1
|
Rodrigues ÉF, Verza FA, Nishimura FG, Beleboni RO, Hermans C, Janssens K, De Mol ML, Hulpiau P, Marins M. Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome. Mar Drugs 2024; 23:8. [PMID: 39852510 PMCID: PMC11766507 DOI: 10.3390/md23010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs. Lectins from Rhodophytes (red seaweed) have been extensively reported and characterized for their unique molecular structures, carbohydrate-binding specificities, and important biological activities. The increasing number of sequenced Rhodophyte genomes offers the opportunity to further study this rich source of lectins, potentially uncovering new ones with properties significantly different from their terrestrial plant counterparts, thus opening new biotechnological applications. We compiled literature data and conducted an in-depth analysis of the phycolectomes from all Rhodophyta genomes available in NCBI datasets. Using Hidden Markov Models capable of identifying lectin-type domains, we found at least six different types of lectin domains present in Rhodophytes, demonstrating their potential in identifying new lectins. This review integrates a computational analysis of the Rhodophyte phycolectome with existing information on red algae lectins and their biotechnological potential.
Collapse
Affiliation(s)
- Éllen F. Rodrigues
- Postgraduate Program in Environmental Technology, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil;
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Flavia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Felipe Garcia Nishimura
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Renê Oliveira Beleboni
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Kaat Janssens
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Maarten Lieven De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
- Algastech Aquiculture, Research and Development, Ubatuba 11695-722, SP, Brazil
| |
Collapse
|
2
|
Xu T, Wang YC, Ma J, Cui Y, Wang L. In silico discovery and anti-tumor bioactivities validation of an algal lectin from Kappaphycus alvarezii genome. Int J Biol Macromol 2024; 275:133311. [PMID: 38909728 DOI: 10.1016/j.ijbiomac.2024.133311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Lectins are proteins that bind specifically and reversibly to carbohydrates, and some of them have significant anti-tumor activities. Compared to those of lectins from land plants, there are far fewer studies on algal lectins, despite of the high biodiversity of algae. However, canonical strategies based on chromatographic feature-oriented screening cannot satisfy the requirement for algal lectin discovery. In this study, prospecting for novel OAAH family lectins throughout 358 genomes of red algae and cyanobacteria was conducted. Then 35 candidate lectins and 1843 of their simulated mutated forms were virtually screened based on predicted binding specificities to characteristic carbohydrates on cancer cells inferred by a deep learning model. A new lectin, named Siye, was discovered in Kappaphycus alvarezii genome and further verified on different cancer cells. Without causing agglutination of erythrocytes, Siye showed significant cytotoxicity to four human cancer cell lines (IC50 values ranging from 0.11 to 3.95 μg/mL), including breast adenocarcinoma HCC1937, lung carcinoma A549, liver cancer HepG2 and romyelocytic leukemia HL60. And the cytotoxicity was induced through promoting apoptosis by regulating the caspase and the p53 pathway within 24 h. This study testifies the feasibility and efficiency of the genome mining guided by evolutionary theory and artificial intelligence in the discovery of algal lectins.
Collapse
Affiliation(s)
- Tongli Xu
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266071, China
| | - Yin-Chu Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; National Basic Science Data Center, Beijing 100190, China.
| | - Jiahao Ma
- Hong Kong University of Science and Technology, Clear Water Bay, 999077, Hong Kong
| | - Yulin Cui
- Binzhou Medical University, Yantai 264003, China.
| | - Lu Wang
- School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
3
|
Mu J, Hirayama M, Morimoto K, Hori K. A Complex-Type N-Glycan-Specific Lectin Isolated from Green Alga Halimeda borneensis Exhibits Potent Anti-Influenza Virus Activity. Int J Mol Sci 2024; 25:4345. [PMID: 38673930 PMCID: PMC11050134 DOI: 10.3390/ijms25084345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza virus lectin (named HBL40), specific for complex-type N-glycans, which was isolated from a marine green alga, Halimeda borneensis. The hemagglutination activity of HBL40 was inhibited with both complex-type N-glycan and O-glycan-linked glycoproteins but not with high-mannose-type N-glycan-linked glycoproteins or any of the monosaccharides examined. In the oligosaccharide-binding experiment using 26 pyridylaminated oligosaccharides, HBL40 only bound to complex-type N-glycans with bi- and triantennary-branched sugar chains. The sialylation, core fucosylation, and the increased number of branched antennae of the N-glycans lowered the binding activity with HBL40. Interestingly, the lectin potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells at IC50 of 8.02 nM by binding to glycosylated viral hemagglutinin (KD of 1.21 × 10-6 M). HBL40 consisted of two isolectins with slightly different molecular masses to each other that could be separated by reverse-phase HPLC. Both isolectins shared the same 16 N-terminal amino acid sequences. Thus, HBL40 could be useful as an antivirus lectin specific for complex-type N-glycans.
Collapse
Affiliation(s)
- Jinmin Mu
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (J.M.); (M.H.)
| | - Makoto Hirayama
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (J.M.); (M.H.)
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women’s University, Yasuhigashi 6-13-1, Asaminami-Ku, Hiroshima 731-0153, Japan;
| | - Kanji Hori
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (J.M.); (M.H.)
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
4
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
de S Barros C, Cirne-Santos CC, Esteves PO, Gomes MWL, Rabelo VW, Santos TM, Teixeira VL, de P Paixão ICN. Antiviral Activity of Kappaphycus alvarezii Seaweed against ZIKV. Curr Top Med Chem 2024; 24:1589-1598. [PMID: 38797894 DOI: 10.2174/0115680266294503240513044930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Zika virus (ZIKV) is a flavivirus transmitted through the bites of infected Aedes mosquitoes. These viruses can also be transmitted through sexual contact, vertical transmission, and possibly transfusion. Most cases are asymptomatic, but symptoms can include rash, conjunctivitis, fever, and arthralgia, which are characteristic of other arboviruses. Zika infection can lead to complications such as microcephaly, miscarriage, brain abnormalities, and Guillain-Barré syndrome (GBS). OBJECTIVE The aim is to determine the inhibitory potential of the algae Kappaphycus alvarezii (K. alvarezii) on ZIKV replication. METHODOLOGY Cytotoxicity experiments were performed using Vero cells to determine the CC50, and ZIKV replication inhibition assays (ATCC® VR-1839™) were conducted to determine the EC50. The mechanism of action was also studied to assess any synergistic effect with Ribavirin. RESULTS K. alvarezii demonstrated low toxicity with a CC50 of 423 μg/mL and a potent effect on ZIKV replication with an EC50 of 0.65 μg/mL and a Selectivity Index (SI) of 651, indicating the extract's safety. Virucidal effect assays were carried out to evaluate the possible mechanism of action, and the compound addition time was studied, showing the potential to delay the treatment of infected cells by up to 6 hours. A potential synergistic effect was observed when K. alvarezii extract was combined with suboptimal concentrations of Ribavirin, resulting in 99% inhibition of viral replication. CONCLUSION Our data demonstrate the significant potential of K. alvarezii extract and highlight the need for further studies to investigate its mechanism of action. We propose this extract as a potential anti-Zika compound.
