesis, we tested the ability of the well-characterized herbicide BroadStar to influence disease. This herbicide contains the active ingredient flumioxazin, an inhibitor of Hem14 in the heme biosynthesis pathway, and we found that it was an effective antifungal agent for blocking disease in maize. Thus, repurposing herbicides for which resistant plants are available may be an effective strategy to control pathogens and achieve crop protection.
Collapse
Affiliation(s)
- Djihane Damoo
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christopher W. J. Lee
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - Kai Heimel
- Institute of Microbiology and Genetics, Department of Microbial Cell Biology, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Raihan MT, Tanaka Y, Ishikawa T. Characterization of chloroplastic thioredoxin dependent glutathione peroxidase like protein in Euglena gracilis: biochemical and functional perspectives. Biosci Biotechnol Biochem 2024; 88:1034-1046. [PMID: 38925644 DOI: 10.1093/bbb/zbae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Euglena gracilis, a fascinating organism in the scientific realm, exhibits characteristics of both animals and plants. It maintains redox homeostasis through a variety of enzymatic and non-enzymatic antioxidant molecules. In contrast to mammals, Euglena possesses nonselenocysteine glutathione peroxidase homologues that regulate its intracellular pools of reactive oxygen species. In the present study, a full-length cDNA of chloroplastic EgGPXL-1 was isolated and subjected to biochemical and functional characterization. Recombinant EgGPXL-1 scavenged H2O2 and t-BOOH, utilizing thioredoxin as an electron donor rather than glutathione. Despite its monomeric nature, EgGPXL-1 exhibits allosteric behavior with H2O2 as the electron acceptor and follows typical Michaelis-Menten kinetics with t-BOOH. Suppression of EgGPXL-1 gene expression under normal and high-light conditions did not induce critical situations in E. gracilis, suggesting the involvement of compensatory mechanisms in restoring normal conditions.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yasuhiro Tanaka
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
5
|
Kwun MS, Lee DG. Ferroptosis-Like Death in Microorganisms: A Novel Programmed Cell Death Following Lipid Peroxidation. J Microbiol Biotechnol 2023; 33:992-997. [PMID: 37463851 PMCID: PMC10471485 DOI: 10.4014/jmb.2307.07002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Ferroptosis is a new kind of programmed cell death of which occurrence in microorganisms is not clearly verified. The elevated level of reactive oxygen species (ROS) influences cellular metabolisms through highly reactive hydroxyl radical formation under the iron-dependent Fenton reaction. Iron contributes to ROS production and acts as a cofactor for lipoxygenase to catalyze poly unsaturated fatty acid (PUFA) oxidation, exerting oxidative damage in cells. While ferroptosis is known to take place only in mammalian cells, recent studies discovered the possible ferroptosis-like death in few specific microorganisms. Capacity of integrating PUFA into intracellular membrane phospholipid has been considered as a key factor in bacterial or fungal ferroptosis-like death. Vibrio species in bacteria and Saccharomyces cerevisiae in fungi exhibited certain characteristics. Therefore, this review focus on introducing the occurrence of ferroptosis-like death in microorganisms and investigating the mode of action underlying the cells based on contribution of lipid peroxidation and iron-dependent reaction.
Collapse
Affiliation(s)
- Min Seok Kwun
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daehakro 80, Bukgu, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daehakro 80, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Kim JK, Park J, Ryu TH, Nili M. Effect of N-acetyl-l-cysteine on Saccharomyces cerevisiae irradiated with gamma-rays. CHEMOSPHERE 2013; 92:512-516. [PMID: 23623538 DOI: 10.1016/j.chemosphere.2013.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/05/2013] [Accepted: 02/17/2013] [Indexed: 06/02/2023]
Abstract
Ionizing radiation (IR) induces DNA strand breaks (DSBs), base damage, inhibition of protein activity, apoptosis by reactive oxygen species (ROS). Detoxification or removal of generated ROS can reduce oxidative damage. Antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase are immediately triggered for ROS scavenging. N-acetyl-l-cysteine (NAC) having a thiol, a precursor for reduced glutathione (GSH), is known as one of the antioxidants. In this study, the effect of NAC as an antioxidant and a radioprotector was investigated on survival rate, transcriptional level of antioxidant enzymes gene, and protein level including SOD activity and intracellular GSH in yeast Saccharomyces cerevisiae W303-1A strain mutated YBP1 gene irradiated with gamma-rays. NAC did not protect the gamma-ray-induced cell death. The gene expression of antioxidant enzymes including SOD1, SOD2, GPX1, and GPX2 was induced by gamma-rays. In contrast, the pretreatment of NAC reduced the expression of these genes. NAC reduced SOD activity and intracellular GSH level in yeast. These data suggest that NAC is able to reduce radiation-induced ROS levels in vivo but does not protect yeast cells against radiation-induced death.
