1
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel) 2022; 11:471. [PMID: 35326121 PMCID: PMC8944509 DOI: 10.3390/antiox11030471] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.
Collapse
Affiliation(s)
- Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Andrea Albieri-Borges
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| | - Nico N. Raczek
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| |
Collapse
|
3
|
Kim S, Lee K, Park SH, Kwak GH, Kim MS, Kim HY, Hwang KY. Structural Insights into a Bifunctional Peptide Methionine Sulfoxide Reductase MsrA/B Fusion Protein from Helicobacter pylori. Antioxidants (Basel) 2021; 10:389. [PMID: 33807684 PMCID: PMC8000184 DOI: 10.3390/antiox10030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Methionine sulfoxide reductase (Msr) is a family of enzymes that reduces oxidized methionine and plays an important role in the survival of bacteria under oxidative stress conditions. MsrA and MsrB exist in a fusion protein form (MsrAB) in some pathogenic bacteria, such as Helicobacter pylori (Hp), Streptococcus pneumoniae, and Treponema denticola. To understand the fused form instead of the separated enzyme at the molecular level, we determined the crystal structure of HpMsrABC44S/C318S at 2.2 Å, which showed that a linker region (Hpiloop, 193-205) between two domains interacted with each HpMsrA or HpMsrB domain via three salt bridges (E193-K107, D197-R103, and K200-D339). Two acetate molecules in the active site pocket showed an sp2 planar electron density map in the crystal structure, which interacted with the conserved residues in fusion MsrABs from the pathogen. Biochemical and kinetic analyses revealed that Hpiloop is required to increase the catalytic efficiency of HpMsrAB. Two salt bridge mutants (D193A and E199A) were located at the entrance or tailgate of Hpiloop. Therefore, the linker region of the MsrAB fusion enzyme plays a key role in the structural stability and catalytic efficiency and provides a better understanding of why MsrAB exists in a fused form.
Collapse
Affiliation(s)
- Sulhee Kim
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Kitaik Lee
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Sun-Ha Park
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 42415, Korea;
| | - Min Seok Kim
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 42415, Korea;
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| |
Collapse
|
4
|
Sasoni N, Hartman MD, Guerrero SA, Iglesias AA, Arias DG. Functional characterization of methionine sulfoxide reductases from Leptospira interrogans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140575. [PMID: 33242654 DOI: 10.1016/j.bbapap.2020.140575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methionine (Met) oxidation leads to a racemic mixture of R and S forms of methionine sulfoxide (MetSO). Methionine sulfoxide reductases (Msr) are enzymes that can reduce specifically each isomer of MetSO, both free and protein-bound. The Met oxidation could change the structure and function of many proteins, not only of those redox-related but also of others involved in different metabolic pathways. Until now, there is no information about the presence or function of Msrs enzymes in Leptospira interrogans. METHODS We identified genes coding for putative MsrAs (A1 and A2) and MsrB in L. interrogans serovar Copenhageni strain Fiocruz L1-130 genome project. From these, we obtained the recombinant proteins and performed their functional characterization. RESULTS The recombinant L. interrogans MsrB catalyzed the reduction of Met(R)SO using glutaredoxin and thioredoxin as reducing substrates and behaves like a 1-Cys Msr (without resolutive Cys residue). It was able to partially revert the in vitro HClO-dependent inactivation of L. interrogans catalase. Both recombinant MsrAs reduced Met(S)SO, being the recycle mediated by the thioredoxin system. LinMsrAs were more efficient than LinMsrB for free and protein-bound MetSO reduction. Besides, LinMsrAs are enzymes involving a Cys triad in their catalytic mechanism. LinMsrs showed a dual localization, both in cytoplasm and periplasm. CONCLUSIONS AND GENERAL SIGNIFICANCE This article brings new knowledge about redox metabolism in L. interrogans. Our results support the occurrence of a metabolic pathway involved in the critical function of repairing oxidized macromolecules in this pathogen.
Collapse
Affiliation(s)
- Natalia Sasoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías D Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
5
|
Ghareeb H, Metanis N. The Thioredoxin System: A Promising Target for Cancer Drug Development. Chemistry 2020; 26:10175-10184. [PMID: 32097513 DOI: 10.1002/chem.201905792] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/20/2022]
Abstract
The thioredoxin system is highly conserved system found in all living cells and comprises NADPH, thioredoxin, and thioredoxin reductase. This system plays a critical role in preserving a reduced intracellular environment, and its involvement in regulating a wide range of cellular functions makes it especially vital to cellular homeostasis. Its critical role is not limited to healthy cells, it is also involved in cancer development, and is overexpressed in many cancers. This makes the thioredoxin system a promising target for cancer drug development. As such, over the last decade, many inhibitors have been developed that target the thioredoxin system, most of which are small molecules targeting the thioredoxin reductase C-terminal redox center. A few inhibitors of thioredoxin have also been developed. We believe that more efforts should be invested in developing protein/peptide-based inhibitors against both thioredoxin reductase and/or thioredoxin.
Collapse
Affiliation(s)
- Hiba Ghareeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
6
|
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants (Basel) 2018; 7:antiox7090114. [PMID: 30158486 PMCID: PMC6162775 DOI: 10.3390/antiox7090114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidation of methionine (Met) leads to the formation of two S- and R-diastereoisomers of Met sulfoxide (MetO) that are reduced back to Met by methionine sulfoxide reductases (MSRs), A and B, respectively. Here, we review the current knowledge about the physiological functions of plant MSRs in relation with subcellular and tissue distribution, expression patterns, mutant phenotypes, and possible targets. The data gained from modified lines of plant models and crop species indicate that MSRs play protective roles upon abiotic and biotic environmental constraints. They also participate in the control of the ageing process, as shown in seeds subjected to adverse conditions. Significant advances were achieved towards understanding how MSRs could fulfil these functions via the identification of partners among Met-rich or MetO-containing proteins, notably by using redox proteomic approaches. In addition to a global protective role against oxidative damage in proteins, plant MSRs could specifically preserve the activity of stress responsive effectors such as glutathione-S-transferases and chaperones. Moreover, several lines of evidence indicate that MSRs fulfil key signaling roles via interplays with Ca2+- and phosphorylation-dependent cascades, thus transmitting ROS-related information in transduction pathways.
Collapse
|
7
|
Allu PK, Boggula Y, Karri S, Marada A, Krishnamoorthy T, Sepuri NBV. A conserved R type Methionine Sulfoxide Reductase reverses oxidized GrpEL1/Mge1 to regulate Hsp70 chaperone cycle. Sci Rep 2018; 8:2716. [PMID: 29426933 PMCID: PMC5807549 DOI: 10.1038/s41598-018-21083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
Cells across evolution employ reversible oxidative modification of methionine and cysteine amino acids within proteins to regulate responses to redox stress. Previously we have shown that mitochondrial localized methionine sulfoxide reductase (Mxr2) reversibly regulates oxidized yeast Mge1 (yMge1), a co-chaperone of Hsp70/Ssc1 to maintain protein homeostasis during oxidative stress. However, the specificity and the conservation of the reversible methionine oxidation mechanism in higher eukaryotes is debatable as human GrpEL1 (hGrpEL1) unlike its homolog yMge1 harbors two methionine residues and multiple cysteines besides the mammalian mitochondria hosting R and S types of Mxrs/Msrs. In this study, using yeast as a surrogate system, we show that hGRPEL1 and R type MSRs but not the S type MSRs complement the deletion of yeast MGE1 or MXR2 respectively. Our investigations show that R type Msrs interact selectively with oxidized hGrpEL1/yMge1 in an oxidative stress dependent manner, reduce the conserved hGrpEL1-Met146-SO and rescue the Hsp70 ATPase activity. In addition, a single point mutation in hGrpEL1-M146L rescues the slow growth phenotype of yeast MXR2 deletion under oxidative duress. Our study illustrates the evolutionarily conserved formation of specific Met-R-SO in hGrpEL1/yMge1 and the essential and canonical role of R type Msrs/Mxrs in mitochondrial redox mechanism.