Collapse
Affiliation(s)
- Caroline de S Barros
- Laboratório de Imunovirologia, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Claudio C Cirne-Santos
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Programa de Pós-graduação em Neurologia/Neurociência, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Priscilla O Esteves
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Programa de Pós-graduação em Neurologia/Neurociência, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório Algamar, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Max W L Gomes
- Laboratório de Imunovirologia, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Programa de Pós-graduação em Neurologia/Neurociência, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Vítor W Rabelo
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Programa de Pós-graduação em Neurologia/Neurociência, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Biologia e Taxonomia de Algas (LABIOTAL), Programa de Pós-graduação em Biodiversidade Neotropical, Instituto de Biociencias, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamyres M Santos
- Laboratório de Imunovirologia, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Valéria L Teixeira
- Laboratório Algamar, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Biologia e Taxonomia de Algas (LABIOTAL), Programa de Pós-graduação em Biodiversidade Neotropical, Instituto de Biociencias, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Izabel C N de P Paixão
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Programa de Pós-Graduação em Biotecnologia Marinha, Programa de Pós-graduação em Neurologia/Neurociência, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
6
|
Xu T, Cui Y, Qin S, Wang YC. Genome-wide analysis of lectins in cyanobacteria: from evolutionary mode to motif patterns. BMC Genomics 2023; 24:688. [PMID: 37974077 PMCID: PMC10655256 DOI: 10.1186/s12864-023-09790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Lectins are glycoproteins that can bind to specific carbohydrates, and different lectin families exhibit different biological activities. They are also present in the cyanobacteria and many of them have shown excellent therapeutic effect, which deserve for bioprospecting. However, in comparison to those from terrestrial plants, the current knowledge on cyanobacterial lectins is very limited. To this end, genome-wide analyses were performed to find out their evolutionary mode and motif patterns in 316 genomes of representative taxa. In results, 196 putative cyanobacterial lectins were dig out and 105 of them were classified into known families. Seven lectins were found to be belonged to distinct two lectin families, and they may have the potential activities of both lectin families. Whereas no MFP-2, Chitin, and Nictaba family lectins were found. What's more, the Legume lectin-like lectin family was found to be the richest and most complex in cyanobacteria, which could be a main research direction for future cyanobacterial lectin bioprospecting and development. Our classification and prediction of cyanobacteria lectins is expected to provide assistance in the development of lectin-based medicine and provide solutions to the current thorny viral and tumor diseases in humans.
Collapse
Affiliation(s)
- Tongli Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250335, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yulin Cui
- Binzhou Medical University, Yantai, 264003, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yin-Chu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|
7
|
Nazmul T, Lawal-Ayinde BM, Morita T, Yoshimoto R, Higashiura A, Yamamoto A, Nomura T, Nakano Y, Hirayama M, Kurokawa H, Kitamura Y, Hori K, Sakaguchi T. Capture and neutralization of SARS-CoV-2 and influenza virus by algae-derived lectins with high-mannose and core fucose specificities. Microbiol Immunol 2023. [PMID: 37248051 DOI: 10.1111/1348-0421.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
We first investigated the interactions between several algae-derived lectins and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We created lectin columns using high-mannose (HM)-type glycan-specific lectins OAA and KAA-1 or core fucose-specific lectin hypninA-2 and conducted binding experiments with SARS-CoV-2. The results showed that these lectins were capable of binding to the virus. Furthermore, when examining the neutralization ability of nine different lectins, it was found that KAA-1, ESA-2, and hypninA-2 were effective in neutralizing SARS-CoV-2. In competitive inhibition experiments with glycoproteins, neutralization was confirmed to occur through HM-type or core fucose-type glycans. However, neutralization was not observed with other lectins, such as OAA. This trend of KAA-1 and ESA-2 having the neutralizing ability and OAA not having it was also similar to influenza viruses. Electron microscopy observations revealed that KAA-1 and hypninA-2 strongly aggregated SARS-CoV-2 particles, while OAA showed a low degree of aggregation. It is believed that the neutralization of SARS-CoV-2 involves multiple factors, such as glycan attachment sites on the S protein, the size of lectins, and their propensity to aggregate, which cause inhibition of receptor binding or aggregation of virus particles. This study demonstrated that several algae-derived lectins could neutralize SARS-CoV-2 and that lectin columns can effectively recover and concentrate the virus.
Collapse
Affiliation(s)
- Tanuza Nazmul
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Basirat M Lawal-Ayinde
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Morita
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Reiko Yoshimoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshihito Nomura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Yukiko Nakano
- Laboratory of Marine Bioresource Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Makoto Hirayama
- Laboratory of Marine Bioresource Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | - Kanji Hori
- Laboratory of Marine Bioresource Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Rautela I, Thapliyal P, Sahni S, Rayal R, Sharma MD. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ahmmed MK, Bhowmik S, Giteru SG, Zilani MNH, Adadi P, Islam SS, Kanwugu ON, Haq M, Ahmmed F, Ng CCW, Chan YS, Asadujjaman M, Chan GHH, Naude R, Bekhit AEDA, Ng TB, Wong JH. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar Drugs 2022; 20:md20070430. [PMID: 35877723 PMCID: PMC9316650 DOI: 10.3390/md20070430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Stephen G. Giteru
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Alliance Group Limited, Invercargill 9840, New Zealand
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Parise Adadi
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
| | - Shikder Saiful Islam
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7250, Australia;
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Osman N. Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, 620002 Yekaterinburg, Russia;
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | | | - Yau Sang Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Md. Asadujjaman
- Department of Aquaculture, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Gabriel Hoi Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| | - Tzi Bun Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| |
Collapse
|
10
|
Saad MH, Sidkey NM, Khan RH, El-Fakharany EM. Nostoc muscorum is a novel source of microalgal lectins with potent antiviral activity against herpes simplex type-1. Int J Biol Macromol 2022; 210:415-429. [PMID: 35504413 DOI: 10.1016/j.ijbiomac.2022.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
Abstract
In our survey for a new antiviral agent, two types of lectin were purified from Nostoc muscorum using both ion-exchange and affinity columns chromatography. Nostoc muscorum lectins (NMLs) are categorized based on their carbohydrate preference. Nostoc muscorum lectin-1(NML-1) exhibited a strict binding specificity for complex glycoproteins without linked carbohydrates, and the other displayed specificity for α- glycosides mannose polymers (NML-2) and was classified as a glycoprotein with 16.8% linked carbohydrates. NML-1 displayed a single band of 166 kDa on native-PAGE and two bands of 81 kDa and 85 kDa on SDS-PAGE, which confirmed the heterodimeric nature of this lectin. While NML-2 is a 50 kDa glycoprotein composed of 25 kDa subunits. Physical characterization of NML-1 displayed its stability at a higher temperature of 90 °C for 5 min and over a wide pH range (4-9), while MNL-2 displayed stability up to a temperature of 80 °C for 25 min and a pH range of 5-8. NML-1 didn't require metal ions for agglutination activity, while the activity of NML-2 was doubled by manganese ions. The antiviral activity of two lectins was assessed against herpes simplex type-1 (HSV-1) using a plaque assay which revealed that NML-1 inhibited HSV-1 infection at an early stage in contrast to NML-2 which exerted its antiviral effect at the late stage of infection. These results suggest that Nostoc muscorum is a unique lead for antiviral drug discovery as it is a novel source for antiviral lectins with different modes of action.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab 21934, Alexandria, Egypt; Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab 21934, Alexandria, Egypt.
| |
Collapse
|
11
|
Bussy F, Rémy S, Le Goff M, Collén PN, Trapp-Fragnet L. The sulphated polysaccharides extract ulvans from Ulva armoricana limits Marek's disease virus dissemination in vitro and promotes viral reactivation in lymphoid cells. BMC Vet Res 2022; 18:155. [PMID: 35477401 PMCID: PMC9044586 DOI: 10.1186/s12917-022-03247-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Background Marek’s disease (MD) is a highly contagious lymphoproliferative disease of chickens caused by an alphaherpesvirus, Marek’s disease virus (MDV). MD is presently controlled by systematic vaccination of animals, which protects efficiently against the development of clinical disease. However, MDV vaccines do not prevent the multiplication and spread of MDV field strains and may favor the emergence of strains with increased virulence. Therefore, MDV persists to be a major problem for the poultry industry and the development of new alternative strategies to control MDV is needed. Seaweed extracts have previously been shown to exert immunomodulatory and antiviral activities, especially against herpesviruses. The objective of the present study was to explore the effect of Ulva armoricana extracts on MDV infection in vitro. Results We could demonstrate that the ulvan extract as well as its vitamin-enriched formulation reduce the viral load by about 80% at 24 h post-infection in infected chicken fibroblasts at concentrations that are innocuous for the cells. We also observed a substantial decrease in MDV plaque size suggesting that ulvans impede MDV cell-to-cell spread in vitro. Moreover, we showed that ulvan extract could promote MDV reactivation in lymphoid cells. Conclusions Our data provide the first evidence that the use of the ulvan extract could be a good alternative to limit MDV infection in poultry.