Collapse
Affiliation(s)
- Jin Kyu Kim
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup 580-185, South Korea.
| | | | | | | |
Collapse
|
7
|
Wang H, Luo K, Tan LZ, Ren BG, Gu LQ, Michalopoulos G, Luo JH, Yu YP. p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3. J Biol Chem 2012; 287:16890-16902. [PMID: 22461624 PMCID: PMC3351337 DOI: 10.1074/jbc.m111.322636] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/28/2012] [Indexed: 11/06/2022] Open
Abstract
Expression of glutathione peroxidase 3 (GPx3) is down-regulated in a variety of human malignancies. Both methylation and deletion of GPx3 gene underlie the alterations of GPx3 expression in prostate cancer. A strong correlation between the down-regulation of GPx3 expression and progression of prostate cancer and the suppression of prostate cancer xenografts in SCID mice by forced expression of GPx3 suggests a tumor suppression role of GPx3 in prostate cancer. However, the mechanism of GPx3-mediated tumor suppression remains unclear. In this report, GPx3 was found to interact directly with p53-induced gene 3 (PIG3). Forced overexpression of GPx3 in prostate cancer cell lines DU145 and PC3 as well as immortalized prostate epithelial cells RWPE-1 increased apoptotic cell death. Expression of GPx3(x73c), a peroxidase-negative OPAL codon mutant, in DU145 and PC3 cells also increased cell death. The induced expression of GPx3 in DU145 and PC3 cells resulted in an increase in reactive oxygen species and caspase-3 activity. These activities were abrogated by either knocking down PIG3 or mutating the PIG3 binding motif in GPx3 or binding interference from a peptide corresponding to PIG3 binding motif in GPx3. In addition, UV-treated RWPE-1 cells underwent apoptotic death, which was partially prevented by knocking down GPx3 or PIG3, suggesting that GPx3-PIG3 signaling is critical for UV-induced apoptosis. Taken together, these results reveal a novel signaling pathway of GPx3-PIG3 in the regulation of cell death in prostate cancer.
Collapse
Affiliation(s)
- Hui Wang
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Katherine Luo
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Lang-Zhu Tan
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Bao-Guo Ren
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Li-Qun Gu
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - George Michalopoulos
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jian-Hua Luo
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yan P. Yu
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
8
|
Iyamu EW, Perdew HA, Woods GM. Oxidant-mediated modification of the cellular thiols is sufficient for arginase activation in cultured cells. Mol Cell Biochem 2011; 360:159-68. [PMID: 21918827 DOI: 10.1007/s11010-011-1053-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022]
Abstract
Increased arginase activity in the vasculature has been implicated in the regulation of nitric oxide (NO) homeostasis, leading to the development of vascular disease and the promotion of tumor cell growth. Recently, we showed that cysteine, in the presence of iron, promotes arginase activity by driving the Fenton reaction. In the present report, we showed that induction of oxidative stress in erythroleukemic cells with the thiol-specific oxidant, diamide, led to an increase in arginase activity by 42% (P = 0.02; vs. control). By using specific antibodies, it was demonstrated that this increase correlated with an increase in arginase-1 levels in the cells and with corresponding decreases in glutathione and protein thiol levels. Treatment of cells with aurothiomalate (ATM), a protein thiol-complexing agent, diminished the activity of arginase and arginase-1 levels by 19.5 and 35.2%, respectively (vs. control) and significantly decreased both glutathione and protein thiol levels, further implicating the thiol redox system in the cellular activation of arginase. Furthermore, diamide significantly altered the kinetics of arginase, resulting in the doubling of its V(max) (vs. control). Our presented data demonstrate, for the first time that the intracellular arginase activation is may be enhanced in part, via a cellular thiol-mediated mechanism.