Collapse
Affiliation(s)
- Praveen Kumar Allu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Yerranna Boggula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Srinivasu Karri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Adinarayana Marada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Thanuja Krishnamoorthy
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
8
|
Lin Q, Liang JR, Huang QQ, Luo CS, Anderson DM, Bowler C, Chen CP, Li XS, Gao YH. Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS One 2017; 12:e0184849. [PMID: 28910417 PMCID: PMC5599023 DOI: 10.1371/journal.pone.0184849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
Diatoms are important components of marine ecosystems and contribute greatly to the world's primary production. Despite their important roles in ecosystems, the molecular basis of how diatoms cope with oxidative stress caused by nutrient fluctuations remains largely unknown. Here, an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic method was coupled with a series of physiological and biochemical techniques to explore oxidative stress- and cell fate decision-related cellular and metabolic responses of the diatom Thalassiosira pseudonana to nitrate (N) and inorganic phosphate (P) stresses. A total of 1151 proteins were detected; 122 and 56 were significantly differentially expressed from control under N- and P-limited conditions, respectively. In N-limited cells, responsive proteins were related to reactive oxygen species (ROS) accumulation, oxidative stress responses and cell death, corresponding to a significant decrease in photosynthetic efficiency, marked intracellular ROS accumulation, and caspase-mediated programmed cell death activation. None of these responses were identified in P-limited cells; however, a significant up-regulation of alkaline phosphatase proteins was observed, which could be the major contributor for P-limited cells to cope with ambient P deficiency. These findings demonstrate that fundamentally different metabolic responses and cellular regulations are employed by the diatom in response to different nutrient stresses and to keep the cells viable.
Collapse
Affiliation(s)
- Qun Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun-Rong Liang
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
- * E-mail:
| | | | - Chun-Shan Luo
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Donald M. Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Chris Bowler
- Ecology and Evolutionary Biology Section, CNRS UMR8197 INSERM U1024, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, 46 rue d’Ulm, Paris, France
| | - Chang-Ping Chen
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
| | - Xue-Song Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Ya-Hui Gao
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
| |
Collapse
|
9
|
Icimoto MY, Ferreira JC, Yokomizo CH, Bim LV, Marem A, Gilio JM, Oliveira V, Nantes IL. Redox modulation of thimet oligopeptidase activity by hydrogen peroxide. FEBS Open Bio 2017; 7:1037-1050. [PMID: 28680816 PMCID: PMC5494303 DOI: 10.1002/2211-5463.12245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 11/09/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a cytosolic mammalian zinc protease that can process a diversity of bioactive peptides. TOP has been pointed out as one of the main postproteasomal enzymes that process peptide antigens in the MHC class I presentation route. In the present study, we describe a fine regulation of TOP activity by hydrogen peroxide (H2O2). Cells from a human embryonic kidney cell line (HEK293) underwent an ischemia/reoxygenation-like condition known to increase H2O2 production. Immediately after reoxygenation, HEK293 cells exhibited a 32% increase in TOP activity, but no TOP activity was observed 2 h after reoxygenation. In another model, recombinant rat TOP (rTOP) was challenged by H2O2 produced by rat liver mitoplasts (RLMt) alone, and in combination with antimycin A, succinate, and antimycin A plus succinate. In these conditions, rTOP activity increased 17, 30, 32 and 38%, respectively. Determination of H2O2 concentration generated in reoxygenated cells and mitoplasts suggested a possible modulation of rTOP activity dependent on the concentration of H2O2. The measure of pure rTOP activity as a function of H2O2 concentration corroborated this hypothesis. The data fitted to an asymmetrical bell-shaped curve in which the optimal activating H2O2 concentration was 1.2 nM, and the maximal inhibition (75% about the control) was 1 μm. Contrary to the oxidation produced by aging associated with enzyme oligomerization and inhibition, H2O2 oxidation produced sulfenic acid and maintained rTOP in the monomeric form. Consistent with the involvement of rTOP in a signaling redox cascade, the H2O2-oxidized rTOP reacted with dimeric thioredoxin-1 (TRx-1) and remained covalently bound to one subunit of TRx-1.
Collapse
Affiliation(s)
| | - Juliana C Ferreira
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André Brazil.,Present address: Structural Biology and Biophysical Chemistry Lab New York University Abu Dhabi Saadiyat Marina District, Abu Dhabi United Arab Emirates
| | - César H Yokomizo
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André Brazil
| | - Larissa V Bim
- Departamento de Biofísica Universidade Federal de São Paulo Brazil
| | - Alyne Marem
- Departamento de Biofísica Universidade Federal de São Paulo Brazil
| | - Joyce M Gilio
- Departamento de Biofísica Universidade Federal de São Paulo Brazil.,Present address: Departamento de Neurologia Centro de Degeneração Universidade de São Paulo - Escola de Medicina São Paulo SP Brazil
| | - Vitor Oliveira
- Departamento de Biofísica Universidade Federal de São Paulo Brazil
| | - Iseli L Nantes
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André Brazil
| |
Collapse
|
10
|
Abstract
SIGNIFICANCE There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. CRITICAL ISSUES The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. FUTURE DIRECTIONS If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.
Collapse
Affiliation(s)
| | - Garth Powis
- 2 Sanford Burnham Prebys Medical Discovery Institute Cancer Center , La Jolla, California
| |
Collapse
|
11
|
Ricci F, Lauro FM, Grzymski JJ, Read R, Bakiu R, Santovito G, Luporini P, Vallesi A. The Anti-Oxidant Defense System of the Marine Polar Ciliate Euplotes nobilii: Characterization of the MsrB Gene Family. BIOLOGY 2017; 6:biology6010004. [PMID: 28106766 PMCID: PMC5371997 DOI: 10.3390/biology6010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 01/16/2023]
Abstract
Organisms living in polar waters must cope with an extremely stressful environment dominated by freezing temperatures, high oxygen concentrations and UV radiation. To shed light on the genetic mechanisms on which the polar marine ciliate, Euplotes nobilii, relies to effectively cope with the oxidative stress, attention was focused on methionine sulfoxide reductases which repair proteins with oxidized methionines. A family of four structurally distinct MsrB genes, encoding enzymes specific for the reduction of the methionine-sulfoxide R-forms, were identified from a draft of the E. nobilii transcriptionally active (macronuclear) genome. The En-MsrB genes are constitutively expressed to synthesize proteins markedly different in amino acid sequence, number of CXXC motifs for zinc-ion binding, and presence/absence of a cysteine residue specific for the mechanism of enzyme regeneration. The En-MsrB proteins take different localizations in the nucleus, mitochondria, cytosol and endoplasmic reticulum, ensuring a pervasive protection of all the major subcellular compartments from the oxidative damage. These observations have suggested to regard the En-MsrB gene activity as playing a central role in the genetic mechanism that enables E. nobilii and ciliates in general to live in the polar environment.