Collapse
Affiliation(s)
- Frédérick Bussy
- Amadeite SAS, 56580, Bréhan, France.,Olmix, SALe Lintan, 56580, Bréhan, France
| | - Sylvie Rémy
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Matthieu Le Goff
- Amadeite SAS, 56580, Bréhan, France.,Olmix, SALe Lintan, 56580, Bréhan, France
| | - Pi Nyvall Collén
- Amadeite SAS, 56580, Bréhan, France.,Olmix, SALe Lintan, 56580, Bréhan, France
| | | |
Collapse
|
12
|
Maliki IM, Misson M, Teoh PL, Rodrigues KF, Yong WTL. Production of Lectins from Marine Algae: Current Status, Challenges, and Opportunities for Non-Destructive Extraction. Mar Drugs 2022; 20:102. [PMID: 35200632 PMCID: PMC8880576 DOI: 10.3390/md20020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Marine algae are an excellent source of novel lectins. The isolation of lectins from marine algae expands the diversity in structure and carbohydrate specificities of lectins isolated from other sources. Marine algal lectins have been reported to have antiviral, antitumor, and antibacterial activity. Lectins are typically isolated from marine algae by grinding the algal tissue with liquid nitrogen and extracting with buffer and alcohol. While this method produces higher yields, it may not be sustainable for large-scale production, because a large amount of biomass is required to produce a minute amount of compound, and a significant amount of waste is generated during the extraction process. Therefore, non-destructive extraction using algal culture water could be used to ensure a continuous supply of lectins without exclusively disrupting the marine algae. This review discusses the traditional and recent advancements in algal lectin extraction methods over the last decade, as well as the steps required for large-scale production. The challenges and prospects of various extraction methods (destructive and non-destructive) are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (I.M.M.); (M.M.); (P.L.T.); (K.F.R.)
| |
Collapse
|
13
|
Shah MD, Venmathi Maran BA, Shaleh SRM, Zuldin WH, Gnanaraj C, Yong YS. Therapeutic Potential and Nutraceutical Profiling of North Bornean Seaweeds: A Review. Mar Drugs 2022; 20:101. [PMID: 35200631 PMCID: PMC8879771 DOI: 10.3390/md20020101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Malaysia has a long coastline surrounded by various islands, including North Borneo, that provide a suitable environment for the growth of diverse species of seaweeds. Some of the important North Bornean seaweed species are Kappaphycus alvarezii, Eucheuma denticulatum, Halymenia durvillaei (Rhodophyta), Caulerpa lentillifera, Caulerpa racemosa (Chlorophyta), Dictyota dichotoma and Sargassum polycystum (Ochrophyta). This review aims to highlight the therapeutic potential of North Bornean seaweeds and their nutraceutical profiling. North Bornean seaweeds have demonstrated anti-inflammatory, antioxidant, antimicrobial, anticancer, cardiovascular protective, neuroprotective, renal protective and hepatic protective potentials. The protective roles of the seaweeds might be due to the presence of a wide variety of nutraceuticals, including phthalic anhydride, 3,4-ethylenedioxythiophene, 2-pentylthiophene, furoic acid (K. alvarezii), eicosapentaenoic acid, palmitoleic acid, fucoxanthin, β-carotene (E. denticulatum), eucalyptol, oleic acid, dodecanal, pentadecane (H. durvillaei), canthaxanthin, oleic acid, pentadecanoic acid, eicosane (C. lentillifera), pseudoephedrine, palmitic acid, monocaprin (C. racemosa), dictyohydroperoxide, squalene, fucosterol, saringosterol (D. dichotoma), and lutein, neophytadiene, cholest-4-en-3-one and cis-vaccenic acid (S. polycystum). Extensive studies on the seaweed isolates are highly recommended to understand their bioactivity and mechanisms of action, while highlighting their commercialization potential.
Collapse
Affiliation(s)
- Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Sitti Raehanah Muhamad Shaleh
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Wahidatul Husna Zuldin
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, University Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Yoong Soon Yong
- Laboratory Center, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia;
| |
Collapse
|
14
|
Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022; 11:cells11030339. [PMID: 35159151 PMCID: PMC8834014 DOI: 10.3390/cells11030339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Jan Sudor
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
15
|
Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Mar Drugs 2021; 19:md19120687. [PMID: 34940686 PMCID: PMC8707200 DOI: 10.3390/md19120687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.
Collapse
|
16
|
Gupta A, Gupta GS. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs. Mol Cell Biochem 2021; 476:2917-2942. [PMID: 33745077 PMCID: PMC7981598 DOI: 10.1007/s11010-021-04107-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a virus called "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)." In the majority of patients, infection with COVID-19 may be asymptomatic or may cause only mild symptoms. However, in some patients, there can also be immunological problems, such as macrophage activation syndrome (CSS) that results in cytokine storm syndrome (CSS) and acute respiratory distress syndrome (ARDS). Comprehension of host-microbe communications is the critical aspect in the advancement of new therapeutics against infectious illnesses. Endogenous animal lectins, a class of proteins, may perceive non-self glycans found on microorganisms. Serum mannose-binding lectin (sMBL), as a part of the innate immune framework, recognizes a wide range of microbial microorganisms and activates complement cascade via an antibody-independent pathway. Although the molecular basis for the intensity of SARS-CoV-2 infection is not generally understood, scientific literature indicates that COVID-19 is correlated with unregulated activation of the complement in terms of disease severity. Disseminated intravascular coagulation (DIC), inflammation, and immune paralysis contribute to unregulated complement activation. Pre-existing genetic defects in MBL and their association with complement play a major role in immune response dysregulation caused by SARS-CoV-2. In order to generate anti-complement-based therapies in Covid-19, an understanding of sMBL in immune response to SARS-CoV-2 and complement is therefore essential. This review highlights the role of endogenous sMBL and complement activation during SARS-CoV-2 infection and their therapeutic management by various agents, mainly plant lectins, since antiviral mannose-binding plant lectins (pMBLs) offer potential applications in the prevention and control of viral infections.
Collapse
Affiliation(s)
- Anita Gupta
- Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - G S Gupta
- Department of Biophysics, Sector 25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells 2021; 10:cells10071619. [PMID: 34203435 PMCID: PMC8305077 DOI: 10.3390/cells10071619] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.
Collapse
|
18
|
Matoba Y, Sato Y, Oda K, Hatori Y, Morimoto K. Lectins engineered to favor a glycan-binding conformation have enhanced antiviral activity. J Biol Chem 2021; 296:100698. [PMID: 33895142 PMCID: PMC8166773 DOI: 10.1016/j.jbc.2021.100698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Homologues of the Oscillatoria agardhii agglutinin (OAA) lectins contain a sequence repeat of ∼66 amino acids, with the number of tandem repeats varying across family members. OAA homologues bind high-mannose glycans on viral surface proteins, thereby interfering with viral entry into host cells. As such, OAA homologues have potential utility as antiviral agents, but a more detailed understanding of their structure–function relationships would enable us to develop improved constructs. Here, we determined the X-ray crystal structure of free and glycan-bound forms of Pseudomonas taiwanensis lectin (PTL), an OAA-family lectin consisting of two tandem repeats. Like other OAA-family lectins, PTL exhibited a β-barrel-like structure with two symmetrically positioned glycan-binding sites at the opposite ends of the barrel. Upon glycan binding, the conformation of PTL undergoes a more significant change than expected from previous OAA structural analysis. Moreover, the electron density of the bound glycans suggested that the binding affinities are different at the two binding sites. Next, based on analysis of these structures, we used site-specific mutagenesis to create PTL constructs expected to increase the population with a conformation suitable for glycan binding. The engineered PTLs were examined for their antiviral activity against the influenza virus. Interestingly, some exhibited stronger activity compared with that of the parent PTL. We propose that our approach is effective for the generation of potential microbicides with enhanced antiviral activity.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hatori
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan.
| |
Collapse
|
19
|
Alam MA, Parra-Saldivar R, Bilal M, Afroze CA, Ahmed MN, Iqbal HM, Xu J. Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-CoV-2. Molecules 2021; 26:2134. [PMID: 33917694 PMCID: PMC8068085 DOI: 10.3390/molecules26082134] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to tackle COVID-19. The ocean is an immense source of biologically active molecules and/or compounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some specific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19 disease. Algae have successfully synthesized several metabolites as natural defense compounds that enable them to survive under extreme environments. Several algae-derived bioactive molecules and/or compounds can be used against many diseases, including microbial and viral infections. Moreover, some algae species can also improve immunity and suppress human viral activity. Therefore, they may be recommended for use as a preventive remedy against COVID-19. Considering the above critiques and unique attributes, herein, we aimed to systematically assess algae-derived, biologically active molecules that could be used against this disease by looking at their natural sources, mechanisms of action, and prior pharmacological uses. This review also serves as a starting point for this research area to accelerate the establishment of anti-SARS-CoV-2 bioproducts.