Collapse
Affiliation(s)
- Efemwonkiekie W Iyamu
- Division of Hematology and Oncology, Children's Mercy Hospital, Kansas City, MO 64108, USA.
| | | | | |
Collapse
|
9
|
Lee PY, Bae KH, Jeong DG, Chi SW, Moon JH, Kang S, Cho S, Lee SC, Park BC, Park SG. The S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase 2 is reduced by interaction with glutathione peroxidase 3 in Saccharomyces cerevisiae. Mol Cells 2011; 31:255-9. [PMID: 21229323 PMCID: PMC3932702 DOI: 10.1007/s10059-011-0029-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/26/2010] [Accepted: 12/30/2010] [Indexed: 01/08/2023] Open
Abstract
Glutathione peroxidases (Gpxs) are the key anti-oxidant enzymes found in Saccharomyces cerevisiae. Among the three Gpx isoforms, glutathione peroxidase 3 (Gpx3) is ubiquitously expressed and modulates the activities of redox-sensitive thiol proteins involved in various biological reactions. By using a proteomic approach, glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2; EC 1.2.1.12) was found as a candidate protein for interaction with Gpx3. GAPDH, a key enzyme in glycolysis, is a multi-functional protein with multiple intracellular localizations and diverse activities. To validate the interaction between Gpx3 and GAPDH2, immunoprecipitation and a pull-down assay were carried out. The results clearly showed that GAPDH2 interacts with Gpx3 through its carboxyl-terminal domain both in vitro and in vivo. Additionally, Gpx3 helps to reduce the S-nitrosylation of GAPDH upon nitric oxide (NO) stress; this subsequently increases cellular viability. On the basis of our findings, we suggest that Gpx3 protects GAPDH from NO stress and thereby contributes to the maintenance of homeostasis during exposure to NO stress.
Collapse
Affiliation(s)
- Phil Young Lee
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
- School of Biotechnology, Korea University, Seoul 136-701, Korea
| | - Kwang-Hee Bae
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Dae Gwin Jeong
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Seung-Wook Chi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Jeong Hee Moon
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Seongman Kang
- School of Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Sang Chul Lee
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| |
Collapse
|
10
|
The redox state of the glutathione/glutathione disulfide couple mediates intracellular arginase activation in HCT-116 colon cancer cells. Dig Dis Sci 2010; 55:2520-8. [PMID: 19997976 DOI: 10.1007/s10620-009-1064-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 11/20/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Emerging studies have implicated arginase hyperactivity in the dysregulation of nitric oxide synthesis, which can lead to the development of vascular disease and the promotion of tumor cell growth. Recently, we showed that cysteine, in the presence of molecular iron, promotes arginase activity by driving the Fenton reaction. However, the exact mechanism of arginase activation in the cell induced by oxidative stress is unknown. AIM The aim of the present study is to examine whether intracellular arginase is regulated by the cellular redox status of glutathione. METHOD To test this hypothesis, the glutathione/glutathione disulfide redox couple was altered in colon cancer cells with the thiol-specific oxidant, diamide, or the glutathione inhibitor, buthionine-(S,R)-sulfoximine, and the activity of the arginase in the cells was assessed. RESULTS Treatment of cells with diamide, a thiol-specific oxidant, resulted in a dose-dependent decrease in the glutathione/glutathione disulfide ratio that was associated with the loss of glutathione and a coincident increase in arginase activity and arginase-1 levels in drug-treated cells compared with untreated cells. These results show that oxidation-induced redox changes of glutathione are of sufficient magnitude to control the activity of arginase in the cells. Thus, the physiologic modulation of the glutathione/glutathione disulfide ratio could prove to be a fundamental parameter for the control of arginase activity in pathological conditions of increased oxidative stress. CONCLUSION This is the first evidence supporting the ex vivo regulation of arginase activity through the redox modulation of intracellular glutathione. The potential adaptive and pathological consequences of glutathione redox regulation of arginase activity are discussed.