Collapse
Affiliation(s)
- Francesca Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore.
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Robert Read
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Tirana 1019, Albania.
| | - Gianfranco Santovito
- Department of Biology, University of Padova, via U. Bassi 58/B, Padua 35100, Italy.
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| |
Collapse
|
12
|
Han AR, Kim MJ, Kwak GH, Son J, Hwang KY, Kim HY. Essential Role of the Linker Region in the Higher Catalytic Efficiency of a Bifunctional MsrA-MsrB Fusion Protein. Biochemistry 2016; 55:5117-27. [PMID: 27551953 DOI: 10.1021/acs.biochem.6b00544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many bacteria, particularly pathogens, possess methionine sulfoxide reductase A (MsrA) and B (MsrB) as a fusion form (MsrAB). However, it is not clear why they possess a fusion MsrAB form rather than the separate enzymes that exist in most organisms. In this study, we performed biochemical and kinetic analyses of MsrAB from Treponema denticola (TdMsrAB), single-domain forms (TdMsrA and TdMsrB), and catalytic Cys mutants (TdMsrAB(C11S) and TdMsrAB(C285S)). We found that the catalytic efficiency of both MsrA and MsrB increased after fusion of the domains and that the linker region (iloop) that connects TdMsrA and TdMsrB is required for the higher catalytic efficiency of TdMsrAB. We also determined the crystal structure of TdMsrAB at 2.3 Å, showing that the iloop mainly interacts with TdMsrB via hydrogen bonds. Further kinetic analysis using the iloop mutants revealed that the iloop-TdMsrB interactions are critical to MsrB and MsrA activities. We also report the structure in which an oxidized form of dithiothreitol, an in vitro reductant for MsrA and MsrB, is present in the active site of TdMsrA. Collectively, the results of this study reveal an essential role of the iloop in maintaining the higher catalytic efficiency of the MsrAB fusion enzyme and provide a better understanding of why the MsrAB enzyme exists as a fused form.
Collapse
Affiliation(s)
- Ah-Reum Han
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Moon-Jung Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| | - Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| | - Jonghyeon Son
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| |
Collapse
|
13
|
Pedrajas JR, McDonagh B, Hernández-Torres F, Miranda-Vizuete A, González-Ojeda R, Martínez-Galisteo E, Padilla CA, Bárcena JA. Glutathione Is the Resolving Thiol for Thioredoxin Peroxidase Activity of 1-Cys Peroxiredoxin Without Being Consumed During the Catalytic Cycle. Antioxid Redox Signal 2016; 24:115-28. [PMID: 26159064 DOI: 10.1089/ars.2015.6366] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS A three-step catalytic cycle is common to all peroxiredoxins (Prxs), despite structural and kinetic differences. The second step in 1-Cys type Prxs is a matter of debate since they lack an additional cysteine to play the resolving role, as happens with the 2-Cys Prxs. The aim of this study was to elucidate the role of glutathione (GSH) in the thioredoxin-dependent peroxidase activity of Saccharomyces cerevisiae mitochondrial Prx1p, a 1-Cys type Prx. RESULTS The peroxidatic Cys91 residue of two Prx1p peptides can be linked by a disulfide, which can be reduced by thioredoxin and by GSH (Km=6.1 μM). GSH forms a mixed disulfide with the peroxidatic cysteine spontaneously in vitro and in vivo. Mitochondrial Trx3p deglutathionylates Prx1p without formation of GSSG so that GSH is not consumed in the process. The structural unit of native Prx1p is a dimer whose subunits are not covalently linked, but a hexameric assembly of three disulfide-bound dimers can also be formed. INNOVATION GSH is presented as a protective cofactor of Prx1p, which is not consumed during the peroxidase reaction, but provides a robust mechanism as the resolving cysteine and efficiently prevents Prx1p overoxidation. GSH exerts these roles at concentrations well below those commonly considered necessary for its antioxidant and redox buffering functions. CONCLUSION A 1-Cys peroxide scavenging mechanism operates in yeast mitochondria involving an autonomous glutathione molecule and the thioredoxin system, which could have universal validity. Prx1p is fairly well protected from overoxidation, questioning its role in a floodgate mechanism for H2O2 signaling.
Collapse
Affiliation(s)
- José Rafael Pedrajas
- 1 Biochemistry and Cellular Signaling Group, Department of Experimental Biology, University of Jaén , Jaén, Spain
| | - Brian McDonagh
- 2 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Aging (CIMA), Skeletal Muscle Pathophysiology Group, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom
| | | | - Antonio Miranda-Vizuete
- 4 Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Sevilla, Spain
| | - Raúl González-Ojeda
- 5 Department of Biochemistry and Molecular Biology, University of Córdoba , Córdoba, Spain .,6 Córdoba Maimónides Institute for Biomedical Research , IMIBIC, Córdoba, Spain
| | - Emilia Martínez-Galisteo
- 5 Department of Biochemistry and Molecular Biology, University of Córdoba , Córdoba, Spain .,6 Córdoba Maimónides Institute for Biomedical Research , IMIBIC, Córdoba, Spain
| | - C Alicia Padilla
- 5 Department of Biochemistry and Molecular Biology, University of Córdoba , Córdoba, Spain .,6 Córdoba Maimónides Institute for Biomedical Research , IMIBIC, Córdoba, Spain
| | - José Antonio Bárcena
- 5 Department of Biochemistry and Molecular Biology, University of Córdoba , Córdoba, Spain .,6 Córdoba Maimónides Institute for Biomedical Research , IMIBIC, Córdoba, Spain
| |
Collapse
|
14
|
Yutthanasirikul R, Nagano T, Jimbo H, Hihara Y, Kanamori T, Ueda T, Haruyama T, Konno H, Yoshida K, Hisabori T, Nishiyama Y. Oxidation of a Cysteine Residue in Elongation Factor EF-Tu Reversibly Inhibits Translation in the Cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2016; 291:5860-5870. [PMID: 26786107 DOI: 10.1074/jbc.m115.706424] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner.
Collapse
Affiliation(s)
- Rayakorn Yutthanasirikul
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takanori Nagano
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Haruhiko Jimbo
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukako Hihara
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takashi Kanamori
- GeneFrontier Corporation, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa 277-0882, Japan,; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Takamitsu Haruyama
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, and
| | - Hiroki Konno
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, and
| | - Keisuke Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Yoshitaka Nishiyama
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan,.
| |
Collapse
|
15
|
Abstract
S-Sulfenylation is a post-translational modification with a crucial role in regulating protein function. However, its analysis has remained challenging due to the lack of facile sulfenic acid models. We report the first photocaged cysteine sulfenic acid with efficient photodeprotection and demonstrate its utility by generating sulfenic acid in a thiol peroxidase after illumination in vitro. These caged sulfoxides should be promising for site-specific incorporation of Cys sulfenic acid in living cells via genetic code expansion.