Collapse
Affiliation(s)
- Md. Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Chowdhury Alfi Afroze
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh;
| | - Md. Nasir Ahmed
- Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka 1209, Bangladesh;
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
20
|
Liu J, Obaidi I, Nagar S, Scalabrino G, Sheridan H. The antiviral potential of algal-derived macromolecules. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Barre A, Damme EJV, Simplicien M, Benoist H, Rougé P. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Mar Drugs 2020; 18:E543. [PMID: 33138151 PMCID: PMC7693892 DOI: 10.3390/md18110543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweed lectins, especially high-mannose-specific lectins from red algae, have been identified as potential antiviral agents that are capable of blocking the replication of various enveloped viruses like influenza virus, herpes virus, and HIV-1 in vitro. Their antiviral activity depends on the recognition of glycoprotein receptors on the surface of sensitive host cells-in particular, hemagglutinin for influenza virus or gp120 for HIV-1, which in turn triggers fusion events, allowing the entry of the viral genome into the cells and its subsequent replication. The diversity of glycans present on the S-glycoproteins forming the spikes covering the SARS-CoV-2 envelope, essentially complex type N-glycans and high-mannose type N-glycans, suggests that high-mannose-specific seaweed lectins are particularly well adapted as glycan probes for coronaviruses. This review presents a detailed study of the carbohydrate-binding specificity of high-mannose-specific seaweed lectins, demonstrating their potential to be used as specific glycan probes for coronaviruses, as well as the biomedical interest for both the detection and immobilization of SARS-CoV-2 to avoid shedding of the virus into the environment. The use of these seaweed lectins as replication blockers for SARS-CoV-2 is also discussed.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Els J.M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium;
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| |
Collapse
|
22
|
Hung LD, Trinh PTH. Structure and anticancer activity of a new lectin from the cultivated red alga, Kappaphycus striatus. J Nat Med 2020; 75:223-231. [PMID: 33025357 PMCID: PMC7538373 DOI: 10.1007/s11418-020-01455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/27/2020] [Indexed: 01/16/2023]
Abstract
The red alga Kappaphycus striatus is economically important food species and extensively cultivated throughout most tropical parts of the world as a source of carrageenan. In this note, the primary structure of a new lectin KSL from this alga was elucidated by the rapid amplification method of complementary DNA (cDNA) ends, which consists of 267 amino acid residues distributed in four tandem-repeated domains of about 67 amino acids and sharing 43% of identity. The calculated molecular mass from the deduced sequence was consistent with that of natural KSL (27,826 Da) determined by electron spray ionization-mass spectrometry. The primary structure of KSL showed high similarity to those of the high mannose N-glycan specific lectins from marine red algae, ESA-2 from Eucheuma serra, EDA-2 from Eucheuma denticulatum, KSA-2 from Kappaphycus striatum, KAAs from Kappaphycus alvarezii and SfLs from Solieria filiformis, and from microorganisms, BOA from Burkholderia oklahomensis, MBHA from Myxococcus xanthus, OAA from Oscillatoria agardhii and PFL from Pseudomonas fluorescens. Furthermore, KSL showed anticancer effects against five carcinoma cell lines, HT29, Hela, MCF-7, SK-LU-1 and AGS, in a dose-dependent manner with the IC50 values of 0.80-1.94 µM, whereas its inhibition activities on cancer cells were not detected in the presence of yeast mannan, an inhibitor against lectin KSL. The cultivated red alga K. striatus could also be a good source of functional lectin(s) for application as anticancer agents.
Collapse
Affiliation(s)
- Le Dinh Hung
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 2A, Hungvuong Street, Nhatrang City, Khanhhoa Province, Vietnam.
| | - Phan Thi Hoai Trinh
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 2A, Hungvuong Street, Nhatrang City, Khanhhoa Province, Vietnam
| |
Collapse
|
23
|
Decker JS, Menacho-Melgar R, Lynch MD. Low-Cost, Large-Scale Production of the Anti-viral Lectin Griffithsin. Front Bioeng Biotechnol 2020; 8:1020. [PMID: 32974328 PMCID: PMC7471252 DOI: 10.3389/fbioe.2020.01020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Griffithsin, a broad-spectrum antiviral lectin, has potential to prevent and treat numerous viruses including HIV, HCV, HSV, SARS-CoV, and SARS-CoV-2. For these indications, the annual demand for Griffithsin could reach billions of doses and affordability is paramount. We report the lab-scale validation of a bioprocess that supports production volumes of >20 tons per year at a cost of goods sold below $3,500/kg. Recombinant expression in engineered E. coli enables Griffithsin titers ∼2.5 g/L. A single rapid precipitation step provides > 90% yield with 2-, 3-, and 4-log reductions in host cell proteins, endotoxin, and nucleic acids, respectively. Two polishing chromatography steps remove residual contaminants leading to pure, active Griffithsin. Compared to a conventional one this process shows lower costs and improved economies of scale. These results support the potential of biologics in very large-scale, cost-sensitive applications such as antivirals, and highlight the importance of bioprocess innovations in enabling these applications.
Collapse
Affiliation(s)
| | | | - Michael D. Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
24
|
The OAAH Family: Anti-Influenza Virus Lectins. Methods Mol Biol 2020. [PMID: 32306367 DOI: 10.1007/978-1-0716-0430-4_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
High mannose (HM)-binding Oscillatoria agardhii agglutinin homologue (OAAH) lectin family is an important class of anti-viral proteins. The OAAH family lectins show potent anti-influenza virus activity with EC50 of nanomolar levels by binding to HM glycans of the envelope glycoprotein hemagglutinin (HA), thereby inhibiting the viral entry into host cells. No broadly effective neutralizing vaccines for influenza virus are available due to the frequent antigenic drift caused by rapid mutations. Alternatives for vaccines need to be developed to prepare for a possible risk of future emergence of a highly virulent virus. Possible use of antiviral lectins is a simple and useful strategy to prevent viral infection by interfering with the interaction between viral HA and the host sialic acid-containing receptor. High-density glycans of surface HA are primary targets for the lectins to inhibit viral entry. In general, the anti-influenza virus potency of lectins is evaluated by a series of inhibitory assays for infection, such as neutral red dye uptake assay to determine the extent of viral cytopathic effect, and immunofluorescence microscopy to detect the expression of viral proteins in infected cells. Direct interaction between lectins and HA could be evaluated by enzyme-linked immunosorbent assay or surface plasmon resonance analysis.