Collapse
|
11
|
Faltin Z, Holland D, Velcheva M, Tsapovetsky M, Roeckel-Drevet P, Handa AK, Abu-Abied M, Friedman-Einat M, Eshdat Y, Perl A. Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation. PLANT & CELL PHYSIOLOGY 2010; 51:1151-62. [PMID: 20530511 DOI: 10.1093/pcp/pcq082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is overexpressed in plants under abiotic and biotic stress conditions that mediate oxidative stress. To study its biological role and its ability to confer stress resistance in plants, we tried to obtain transgenic plants overexpressing citrus (Citrus sinensis) PHGPx (cit-PHGPx). All attempts to obtain regenerated plants expressing this enzyme constitutively failed. However, when the enzyme's catalytic activity was abolished by active site-directed mutagenesis, transgenic plants constitutively expressing inactive cit-PHGPx were successfully regenerated. Constitutive expression of enzymatically active cit-PHGPx could only be obtained when transformation was based on non-regenerative processes. These results indicate that overexpression of the antioxidant enzyme PHGPx interferes with shoot organogenesis and suggests the involvement of reactive oxygen species (ROS) in this process. Using transgenic tobacco (Nicotiana tabacum) leaves obtained from plants transformed with a beta-estradiol-inducible promoter, time-dependent induction of cit-PHGPx expression was employed. A pronounced inhibitory effect of cit-PHGPx on shoot formation was found to be limited to the early stage of the regeneration process. Monitoring the ROS level during regeneration revealed that upon cit-PHGPx induction, the lowest level of ROS correlated with the maximal level of shoot inhibition. Our results clearly demonstrate the essential role of ROS in the early stages of in vitro shoot organogenesis and the possible involvement of PHGPx in maintaining ROS homeostasis at this point.
Collapse
Affiliation(s)
- Zehava Faltin
- Institute of Plant Science, Agricultural Research Organization, 50250 Bet Dagan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schweikert K, Gafner F, Dell’Acqua G. A bioactive complex to protect proteins from UV-induced oxidation in human epidermis. Int J Cosmet Sci 2010; 32:29-34. [DOI: 10.1111/j.1468-2494.2009.00528.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Lee H, Chi SW, Lee PY, Kang S, Cho S, Lee CK, Bae KH, Park BC, Park SG. Reduced formation of advanced glycation endproducts via interactions between glutathione peroxidase 3 and dihydroxyacetone kinase 1. Biochem Biophys Res Commun 2009; 389:177-80. [PMID: 19715675 DOI: 10.1016/j.bbrc.2009.08.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/21/2009] [Indexed: 11/20/2022]
Abstract
Dihydroxyacetone (DHA) induces the formation of advanced glycation endproducts (AGEs), which are involved in several diseases. Earlier, we identified dihydroxyacetone kinase 1 (Dak1) as a candidate glutathione peroxidase 3 (Gpx3)-interacting protein in Saccharomyces cerevisiae. This finding is noteworthy, as no clear evidence on the involvement of oxidative stress systems in DHA-induced AGE formation has been found to date. Here, we demonstrate that Gpx3 interacts with Dak1, alleviates DHA-mediated stress by upregulating Dak activity, and consequently suppresses AGE formation. Based on these results, we propose that defense systems against oxidative stress and DHA-induced AGE formation are related via interactions between Gpx3 and Dak1.
Collapse
Affiliation(s)
- Hana Lee
- Medical Proteomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Miernyk JA, Johnston ML, Huber SC, Tovar-Méndez A, Hoyos E, Randall DD. Oxidation of an Adjacent Methionine Residue Inhibits Regulatory Seryl-Phosphorylation of Pyruvate Dehydrogenase. PROTEOMICS INSIGHTS 2009. [DOI: 10.4137/pri.s2799] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Met residue is located adjacent to phosphorylation site 1 in the sequences of mitochondrial pyruvate dehydrogenase E1α subunits. When synthetic peptides including site 1 were treated with H2O2, the Met residue was oxidized to methionine sulfoxide (MetSO), and the peptides were no longer phosphorylated by E1α-kinase. Isolated mitochondria were incubated under state III or IV conditions, lysed, the pyruvate dehydrogenase complex (PDC) immunoprecipitated, and tryptic peptides analyzed by MALDI-TOF mass spectrometry. In all instances both Met and MetSO site 1 tryptic-peptides were detected. Similar results were obtained when suspension-cultured cells were incubated with chemical agents known to stimulate production of reactive oxygen species within the mitochondria. Treatment with these agents had no effect upon the amount of total PDC, but decreased the proportion of P-PDC. We propose that the redox-state of the Met residue adjacent to phosphorylation site 1 of pyruvate dehydrogenase contributes to overall regulation of PDC activity in vivo.