Collapse
Affiliation(s)
- Jia Pan
- The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | - Kate S. Carroll
- The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
16
|
Kim JI, Noh MR, Kim KY, Jang HS, Kim HY, Park KM. Methionine sulfoxide reductase A deficiency exacerbates progression of kidney fibrosis induced by unilateral ureteral obstruction. Free Radic Biol Med 2015. [PMID: 26210777 DOI: 10.1016/j.freeradbiomed.2015.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methionine sulfoxide reductase A (MsrA), which stereospecifically catalyzes the reduction of methionine-S-sulfoxide, is an important reactive oxygen species (ROS) scavenger. Tissue fibrosis is a maladaptive repair process following injury, associated with oxidative stress. In this study, we investigated the role of MsrA in unilateral ureteral obstruction (UUO)-induced kidney fibrosis and its underlying mechanisms by using MsrA gene-deleted mice (MsrA(-/-)). MsrA deletion increased collagen deposition in the interstitium and the expression of collagen III and α-smooth muscle actin in the UUO kidneys, indicating that MsrA deficiency exacerbated the progression of UUO-induced kidney fibrosis. UUO reduced the kidney expression of MsrA, MsrB1, and MsrB2, thereby decreasing MsrA and MsrB activity. UUO increased hydrogen peroxide and lipid peroxidation levels and the ratio of oxidized glutathione (GSSG) to total glutathione (GSH) in the kidneys. The UUO-induced elevations in the levels of these oxidative stress markers and leukocyte markers were much higher in the MsrA(-/-) than in the MsrA(+/+) kidneys, the latter suggesting that the exacerbated kidney fibrosis in MsrA(-/-) mice was associated with enhanced inflammatory responses. Collectively, our data suggest that MsrA plays a protective role in the progression of UUO-induced kidney fibrosis via suppression of fibrotic responses caused by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Molecular Medicine and MRC, Keimyung University School of Medicine, Daegu 705-717, Republic of Korea
| | - Mi Ra Noh
- Department of Anatomy and BK21 Plus Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | - Ki Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea
| | - Hee-Seong Jang
- Department of Anatomy and BK21 Plus Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea.
| | - Kwon Moo Park
- Department of Anatomy and BK21 Plus Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea.
| |
Collapse
|
17
|
Zhu J, Ding P, Li Q, Gao Y, Chen F, Xia G. Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize (Zea mays) under abiotic stresses. Gene 2015; 562:159-68. [DOI: 10.1016/j.gene.2015.02.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/01/2015] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
|
18
|
Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma. Oncotarget 2015; 6:15410-24. [PMID: 25945832 PMCID: PMC4558160 DOI: 10.18632/oncotarget.3795] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-κβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-κβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-κβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM.
Collapse
|
19
|
Kadowaki T, Nishiyama Y, Hisabori T, Hihara Y. Identification of OmpR-family response regulators interacting with thioredoxin in the Cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2015; 10:e0119107. [PMID: 25774906 PMCID: PMC4361706 DOI: 10.1371/journal.pone.0119107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/28/2015] [Indexed: 12/23/2022] Open
Abstract
The redox state of the photosynthetic electron transport chain is known to act as a signal to regulate the transcription of key genes involved in the acclimation responses to environmental changes. We hypothesized that the protein thioredoxin (Trx) acts as a mediator connecting the redox state of the photosynthetic electron transport chain and transcriptional regulation, and established a screening system to identify transcription factors (TFs) that interact with Trx. His-tagged TFs and S-tagged mutated form of Trx, TrxMC35S, whose active site cysteine 35 was substituted with serine to trap the target interacting protein, were co-expressed in E. coli cells and Trx-TF complexes were detected by immuno-blotting analysis. We examined the interaction between Trx and ten OmpR family TFs encoded in the chromosome of the cyanobacterium Synechocystis sp. PCC 6803 (S.6803). Although there is a highly conserved cysteine residue in the receiver domain of all OmpR family TFs, only three, RpaA (Slr0115), RpaB (Slr0946) and ManR (Slr1837), were identified as putative Trx targets. The recombinant forms of wild-type TrxM, RpaA, RpaB and ManR proteins from S.6803 were purified following over-expression in E. coli and their interaction was further assessed by monitoring changes in the number of cysteine residues with free thiol groups. An increase in the number of free thiols was observed after incubation of the oxidized TFs with Trx, indicating the reduction of cysteine residues as a consequence of interaction with Trx. Our results suggest, for the first time, the possible regulation of OmpR family TFs through the supply of reducing equivalents from Trx, as well as through the phospho-transfer from its cognate sensor histidine kinase.
Collapse
Affiliation(s)
- Taro Kadowaki
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, Japan
- * E-mail:
| |
Collapse
|
20
|
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance. Appl Environ Microbiol 2015; 81:2781-96. [PMID: 25681179 DOI: 10.1128/aem.04221-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.
Collapse
|
21
|
Kim HS, Kwak GH, Lee K, Jo CH, Hwang KY, Kim HY. Structural and biochemical analysis of a type II free methionine-R-sulfoxide reductase from Thermoplasma acidophilum. Arch Biochem Biophys 2014; 560:10-9. [DOI: 10.1016/j.abb.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022]
|
22
|
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014; 94:739-77. [PMID: 24987004 DOI: 10.1152/physrev.00039.2013] [Citation(s) in RCA: 903] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dolph L Hatfield
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Boschi-Muller S, Branlant G. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity. Bioorg Chem 2014; 57:222-230. [PMID: 25108804 DOI: 10.1016/j.bioorg.2014.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 01/16/2023]
Abstract
Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form.
Collapse
Affiliation(s)
- Sandrine Boschi-Muller
- UMR 7365 CNRS, Université de Lorraine, IMoPA, Enzymologie Moléculaire et Structurale, Biopôle, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Guy Branlant
- UMR 7365 CNRS, Université de Lorraine, IMoPA, Enzymologie Moléculaire et Structurale, Biopôle, CS 50184, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
24
|
Schwertassek U, Haque A, Krishnan N, Greiner R, Weingarten L, Dick TP, Tonks NK. Reactivation of oxidized PTP1B and PTEN by thioredoxin 1. FEBS J 2014; 281:3545-58. [PMID: 24976139 DOI: 10.1111/febs.12898] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/02/2014] [Accepted: 06/26/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED The transient inactivation of protein phosphatases contributes to the efficiency and temporal control of kinase-dependent signal transduction. In particular, members of the protein tyrosine phosphatase family are known to undergo reversible oxidation of their active site cysteine. The thiol oxidation step requires activation of colocalized NADPH oxidases and is mediated by locally produced reactive oxygen species, in particular H2 O2 . How oxidized phosphatases are returned to the reduced active state is less well studied. Both major thiol reductive systems, the thioredoxin and the glutathione systems, have been implicated in the reactivation of phosphatases. Here, we show that the protein tyrosine phosphatase PTP1B and the dual-specificity phosphatase PTEN are preferentially reactivated by the thioredoxin system. We show that inducible depletion of thioredoxin 1(TRX1) slows PTEN reactivation in intact living cells. Finally, using a mechanism-based trapping approach, we demonstrate direct thiol disulphide exchange between the active sites of thioredoxin and either phosphatase. The application of thioredoxin trapping mutants represents a complementary approach to direct assays of PTP oxidation in elucidating the significance of redox regulation of PTP function in the control of cell signaling. STRUCTURED DIGITAL ABSTRACT TRX1 physically interacts with PTP1B by anti tag coimmunoprecipitation (1, 2).