Collapse
|
25
|
Baskararaj S, Panneerselvam T, Govindaraj S, Arunachalam S, Parasuraman P, Pandian SRK, Sankaranarayanan M, Mohan UP, Palanisamy P, Ravishankar V, Kunjiappan S. Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy. 3 Biotech 2020; 10:136. [PMID: 32158632 DOI: 10.1007/s13205-020-2132-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
This study aimed to formulate and characterize the folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii to enhance the anticancer activity. Twenty valued bioactive compounds (3-hydroxy benzoicacid, gallicacid, chlorogenicacid, cinnamicacid, artemiseole, hydrazine carbothioamide, etc.,) are confirmed from methanol extract of K. alvarezii using analytical techniques like HPLC and GC-MS. The delivery of bioactive compounds of K. alvarezii via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. FR targeted PEGylated liposome was constructed by modified thin-film hydration technique using FA-PEG-DSPE/cholesterol/DSPC (5:40:55) and bioactive compounds of K. alvarezii was encapsulated. Their morphology, size, shape, physiological stability and drug release kinetics were studied. The study reports of K. alvarezii extract-encapsulated PEGylated liposome showed spherical shaped particles with amorphous in nature. The mean diameter of K. alvarezii extract-encapsulated PEGylated and FA-conjugated PEGylated liposomes was found to be 110 ± 6 nm and 140 ± 5 nm, respectively. Based on the stability studies, it could be confirmed that FA-conjugated PEGylated liposome was highly stable in various physiological buffer medium. FA-conjugated PEGylated liposome can steadily release the bioactive compounds of K. alvarezii extract in acidic medium (pH 5.4). MTT assay demonstrated the concentration-dependent cytotoxicity against MCF-7 cells after 24 h with IC50 of 81 µg/mL. Also, PEGylated liposome enhanced the delivery of K. alvarezii extract in MCF-7 cells. After treatment, typical apoptotic morphology of condensed nuclei and distorted membrane bodies was picturized. Additionally, PEGylated liposome targets the mitochondria of MCF-7 cells and significantly increased the level of ROS and contributes to the damage of mitochondrial transmembrane potential. Hence, PEGylated liposome could positively deliver the bioactive compounds of K. alvarezii extract into FR-positive breast cancer cells (MCF-7) and exhibit great potential in anticancer therapy.
Collapse
|
26
|
Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Mar Drugs 2019; 18:E8. [PMID: 31861879 PMCID: PMC7024274 DOI: 10.3390/md18010008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Macroalgae are increasingly viewed as a source of secondary metabolites with great potential for the development of new drugs. In this development, in vitro studies are only the first step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true potential and limitations that a given metabolite may have as a new drug. This literature review aims to give a critical overview of the secondary metabolites that reveal the most interesting results in these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as well as griffithsin which showed such stunning results over a variety of animal models and which will probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity and diabetes.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
| | - Wilson R. Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Aida K. Pagès
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Mar Drugs 2019; 17:E440. [PMID: 31357490 PMCID: PMC6723950 DOI: 10.3390/md17080440] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
To date, a number of mannose-specific lectins have been isolated and characterized from seaweeds, especially from red algae. In fact, man-specific seaweed lectins consist of different structural scaffolds harboring a single or a few carbohydrate-binding sites which specifically recognize mannose-containing glycans. Depending on the structural scaffold, man-specific seaweed lectins belong to five distinct structurally-related lectin families, namely (1) the griffithsin lectin family (β-prism I scaffold); (2) the Oscillatoria agardhii agglutinin homolog (OAAH) lectin family (β-barrel scaffold); (3) the legume lectin-like lectin family (β-sandwich scaffold); (4) the Galanthus nivalis agglutinin (GNA)-like lectin family (β-prism II scaffold); and, (5) the MFP2-like lectin family (MFP2-like scaffold). Another algal lectin from Ulva pertusa, has been inferred to the methanol dehydrogenase related lectin family, because it displays a rather different GlcNAc-specificity. In spite of these structural discrepancies, all members from the five lectin families share a common ability to specifically recognize man-containing glycans and, especially, high-mannose type glycans. Because of their mannose-binding specificity, these lectins have been used as valuable tools for deciphering and characterizing the complex mannose-containing glycans from the glycocalyx covering both normal and transformed cells, and as diagnostic tools and therapeutic drugs that specifically recognize the altered high-mannose N-glycans occurring at the surface of various cancer cells. In addition to these anti-cancer properties, man-specific seaweed lectins have been widely used as potent human immunodeficiency virus (HIV-1)-inactivating proteins, due to their capacity to specifically interact with the envelope glycoprotein gp120 and prevent the virion infectivity of HIV-1 towards the host CD4+ T-lymphocyte cells in vitro.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
28
|
Besednova N, Zaporozhets T, Kuznetsova T, Makarenkova I, Fedyanina L, Kryzhanovsky S, Malyarenko O, Ermakova S. Metabolites of Seaweeds as Potential Agents for the Prevention and Therapy of Influenza Infection. Mar Drugs 2019; 17:E373. [PMID: 31234532 PMCID: PMC6627559 DOI: 10.3390/md17060373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
CONTEXT Seaweed metabolites (fucoidans, carrageenans, ulvans, lectins, and polyphenols) are biologically active compounds that target proteins or genes of the influenza virus and host components that are necessary for replication and reproduction of the virus. OBJECTIVE This review gathers the information available in the literature regarding to the useful properties of seaweeds metabolites as potential agents for the prevention and therapy of influenza infection. MATERIALS AND METHODS The sources of scientific literature were found in various electronic databases (i.e., PubMed, Web of Science, and ScienceDirect) and library search. The retrospective search depth is 25 years. RESULTS Influenza is a serious medical and social problem for humanity. Recently developed drugs are quite effective against currently circulating influenza virus strains, but their use can lead to the selection of resistant viral strains. In this regard, new therapeutic approaches and drugs with a broad spectrum of activity are needed. Metabolites of seaweeds fulfill these requirements. This review presents the results of in vitro and in vivo experimental and clinical studies about the effectiveness of these compounds in combating influenza infection and explains the necessity of their use as a potential basis for the creation of new drugs with a broad spectrum of activity.
Collapse
Affiliation(s)
- Natalia Besednova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Tatiana Zaporozhets
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Tatiana Kuznetsova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Ilona Makarenkova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Lydmila Fedyanina
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., Vladivostok 690922, Russia.
| | - Sergey Kryzhanovsky
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., Vladivostok 690922, Russia.
| | - Olesya Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia.
| | - Svetlana Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia.
| |
Collapse
|
29
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
30
|
Mazalovska M, Kouokam JC. Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and Other Potential Coinfections. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3750646. [PMID: 29854749 PMCID: PMC5964492 DOI: 10.1155/2018/3750646] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus-acquired immunodeficiency syndrome (HIV/AIDS) remains a global health problem. Current therapeutics specifically target the viral pathogen at various stages of its life cycle, although complex interactions between HIV and other pathogenic organisms are evident. Targeting HIV and concomitant infectious pathogens simultaneously, both by therapeutic regimens and in prevention strategies, would help contain the AIDS pandemic. Lectins, a ubiquitous group of proteins that specifically bind glycosylated molecules, are interesting compounds that could be used for this purpose, with demonstrated anti-HIV properties. In addition, potential coinfecting pathogens, including other enveloped viruses, bacteria, yeasts and fungi, and protozoa, display sugar-coated macromolecules on their surfaces, making them potential targets of lectins. This review summarizes the currently available findings suggesting that lectins should be further developed to simultaneously fight the AIDS pandemic and concomitant infections in HIV infected individuals.