Collapse
Affiliation(s)
- Jan A. Miernyk
- Plant Genetics Research Unit, USDA, Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO
| | - Mark L. Johnston
- Plant Genetics Research Unit, USDA, Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211
| | - Steve C. Huber
- Photosynthesis Research Unit, USDA, Agricultural Research Service, 197 ERML, University of Illinois, Urbana, IL 61801
| | | | - Elizabeth Hoyos
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - Douglas D. Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO
| |
Collapse
|
15
|
Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta Gen Subj 2008; 1780:1217-35. [DOI: 10.1016/j.bbagen.2007.12.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/29/2007] [Accepted: 12/07/2007] [Indexed: 12/21/2022]
|
16
|
Abstract
Thiol/selenol peroxidases are ubiquitous nonheme peroxidases. They are divided into two major subfamilies: peroxiredoxins (PRXs) and glutathione peroxidases (GPXs). PRXs are present in diverse subcellular compartments and divided into four types: 2-cys PRX, 1-cys PRX, PRX-Q, and type II PRX (PRXII). In mammals, most GPXs are selenoenzymes containing a highly reactive selenocysteine in their active site while yeast and land plants are devoid of selenoproteins but contain nonselenium GPXs. The presence of a chloroplastic 2-cys PRX, a nonselenium GPX, and two selenium-dependent GPXs has been reported in the unicellular green alga Chlamydomonas reinhardtii. The availability of the Chlamydomonas genome sequence offers the opportunity to complete our knowledge on thiol/selenol peroxidases in this organism. In this article, Chlamydomonas PRX and GPX families are presented and compared to their counterparts in Arabidopsis, human, yeast, and Synechocystis sp. A summary of the current knowledge on each family of peroxidases, especially in photosynthetic organisms, phylogenetic analyses, and investigations of the putative subcellular localization of each protein and its relative expression level, on the basis of EST data, are presented. We show that Chlamydomonas PRX and GPX families share some similarities with other photosynthetic organisms but also with human cells. The data are discussed in view of recent results suggesting that these enzymes are important scavengers of reactive oxygen species (ROS) and reactive nitrogen species (RNS) but also play a role in ROS signaling.
Collapse
|
17
|
Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 2008; 45:733-42. [PMID: 18588970 DOI: 10.1016/j.freeradbiomed.2008.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/24/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.
Collapse
Affiliation(s)
- Florencia Irigoín
- Departmento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | | | | | | | | |
Collapse
|
18
|
Auchère F, Santos R, Planamente S, Lesuisse E, Camadro JM. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia. Hum Mol Genet 2008; 17:2790-802. [PMID: 18562474 DOI: 10.1093/hmg/ddn178] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP(+) pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.
Collapse
Affiliation(s)
- Françoise Auchère
- Laboratoire d'Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques Monod, UMR 7592, CNRS, Universités Paris 6 and 7, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
19
|
Fourquet S, Huang ME, D'Autreaux B, Toledano MB. The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid Redox Signal 2008; 10:1565-76. [PMID: 18498222 DOI: 10.1089/ars.2008.2049] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thiol-based peroxidases consist of the peroxiredoxins (Prx) and the related glutathione peroxidase (GPx)-like enzymes. Their catalytic function is to reduce peroxides by using the reactivity of the cysteine residue, and their presumed primary physiologic role is to protect living organisms from peroxide toxicity. However, as peroxide-metabolizing enzymes, they also regulate hydrogen peroxide (H2O2) signaling. We review here enzymatic and biochemical attributes of thiol peroxidases that specify both distinctive peroxide-scavenging functions and the property of regulating H2O2 signaling. We then discuss possible thiol peroxidase physiologic functions, based on selected observations made in microorganisms and mammals.
Collapse
Affiliation(s)
- Simon Fourquet
- CEA, DSV, IBITECS, Laboratoire Stress Oxydants et Cancer, CEA-Saclay, Gif-sur-Yvette France
| | | | | | | |
Collapse
|
20
|
Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008; 45:549-61. [PMID: 18544350 DOI: 10.1016/j.freeradbiomed.2008.05.004] [Citation(s) in RCA: 925] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/02/2008] [Accepted: 05/06/2008] [Indexed: 12/16/2022]
Abstract
Exposure of cells to sublethal oxidative stress results in the modulation of various signaling pathways. Oxidants can activate and inactivate transcription factors, membrane channels, and metabolic enzymes, and regulate calcium-dependent and phosphorylation signaling pathways. Oxidation and reduction of thiol proteins are thought to be the major mechanisms by which reactive oxidants integrate into cellular signal transduction pathways. This review focuses on mechanisms for sensing and transmitting redox signals, from the perspective of their chemical reactivity with specific oxidants. We discuss substrate preferences for different oxidants and how the kinetics of these reactions determines how each oxidant will react in a cell. This kinetic approach helps to identify initial oxidant-sensitive targets and elucidate mechanisms involved in transmission of redox signals. It indicates that only those proteins with very high reactivity, such as peroxiredoxins, are likely to be direct targets for hydrogen peroxide. Other more modestly reactive thiol proteins such as protein tyrosine phosphatases are more likely to become oxidized by an indirect mechanism. The review also examines oxidative changes observed during receptor-mediated signaling, the strengths and limitations of detection methods for reactive oxidant production, and the evidence for hydrogen peroxide acting as the second messenger. We discuss areas where observations in cell systems can be rationalized with the reactivity of specific oxidants and where further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Free Radical Research Group and the National Research Centre for Growth and Development, Department of Pathology, University of Otago, Christchurch, New Zealand.