Collapse
|
25
|
Abstract
The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
26
|
Kim HY. The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxid Redox Signal 2013; 19. [PMID: 23198996 PMCID: PMC3763222 DOI: 10.1089/ars.2012.5081] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Selenium is utilized in the methionine sulfoxide reduction system that occurs in most organisms. Methionine sulfoxide reductases (Msrs), MsrA and MsrB, are the enzymes responsible for this system. Msrs repair oxidatively damaged proteins, protect against oxidative stress, and regulate protein function, and have also been implicated in the aging process. Selenoprotein forms of Msrs containing selenocysteine (Sec) at the catalytic site are found in bacteria, algae, and animals. RECENT ADVANCES A selenoprotein MsrB1 knockout mouse has been developed. Significant progress in the biochemistry of Msrs has been made, which includes findings of a novel reducing system for Msrs and of an interesting reason for the use of Sec in the Msr system. The effects of mammalian MsrBs, including selenoprotein MsrB1 on fruit fly aging, have been investigated. Furthermore, it is evident that Msrs are involved in methionine metabolism and regulation of the trans-sulfuration pathway. CRITICAL ISSUES This article presents recent progress in the Msr field while focusing on the physiological roles of mammalian Msrs, functions of selenoprotein forms of Msrs, and their biochemistry. FUTURE DIRECTIONS A deeper understanding of the roles of Msrs in redox signaling, the aging process, and metabolism will be achieved. The identity of selenoproteome of Msrs will be sought along with characterization of the identified selenoprotein forms. Exploring new cellular targets and new functions of Msrs is also warranted.
Collapse
Affiliation(s)
- Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
27
|
Le DT, Tarrago L, Watanabe Y, Kaya A, Lee BC, Tran U, Nishiyama R, Fomenko DE, Gladyshev VN, Tran LSP. Diversity of plant methionine sulfoxide reductases B and evolution of a form specific for free methionine sulfoxide. PLoS One 2013; 8:e65637. [PMID: 23776515 PMCID: PMC3680461 DOI: 10.1371/journal.pone.0065637] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological conditions. Organisms evolved two distinct methionine sulfoxide reductase families (MSRA & MSRB) to repair oxidized methionine residues. We found that 5 MSRB genes exist in the soybean genome, including GmMSRB1 and two segmentally duplicated gene pairs (GmMSRB2 and GmMSRB5, GmMSRB3 and GmMSRB4). GmMSRB2 and GmMSRB4 proteins showed MSRB activity toward protein-based MetO with either DTT or thioredoxin (TRX) as reductants, whereas GmMSRB1 was active only with DTT. GmMSRB2 had a typical MSRB mechanism with Cys121 and Cys 68 as catalytic and resolving residues, respectively. Surprisingly, this enzyme also possessed the MSRB activity toward free Met-R-O with kinetic parameters similar to those reported for fRMSR from Escherichia coli, an enzyme specific for free Met-R-O. Overexpression of GmMSRB2 or GmMSRB4 in the yeast cytosol supported the growth of the triple MSRA/MSRB/fRMSR (Δ3MSRs) mutant on MetO and protected cells against H2O2-induced stress. Taken together, our data reveal an unexpected diversity of MSRBs in plants and indicate that, in contrast to mammals that cannot reduce free Met-R-O and microorganisms that use fRMSR for this purpose, plants evolved MSRBs for the reduction of both free and protein-based MetO.
Collapse
Affiliation(s)
- Dung Tien Le
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- National Key Laboratory of Plant Cell & Biotechnology and Agriculture Genetics Institute, Vietnamese Academy of Agricultural Science, Hanoi, Vietnam
| | - Lionel Tarrago
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Alaattin Kaya
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Byung Cheon Lee
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Uyen Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Rie Nishiyama
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Dmitri E. Fomenko
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Vadim N. Gladyshev
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
28
|
Tarrago L, Gladyshev VN. Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. BIOCHEMISTRY (MOSCOW) 2013; 77:1097-107. [PMID: 23157290 DOI: 10.1134/s0006297912100021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sulfur-containing amino acid methionine (Met) in its free and amino acid residue forms can be readily oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Methionine sulfoxide reductases A (MSRA) and B (MSRB) reduce MetO back to Met in a stereospecific manner, acting on the S and R forms, respectively. A third MSR type, fRMSR, reduces the R form of free MetO. MSRA and MSRB are spread across the three domains of life, whereas fRMSR is restricted to bacteria and unicellular eukaryotes. These enzymes protect against abiotic and biotic stresses and regulate lifespan. MSRs are thiol oxidoreductases containing catalytic redox-active cysteine or selenocysteine residues, which become oxidized by the substrate, requiring regeneration for the next catalytic cycle. These enzymes can be classified according to the number of redox-active cysteines (selenocysteines) and the strategies to regenerate their active forms by thioredoxin and glutaredoxin systems. For each MSR type, we review catalytic parameters for the reduction of free MetO, low molecular weight MetO-containing compounds, and oxidized proteins. Analysis of these data reinforces the concept that MSRAs reduce various types of MetO-containing substrates with similar efficiency, whereas MSRBs are specialized for the reduction of MetO in proteins.
Collapse
Affiliation(s)
- L Tarrago
- Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Greetham D, Kritsiligkou P, Watkins RH, Carter Z, Parkin J, Grant CM. Oxidation of the yeast mitochondrial thioredoxin promotes cell death. Antioxid Redox Signal 2013; 18:376-85. [PMID: 22770501 PMCID: PMC3526897 DOI: 10.1089/ars.2012.4597] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Yeast, like other eukaryotes, contains a complete mitochondrial thioredoxin system comprising a thioredoxin (Trx3) and a thioredoxin reductase (Trr2). Mitochondria are a main source of reactive oxygen species (ROS) in eukaryotic organisms, and this study investigates the role of Trx3 in regulating cell death during oxidative stress conditions. RESULTS We have previously shown that the redox state of mitochondrial Trx3 is buffered by the glutathione redox couple such that oxidized mitochondrial Trx3 only accumulates in mutants simultaneously lacking Trr2 and a glutathione reductase (Glr1). We show here that the redox state of mitochondrial Trx3 is important for yeast growth and its oxidation in a glr1 trr2 mutant induces programmed cell death. Apoptosis is dependent on the Yca1 metacaspase, since loss of YCA1 abrogates cell death induced by oxidized Trx3. Our data also indicate a role for a mitochondrial 1-cysteine (Cys) peroxiredoxin (Prx1) in the oxidation of Trx3, since Trx3 does not become oxidized in glr1 trr2 mutants or in a wild-type strain exposed to hydrogen peroxide in the absence of PRX1. INNOVATION This study provides evidence that the redox state of a mitochondrial thioredoxin regulates yeast apoptosis in response to oxidative stress conditions. Moreover, the results identify a signaling pathway, where the thioredoxin system functions in both antioxidant defense and in controlling cell death. CONCLUSIONS Mitochondrial Prx1 functions as a redox signaling molecule that oxidizes Trx3 and promotes apoptosis. This would mean that under conditions where Prx1 cannot detoxify mitochondrial ROS, it induces cell death to remove the affected cells.
Collapse
Affiliation(s)
- Darren Greetham
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
30
|
Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, Pimentel D, Bachschmid MM. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal 2012; 17:1528-59. [PMID: 22607061 PMCID: PMC3448941 DOI: 10.1089/ars.2012.4706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. RECENT ADVANCES By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. CRITICAL ISSUES The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. FUTURE DIRECTIONS Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required.