Collapse
Affiliation(s)
- Milena Mazalovska
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Abreu TM, Monteiro VS, Martins ABS, Teles FB, da Conceição Rivanor RL, Mota ÉF, Macedo DS, de Vasconcelos SMM, Júnior JERH, Benevides NMB. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int J Biol Macromol 2018; 111:534-541. [DOI: 10.1016/j.ijbiomac.2017.12.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 01/08/2023]
|
32
|
Singh RS, Walia AK. Lectins from red algae and their biomedical potential. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1833-1858. [PMID: 32214665 PMCID: PMC7088393 DOI: 10.1007/s10811-017-1338-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 05/08/2023]
Abstract
Lectins are unique proteins or glycoproteins of non-immune origin that bind specifically to carbohydrates. They recognise and interact reversibly to either free carbohydrates or glycoconjugates, without modifying their structure. Lectins are highly diverse and widely distributed in nature and have been extensively reported from various red algae species. Numerous red algae species have been reported to possess lectins having carbohydrate specificity towards complex glycoproteins or high-mannose N-glycans. These lectin-glycan interactions further trigger many biochemical responses which lead to their extensive use as valuable tools in biomedical research. Thus, owing to their exceptional glycan recognition property, red algae lectins are potential candidate for inhibition of various viral diseases. Hence, the present report integrates existing information on the red algae lectins, their carbohydrate specificity, and characteristics of purified lectins. Further, the review also reports the current state of research into their anti-viral activity against various enveloped viruses such as HIV, hepatitis, influenza, encephalitis, coronavirus and herpes simplex virus and other biomedical activities such as anti-cancer, anti-microbial, anti-inflammatory, anti-nociceptive and acaricidal activities.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
33
|
Chaves RP, Silva SRD, Nascimento Neto LG, Carneiro RF, Silva ALCD, Sampaio AH, Sousa BLD, Cabral MG, Videira PA, Teixeira EH, Nagano CS. Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int J Biol Macromol 2017; 107:1320-1329. [PMID: 28970169 DOI: 10.1016/j.ijbiomac.2017.09.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
As described in the literature, Solieria filiformis lectin (SfL) from the marine red alga S. filiformis was found to have antinociceptive and anti-inflammatory effects. In this study, we characterized two SfL variants, SfL-1 and SfL-2, with molecular mass of 27,552Da and 27,985Da, respectively. The primary structures of SfL-1 and SfL-2 consist of four tandem-repeat protein domains with 67 amino acids each. SfL-1 and -2 showed high similarity to OAAH-family lectins. 3D structure prediction revealed that SfL-1 and -2 are composed of two β-barrel-like domains formed by five antiparallel β-strands, which are connected by a short peptide linker. Furthermore, the mixture of isoforms (SfLs) showed anticancer effect against MCF-7 cells. Specifically, SfLs inhibited 50% of viability in MCF-7 cells after treatment at 125μg.mL-1, while the inhibition of Human Dermal Fibroblasts (HDF) was 34% with the same treatment. Finally, 24h after treatment, 25% of MCF-7 cells were in early apoptosis and 35% in late apoptosis. Evaluation of pro- and anti-apoptotic gene expression of MCF-7 cells revealed that SfLs induced caspase-dependent apoptosis within 24h.
Collapse
Affiliation(s)
- Renata Pinheiro Chaves
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Suzete Roberta da Silva
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Luiz Gonzaga Nascimento Neto
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil; Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160 Fortaleza, Ceará, Brazil
| | - Romulo Farias Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - André Luis Coelho da Silva
- Laboratório de Biotecnologia Molecular - LabBMol, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, bloco 907, 60440-900, Fortaleza, Ceará, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Bruno Lopes de Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Av. Dom Aureliano Matos, 2060, Limoeiro do Norte, CE, 62930-000, Brazil
| | | | - Paula Alexandra Videira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160 Fortaleza, Ceará, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil.
| |
Collapse
|
34
|
A Novel High-Mannose Specific Lectin from the Green Alga Halimeda renschii Exhibits a Potent Anti-Influenza Virus Activity through High-Affinity Binding to the Viral Hemagglutinin. Mar Drugs 2017; 15:md15080255. [PMID: 28813016 PMCID: PMC5577609 DOI: 10.3390/md15080255] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/17/2023] Open
Abstract
We have isolated a novel lectin, named HRL40 from the green alga Halimeda renschii. In hemagglutination-inhibition test and oligosaccharide-binding experiment with 29 pyridylaminated oligosaccharides, HRL40 exhibited a strict binding specificity for high-mannose N-glycans having an exposed (α1-3) mannose residue in the D2 arm of branched mannosides, and did not have an affinity for monosaccharides and other oligosaccharides examined, including complex N-glycans, an N-glycan core pentasaccharide, and oligosaccharides from glycolipids. The carbohydrate binding profile of HRL40 resembled those of Type I high-mannose specific antiviral algal lectins, or the Oscillatoria agardhii agglutinin (OAA) family, which were previously isolated from red algae and a blue-green alga (cyanobacterium). HRL40 potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells with half-maximal effective dose (ED50) of 2.45 nM through high-affinity binding to a viral envelope hemagglutinin (KD, 3.69 × 10−11 M). HRL40 consisted of two isolectins (HRL40-1 and HRL40-2), which could be separated by reverse-phase HPLC. Both isolectins had the same molecular weight of 46,564 Da and were a disulfide -linked tetrameric protein of a 11,641 Da polypeptide containing at least 13 half-cystines. Thus, HRL40, which is the first Type I high-mannose specific antiviral lectin from the green alga, had the same carbohydrate binding specificity as the OAA family, but a molecular structure distinct from the family.
Collapse
|
35
|
|
36
|
Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins. mBio 2016; 7:mBio.00584-16. [PMID: 27406561 PMCID: PMC4958244 DOI: 10.1128/mbio.00584-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. Microbial pathogens may express a wide range of carbohydrate-specific adhesion proteins that mediate adherence to host tissues. Pathogen attachment to host cells is achieved through the binding of these lectin-like adhesins to glycans on human glycoproteins. In only a few cases have the human receptors of pathogenic adhesins been described. We developed a new strategy to predict these interacting receptors. Therefore, we developed a novel LGI network that would allow the mapping of potential adhesin binding receptors in the host with prioritization, based on the experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins (bacterial uroepithelial FimH from E. coli and fungal Epa and Als adhesins from C. glabrata and C. albicans) were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with human-pathogenic viruses and to discover whether FimH adhesin has anti-HIV activity.
Collapse
|
37
|
Anti-influenza virus activity of high-mannose binding lectins derived from genus Pseudomonas. Virus Res 2016; 223:64-72. [PMID: 27374061 PMCID: PMC7173227 DOI: 10.1016/j.virusres.2016.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Three Pseudomonas-derived lectins: PFL, PML, and PTL, have been examined for anti-influenza virus activity against several strains of influenza virus. These lectins would bind high-mannose glycan and blocked the entry of influenza virus into the host cells. It is expected that these lectins could have an antiviral activity against not only influenza virus but also other enveloped viruses including HIV as described by many other studies. These three lectins will be applicable to a novel microbicide.
Lectin PFL binding high-mannose glycan derived from Pseudomonas fluorescens and other homologous lectins: PML derived from Pseudomonas mandelii and PTL derived from Pseudomonas taiwanensis were examined for antiviral activity. The cDNA of these lectin genes were synthesized, cloned, expressed in Escherichia coli. The expressed lectins were purified by gel filtrations, and supplied to cultures infected with several strains of influenza virus. These three lectins have inhibited propagation of influenza viruses with a similar extent, 50% of inhibition-dose was around ten nanomolar concentration. An immunofluorescent microscopy, a microarray analysis, and several infection experiments with different time periods of lectin addition or using the competitor substrates indicated that binding of these lectins with high-mannose glycan on HA protein of influenza virus could block the virus entry into the host cells, thereby resulting in inhibition of the virus propagation. These Pseudomonas-derived lectins would be protential and attractive antiviral agents targeting glycoproteins of enveloped viruses including influenza virus.
Collapse
|
38
|
Lee JH, Oh M, Seok JH, Kim S, Lee DB, Bae G, Bae HI, Bae SY, Hong YM, Kwon SO, Lee DH, Song CS, Mun JY, Chung MS, Kim KH. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection. Viruses 2016; 8:v8060157. [PMID: 27275830 PMCID: PMC4926177 DOI: 10.3390/v8060157] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 12/31/2022] Open
Abstract
Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea.
| | - Mi Oh
- Department of Food and Nutrition, Duksung Women's University, Seoul 01369, Korea.
| | - Jong Hyeon Seok
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea.
| | - Sella Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea.
| | - Dan Bi Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea.
| | - Garam Bae
- Department of Food and Nutrition, Duksung Women's University, Seoul 01369, Korea.
| | - Hae-In Bae
- Department of Food and Nutrition, Duksung Women's University, Seoul 01369, Korea.
| | - Seon Young Bae
- Department of Food and Nutrition, Duksung Women's University, Seoul 01369, Korea.
| | - Young-Min Hong
- R & D Center, Dong-il Shimadzu Corp., Seoul 08506, Korea.
| | - Sang-Oh Kwon
- S & D Co., Ltd., Osong, Cheongju, Chungbuk 28156, Korea.