| | | |
Collapse
|
21
|
Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta Gen Subj 2008; 1780:1236-48. [PMID: 18395526 DOI: 10.1016/j.bbagen.2008.03.006] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 01/09/2023]
Abstract
Trypanosomes and leishmania, the causative agents of several tropical diseases, possess a unique redox metabolism which is based on trypanothione. The bis(glutathionyl)spermidine is the central thiol that delivers electrons for the synthesis of DNA precursors, the detoxification of hydroperoxides and other trypanothione-dependent pathways. Many of the reactions are mediated by tryparedoxin, a distant member of the thioredoxin protein family. Trypanothione is kept reduced by the parasite-specific flavoenzyme trypanothione reductase. Since glutathione reductases and thioredoxin reductases are missing, the reaction catalyzed by trypanothione reductase represents the only connection between the NADPH- and the thiol-based redox metabolisms. Thus, cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione. Nearly all proteins of the parasite-specific trypanothione metabolism have proved to be essential.
Collapse
|
22
|
Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 2007; 407:321-9. [PMID: 17922679 DOI: 10.1042/bj20070929] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Msrs (methionine sulfoxide reductases), MsrA and MsrB, are repair enzymes that reduce methionine sulfoxide residues in oxidatively damaged proteins to methionine residues in a stereospecific manner. These enzymes protect cells from oxidative stress and have been implicated in delaying the aging process and progression of neurodegenerative diseases. In recent years, significant efforts have been made to explore the catalytic properties and physiological functions of these enzymes. In the current review, we present recent progress in this area, with the focus on mammalian MsrA and MsrBs including their roles in disease, evolution and function of selenoprotein forms of MsrA and MsrB, and the biochemistry of these enzymes.
Collapse
|
23
|
Lee PY, Kho CW, Lee DH, Kang S, Kang S, Lee SC, Park BC, Cho S, Bae KH, Park SG. Glutathione peroxidase 3 of Saccharomyces cerevisiae suppresses non-enzymatic proteolysis of glutamine synthetase in an activity-independent manner. Biochem Biophys Res Commun 2007; 362:405-9. [PMID: 17707771 DOI: 10.1016/j.bbrc.2007.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/01/2007] [Indexed: 11/15/2022]
Abstract
Glutathione peroxidase 3 (Gpx3) is ubiquitously expressed and is important antioxidant enzyme in yeast. It modulates the activities of redox-sensitive thiol proteins, particularly those involved in signal transduction pathway and protein translocation. Through immunoprecipitation/two-dimensional gel electrophoresis (IP-2DE), MALDI-TOF mass spectrometry, and a pull down assay, we found glutamine synthetase (GS; EC 6.3.1.2) as a candidate interacting protein with Gpx3. GS is a key enzyme in nitrogen metabolism and ammonium assimilation. It has been known that GS is non-enzymatically cleaved by ROS generated by MFO (thiol/ Fe(3+)/O(2) mixed-function oxidase) system. In this study, it is demonstrated that GS interacts with Gpx3 through its catalytic domain both in vivo and in vitro regardless of redox state. In addition, Gpx3 helps to protect GS from inactivation and degradation via oxidative stress in an activity-independent manner. Based on the results, it is suggested that Gpx3 protects GS from non-enzymatic proteolysis, thereby contributing to cell homeostasis when cell is exposed to oxidative stress.