Collapse
Affiliation(s)
- Vikas Kumar
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Couturier J, Vignols F, Jacquot JP, Rouhier N. Glutathione- and glutaredoxin-dependent reduction of methionine sulfoxide reductase A. FEBS Lett 2012; 586:3894-9. [PMID: 23022439 DOI: 10.1016/j.febslet.2012.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 01/07/2023]
Abstract
A natural fusion occurring between two tandemly repeated glutaredoxin (Grx) modules and a methionine sulfoxide reductase A (MsrA) has been detected in Gracilaria gracilis. Using an in vivo yeast complementation assay and in vitro activity measurements, we demonstrated that this fusion enzyme was able to reduce methionine sulfoxide into methionine using glutathione as a reductant. Consistently, a poplar cytosolic MsrA can be regenerated in vitro by glutaredoxins with an efficiency comparable to that of thioredoxins, but using a different mechanism. We hypothesize that the glutathione/glutaredoxin system could constitute an evolutionary conserved alternative regeneration system for MsrA.
Collapse
Affiliation(s)
- Jérémy Couturier
- UMR1136 Université de Lorraine-INRA, Interactions Arbres-Microorganismes, IFR 110, Faculté des Sciences, 54500 Vandoeuvre, France.
| | | | | | | |
Collapse
|
32
|
Analyses of methionine sulfoxide reductase activities towards free and peptidyl methionine sulfoxides. Arch Biochem Biophys 2012; 527:1-5. [PMID: 22867795 DOI: 10.1016/j.abb.2012.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/20/2022]
Abstract
There have been insufficient kinetic data that enable a direct comparison between free and peptide methionine sulfoxide reductase activities of either MsrB or MsrA. In this study, we determined the kinetic parameters of mammalian and yeast MsrBs and MsrAs for the reduction of both free methionine sulfoxide (Met-O) and peptidyl Met-O under the same assay conditions. Catalytic efficiency of mammalian and yeast MsrBs towards free Met-O was >2000-fold lower than that of yeast fRMsr, which is specific for free Met-R-O. The ratio of free to peptide Msr activity in MsrBs was 1:20-40. In contrast, mammalian and yeast MsrAs reduced free Met-O much more efficiently than MsrBs. Their k(cat) values were 40-500-fold greater than those of the corresponding MsrBs. The ratio of free to peptide Msr activity was 1:0.8 in yeast MsrA, indicating that this enzyme can reduce free Met-O as efficiently as peptidyl Met-O. In addition, we analyzed the in vivo free Msr activities of MsrBs and MsrAs in yeast cells using a growth complementation assay. Mammalian and yeast MsrBs, as well as the corresponding MsrAs, had apparent in vivo free Msr activities. The in vivo free Msr activities of MsrBs and MsrAs agreed with their in vitro activities.
Collapse
|
33
|
Kim HY. Glutaredoxin serves as a reductant for methionine sulfoxide reductases with or without resolving cysteine. Acta Biochim Biophys Sin (Shanghai) 2012; 44:623-7. [PMID: 22634633 DOI: 10.1093/abbs/gms038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methionine sulfoxide reductases A and B (MsrA and MsrB) have been known to be thioredoxin (Trx)-dependent enzymes that catalyze the reduction of methionine sulfoxide in a stereospecific manner. This work reports that glutaredoxin, another major thiol-disulfide oxidoreductase, can serve as a reductant for both MsrA and MsrB. Glutaredoxins efficiently reduced 1-Cys MsrA lacking a resolving Cys, which is not reducible by Trx. Glutaredoxins also reduced 3-Cys MsrA containing two resolving Cys. The glutaredoxin-dependent activity of the 3-Cys MsrA was comparable with the Trx-dependent activity. The kinetic data suggest that 1-Cys MsrA is more efficiently reduced by glutaredoxin than 3-Cys form. Also, glutaredoxins could function as a reductant for 1-Cys MsrB lacking a resolving Cys as previously reported. In contrast to the previous report, 2-Cys MsrB containing a resolving Cys was reducible by the glutaredoxins. Collectively, this study demonstrates that glutaredoxins reduce MsrAs and MsrBs with or without resolving Cys.
Collapse
Affiliation(s)
- Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
34
|
Structural insights into interaction between mammalian methionine sulfoxide reductase B1 and thioredoxin. J Biomed Biotechnol 2012; 2012:586539. [PMID: 22505815 PMCID: PMC3312296 DOI: 10.1155/2012/586539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/19/2011] [Accepted: 11/24/2011] [Indexed: 01/12/2023] Open
Abstract
Maintenance of the cellular redox balance has vital importance for correcting organism functioning. Methionine sulfoxide reductases (Msrs) are among the key members of the cellular antioxidant defence system. To work properly, methionine sulfoxide reductases need to be reduced by their biological partner, thioredoxin (Trx). This process, according to the available kinetic data, represents the slowest step in the Msrs catalytic cycle. In the present paper, we investigated structural aspects of the intermolecular complex formation between mammalian MsrB1 and Trx. NMR spectroscopy and biocomputing were the two mostly used through the research approaches. The formation of NMR detectable MsrB1/Trx complex was monitored and studied in attempt to understand MsrB1 reduction mechanism. Using NMR data, molecular mechanics, protein docking, and molecular dynamics simulations, it was found that intermediate MsrB1/Trx complex is stabilized by interprotein β-layer. The complex formation accompanied by distortion of disulfide bond within MsrB1 facilitates the reduction of oxidized MsrB1 as it is evidenced by the obtained data.
Collapse
|
35
|
Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve A, Simmons WJ, Li H. Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid Redox Signal 2011; 15:2565-604. [PMID: 21453190 PMCID: PMC3176348 DOI: 10.1089/ars.2010.3831] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction.
Collapse
Affiliation(s)
- Changgong Wu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aachmann FL, Kwak GH, Del Conte R, Kim HY, Gladyshev VN, Dikiy A. Structural and biochemical analysis of mammalian methionine sulfoxide reductase B2. Proteins 2011; 79:3123-31. [PMID: 21989933 DOI: 10.1002/prot.23141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/27/2011] [Accepted: 07/21/2011] [Indexed: 11/10/2022]
Abstract
Methionine sulfoxide reductases are antioxidant enzymes that repair oxidatively damaged methionine residues in proteins. Mammals have three members of the methionine-R-sulfoxide reductase family, including cytosolic MsrB1, mitochondrial MsrB2, and endoplasmic reticulum MsrB3. Here, we report the solution structure of reduced Mus musculus MsrB2 using high resolution nuclear magnetic resonance (NMR) spectroscopy. MsrB2 is a β-strand rich globular protein consisting of eight antiparallel β-strands and three N-terminal α-helical segments. The latter secondary structure elements represent the main structural difference between mammalian MsrB2 and MsrB1. Structural comparison of mammalian and bacterial MsrB structures indicates that the general topology of this MsrB family is maintained and that MsrB2 more resembles bacterial MsrBs than MsrB1. Structural and biochemical analysis supports the catalytic mechanism of MsrB2 that, in contrast to MsrB1, does not involve a resolving cysteine (Cys). pH dependence of catalytically relevant residues in MsrB2 was accessed by NMR spectroscopy and the pK(a) of the catalytic Cys162 was determined to be 8.3. In addition, the pH-dependence of MsrB2 activity showed a maximum at pH 9.0, suggesting that deprotonation of the catalytic Cys is a critical step for the reaction. Further mobility analysis showed a well-structured N-terminal region, which contrasted with the high flexibility of this region in MsrB1. Our study highlights important structural and functional aspects of mammalian MsrB2 and provides a unifying picture for structure-function relationships within the MsrB protein family.
Collapse
Affiliation(s)
- Finn L Aachmann
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | | | | | | | | | | |
Collapse
|
37
|
Kwak GH, Choi SH, Kim HY. Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A. BMB Rep 2010; 43:622-8. [PMID: 20846495 DOI: 10.5483/bmbrep.2010.43.9.622] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSO's selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.