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Ji Young Mun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Gyeonggi-do 13135, Korea.
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul 01369, Korea.
| | - Kyung Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea.
| |
Collapse
|
39
|
Hirayama M, Shibata H, Imamura K, Sakaguchi T, Hori K. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:215-31. [PMID: 26661793 PMCID: PMC7088246 DOI: 10.1007/s10126-015-9684-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Collapse
Affiliation(s)
- Makoto Hirayama
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Hiromi Shibata
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Koji Imamura
- Medical and Biological Laboratories Co., Ltd., 1063-103 Terasawaoka, Ina, Nagano, 396-0002, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kanji Hori
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
40
|
Sato Y, Kubo T, Morimoto K, Yanagihara K, Seyama T. High mannose-binding Pseudomonas fluorescens lectin (PFL) downregulates cell surface integrin/EGFR and induces autophagy in gastric cancer cells. BMC Cancer 2016; 16:63. [PMID: 26850110 PMCID: PMC4744433 DOI: 10.1186/s12885-016-2099-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens lectin (PFL) belongs to a recently discovered anti-HIV lectin family and induces anoikis-like cell death of MKN28 gastric cancer cells by causing α2 integrin internalization through recognition of high mannose glycans; however, the detailed anti-cancer mechanism is not fully elucidated. METHODS Cell adherence potency of MKN28 upon PFL treatment was assessed using a colorimetric assay. Cell surface molecules to which PFL bound were identified by peptide mass finger printing with Matrix Assisted Laser Desorption/Ionization-time of flight mass spectrometry and their cellular localization determined by immunofluorescence microscopy. Gene and protein expression in PFL-treated MKN28 cells were evaluated by microarray analysis and western blot, and the function of these genes was evaluated by siRNA knock-down. A proliferation assay measured the sensitivity of PFL-treated cancer cells to anti-cancer drugs. The effect of PFL on subcutaneous MKN28 tumor growth and hepatic tumor formation in BALB/c nude mice was evaluated. RESULTS The strength of MKN28 cell adherence in vitro to the extracellular matrix was impaired by PFL treatment, consistent with the observation that PFL induces rapid downregulation of surface integrins. PFL also was found to bind to cell surface epidermal growth factor receptor (EGFR). Surface EGFR molecules were endocytosed following PFL binding, and were degraded in a time-dependent fashion. This degradation process was largely the result of autophagy, as revealed by the increased expression of autophagic proteins. PFL-induced EGFR degradation was partly inhibited by RAB7 siRNA as well as LC3 siRNA, and internalized EGFR colocalized with ATG9 at 48 h post-PFL treatment, suggesting that these proteins contribute to dynamic degradation induced by PFL. PFL-induced decrease in surface EGFR rendered MKN28 cells susceptible to gefitinib, a selective inhibitor of EGFR tyrosine kinase. In vivo experiments showed that PFL-treated MKN28-EGFP cells injected in the portal vein of BALB/c nude mice failed to form tumor colonies on the liver, and intratumoral injection of PFL significantly inhibited tumor growth. CONCLUSION PFL-mediated downregulation of integrin and EGFR contributes to the inhibition of tumor growth in vitro and in vivo. This novel anti-cancer mechanism of PFL suggests that this lectin would be useful as an anti-cancer drug or an adjuvant for other drugs.
Collapse
Affiliation(s)
- Yuichiro Sato
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan.
| | - Takanori Kubo
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kinjiro Morimoto
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kazuyoshi Yanagihara
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan.,Present address; Division of Translational Research, National Cancer Center Research Institute, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Toshio Seyama
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
41
|
Hirayama M, Shibata H, Imamura K, Sakaguchi T, Hori K. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:144-60. [PMID: 26593063 PMCID: PMC7088233 DOI: 10.1007/s10126-015-9677-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/22/2015] [Indexed: 05/24/2023]
Abstract
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Collapse
Affiliation(s)
- Makoto Hirayama
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Hiromi Shibata
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Koji Imamura
- Medical & Biological Laboratories Co., Ltd., 1063-103 Terasawaoka, Ina, Nagano, 396-0002, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kanji Hori
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
42
|
Sato Y. [Structure and Function of a Novel Class of High Mannose-binding Proteins with Anti-viral or Anti-tumor Activity]. YAKUGAKU ZASSHI 2015; 135:1281-9. [PMID: 26521877 DOI: 10.1248/yakushi.15-00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recently discovered high mannose (HM)-binding lectin family in lower organisms such as bacteria, cyanobacteria, and marine algae represents a novel class of anti-viral or anti-tumor compounds. This lectin family shows unique carbohydrate binding properties with exclusive high specificity for HM glycans with core trisaccharide comprising Manα(1-3)Manα(1-6)Man at the D2 arm. At low nanomolar levels, these lectins exhibit potent antiviral activity against HIV and influenza viruses through the recognition of HM glycans on virus spike glycoproteins. In addition, some of these lectins, such as bacterial PFL, show cytotoxicity for various cancer cells at low micromolar levels. Cell surface molecules to which PFL bound were identified as integrin alpha 2 and epidermal growth factor receptor (EGFR) by peptide mass finger printing with MALDI-TOF MS. Upon PFL binding, these molecules were rapidly internalized to cytoplasm. EGFR was time dependently degraded in the presence of PFL, and this process was largely responsible for autophagy. Furthermore, PFL sensitizes cancer cells to the EGFR kinase inhibitor, gefitinib. In vivo experiments showed that intratumoral injection of PFL significantly inhibited the growth of tumors in nude mice. PFL-mediated down regulation of integrin/EGFR ultimately contributed to the inhibition of tumor growth both in vitro and in vivo. Thus, the novel anti-cancer mechanism of PFL suggests that this lectin is potentially useful as an anti-cancer drug or as an adjuvant for other drugs. This class of proteins will likely have beneficial impact as a tool for biochemical and biomedical research because of its unique carbohydrate specificity and various biological activities.
Collapse
Affiliation(s)
- Yuichiro Sato
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University
| |
Collapse
|
43
|
Gardères J, Bourguet-Kondracki ML, Hamer B, Batel R, Schröder HC, Müller WEG. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential. Mar Drugs 2015; 13:5059-5101. [PMID: 26262628 PMCID: PMC4557014 DOI: 10.3390/md13085059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/09/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022] Open
Abstract
An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| |
Collapse
|
44
|
Sato Y, Morimoto K, Kubo T, Sakaguchi T, Nishizono A, Hirayama M, Hori K. Entry Inhibition of Influenza Viruses with High Mannose Binding Lectin ESA-2 from the Red Alga Eucheuma serra through the Recognition of Viral Hemagglutinin. Mar Drugs 2015; 13:3454-65. [PMID: 26035023 PMCID: PMC4483639 DOI: 10.3390/md13063454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 11/16/2022] Open
Abstract
Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells.
Collapse
Affiliation(s)
- Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-Ku, Hiroshima 731-0153, Japan.