Collapse
Affiliation(s)
- Phil Young Lee
- Translational Research Center, KRIBB, Daejeon 305-806, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kang TH, Bae KH, Yu MJ, Kim WK, Hwang HR, Jung H, Lee PY, Kang S, Yoon TS, Park SG, Ryu SE, Lee SC. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Proteomics 2007; 7:2624-35. [PMID: 17610204 DOI: 10.1002/pmic.200601028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative stress is one of the major causes of neuronal cell death in disorders such as perinatal hypoxia and ischemia. Protein phosphorylation is the most significant PTM of proteins and plays an important role in stress-induced signal transduction. Thus, the analysis of alternative protein phosphorylation states which occur during oxidative stress-induced cell death could provide valuable information regarding cell death. In this study, a reference phosphoproteome map of the mouse hippocampal cell line HT22 was constructed based on 125 spots that were identified by MALDI-TOF or LC-ESI-Q-TOF-MS analysis. In addition, proteins of HT22 cells at various stages of oxidative stress-induced cell death were separated by 2-DE and alterations in phosphoproteins were detected by Pro-Q Diamond staining. A total of 17 spots showing significant quantitative changes and seven newly appearing spots were identified after glutamate treatment. Splicing factor 2, peroxiredoxin 2, S100 calcium binding protein A11, and purine nucleoside phosphorylase were identified as up- or down-regulated proteins. CDC25A, caspase-8, and cyp51 protein appeared during oxidative stress-induced cell death. The data in this study from phosphoproteomic analysis provide a valuable resource for the understanding of HT22 cell death mechanisms mediated by oxidative stress.
Collapse
Affiliation(s)
- Tae Hyuk Kang
- Translational Research Center, KRIBB, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Glutathione peroxidases (GPXs, EC 1.11.1.9) were first discovered in mammals as key enzymes involved in scavenging of activated oxygen species (AOS). Their efficient antioxidant activity depends on the presence of the rare amino-acid residue selenocysteine (SeCys) at the catalytic site. Nonselenium GPX-like proteins (NS-GPXs) with a Cys residue instead of SeCys have also been found in most organisms. As SeCys is important for GPX activity, the function of the NS-GPX can be questioned. Here, we highlight the evolutionary link between NS-GPX and seleno-GPX, particularly the evolution of the SeCys incorporation system. We then discuss what is known about the enzymatic activity and physiological functions of NS-GPX. Biochemical studies have shown that NS-GPXs are not true GPXs; notably they reduce AOS using reducing substrates other than glutathione, such as thioredoxin. We provide evidence that, in addition to their inefficient scavenging action, NS-GPXs act as AOS sensors in various signal-transduction pathways.
Collapse
|
26
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Martín SF, Sawai H, Villalba JM, Hannun YA. Redox regulation of neutral sphingomyelinase-1 activity in HEK293 cells through a GSH-dependent mechanism. Arch Biochem Biophys 2007; 459:295-300. [PMID: 17169322 DOI: 10.1016/j.abb.2006.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
Phospholipases are essential enzymes in cellular signalling processes such as cellular differentiation, proliferation and apoptosis. Based on its high degree of homology with sequences of prokaryote SMases, a type of Mg(2+)-dependent PLC (nSMase-1) was recently discovered which displayed strong redox dependence for activity in vitro [F. Rodrigues-Lima, A.C. Fensome, M. Josephs, J. Evans, R.J. Veldman, M. Katan (2000), J. Biol. Chem. 275 (36) 28316-28325]. The aim of this work was to test the hypothesis that glutathione could be a natural regulator of nSMase-1 activity ex vivo. We studied how altering glutathione levels and redox ratio modulate nSMase-1 activity in a HEK293 cell line that ectopically overexpressed the nSMase-1 gene. Diminishing total glutathione with BSO without altering significantly the GSH/GSSG ratio did not affect nSMase-1 activity. Treatment of cells with diamide produced a transient decrease of total glutathione and a sharp, but also transient, decrease of the GSH/GSSG ratio. Under these conditions, nSMase-1 activity was temporarily activated and then returned to normal levels. Simultaneous treatment with BSO and diamide that resulted in permanent decreases of total glutathione and GSH/GSSG redox ratio produced a sustained activation of nSMase-1 activity. Taken together, these data indicate that altering the GSH/GSSG ratio by increasing GSSG or decreasing GSH levels, but not the total concentration of glutathione, modulates nSMase-1 activity. Our findings are the first evidence supporting the ex vivo regulation of nSMase-1 through a redox glutathione-dependent mechanism.
Collapse
Affiliation(s)
- Sergio F Martín
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | | | | |
Collapse
|