Collapse
Affiliation(s)
- Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea
| | | | | |
Collapse
|
38
|
Jortzik E, Fritz-Wolf K, Sturm N, Hipp M, Rahlfs S, Becker K. Redox regulation of Plasmodium falciparum ornithine δ-aminotransferase. J Mol Biol 2010; 402:445-59. [PMID: 20673832 DOI: 10.1016/j.jmb.2010.07.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 11/16/2022]
Abstract
Ornithine δ-aminotransferase (OAT) of the malaria parasite Plasmodium falciparum catalyzes the reversible conversion of ornithine into glutamate-5-semialdehyde and glutamate and is-in contrast to its human counterpart-activated by thioredoxin (Trx) by a factor of 10. Trx, glutaredoxin, and plasmoredoxin are redox-active proteins that play a crucial role in the maintenance and control of redox reactions, and were shown to interact with P. falciparum OAT. OAT, which is involved in ornithine homeostasis and proline biosynthesis, is essential for mitotic cell division in rapidly growing cells, thus representing a potential target for chemotherapeutic intervention. Here we report the three-dimensional crystal structure of P. falciparum OAT at 2.3 Å resolution. The overall structure is very similar to that of the human OAT. However, in plasmodial OAT, the loop involved in substrate binding contains two cysteine residues, which are lacking in human OAT. Site-directed mutagenesis of these cysteines and functional analysis demonstrated that Cys154 and Cys163 mediate the interaction with Trx. Interestingly, the Cys154→Ser mutant has a strongly reduced specific activity, most likely due to impaired binding of ornithine. Cys154 and Cys163 are highly conserved in Plasmodium but do not exist in other organisms, suggesting that redox regulation of OAT by Trx is specific for malaria parasites. Plasmodium might require a tight Trx-mediated control of OAT activity for coordinating ornithine homeostasis, polyamine synthesis, proline synthesis, and mitotic cell division.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Aachmann FL, Sal LS, Kim HY, Marino SM, Gladyshev VN, Dikiy A. Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis. J Biol Chem 2010; 285:33315-33323. [PMID: 20605785 DOI: 10.1074/jbc.m110.132308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec(95) and resolving Cys(4) residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.
Collapse
Affiliation(s)
- Finn L Aachmann
- From the Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Lena S Sal
- From the Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea
| | - Stefano M Marino
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Vadim N Gladyshev
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Alexander Dikiy
- From the Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|
40
|
Decreased serum levels of thioredoxin in patients with coronary artery disease plus hyperhomocysteinemia is strongly associated with the disease severity. Atherosclerosis 2010; 212:351-5. [PMID: 20594554 DOI: 10.1016/j.atherosclerosis.2010.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/13/2010] [Accepted: 06/01/2010] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Elevation of homocysteine and thioredoxin (Trx) levels was found in some patients with coronary artery diseases (CAD). However, their correlations with CAD were not clear. Dysfunction of thioredoxin/thioredoxin reductase (TrxR) may cause oxidative stress that is common to CAD. We seek to determine the association among homocysteine, Trx/TrxR and CAD. METHODS Serum samples were collected from 150 CAD patients under statin treatment and 122 non-CAD controls. Risk factors for atherosclerosis including homocysteine, lipids and glucose levels were analyzed. Trx/TrxR activities and protein levels were determined using super-insulin assay and Western blot, respectively. One-way ANOVA, Tukey's post hoc test and Spearman's rank correlation coefficient were used for statistical analysis. CAD severity was evaluated by angiographic Gensini score. RESULTS Compared with non-CAD group, CAD group had significantly increased TrxR activity (P<0.05) and homocysteine levels (P<0.01), but not Trx activity. After further dividing CAD group using homocysteine below 15 microM as reference, Trx activity decreased significantly in CAD group with high homocysteine, and was inversely associated with homocysteine levels (r=-0.199, P<0.05) that was, however, weakly positively associated with TrxR activity. Neither lipids nor glucose significantly affected Trx/TrxR activity. Association of CAD severity with low Trx plus high homocysteine was strong (r=-0.458, P<0.001), but with high homocysteine alone was rather weak (r=0.125, P=0.225). CONCLUSION In CAD patients, high homocysteine levels may cause low Trx activity, which is closely correlated to the extent and severity of CAD.
Collapse
|
41
|
Wetzelberger K, Baba SP, Thirunavukkarasu M, Ho YS, Maulik N, Barski OA, Conklin DJ, Bhatnagar A. Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids. J Biol Chem 2010; 285:26135-48. [PMID: 20538586 DOI: 10.1074/jbc.m110.146423] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.
Collapse
Affiliation(s)
- Karin Wetzelberger
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kwak GH, Kim MJ, Kim HY. Cysteine-125 is the catalytic residue of Saccharomyces cerevisiae free methionine-R-sulfoxide reductase. Biochem Biophys Res Commun 2010; 395:412-5. [PMID: 20382110 DOI: 10.1016/j.bbrc.2010.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/03/2010] [Indexed: 11/15/2022]
Abstract
Free methionine-R-sulfoxide reductase (fRMsr) is a new type of methionine sulfoxide reductase that catalyzes the reduction of free methionine-R-sulfoxide to methionine. This enzyme cannot reduce oxidized methionine residues in proteins. While three Cys residues, Cys-91, Cys-101 and Cys-125, have been demonstrated to be involved in the catalysis by Saccharomyces cerevisiae fRMsr, their specific functions have not been fully established. In this work, we performed in vivo growth complementation experiments using S. cerevisiae cells lacking all three known methionine sulfoxide reductases. Cells containing a C125S construct, in which Cys-125 in fRMsr was replaced with Ser, did not grow in methionine sulfoxide medium, whereas cells containing C91S, C101S, or C91/101S constructs could grow in this medium. In addition, when assayed with thioredoxin and glutaredoxin reduction systems, the C125S form was inactive, whereas C91S and C101S had 1-2% and 9-10%, respectively, of the activity of the wild-type fRMsr. These data show that Cys-125 is the catalytic residue in fRMsr.
Collapse
Affiliation(s)
- Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea
| | | | | |
Collapse
|
43
|
Tarrago L, Laugier E, Zaffagnini M, Marchand CH, Le Maréchal P, Lemaire SD, Rey P. Plant thioredoxin CDSP32 regenerates 1-cys methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid. J Biol Chem 2010; 285:14964-14972. [PMID: 20236937 DOI: 10.1074/jbc.m110.108373] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxins (Trxs) are ubiquitous enzymes catalyzing the reduction of disulfide bonds, thanks to a CXXC active site. Among their substrates, 2-Cys methionine sulfoxide reductases B (2-Cys MSRBs) reduce the R diastereoisomer of methionine sulfoxide (MetSO) and possess two redox-active Cys as follows: a catalytic Cys reducing MetSO and a resolving one, involved in disulfide bridge formation. The other MSRB type, 1-Cys MSRBs, possesses only the catalytic Cys, and their regeneration mechanisms by Trxs remain unclear. The plant plastidial Trx CDSP32 is able to provide 1-Cys MSRB with electrons. CDSP32 includes two Trx modules with one potential active site (219)CGPC(222) and three extra Cys. Here, we investigated the redox properties of recombinant Arabidopsis CDSP32 and delineated the biochemical mechanisms of MSRB regeneration by CDSP32. Free thiol titration and 4-acetamido-4'-maleimidyldistilbene-2,2'-disulfonic acid alkylation assays indicated that the Trx possesses only two redox-active Cys, very likely the Cys(219) and Cys(222). Protein electrophoresis analyses coupled to mass spectrometry revealed that CDSP32 forms a heterodimeric complex with MSRB1 via reduction of the sulfenic acid formed on MSRB1 catalytic Cys after MetSO reduction. MSR activity assays using variable CDSP32 amounts revealed that MSRB1 reduction proceeds with a 1:1 stoichiometry, and redox titrations indicated that CDSP32 and MSRB1 possess midpoints potentials of -337 and -328 mV at pH 7.9, respectively, indicating that regeneration of MSRB1 activity by the Trx through sulfenic acid reduction is thermodynamically feasible in physiological conditions.