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-Ku, Hiroshima 731-0153, Japan.
| | - Takanori Kubo
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-Ku, Hiroshima 731-0153, Japan.
| | - Takemasa Sakaguchi
- Department of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan.
| | - Akira Nishizono
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.
| | - Makoto Hirayama
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| | - Kanji Hori
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
45
|
Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 2015. [PMID: 25794876 DOI: 10.1007/s00253-015-6518-0/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Marine organisms have been extensively explored for the last several decades as potential sources of novel biologically active compounds, and extensive research has been conducted on lectins. Lectins derived from marine organisms are structurally diverse and also differ from those identified from terrestrial organisms. Marine lectins appear to be particularly useful in some biological applications. They seem to induce negligible immunogenicity because they have a relatively small size, are more stable due to extensive disulfide bridge formation, and have high specificity for complex glyco-conjugates and carbohydrates instead of simple sugars. It is clear that many of them have not yet been extensively studied when compared with their terrestrial counterparts. Marine lectins can be used to design and develop new potentially useful therapeutic agents. This review encompasses recent research on the isolation and identification of marine lectins with potential value in medicinal applications.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 2015; 99:3755-73. [PMID: 25794876 PMCID: PMC7080081 DOI: 10.1007/s00253-015-6518-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Abstract
Marine organisms have been extensively explored for the last several decades as potential sources of novel biologically active compounds, and extensive research has been conducted on lectins. Lectins derived from marine organisms are structurally diverse and also differ from those identified from terrestrial organisms. Marine lectins appear to be particularly useful in some biological applications. They seem to induce negligible immunogenicity because they have a relatively small size, are more stable due to extensive disulfide bridge formation, and have high specificity for complex glyco-conjugates and carbohydrates instead of simple sugars. It is clear that many of them have not yet been extensively studied when compared with their terrestrial counterparts. Marine lectins can be used to design and develop new potentially useful therapeutic agents. This review encompasses recent research on the isolation and identification of marine lectins with potential value in medicinal applications.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Carvalho ADS, da Silva MV, Gomes FS, Paiva PMG, Malafaia CB, da Silva TD, Vaz AFDM, da Silva AG, Arruda IRDS, Napoleão TH, Carneiro-da-Cunha MDG, Correia MTDS. Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds. Int J Biol Macromol 2015; 75:402-8. [PMID: 25668321 DOI: 10.1016/j.ijbiomac.2015.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 01/11/2023]
Abstract
Apuleia leiocarpa is a tree found in Caatinga that has great value in the timber industry. Lectins are carbohydrate-binding proteins with several biotechnological applications. This study shows the isolation, characterization, and antibacterial activity of A. leiocarpa seed lectin (ApulSL). The lectin was chromatographically isolated from a crude extract (in 150 mM NaCl) by using a chitin column. ApulSL adsorbed to the matrix and was eluted using 1.0 M acetic acid. Native ApulSL was characterized as a 55.8-kDa acidic protein. SDS-PAGE showed three polypeptide bands, whereas two-dimensional electrophoresis revealed four spots. The peptides detected by MALDI TOF/TOF did not show sufficient homology (<30%) with the database proteins. Circular dichroism spectroscopy suggested a disordered conformational structure, and fluorescence spectrum showed the presence of tyrosine residues in the hydrophobic core. The hemagglutinating activity of ApulSL was present even after heating to 100 °C, was Mn(2+)-dependent, and inhibited by N-acetylglucosamine, D(-)-arabinose, and azocasein. ApulSL demonstrated bacteriostatic and bactericide effects on gram-positive and gram-negative species, being more effective against three varieties of Xanthomonas campestris (MIC ranging from 11.2 to 22.5 μg/mL and MBC of 22.5 μg/mL). The results of this study reinforce the importance of biochemical prospecting of Caatinga by revealing the antibacterial potential of ApulSL.
Collapse
Affiliation(s)
- Aline de Souza Carvalho
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Francis Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-900 Maceió, Alagoas, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Carolina Barbosa Malafaia
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Tulio Diego da Silva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Antônio Fernando de Melo Vaz
- Centro de Saúde e Tecnologia Rural, Universidade Federal de Campina Grande, Jatobá, 58700-970 Patos, Paraíba, Brazil
| | - Alexandre Gomes da Silva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Isabel Renata de Souza Arruda
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil.
| | | | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
48
|
Hung LD, Hirayama M, Ly BM, Hori K. Purification, primary structure, and biological activity of the high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum. JOURNAL OF APPLIED PHYCOLOGY 2015; 27:1657-1669. [PMID: 32214663 PMCID: PMC7088313 DOI: 10.1007/s10811-014-0441-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/19/2014] [Accepted: 10/19/2014] [Indexed: 05/13/2023]
Abstract
Three isolectins from cultivated Eucheuma denticulatum were isolated. They were commonly monomeric proteins of about 28 kDa with a range of averaged molecular weights from 27,834 to 27,868 Da among the isolectins and shared almost the same 20 N-terminal amino acid sequences. Complementary DNA (cDNA) cloning based on the rapid amplification cDNA ends (RACE) methods elucidated the full-length sequence of EDA-2 which encodes 269 amino acids, including initiating methionine, with four tandemly repeated domains of about 67 amino acids. The primary structure of EDA-2 is highly similar to those of the high-mannose N-glycan specific lectins including Oscillatoria agardhii (OAA) and Burkholderia oklahomensis EO147 (BOA) from cyanobacteria, Myxococcus xanthus (MBHA) and Pseudomonas fluorescens Pf0-1 (PFL) from bacteria, and ESA-2 from a macro red alga. The hemagglutination activities were commonly inhibited by the glycoproteins bearing high-mannose N-glycans, but not by monosaccharides examined, including mannose. In a direct binding experiment with pyridylaminated oligosaccharides, an isolectin EDA-2 exclusively bound to high-mannose type N-glycans, but not to other glycans that include complex types and a core pentasaccharide of N-glycans, indicating that it recognized the branched oligomannoside moiety. Its binding activity was subtly different among the oligomannoside structures examined, showing that the lectin has preference affinity for high-mannose type N-glycans with an exposed (α1-3) mannose residue in the D2 arm. Interestingly, EDAs, the mixture of three isolectins inhibited the growth of shrimp pathogenic bacterium, Vibrio alginolyticus, although it did not affect the growth of V. parahaemolyticus and V. harveyi. Growth inhibition of V. alginolyticus with EDAs was not observed in the presence of yeast mannan bearing high-mannose N-glycans, suggesting that EDAs caused the activity through binding to the target receptor(s) on the surface of V. alginolyticus. These results indicate that cultivated carrageenophyte E. denticulatum is a good source of a lectin(s) that may be useful as a carbohydrate probe and an antibacterial reagent.
Collapse
Affiliation(s)
- Le Dinh Hung
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi, Hiroshima, 739-8528 Japan
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 2A-Hungvuong Street, Nhatrang City, Khanhhoa Province Vietnam
| | - Makoto Hirayama
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi, Hiroshima, 739-8528 Japan
| | - Bui Minh Ly
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 2A-Hungvuong Street, Nhatrang City, Khanhhoa Province Vietnam
| | - Kanji Hori
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi, Hiroshima, 739-8528 Japan
| |
Collapse
|
49
|
Hori K, Hirayama M. Centrifugal ultrafiltration-HPLC method for interaction analysis between lectins and sugars. Methods Mol Biol 2014; 1200:173-83. [PMID: 25117235 DOI: 10.1007/978-1-4939-1292-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The centrifugal ultrafiltration-HPLC method is a simple and rapid method for analyzing the binding interaction between lectins and sugars (oligosaccharides). In this method, a lectin is mixed with a fluorescent-labeled oligosaccharide in buffer and the unbound oligosaccharide recovered by centrifugal ultrafiltration is isolated and quantified by high-performance liquid chromatography. The binding activity is defined as a ratio (percentage) of the amount of bound oligosaccharide to that added, where the former is obtained by subtracting the amount of unbound oligosaccharide from the latter. The oligosaccharide-binding specificity of a lectin can be determined by comparing the binding activities with a variety of fluorescent-labeled oligosaccharides. The association constant and the optimum pH and temperature of the binding interaction between lectins and fluorescent-labeled oligosaccharides can be easily analyzed by this method.
Collapse
Affiliation(s)
- Kanji Hori
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan,
| | | |
Collapse
|
50
|
Purification, Characterization, and cDNA Cloning of a Novel Lectin from the Green Alga,Codium barbatum. Biosci Biotechnol Biochem 2014; 76:805-11. [DOI: 10.1271/bbb.110944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|