Collapse
Affiliation(s)
- Lionel Tarrago
- Commissariat à l'Energie Atomique et aux Energies Alternative, (Cadarache), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique/CNRS/Université Aix-Marseille II, 13108 Saint-Paul-lez-Durance Cedex
| | - Edith Laugier
- Commissariat à l'Energie Atomique et aux Energies Alternative, (Cadarache), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique/CNRS/Université Aix-Marseille II, 13108 Saint-Paul-lez-Durance Cedex
| | - Mirko Zaffagnini
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618
| | - Christophe H Marchand
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 8619, CNRS, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Pierre Le Maréchal
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 8619, CNRS, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | - Pascal Rey
- Commissariat à l'Energie Atomique et aux Energies Alternative, (Cadarache), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique/CNRS/Université Aix-Marseille II, 13108 Saint-Paul-lez-Durance Cedex.
| |
Collapse
|
44
|
Choi S, Jeong J, Na S, Lee HS, Kim HY, Lee KJ, Paek E. New Algorithm for the Identification of Intact Disulfide Linkages Based on Fragmentation Characteristics in Tandem Mass Spectra. J Proteome Res 2009; 9:626-35. [DOI: 10.1021/pr900771r] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Seonhwa Choi
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Jaeho Jeong
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Seungjin Na
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Hyo Sun Lee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Hwa-Young Kim
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Kong-Joo Lee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Eunok Paek
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| |
Collapse
|
45
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Lee BC, Dikiy A, Kim HY, Gladyshev VN. Functions and evolution of selenoprotein methionine sulfoxide reductases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1471-7. [PMID: 19406207 PMCID: PMC3062201 DOI: 10.1016/j.bbagen.2009.04.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/13/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
Abstract
Methionine sulfoxide reductases (Msrs) are thiol-dependent enzymes which catalyze conversion of methionine sulfoxide to methionine. Three Msr families, MsrA, MsrB, and fRMsr, are known. MsrA and MsrB are responsible for the reduction of methionine-S-sulfoxide and methionine-R-sulfoxide residues in proteins, respectively, whereas fRMsr reduces free methionine-R-sulfoxide. Besides acting on proteins, MsrA can additionally reduce free methionine-S-sulfoxide. Some MsrAs and MsrBs evolved to utilize catalytic selenocysteine. This includes MsrB1, which is a major MsrB in cytosol and nucleus in mammalian cells. Specialized machinery is used for insertion of selenocysteine into MsrB1 and other selenoproteins at in-frame UGA codons. Selenocysteine offers catalytic advantage to the protein repair function of Msrs, but also makes these proteins dependent on the supply of selenium and requires adjustments in their strategies for regeneration of active enzymes. Msrs have roles in protecting cellular proteins from oxidative stress and through this function they may regulate lifespan in several model organisms.
Collapse
Affiliation(s)
- Byung Cheon Lee
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Alexander Dikiy
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea
| | - Vadim N. Gladyshev
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| |
Collapse
|
47
|
Bao R, Zhang Y, Lou X, Zhou CZ, Chen Y. Structural and kinetic analysis of Saccharomyces cerevisiae thioredoxin Trx1: Implications for the catalytic mechanism of GSSG reduced by the thioredoxin system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1218-23. [DOI: 10.1016/j.bbapap.2009.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/28/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
48
|
Tarrago L, Laugier E, Zaffagnini M, Marchand C, Le Maréchal P, Rouhier N, Lemaire SD, Rey P. Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins. J Biol Chem 2009; 284:18963-71. [PMID: 19457862 DOI: 10.1074/jbc.m109.015487] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR.
Collapse
Affiliation(s)
- Lionel Tarrago
- Commissariat à l'Energie Atomique (Cadarache, France), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Antioxidant activity of the yeast mitochondrial one-Cys peroxiredoxin is dependent on thioredoxin reductase and glutathione in vivo. Mol Cell Biol 2009; 29:3229-40. [PMID: 19332553 DOI: 10.1128/mcb.01918-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Peroxiredoxins are ubiquitous enzymes which protect cells against oxidative stress. The first step of catalysis is common to all peroxiredoxins and results in oxidation of a conserved peroxidatic cysteine residue to sulfenic acid. This forms an intermolecular disulfide bridge in the case of 2-Cys peroxiredoxins, which is a substrate for the thioredoxin system. 1-Cys Prx's contain a peroxidatic cysteine but do not contain a second conserved cysteine residue, and hence the identity of the in vivo reduction system has been unclear. Here, we show that the yeast mitochondrial 1-Cys Prx1 is reactivated by glutathionylation of the catalytic cysteine residue and subsequent reduction by thioredoxin reductase (Trr2) coupled with glutathione (GSH). This novel mechanism does not require the usual thioredoxin (Trx3) redox partner of Trr2 for antioxidant activity, although in vitro assays show that the Trr2/Trx3 and Trr2/GSH systems exhibit similar capacities for supporting Prx1 catalysis. Our data also indicate that mitochondria are a main target of cadmium-induced oxidative stress and that Prx1 is particularly required to protect against mitochondrial oxidation. This study demonstrates a physiological reaction mechanism for 1-Cys peroxiredoxins and reveals a new role in protection against mitochondrial heavy metal toxicity.
Collapse
|
50
|
Tarrago L, Laugier E, Rey P. Protein-repairing methionine sulfoxide reductases in photosynthetic organisms: gene organization, reduction mechanisms, and physiological roles. MOLECULAR PLANT 2009; 2:202-17. [PMID: 19825608 DOI: 10.1093/mp/ssn067] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reductases (MSRs), A and B, specific to the S- and R-diastereomers of MetSO, respectively. MSR genes are found in most organisms from bacteria to human. In the current review, we first compare the organization of the MSR gene families in photosynthetic organisms from cyanobacteria to higher plants. The analysis reveals that MSRs constitute complex families in higher plants, bryophytes, and algae compared to cyanobacteria and all non-photosynthetic organisms. We also perform a classification, based on gene number and structure, position of redox-active cysteines and predicted sub-cellular localization. The various catalytic mechanisms and potential physiological electron donors involved in the regeneration of MSR activity are then described. Data available from higher plants reveal that MSRs fulfill an essential physiological function during environmental constraints through a role in protein repair and in protection against oxidative damage. Taking into consideration the expression patterns of MSR genes in plants and the known roles of these genes in non-photosynthetic cells, other functions of MSRs are discussed during specific developmental stages and ageing in photosynthetic organisms.
Collapse
Affiliation(s)
- Lionel Tarrago
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Bâtiment 161, SBVME, CEA-Cadarache, 13108 Saint-Paul-lez-Durance, Cedex, France
| | | | | |
Collapse
|